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1. INTRODUCTION

Cyclin-dependent kinases (CDK) are character-
ized as Ser/Thr kinases. Twenty members of this 
group have been discovered so far [1]. In most cas-
es their activity depends on cyclins, which bind to 
them and act as regulatory subunits to control ki-
nase activity and substrate specificity. These CDK-
cyclins complexes are usually involved in cell cy-
cle and transcription regulation, therefore their 
overexpression or amplification can easily lead to 
improper operation of cell cycle or transcription, 
which may cause uncontrolled proliferation and 
thus tumor formation [2].

CDK9 can be expressed in two isoforms, a light-
er 42 kDa protein and a heavier 55 kDa protein [3]. 
Both are capable of forming complexes with cyclin 
T1, T2a, T2b and K [4]. The structure of CDK9 
shows typical features of its class. There is an  
N-terminal lobe (residues 16-108), which contains 
five segments of β-sheet completed with a single 
α-helix, while the C-terminal lobe (residues  
109-330) is comprised of four β-strands and seven 
main α-helices [5]. The ATP binding site is located 
in a cleft between the two lobes of the protein and 

there is also a loop behind them called ‘hinge’. All 
these three parts are involved in the ATP binding. 
The binding pocket has a characteristic sickle-like 
shape, with a volume of approximately 360 Å3 
(calculated by Schrödinger’s SiteMap application) 
[6, 7]. It is relatively narrow and flat with a hydro-
phobic region in the middle. The structure of 
CDK9 is very similar to that of CDK2, as they have 
40% sequence identity [5]. 

The determination of its crystallographic struc-
ture became possible only 14 years after the dis-
covery of CDK9 [5]. Sixteen crystal structures of it 
were deposited in the RCSB database until present 
day. For our project we retrieved one from the 
Protein Database (PDB ID: 4BCF). It is in complex 
with cyclin T and what is more important with a 
2-amino-4-heteroaryl-pyrimidine inhibitor. We 
have selected this structure, because the co-crys-
tallized inhibitor was similar to our ligands, so it 
probably binds with similar interactions to the 
protein.

Physiologically, cyclin T is needed for the acti-
vation of the enzyme by the phosphorylation of 
Thr186. After that the complex can fulfill its role [8], 
which is the following: CDK9/cyclin T is a part of 
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a larger protein complex called positive transcrip-
tion elongation factor b (P-TEFb) in which the 
CDK9 can phosphorylate the C-terminal domain 
(CTD) of RNA polymerase II (RNAPII). This 
is a key regulatory mechanism during elon-
gation [4]. CDK9 mediated phosphorylation 
of the CTD in RNAPII increases the levels of 
antiapoptotic proteins such as Mcl-1 and 
XIAP. If CDK9 is overexpressed or amplified, 
this process can lead to tumorigenesis [9, 10]. 
Additionally, through the hexamethylene bi-
sacetamide-inducible protein 1 (HEXIM1), 
CDK9 can be associated with the replication 
of Human Immunodeficiency Virus (HIV) 
[11]. Therefore, CDK9 inhibitors could be 
used in HIV and cancer therapy as well.

Several CDK and CDK9 inhibitors have 
been developed so far. Roscovitine (seliciclib) 
was the first CDK inhibitor to enter clinical 
trials [12], but palbociclib was the first that 
obtained FDA approval [13, 14]. As for 
CDK9, one of the most significant inhibitors 
is dinaciclib that reached the most advanced 
clinical phase [13, 15]. One of the main prob-
lems regarding the current CDK9 inhibitors 
is the lack of selectivity, which may lead to 
severe side effects during therapy [16]. There-
fore, the need for more selective CDK inhibi-
tors has been emerged. Our work aims to 
provide a useful method in compound pre-
screening to reduce the time and costs of lead 
selection and optimization.

 
2. MATERIALS AND METHODS

2.1 Data set

All models we created were based on a set of 
41 CDK9 inhibitors that was synthesized by 
our research group [17]. We kept the number-
ing of the compounds as it is in the above-
mentioned paper. The structures and IC50 val-
ues of the compounds are listed in Table I.

During our work we used Schrödinger’s 
Maestro software [18] to run calculations and 
create models. 

