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Abstract The coronary circulation is both culprit and victim of acute myocardial infarction. The rupture of an epicardial atheroscle-
rotic plaque with superimposed thrombosis causes coronary occlusion, and this occlusion must be removed to induce re-
perfusion. However, ischaemia and reperfusion cause damage not only in cardiomyocytes but also in the coronary circula-
tion, including microembolization of debris and release of soluble factors from the culprit lesion, impairment of endothelial
integrity with subsequently increased permeability and oedema formation, platelet activation and leucocyte adherence,
erythrocyte stasis, a shift from vasodilation to vasoconstriction, and ultimately structural damage to the capillaries with
eventual no-reflow, microvascular obstruction (MVO), and intramyocardial haemorrhage (IMH). Therefore, the coronary
circulation is a valid target for cardioprotection, beyond protection of the cardiomyocyte. Virtually all of the above delete-
rious endpoints have been demonstrated to be favourably influenced by one or the other mechanical or pharmacological
cardioprotective intervention. However, no-reflow is still a serious complication of reperfused myocardial infarction and
carries, independently from infarct size, an unfavourable prognosis. MVO and IMH can be diagnosed by modern imaging
technologies, but still await an effective therapy. The current review provides an overview of strategies to protect the cor-
onary circulation from acute myocardial ischaemia/reperfusion injury. This article is part of a Cardiovascular Research
Spotlight Issue entitled ‘Cardioprotection Beyond the Cardiomyocyte’, and emerged as part of the discussions of the
European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
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This article is part of the Spotlight Issue on Cardioprotection Beyond the Cardiomyocyte.

1. Introduction

Reperfusion is the only way to salvage ischaemic myocardium from in-
farction, but reperfusion per se also inflicts additional injury, such that the
resulting myocardial infarct (MI) size is determined by both ischaemia-
and reperfusion-induced injury.1–3 There is still an unmet medical need

for adjunct cardioprotection on top of timely reperfusion.4,5 In type II
myocardial infarction and in the absence of epicardial coronary artery
occlusion, the distinction of ischaemia and reperfusion is less obvious,
but there is still infarction and cardioprotection is needed.6 Numerous
animal experiments have provided robust evidence that MI size can be
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reduced by mechanical or pharmacological interventions before (pre-
conditioning), during (perconditioning), or after (postconditioning) myo-
cardial ischaemia. However, the translation of cardioprotection to
clinical practice has been largely disappointing so far, for many reasons,
including lack of rigor and reproducibility in experimental studies, as well
as conceptual and technical faults in clinical trial design.7–10 One impor-
tant conceptual reason for failure of translation may relate to the focus
of cardioprotection studies on the cardiomyocyte, and the neglect of
other tissues in the heart, notably the coronary circulation.11

2. The coronary circulation in acute
myocardial ischaemia/reperfusion
injury

The coronary circulation is both culprit and victim of acute myocardial is-
chaemia/reperfusion injury (IRI), and as such a prime target for cardio-
protection. Acute ST-segment elevation myocardial infarction (STEMI) is
induced by rupture of an epicardial coronary atherosclerotic plaque with
superimposed thrombosis, which occludes the epicardial coronary ar-
tery completely and renders the dependent perfusion territory ischae-
mic; residual blood flow to the perfusion territory then depends entirely
on the coronary collateral circulation which varies interindividually and
largely depends on its prior adaptation to pre-existing epicardial coro-
nary atherosclerotic narrowing. More recent studies have emphasized
the increasing importance of atherosclerotic plaque erosion rather than
rupture, particularly in statin-treated patients and particularly for the in-
duction of non-STEMI.12 The epicardial coronary artery with its culprit
lesion is also the target of interventional therapy by dilatation/stenting
with or without thrombectomy. Such percutaneous coronary interven-
tion (PCI) may not only restore epicardial coronary blood flow but at
the same tissue dislodge atherothrombotic debris from the culprit lesion
and embolize it into the coronary microcirculation.13

The coronary circulation distal to the epicardial atherosclerotic culprit
lesion is not virgin, but characterized by endothelial dysfunction through
the typical risk factors (aging, hypertension, hyperlipidaemia, diabetes
etc.) which characterize atherosclerosis in general.11 More specifically,
the coronary circulation distal to epicardial stenoses remodels, with at-
rophy of the vascular wall in larger coronary arteries and hypertrophy of
the vascular wall in smaller arteries and arterioles,14,15 and its autoregula-
tory vasomotor responses are attenuated.15 The coronary microcircula-
tion as such is not only exposed to atherothrombotic debris, which
is dislodged from the epicardial culprit lesion and causes
microembolization, microinfarcts, and a subsequent inflammatory
response,16–18 but also the release of vasoconstrictor, pro-thrombotic
and pro-inflammatory soluble substances from the culprit lesion, notably
serotonin, thromboxane A2, and TNFa.19,20 In consequence of coronary
microembolization and in response to these soluble substances, coro-
nary vasodilator reserve is severely impaired.18,21

