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Introduction

High-throughput next-generation sequencing (NGS) of 
targeted gene panels, the whole exome or even the whole 
genome is widely and increasingly used in the molecular 
diagnostics of Mendelian disorders. Standard NGS analysis 
pipelines are often restricted to the calling of single 
nucleotide variants (SNVs) and small insertions/deletions 
(indels), thereby missing copy number variations (CNVs) 
including deletions and duplications affecting more than 
20 bp (1). However, pathogenic CNVs account for about 
10% of disease-causing variants listed in the Human Gene 
Mutation Database (HGMD Professional 2018.1) and 
thus should not be missed. We believe that disease-causing 
CNVs tend to be under-detected in the current NGS era. 
In this study, we provide an example of this assumption. We 
investigated a family in which three members are clinically 

diagnosed with Marfan syndrome (MFS). Our results 
emphasize the need for the widespread use of NGS data to 
test for CNVs.

MFS is an autosomal dominant, systemic connective 
tissue disorder with varying clinical features, ranging from 
isolated traits to severe multiorgan manifestations, most 
frequently including the skeletal, ocular, and cardiovascular 
systems (2). Cardiovascular abnormalities can be life-
threatening and include dilatation of the ascending aorta, 
which can result in dissection, mitral valve prolapse with 
or without regurgitation as well as tricuspid valve prolapse 
(3-6). MFS is caused by heterozygous pathogenic sequence 
variants in the FBN1 gene, which consists of 65 coding 
exons and encodes the protein fibrillin-1, a key component 
of elastic fibers (7,8). Pathogenic FBN1 sequence variants 
have been detected in >90% of patients fulfilling the 
diagnostic criteria for MFS (2). In the remaining cases, the 
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disease-causing FBN1 mutation may have been missed by 
the applied genetic testing method or the clinical phenotype 
belongs to a non-FBN1-related syndrome. Indeed, there 
are MFS-related disorders with overlapping features such as 
Loeys-Dietz syndrome or Ehlers-Danlos syndrome vascular 
type, which in the absence of MFS-discriminating clinical 
features such as ectopia lentis can only be distinguished by 
genetic testing (2). As disease management and treatment 
guidelines differ among MFS and its related syndromes, the 
correct diagnosis is of clinical importance.

Clinical descriptions

In the investigated family, the index patient is a 32-year-old 
woman with clinically diagnosed MFS fulfilling the criteria 
of the revised Ghent nosology (2). She is 188 cm tall with 
a 195 cm arm span resulting in an arm span to height ratio 
of >1.05. Her joints are hypermobile and she shows positive 
wrist and thumb signs as well as scoliosis >20°. Other 
systemic manifestations include pes planus, high-arched 
palate with crowded teeth, atrophic striae, retrognathia, 
and myopia >3 diopters, resulting in a systemic score of 9.  
Her cardiovascular condition is also characteristic for 
MFS: according to echocardiography, the diameter of the 
ascending aorta, the sinus of Valsalva, and the aortic root 
were 46, 53 and 24 mm, respectively, resulting in a Z-score 
of 6.28 (9). In addition, mitral valve prolapse was detected, 
but without any hemodynamically relevant effect. According 
to international guidelines on the management of valvular 
heart disease (10), prophylactic Bentall surgery was carried 
out with implantation of Bio Valsalva. 

Both the patient’s mother and sister show similar 
characteristics with a systemic score of 9 as well and 
conspicuous cardiovascular manifestations. The patient’s 
father does not fulfill the diagnostic criteria for MFS, but 
shares some MFS features such as reduced upper segment 
to lower segment and increased arm span to height ratios, 
tall stature, hypermobile joints, and dolichocephaly. 
Some phenotypic characteristics of the patient’s deceased 
grandparents are also known, of which the patient’s 
maternal grandfather showed myopia >3 diopters and a 
mild mitral valve prolapse. The other grandparents’ known 
phenotypes are not related to MFS. 

Molecular genetic testing

The index patient underwent genetic testing for MFS and 

related cardiovascular diseases on genomic DNA level. 
First, NGS of a targeted gene panel was performed by 
means of PCR amplification of all coding exons and flanking 
intronic regions of the genes FBN1, TGFBR1, TGFBR2, 
SMAD3, TGFB2, TGFB3, ACTA2, COL3A1, MYH11, 
and SKI. Amplicons were analyzed on a MiSeq Personal 
Sequencer (Illumina, San Diego, CA, USA) (11). This 
approach revealed no pathogenic sequence variants in the 
analyzed amplicons. As gene panel NGS is restricted to 
selected amplicons/genes and limited in the detection of 
deletions and duplications affecting more than 20 bp (1), 
we subsequently carried out 60× PE150 PCR-free whole-
genome sequencing (WGS) on a HiSeq X Ten platform 
(Illumina, San Diego, CA, USA) as previously described (12). 
WGS can not only identify sequence variants throughout the 
genome but has also the advantage of the most continuous 
coverage, improving both SNV and CNV detections (1).