2.2 Protein and ligand preparation

The first task was to prepare the crystal 
structure of 4BCF with Protein Preparation 
Wizard [19], which included preprocessing, 
H-bond assessment and restrained minimi-

zation. Default settings were used in all parts of 
the preparation. Ligand structures were drawn 
with Schröd inger’s Maestro graphical user inter-

Table I Structure and CDK9 inhibitory activity of N-aryl pyrimid-
inamines [17].

ID R1 R2 R3 R4 Ar IC50 
(nM)

21 MeO H H H 3,4-dimethyl-isoxazole 3
22 MeO F H H 3,4-dimethyl isoxazole 2
23 MeO H F H 3,4-dimethyl-isoxazole 9
24 MeO H H F 3,4-dimethyl-isoxazole 1
25 MeO F F H 3,4-dimethyl-isoxazole 8
26 MeO H F F 3,4-dimethyl-isoxazole 1
27 MeO CL H H 3,4-dimethyl-isoxazole 12
28 MeO H H Cl 3,4-dimethyl-isoxazole 25
29 MeO MeO H H 3,4-dimethyl-isoxazole 9
30 EtO F H H 3,4-dimethyl-isoxazole 8
31 EtO H H F 3,4-dimethyl-isoxazole 2
32 EtO Cl H H 3,4-dimethyl-isoxazole 17
33 iPro F H H 3,4-dimethyl-isoxazole 49
34 H H iPro F 3,4-dimethyl-isoxazole 458
35 MeS F H H 3,4-dimethyl-isoxazole 13
36 Me F H H 3,4-dimethyl-isoxazole 6
37 F F H H 3,4-dimethyl-isoxazole 11
38 F MeO H F 3,4-dimethyl-isoxazole 21
39 Cl F H H 3,4-dimethyl-isoxazole 55
40 MeO Cl H H 3,4-dimethyl-isoxazole 50
41 MeO H H H 4,5-dimethyl-isoxazole 4
42 MeO F H H 4,5-dimethyl-isoxazole 3
43 MeO F H H benzo[d]isoxazole 5
44 MeO H H H thiazole 33
45 MeO F H H thiazole 122
46 MeO H H F thiazole 2
47 EtO F H H thiazole 210
48 EtO Cl H H thiazole 378
49 MeO H H H * 12
50 MeO F H H * 6
51 MeO H F H * 9
52 MeO H H F * 2
53 MeO F F H * 10
54 MeO H F F * 0.4
55 MeO MeO H H * 14
56 EtO F H H * 2
57 EtO Cl H H * 5

*: 2-methyl-[1,3,4]thiadiazol
Continuation on next page
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face (GUI), then the LigPrep module was used to 
generate energy-minimized 3D conformations of 
each compound. To perform this, the optimized 
potential for liquid simulations 2005 (OPLS-2005) 
force field [20] was adopted. One stereoisomer per 
ligand was studied. As for ionization forms, we 
generated the most possible state of each molecule 
with Ionizer at target pH of 7.4. The negative loga-
rithm values (pIC50) of the previously published 
inhibitory activities were calculated and used for 
the model building [17]. Flexible Ligand Align-
ment procedure of the Maestro GUI was utilized 
for the superposition of the ligands. The best 
alignment was received by using the ‘Common 
scaffold alignment’ with ‘fuzzy matching’ option.

2.3 Docking 

Schrödinger’s Grid-based Ligand Docking with 
Energetics (GLIDE) was used in the docking stud-
ies. Firstly, we created the grid box for the dock-
ing. The co-crystallized ligand was used to deter-
mine the place of the binding pocket and after 
measuring the size of our ligands we decided to 

set the size of the grid box for 20×20×20 Å to 
surely have enough space in it for all ligands. 
The co-crystallized ligand was re-docked 
with both the ‘score in place’ and the stan-
dard precision (SP) procedures in order to 
validate our model. Then all the examined li-
gands were docked via both the SP and the 
extra precision (XP) methods. Flexible ligand 
sampling was used with the standard set-
tings during all docking procedures.

2.4 Pharmacophore Hypothesis 

Schrödinger’s Phase module [21] was used 
for pharmacophore model development. We 
developed two kinds of pharmacophore hy-

potheses. For the first one, we used the previously 
aligned ligands and defined entries with pIC50 val-
ue above 7.0 as active. Then several hypotheses 
were developed. As for the second kind, we used 
the XP docked ligand conformations for the mod-
el, thus there was no need to generate conformers 
during the development of these pharmacophore 
hypotheses. In both cases there were 4-7 features 
in the hypotheses, which matched 66%, 75% or 
90% of the active ligands. Hereby we present one 
model, which we found the best based on Survival 
score and compatibility with our data from dock-
ing and pharmacophore hypothesis.