3. Effects of acute myocardial
ischaemia/reperfusion injury on the
coronary vasculature

3.1 Endothelium, pericytes, and glycocalyx
Coronary endothelial cells are relatively resistant to ischaemia and sur-
vive hypoxia in vitro for several days.22 However, in vivo, the interruption

of antegrade pulsatile flow and shear stress induces swelling and blebbing
of endothelial cells.23 The actual disruption of the endothelium and sub-
sequent extravasation of cells after reperfusion are probably facilitated
by destabilization of the cellular junctions. Reperfused endothelium
experiences altered Ca2þ homeostasis, increased cytosolic calcium acti-
vates the endothelial contractile elements and their contraction pro-
motes the formation of intercellular gaps which increase permeability to
large molecules.24 Activated endothelial cells and platelets result in the
expression of adhesion molecules and subsequent adhesion of platelets
and platelet-leucocyte aggregates to the coronary microvasculature.25

Also, the release of cytokines impairs the stability of cell junctions and
increases vascular permeability via activation of Src26 and dissociation of
the VEGFR2/vascular endothelial (VE)-cadherin complex (Figure 1).27

NLRP3 inflammasome activation in endothelial cells may initiate caspase
1-mediated cell death.29 Endothelium-initiated inflammation together
with pro-inflammatory effects of debris from cardiomyocyte necrosis re-
sult in recruitment of inflammatory cells and release of pro-inflammatory
factors, including vascular endothelial growth factor (VEGF),30 matrix
metalloproteases, thrombin, myeloperoxidase,31 and platelet activating
factor.32 These factors, in turn, increase vascular permeability and result
in myocardial oedema by different mechanisms, including activation of
eNOS in caveolae by VEGF.33,34 Angiopoietin-1 and angiopoietin-like
peptide 4 have protective effects via stablization of endothelial cell
junctions.30,35

Pericytes induce vasoconstriction of the cerebral microvasculature,
thereby contributing to entrapment of red and white blood cells in areas
of no-reflow in the post-ischaemic brain.36 Although pericytes are pre-
sent in high numbers in the coronary microvasculature,37 their role in
the heart remains unclear. In the acutely reperfused rat heart, capillary
obstruction was associated with the presence of pericytes, with reduced
capillary diameter, suggesting that cardiac pericytes may also constrict
coronary capillaries and reduce microvascular blood flow after acute
myocardial infarction (AMI). The pericyte relaxant adenosine increased
capillary diameter, decreased capillary obstruction, and increased perfu-
sion volume.38 Cardiac pericytes may therefore represent a novel thera-
peutic target for protecting the coronary microvasculature following
AMI.

The glycocalyx is a matrix structure which covers endothelial cells and
pericytes. The coronary glycocalyx is sensitive to acute myocardial IRI,39

and its shedding contributes to the development of oedema,40 and
leucocyte,41 and platelet42 adherence. TNFa is involved in glycocalyx
degradation,43 and nitric oxide (NO) is protective.44 Thus, the glycocalyx
may be a novel target for coronary vascular cardioprotection.

3.2 Oedema
Intracellular water accounts for more than 75% of myocardial water
content, and reperfusion induces cardiomyocyte swelling immediately
upon coronary reflow.45 Osmotic swelling contributes to sarcolemmal
rupture and cell death, and hyperosmotic reperfusion can reduce myo-
cardial oedema and MI size.46,47 In surviving cardiomyocytes, intracellular
oedema is reversed by restoration of activation of ion pumps, notably
sarcolemmal Naþ/Kþ-ATPase.48 During ischaemia, the accumulation of
metabolites increases interstitial osmolality, and the exposure to normo-
osmotic blood at reperfusion induces immediate interstitial oedema.
Interstitial oedema then diminishes as catabolite washout eliminates the
osmotic gradient between the intravascular and the interstitial
compartments,45 but there is a second wave of oedema caused by in-
creased vascular permeability. Serial cardiovascular magnetic resonance
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..(CMR) imaging studies have revealed such bimodal pattern of myocardial
oedema after reperfusion in pigs and humans.49,50