Based on WGS, no pathogenic SNVs and small indels 
were detected in the ten previously analyzed genes or further 
genes related to the patient’s clinical features including 
ADAMTSL4, BGN, CBS, COL1A1, COL1A2, COL4A5, 
COL5A1 ,  COL5A2 ,  COL9A1 ,  COL9A2 ,  COL11A1 , 
COL11A2, EFEMP2, ELN, FBN2, FLNA, FOXE3, GLA, 
JAG1, LOX, LTBP2, MAT2A, MED12, MFAP5, MYLK, 
NOTCH1, PLOD1, PRKG1, PTPN11, SLC2A10, SMAD2, 
SMAD4, and TNXB. Subsequently, the WGS data were 
analyzed for CNVs using the software Nexus Copy Number 
(BioDiscovery, El Segundo, CA, USA), revealing a 31,956-
bp deletion of the FBN1 gene (NM_000138.4:c.164+13846
_442+1334del). Due to the advantage of WGS, the deletion 
breakpoints could be identified at base-pair level. The 
deletion was confirmed by multiplex ligation-dependent 
probe amplification (MLPA, P065/P066, MRC-Holland, 
Amsterdam, the Netherlands) (13,14) as well as by standard 
PCR with a 407-bp amplicon spanning the deletion 
breakpoints followed by Sanger sequencing (primer_F 
5’-AGGAACGATTTGAACAGATAATAGT-3’, primer_
R 5’-CACCAAAGCACTTGCTATGT-3’) (Figure 1). At 
protein level, the deletion of coding exons 2-4 is predicted 
to lead to a frameshift and a premature termination codon 
[NP_000129.3:p.(Pro56Cysfs*3)]. Thus, nonsense mediated 
mRNA decay may take place resulting in functional 
haploinsufficiency (15). Testing of the index patient’s first-
degree relatives for the detected FBN1 deletion by MLPA 
and Sanger sequencing revealed that the deletion is present 
in the patient’s sister and mother but absent in the father, as 
expected based on clinical features (Figure 2).
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Discussion

This work exemplifies the importance of testing for CNVs 
in Mendelian disorders because they may be missed by 
standard NGS mutation screening. One of the advantages 
of an appropriate NGS methodology is that it allows not 

only the detection of SNVs and small indels but also of 
CNVs in a single assay. However, not all NGS applications 
are equally suited for CNV detection (1,16). While PCR-
free WGS data facilitates CNV detection and enables 
CNV characterization at base-pair level due to relatively 
even read depth and continuous coverage (1,12), the 
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Figure 1 Deletion characterization. Schematic representation of the 32-kb FBN1 deletion comprising coding exons 2-4 as well as an 
overview of the corresponding results of MLPA, WGS, and Sanger sequencing analyses. The open arrow below the gene name indicates the 
transcription direction. Exons are specified by bars and labeled with the corresponding number (non-coding exon 0 and the first five coding 
exons are indicated). The region with decreased normalized MLPA signals is indicated by a yellow box and the positions of the three MLPA 
probes located in exons 2-4 of FBN1 are marked by filled triangles. WGS data are displayed in the Integrative Genomics Viewer (IGV; 
http://software.broadinstitute.org/software/igv). Colored bars in the IGV coverage track indicate positions with ≥20% non-reference alleles; 
aligned reads are displayed as gray bars; red bars indicate read pairs with larger insert size than expected (due to the deletion); white and pale 
red bars indicate low quality reads. The region with decreased WGS read depth (i.e., the deleted region of the genomic DNA) is indicated 
by a gray and a brown box. Uppercase letters represent the sequence in the region of the deletion start point; lowercase letters represent the 
sequence in the region of the deletion end point. Due to identical sequences flanking the breakpoints, the break and re-joining could have 
occurred at three positions, as indicated by open triangles. The dotted lines mark the most 3’ possible breakpoints in FBN1 transcription 
direction (minus strand); note that the plus strand is displayed. Nucleotide positions are described in relation to the human genome 
reference sequence GRCh37. MLPA, multiplex ligation-dependent probe amplification; WGS, whole-genome sequencing.
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enrichment bias and gaps of whole-exome sequencing (1,17) 
or targeted sequencing data introduce variable read depth 
and uneven coverage, hampering CNV detection (Figure 3). 
Consequently, CNV detection should be considered in the 
choice and data analysis pipeline of comprehensive NGS. 
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