2.5 Field-Based QSAR

Our Quantitative Structure–Activity Relationship 
(QSAR) models were developed with Schröding-
er’s Field-based module. The previously aligned 41 
ligands were used for this part. The activity prop-
erty was pIC50. The data set was randomly divided 
into training (66 %) and test sets (33%). Partial least 
squares regression (PLS) method with up to 6 fac-
tors with standard settings was used, except that 

ID R1 R2 R3 R4 R5 R6 R7 R8 IC50 
(nM)

58 MeO H H H F H MeO *** 1576
66 MeO H H H H ** H H 3
67 MeO F H H H ** H H 4
68 MeO H H F H ** H H 2

**: 1H-benzimidazole-1-yl-methyl
***: carboxamide

Table II Statistical parameters of the final field-based QSAR model
Number of PLS factors 4
Standard deviation of the regression (SD) 0.3847
Training set regression (R2) 0.8046
Cross-validated R2 (R2-CV) 0.4567
R2 with scrambled activities (R2 scramble) 0.4154
Stability of the model predictions to changes in the training set composition (maximum value 
is 1, meaning stable)

0.799

F – variance ratio (large values indicate a more statistically significant regression) 23.7
P – significance level of variance ratio (smaller values indicate a greater degree of confidence) 7.19E-08
Test set regression (Q2) 0.5329

Continuation from previous page
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we eliminated variables with 
|t-value| <2. The model with 
the best statistical attributes 
was selected as the final one. 

3. RESULTS AND 
DISCUSSION

3.1 Field-Based QSAR

As shown in Table II, the mod-
el we found best, offered good 
predictive power and descrip-
tive capability. The R2 value 
for the regression of the train-
ing set was above 0.8 and 0.53 
for the test set, the cross-vali-
dated R2 and scrambled R2 
values were also within the 
range of acceptance. These 
data together with the Stabili-
ty and F and P values were in-
dicating the reliability and ro-
bustness of our model. The 
graphical representation of the 
R2 (Figure 1) and Q2 (Figure 2) 
also indicated a good align-
ment with only a few outliers. 
Moreover, after visualization 
of the model, we could get 
more valuable information 
about CDK9 inhibitors (Figure 3). 
As it is illustrated, generally, 

Figure 3 QSAR Visualization via Contour maps using compound 54 as an example: 
a: numbering of compound 54, b: Gaussian Steric Force Field, green: favorable, yellow: 
unfavorable c: Gaussian Electrostatic Force Field, blue: favorable, red: unfavorable 
d: Gaussian H-bond Acceptor, red: favorable, magenta: unfavorable e: Gaussian 
Hydrophobic, yellow: favorable, white: unfavorable f: Gaussian H-bond Donor, purple: 
favorable, cyan: unfavorable

Figure 1 QSAR – Scatter plot of the training set Figure 2 QSAR – Scatter plot of the test set
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Figure 4 XP docking results a: side view of the site with all docked ligands included b: top view of the site, which reveals the 
characteristic narrow, flat shape of the pocket (together with compound 54 as an example of ligand positioning)

Figure 5 Ligand interaction diagrams showing the most common interactions between the inhibitors and the binding site
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introducing various substituents at the ends of the 
molecule can lead to changes in activity. The steric 
contour map (Figure 3b) suggested that a bulky 
group at C-12 on the thiadiazole ring could be a 

good way the improve binding, while substitution 
at C-18 may be disadvantageous. From the electro-
static field contour map (Figure 3c) we could con-
clude that electrostatic groups at C-12, 19 and 20 
may increase the activity while at C-22 an electro-
negative group could lead to a similar result. 
Judging from Figure 3d, the introduction of a hy-
drogen bond acceptor moiety near C-20 and N-13 
could also possibly improve the inhibition of 
CDK9. After having a look at Figure 3e it is easy to 
see that a hydrophobic substituent at C-19, 22 and 
23 could be desirable in order to increase the in-
hibitor activity.