3.3 Platelets
Platelets contribute to many processes relevant to acute IRI, including
vascular integrity, lymphangiogenesis and tissue regeneration.51 After
AMI, platelets play a biphasic role, initially recruiting neutrophils and am-
plifying the inflammatory response, and later releasing factors that ac-
tively support the resolution of inflammation.51 Upon activation,
platelets release a variety of nucleotides, neurotransmitters, and over
300 proteins from secretory a-granules, dense granules, and lysosomal
granules.52 Activated platelets also release microvesicles and exosomes

which contain miRNA and lipids. The released substances are involved in
platelet aggregation and coagulation. Some, such as sphingosine-
1-phosphate (S1P),53–56 and platelet-activating factor,57,58 can exert
direct cardioprotective effects on cardiomyocytes, but their protective
effect depends on the actual concentrations and circumstances. Other
factors can affect the coronary microvasculature, including serotonin,
growth factors, cytokines and chemokines. Intriguingly, both anti- and
pro-angiogenic factors (e.g. VEGF and SDF1a) can be released from
platelet a-granules under different circumstances.59

Endothelial cells produce prostacyclins, NO and adenosine that inhibit
platelet aggregation and adhesion. When activated, however, they ex-
press adhesion molecules and release von Willebrand factor, which

Figure 1 Potential mechanisms underlying capillary damage following AMI. During thrombotic coronary occlusion and interruption of flow, the endothe-
lium shows morphological and functional changes, including swelling and blebbing and loss of endothelial junctions via release of angiopoietins and VEGF.
Instantaneous opening of the coronary vessel by placement of a coronary stent induces additional damage leading to endothelial gaps, extravasation of eryth-
rocytes, and intramyocardial haemorrhage. Figure modified with permission from Betgem et al.28
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activates platelets, causing them to form a plug. Conversely, activated
platelets release vasoconstrictive compounds such as ADP, serotonin
and thromboxane A2.60

Studies in isolated, perfused hearts have shown that platelets can be
cardioprotective. The barrier function of coronary microvessels in the
isolated perfused rat heart is improved after perfusion of platelet-rich
plasma.61 Myocardial injury measured by cardiac enzymes and function in
rat hearts subject to IRI was decreased by perfusion with either washed
rat platelets or with the supernatant of activated rat platelets.62 The pre-
cise mechanism is unclear but may involve the release of S1P, adenosine,
serotonin, or thromboxane A2.62 Perfusion of guinea pig hearts with con-
stituents released by platelets helped to maintain the integrity of the coro-
nary endothelium after IRI.63 The specific action of platelets in a given
situation appears to depend on their state of activation.57,58,64 In rat hearts
subjected to acute myocardial IRI, perfusion with platelets from AMI
patients increased coronary resistance and myocardial injury when com-
pared with perfusion with platelets from healthy volunteers.65 Such injury
was prevented by the P2Y12 receptor antagonist cangrelor and the glyco-
protein IIb/IIIa receptor blocker abciximab, suggesting that early inhibition
of platelet activation may be cardioprotective.65

Given the complex, multi-factorial role of platelets, in vivo studies pro-
vide more clinically relevant information than in vitro studies, which are
more reductionist and mechanistic in nature.66 Pigs were administered
the platelet integrin aIIbb3 receptor antagonist lamifiban prior to reperfu-
sion after 55 min myocardial ischaemia. Lamifiban inhibited platelet ag-
gregation and had a potent antithrombotic effect at the culprit lesion as
expected, but did not reduce microvascular platelet accumulation or MI
size.67 Similarly, in a mouse in vivo model of 30 min left coronary artery li-
gation followed by 24 h reperfusion, MI size was not affected by inhibi-
tion of platelet adhesion or aggregation, but reduced by inhibition of
platelet activation along with improved perfusion, suggesting a possible
effect on the microvasculature.68 Ultimately, even if activated platelets
do release substances with protective effects on the endothelium, treat-
ment of AMI patients will always include platelet inhibition, given the im-
portance of their primary pro-thrombotic activity.65 To complicate
matters even further, experimental data suggest that P2Y12 receptor in-
hibition using ticagrelor or cangrelor at the onset of reperfusion can itself
reduce MI size,69 but whether this cardioprotective effect is mediated on
the coronary vasculature or the cardiomyocyte is not clear.

4. Microvascular obstruction as a
target for cardioprotection

Microvascular obstruction (MVO) following AMI is primarily a reperfu-
sion phenomenon, which manifests clinically as coronary no-reflow in
the infarct-related artery following primary PCI, and has been defined as
the ‘inability to reperfuse a previously ischaemic region’.70 The patho-
physiology underlying MVO is complex and multifactorial and has been
attributed to: endothelial swelling and blebbing obstructing capillary
blood flow, cardiomyocyte swelling compressing capillaries, platelet acti-
vation and aggregation, capillary obstruction due to red and white blood
cell stasis, and coronary microembolization (reviewed in Ref.11). Severe
MVO can result in capillary destruction and extravasation of red blood
cells into the myocardium—termed intramyocardial haemorrhage
(IMH), a condition which portends to worse prognosis following AMI.
MVO following reperfusion of sustained myocardial ischaemia is always
associated with infarction.71 The MVO and no-reflow areas are always
contained within the infarcted tissue and not seen in the risk area which

has remained viable.72 Also, there is infarction without MVO/no-reflow.
These observations would put MVO as a consequence of myocardial in-
farction rather than its cause. However, MI size is robustly identified and
quantified no earlier than after several hours of reperfusion, for technical
reasons.71 Therefore, any early and transient MVO which may have con-
tributed to infarct extension may have gone unnoticed. In response to
cardioprotective interventions, effects on MI size and on MVO can be
dissociated. In pigs, local and remote ischaemic conditioning procedures
reduce MI size but not areas of no-reflow.73 Conversely, delayed hypo-
thermia during reperfusion only reduces no-reflow but not MI size.74

Mechanistically, the same factors which cause cardiomyocyte death (ne-
crosis, apoptosis, etc.) can also cause death of endothelial and vascular
smooth muscle cells, i.e. hypoxia per se with re-oxygenation and conse-
quent enhanced formation of reactive oxygen species (ROS).
Intracellular and interstitial oedema, intravascular platelet and erythro-
cyte aggregates and early inflammatory responses contribute to MVO
and cardiomyocyte death, but their contribution to MVO and cardio-
myocyte death may differ. At this point, the causality between MVO and
cardiomyocyte cell death remains unresolved, and the two phenomena
must be considered as separate but intimately related, possibly because
of their identical underlying mechanisms. MVO and coronary no-reflow
occur frequently even after prompt epicardial recanalization of the
infarct-related artery,75 and strongly impact on patient prognosis.76

Several therapies for preventing MVO, which have been successfully
tested in experimental models of AMI, have failed in the translation to
AMI patients.10,11

4.1 Invasive and non-invasive methods for
assessment of coronary no-reflow and
MVO
The thrombolysis in myocardial infarction (TIMI) score grades blood
flow in epicardial vessels.77 However, MVO may occur in nearly 50% of
patients with TIMI flow 3. Angiographic methods characterizing dye pen-
etration within the myocardium, the myocardial blush grade (MBG) and
TIMI myocardial perfusion grade, have been developed to shift attention
to coronary microcirculatory flow.78,79 The gold standard for assessing
coronary microvascular function is coronary blood flow by thermodilu-
tion or flow velocity by Doppler which in combination with quantitative
coronary angiography of epicardial coronary arteries also provides volu-
metric coronary blood flow.80 MVO is characterized by systolic retro-
grade and diminished anterograde flow, and by rapid deceleration of
diastolic flow. Such impaired coronary flow velocity pattern following
primary PCI is associated with future cardiovascular events.81 The index
of microvascular resistance assessed by thermodilution provides a more
reproducible assessment of the coronary microcirculation and predicts
acute microvascular injury, left ventricular functional recovery, and clini-
cal outcomes after STEMI.82,83

Incomplete ST-segment resolution (STR) has been related to MVO
and worse clinical outcome after primary PCI.84 A consensus is still lack-
ing over which electrocardiogram (ECG) leads should be analysed, the
optimal timing of ECG analysis, and whether standard ECG or continu-
ous ECG monitoring is preferable.85 Myocardial contrast echocardiogra-
phy (MCE) utilizes ultrasound to visualize contrast microbubbles with a
rheology similar to that of erythrocytes, and lack of contrast opacifica-
tion due to MVO predicts poor functional recovery after STEMI.86 MCE,
however, is limited by moderate spatial resolution and operator depen-
dency. CMR allows multi-slice imaging with high-tissue contrast and high
spatial resolution, enabling accurate quantification, and localization of
MVO and MI size. CMR-defined MVO correlates with angiographic and
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invasive indices of MVO87 and is associated with worse outcome.88

MVO is diagnosed as: (i) lack of gadolinium uptake on first pass perfusion
(<1 min of contrast administration), (ii) lack of early gadolinium enhance-
ment (<2–3 min of contrast administration), and (iii) lack of late gadolin-
ium enhancement (LGE) (10–15 min after contrast administration).89

Although first pass perfusion and early contrast gadolinium enhancement
detect the presence of MVO with greater sensitivity than LGE, the pres-
ence of MVO on LGE is a stronger predictor of clinical outcomes follow-
ing STEMI.89

5. Intramyocardial haemorrhage as
a target for cardioprotection

IMH can develop after reperfusion of an infarct-related coronary artery.
In dog hearts with 50 to 60 min coronary occlusion and reperfusion IMH
develops in the central core of the infarct; ultrastructurally, the endothe-
lium is interrupted at several locations.90,91 In patients, IMH was first ob-
served at autopsy after lytic therapy of AMI.92 IMH is not germane to
thrombolysis but frequently observed also after mechanical reperfusion
and associated with unfavourable clinical outcome.93 This relation with
adverse clinical outcome is even stronger than that of MI size or MVO.94

IMH is associated with larger MI size, longer treatment delay and the use
of glycoprotein IIb/IIIa inhibitors.95 IMH is not only a bystander phenom-
enon; extravasation of erythrocytes, leucocytes and finally iron deposi-
tion further increase myocardial damage via a sustained inflammatory
reaction.96,97 Without reperfusion, IMH will not occur as shown both in
experimental models,98 and at autopsy of patients with non-reperfused
AMI.99 In an ex vivo reperfusion rat model, the endothelial barrier func-
tion for microspheres of 0.1mm diameter was lost in hearts exposed to
initial 30 min ischaemia followed by 60 min reperfusion, whereas the bar-
rier function remained intact after 30 min ischaemia without reperfusion,
along with better preservation of endothelial cellular junctions and less
endothelial cell damage.100 Given this sequence of events, a therapeutic
window apparently exists to prevent microvascular damage and subse-
quent IMH upon reperfusion.

The first large series of CMR-scanning acutely after STEMI demon-
strated specific changes in the infarct core in up to 50% of patients
treated with primary PCI.88 Using LGE, many patients displayed infarct
areas completely devoid of contrast.88 Subsequently, contrast-free
sequences were introduced to specifically detect IMH.101,102 The degra-
dation of erythrocytes and release of oxyhaemoglobin, de-oxyhaemo-
globin, and methaemoglobin change the CMR tissue characteristics, as
reflected by a relative decrease in relaxation time and thus relative signal
attenuation within the infarct zone. Iron deposition in the form of ferritin
and hemosiderin also induces signal attenuation (Figure 2). T2* shows
the lowest increase upon oedema and the highest relative decrease
upon haemorrhage and thus theoretically is the most accurate sequence
to detect IMH.96 Whether or not CMR-defined MVO and IMH are sepa-
rate entities is still debated. In a combined patient and pig study, there
was a very large overlap between LGE detected MVO and T2-detected
IMH. These areas were confined to the infarct core and displayed mas-
sive haemorrhage and complete microvascular destruction. Actual MVO
was only observed in the infarct border zone.103

6. Coronary collateral angiogenesis

Brief episodes of ischaemia and reperfusion induced by ischaemic pre-
conditioning (IPC) enable the preservation of endothelial function of

coronary arterioles following acute myocardial IRI.104 Coronary endo-
thelial function is sensitive to acute myocardial IRI, in that the vasodila-
tory action of thrombin under normal conditions is reversed to a
vasoconstrictive effect following IRI,105 and this original observation by
Ku has been confirmed by many groups.106,107 A well-developed coro-
nary collateral circulation protects against lethal acute myocardial IRI by
maintaining perfusion to the area at risk. Apparently, similar underlying
mechanisms are shared by both IPC of cardiomyocytes and coronary
collateral growth. Activation of hypoxia-inducible factor (HIF) ap dissect-
ing whether the cardioprotective effects of ischaemic ears critical for
IPC,108 and HIF-dependent genes are required for coronary collateral
growth in a model of episodic myocardial ischaemia.109,110 Mitochondrial
function also appears to be critical for both IPC,111 and for coronary col-
lateral growth.112 Collateral angiogenesis cannot be recruited acutely for
cardioprotection but is important for the healing and remodelling follow-
ing acute myocardial infarction.113,114

7. Targeting the coronary
vasculature for cardioprotection

Interventions to protect the coronary vasculature following acute IRI
sustained during AMI have been targeted to endothelial dysfunction, loss
of endothelial integrity, microembolization, impaired vasomotor func-
tion, cardiomyocyte and endothelial swelling compressing capillaries, and
capillary rupture with IMH (Figure 3).

The heart can be protected from cell death by different endoge-
nous cardioprotective strategies, collectively termed ‘ischaemic con-
ditioning’ [reviewed in Ref.115] and comprising the application of one
or more brief cycles of non-lethal ischaemia and reperfusion to the
heart itself, either prior to the lethal ischaemic episode (IPC),116 or at
the onset of reperfusion (ischaemic postconditioning (IPost).117 Such
cardioprotective stimulus can also be applied to an organ or tissue
away from the heart [remote ischaemic conditioning (RIC)],118–122 ei-
ther prior to [remote ischaemic preconditioning (RIPC)],123 or during
the lethal ischaemic episode [remote ischaemic perconditioning
(RIPerC)],124 or at the onset of reperfusion [remote ischaemic post-
conditioning (RIPost)].125 The majority of experimental and clinical
studies have focused on the cardioprotective effects of ischaemic con-
ditioning on cardiomyocytes and neglected the coronary vasculature.
However, dissecting whether the cardioprotective effects of ischae-
mic conditioning protects the coronary vasculature independently of
cardiomyocytes is challenging, given the intimate and potentially causal
relationship between damage to the coronary vasculature and cardio-
myocyte death following AMI.71

7.1 Protecting the coronary vasculature
with IPC
IPC, in addition to reducing MI size, can protect the coronary vascula-
ture, as evidenced by less endothelial damage,126 increased flow-
mediated dilator response to vasodilators such as adenosine and nitric
oxide or a reactive hyperaemia stimulus,104,127–130 less neutrophil
adherence,127 and improved endothelial integrity.131 Mechanisms impli-
cated in IPC include adenosine,132,133 KATP channel opening,132,134 signal-
ling ROS,135 bradykinin B1 receptor activation,136 prostaglandin E2,137

NO,138 attenuated formation of detrimental ROS,139 reduced endothe-
lin-1,140 enhanced eNOS function,141 and preservation of endothelial
tight junctions.131 However, some studies failed to show beneficial
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.effects with IPC on coronary no-reflow73,142 or coronary vasomotor
response.143 The interaction of coronary microembolization with
ischaemic conditioning is complex.13 Prior coronary microembolization
does not induce IPC,13 and conversely IPC does not protect from coro-
nary microembolization.144 Coronary microembolization induces how-
ever delayed protection from infarction through upregulation of
TNFa.145

In patients with pre-infarction angina (a clinical example of IPC)146,147

reperfusion,148 coronary microvascular reflow and flow reserve were
improved following AMI, suggesting coronary vascular protection with
endogenous IPC by pre-infarct angina.149 Whether or not pre-infarction
angina is a form of IPC is still under debate, and whether or not pre-
infarction angina is protective under all circumstances is questionable,
given the phenomenon of hyperconditioning.150 In any event, the need
to apply the protective stimulus prior to the lethal ischaemic insult has
prevented the clinical application of IPC in AMI patients in whom the on-
set of acute myocardial ischaemia cannot be anticipated.

7.2 Protecting the coronary vasculature
with IPost
IPost can be applied at the onset of reperfusion, making its use in STEMI
patients at the time of primary PCI possible. In the first description of MI-

limitation by IPost,117 less myocardial oedema, reduced neutrophil ad-
herence and decreased endothelial P-selectin expression, and improved
vasodilator response to acetylcholine were observed. In pigs, smaller MI
size, less MVO, improved endothelial function, and preserved coronary
blood flow were observed after 2 h of reperfusion with IPost.151 A more
recent study reported less oedema and MVO, but no reduction in MI
size with IPost and RIC in a closed-chest pig infarction model.152 Other
studies failed to show any beneficial effects of IPost on MVO73,153,154;
one of these studies also found no reduction in MI size with IPost,153 but
the others did demonstrate a smaller MI size with IPost.73,154 The disso-
ciation between the beneficial effects of IPost on MVO and MI size are
difficult to interpret at this time. Concomitant IPost and coronary
microembolization, as probably occurs during further manipulation of
the culprit lesion just after established reperfusion, has been shown to
not impair protection by IPost.155

In the clinical setting, the beneficial effects of IPost on MVO appeared
to mirror its MI-limiting effect.156 Reduction of MI size went along with
limitation of MVO by 50% with IPost (both by CMR).156 In primary PCI-
treated STEMI patients less coronary no-reflow with IPost was reflected
by improved TIMI grade, STR, MBG, and corrected TIMI frame count.157

Also, IPost reduced MI size, and improved coronary blood flow and
endothelium-dependent vasodilator function following STEMI.158

However, other clinical studies have failed to demonstrate an effect of

Figure 2 Intramyocardial haemorrhage following AMI on cardiac MRI. (A) On T2-weighted images relaxation times and thus signal strength increase due
to myocardial oedema formation after AMI (white arrow heads). In case of IMH, haemoglobin degradation products lead to a relative decrease in relaxation
time, and thus a relative signal attenuation within the MI zone (black arrow heads). (B) On T2* images a relatively lower increase is observed with myocardial
oedema (white arrow heads), and a relative higher decrease is observed upon IMH (black arrow heads), providing a stronger signal separation when com-
pared with T2. (C) On LGE images the hypointense core indicates that no gadolinium entered the infarct core (yellow arrow heads). Overall infarct area is
indicated by the hyperintense signal of the gadolinium that is retained within the tissue (white line). Note the large overlap between MVO as assessed by
LGE and IMH as assessed by T2 and T2*. Figure modified with permission from Betgem et al.28
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IPost on MVO, but these studies also showed no effect of IPost on MI
size.153,159 Some studies have even reported detrimental effects of IPost
with larger MI size, but in these studies there was no detrimental effect
on coronary microvascular function.160,161

7.3 Protecting the coronary vasculature
with limb RIC
IPost requires further manipulation of the culprit coronary lesion,
thereby limiting its clinical application. In contrast, RIC can be induced
non-invasively by one or more cycles of brief non-lethal ischaemia and
reperfusion to the limb.162 In human volunteers, serial inflations and
deflations of a pneumatic cuff on the upper arm improved post-
ischaemic endothelial function (as measured by increased blood flow re-
sponse to acetylcholine) in the contralateral arm.162 Using the same
model, limb RIC induced an early and a delayed vasculoprotective effect
24–48 h following the stimulus in healthy volunteers and in patients with

atherosclerosis, which was blocked by the KATP channel blocker
glibenclamide,163 required a neural pathway, which was blocked by phar-
macological ganglionic blockade164 and was effective even when limb
RIC was performed during the acute forearm IRI. An endothelial-
protective effect from limb RIC was also present with daily limb RIC for
7 days,165 and still present 8 days following the protective stimulus,166

suggesting that a chronic daily limb RIC stimulus may be able to extend
the window of vascular protection. Long-term nitroglycerine and limb
RIC each separately reduced MI size in rats and attenuated the endothe-
lial dysfunction from forearm ischaemia/reperfusion in healthy volun-
teers, but in combination abrogated any protection both in the heart and
in the peripheral vasculature.167

Coronary vascular resistance was reduced and coronary blood flow
improved with limb RIC in pigs at baseline and following acute myocar-
dial IRI, and this effect was blocked by KATP channel blockade with gliben-
clamide but not by femoral nerve transection.168 In healthy human
volunteers, limb RIC increased coronary flow velocity (by Doppler),

Figure 3 Effects of acute myocardial ischaemia/reperfusion injury on the coronary vasculature, and therapeutic vascular targets for cardioprotection. This
scheme depicts the diverse consequences of acute myocardial ischaemia/reperfusion injury on the coronary vasculature following acute myocardial infarc-
tion, and highlights the vascular targets of endogenous cardioprotective strategies (IPC, ischaemic preconditioning, IPost, ischaemic postconditioning, and
RIC, remote ischaemic conditioning) and Pharmacological agents (Pharm). Figure modified with permission from Heusch et al.11
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suggesting a hyperaemic response with RIC.169 In patients undergoing
PCI for stable coronary artery disease (CAD), limb RIC reduced peri-
procedural myocardial injury and rapidly increased distal coronary occlu-
sive pressure, reflecting improved coronary collateral blood flow.170

Also in patients undergoing PCI for stable CAD, RIC improved coronary
vasomotor responses to acetylcholine, reflecting better endothelial
function.171,172 However, several clinical studies have reported reduc-
tions in MI size with limb RIC in STEMI patients treated by primary PCI,
but have not found any beneficial effects on coronary no-reflow or
MVO,159,173 suggesting that the cardioprotective effects of limb RIC in
STEMI patients may be targeted towards ischaemic cardiomyocytes
rather than the coronary vasculature.

7.4 Pharmacological strategies for
protecting the coronary vasculature
Many pharmacological agents have been tested for their protective
effects on the coronary vasculature, and only an overview is provided
here. A number of drugs are currently given in the cardiac
characterization laboratory to treat coronary no-reflow in STEMI
patients following PCI, and these include nitrates, calcium channel block-
ers, and adenosine. Although these drugs can induce coronary vasodila-
tion and in some case reduce MVO, these interventions do not appear
to improve clinical outcomes following primary PCI.174–176 Most phar-
macological agents used to induce coronary vascular protection also
have protective effects on the cardiomyocyte, i.e. adenosine, NO
donors, calcium antagonists, and P2Y12 inhibitors, making it difficult to
separate vascular from cardiomyocyte protection. Some novel
approaches have been tried to reduce coronary no-reflow and prevent
MVO in experimental studies.9

Administration of angiopoietin-like peptide 4 at reperfusion to target
the endothelial gap-junction VE-cadherin complex and preserve coro-
nary endothelial integrity following acute myocardial IRI reduced MI size,
decreased myocardial oedema, and prevented MVO and IMH.29

Opening of the mitochondrial permeability transition pore (MPTP) dur-
ing reperfusion is a critical determinant of cell death from acute IRI, and
its inhibition at reperfusion using cyclosporine-A (CSA) reduced MI size
in small animal AMI models,177,178 although in large animals the effect of
CSA has been mixed.179–181 CSA reduced MI size in an initial clinical
study of primary PCI-treated STEMI patients,182 but failed to improve
clinical outcomes in two subsequent large clinical studies.183,184 In one
pig study, CSA reduced both MI size and MVO154; however, whether
this was due to a direct vasculoprotective effect of CSA or occurred sec-
ondary to myocardial salvage is not clear. Nitroglycerine can induce a
preconditioning-like protection of the coronary vasculature, the periph-
eral vasculature and the myocardium,147,167 and its mechanisms are still
not fully elucidated, may depend on dose and duration of administration
and may include hitherto unrecognized effects on the MPTP.185

Therapeutic hypothermia limits MI size in experimental IRI studies
when initiated during ischaemia, whereas clinical studies using invasive
interventions to achieve hypothermia have had limited success primarily
due to logistical issues. Hypothermia in rabbit hearts reduced coronary
no-reflow following acute IRI, when delayed into reperfusion, even when
there was no MI limiting effect,74 raising the possibility for an extended
window for vascular protection following AMI. Mild hypothermia using a
non-invasive ThermoSuit System initiated during ischaemia reduced MI
size and prevented coronary no-reflow in rabbit and rat models of acute
myocardial IRI186; whether or not such protection would be effective if
applied at the onset of reperfusion needs to be tested.

8. Effect of comorbidities and
co-medications on coronary
vascular protection

Comorbidities and co-medications can confound cardioprotection eli-
cited by ischaemic conditioning strategies.187 In pigs with acute IRI, IPost
improved endothelial function and reduced MVO in healthy animals, but
failed to do so in the presence of hypercholesterolaemia.151 The abroga-
tion of IPost-induced cardioprotection was attributed to detrimental
effects of hypercholesterolaemia on NOS levels. In another study, IPC
provided significant microvascular protection in the skeletal muscle from
prolonged IRI in normal, but not in diabetic rats.188 In young men, flow-
mediated dilation (FMD) decreased significantly after IRI without but not
with prior IPC; such protection by IPC was attenuated in elderly
patients.189 In smokers, the IPC-induced increase in forearm blood flow
response to acetylcholine seen in healthy volunteers was blunted, while
the responses to sodium nitroprusside before and after the IPC stimulus
were similar.190 In contrast to age and smoking, neither hypertension,191

nor reduced left ventricular ejection fraction192 affected the protective
response of RIC on FMD,191 or coronary flow reserve (by transthoracic
Doppler).192

Of note, in most studies on comorbidities animals are untreated.
Acute rosuvastatin prevented the development of IRI-induced conduit
artery endothelial dysfunction.193 In contrast, chronic rosuvastatin did
not prevent the development of IRI-induced endothelial dysfunction.194

The anti-diabetic sulfonylurea glibenclamide abolished RIC- and IPost- in-
duced protection on forearm endothelial function in humans during
acute IRI.163,195 On the other hand, re-establishment of normoglycaemia
by islet cell transplantation restored the cardioprotection, as reflected
by reduced infarct size, from IPost which had been lost in diabetes.196

The RIC-induced prevention of FMD impairment following IRI was abro-
gated by cyclooxygenase (COX) 2 inhibition.197 Non-selective COX in-
hibition with aspirin 325 mg and ibuprofen or specific COX-2 inhibition
with celecoxib inhibited the protective effects of rosuvastatin in the set-
ting of IRI. In contrast, low dose aspirin (81 mg daily)—as given for the
prevention on coronary artery disease—did not have such inhibitory
effects.198 Often, low dose aspirin is combined with P2Y12-inhibition: clo-
pidogrel given 24 h prior to an episode of IRI limited the adverse effects
of ischaemia on endothelial function.199 While acute treatment with NO
donors might protect endothelial function, such protection might be lost
with the development of nitrate tolerance, and nitrate tolerance may
also interfere with the vascular protection by RIC.167 In contrast, inhibi-
tion of phosphodiesterase 5 with sildenafil provided sustained protection
of the endothelium from adverse IRI effects on vascular function.200

In summary, while there appears to be an effect of comorbidities and
co-treatments in peripheral vascular beds, almost nothing is known on
their interactions on cardioprotective interventions in the coronary
circulation.

9. Future perspectives

MVO and no-reflow are serious consequences of reperfused AMI which
carry an adverse prognosis. As such these phenomena require attention.
Currently, the causal relationship between cardiomyocyte and coronary
microvascular injury is not clear. Likewise, it is not clear to what extent
protective interventions target the cardiomyocyte, the coronary circula-
tion, or both. Clearly, however, there is a need for protection of the
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..coronary circulation beyond infarct size reduction. At this point, there is
no intervention or substance which would specifically protect the coro-
nary circulation from IRI. However, the development of specific or addi-
tive protective strategies for the coronary circulation is an unmet
medical need. Protection is needed from enhanced permeability, en-
hanced platelet and leucocyte adherence and transmigration, impaired
vasomotion, capillary obstruction by erythrocytes, platelets and
leucocytes, and ultimately capillary destruction and haemorrhage. Thus,
all structural elements of the coronary vascular wall from glycocalyx
to endothelium to smooth muscle and adventitia need protection.
At this point, the most promising protective substance/molecule to
achieve such multi-faceted protection appears to be angiopoietin-like
peptide 4.29
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