3.2 Docking

Each ligand of our compound set was docked into 
the binding pocket of 4BCF. As expected, XP 
scores were better than SP scores, however, no real 
correlation with the biological data was found as 
some lower activity compounds (eg. 34, 47, 48 and 
58) were overscored (especially in terms of the XP 
method), which may be caused by the relatively 
low resolution of the X-ray structure.

As it can be seen in Figure 4a, the docked li-
gands are very well aligned and fit in the binding 
pocket quite easily. Every ligand formed two H-
bonds with Cys106 (both as a hydrogen bond do-
nor and acceptor), while Ile25 usually acted as a 
hydrogen bond acceptor. Phe30 often had a π-π 
stacking with heterocyclic rings such as thiazoles 
or isoxazols, while Phe103 was often involved in a 
π-π stacking interaction with one of the aromatic 
rings. In some cases His108 and Asp109 also 
formed secondary bonds with the inhibitors. Simi-
larly to the co-crystallized inhibitor, the conforma-
tion of our compounds was bent and usually parts 
like the sulfonamide group, triazole and isoxazole 
rings were solvent exposed as they were (at least 
partially) positioned outside of the binding pocket 
granting more conformational freedom for these 
moieties, but as a result they were less likely to es-
tablish connections with the protein. Although 
they are not shown in this figure, there was a sig-
nificant amount of Van der Waals bonds between 
the ligands and the protein, which we believe 
plays a significant role in the binding process, 
which is in line with our knowledge about the hy-
drophobic nature of this binding site.

3.3 Pharmacophore Hypotheses

Our best pharmacophore model hypotheses 

Table III Docking scores
ID pIC50 XP docking score SP docking score
54 9.398 -11.387 -9.498
25 8.097 -11.184 -9.245
32 7.770 -11.134 -8.702
35 7.886 -11.046 -9.294
33 7.310 -11.026 -9.435
28 7.602 -10.943 -8.737
27 7.921 -10.942 -9.366
42 8.523 -10.928 -9.257
30 8.097 -10.914 -9.326
68 8.699 -10.912 -9.891
40 7.301 -10.911 -9.158
37 7.959 -10.911 -9.453
26 9.000 -10.897 -9.740
67 8.699 -10.883 -9.250
53 8.000 -10.855 -9.208
22 8.699 -10.850 -9.248
24 9.000 -10.833 -9.610
34 6.339 -10.830 -9.195
46 8.699 -10.815 -9.120
23 8.046 -10.812 -8.876
39 7.260 -10.757 -9.265
52 8.699 -10.753 -9.447
36 8.222 -10.751 -9.288
50 8.222 -10.715 -9.113
51 8.046 -10.700 -9.225
56 8.699 -10.690 -9.373
43 8.301 -10.676 -9.136
48 6.423 -10.657 -8.986
47 6.678 -10.653 -9.389
21 8.523 -10.632 -9.262
49 7.921 -10.572 -9.092
57 8.301 -10.522 -9.082
45 6.914 -10.491 -9.155
44 7.481 -10.462 -9.225
66 8.523 -10.311 -9.472
31 8.699 -10.265 -9.659
38 7.678 -10.135 -9.140
58 5.802 -10.012 -8.837
29 8.046 -9.936 -8.947
42 8.398 -9.907 -8.795
55 7.854 -9.749 -9.238
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were obtained using the superposition of the 
conformations obtained from the XP docking 
poses. The knowledge we got from the docking 
experiments was also taken into consideration 
regarding the selection of pharmacophoric 
groups. Our best model, AADRRR can be char-
acterized with a Survival score of 6.21 and a Se-
lectivity score of 2.14. The Fitness of compound 
54 in this hypothesis was 2.633653. This model 
contained a hydrogen bond donor (D) and an 
acceptor (A) at exactly the same position we 
could observe in the docking part. There were 
also two rings (R), which were also observed as 
π-π interaction participants with the protein. 
There was another hydrogen bond acceptor (A), 
namely an oxygen atom in the sulfonamide 
group. As we saw earlier, this part of the mole-
cule is usually out of the binding pocket, thus 
less likely forms any bonds. The high scores 
may indicate that this unique model could be 
suitable for the identification of new, potentially 
CDK9 selective inhibitors.As a comparison, a 
hypothesis based on the co-crystallized ligand 
was also developed. This model consisted of 
three aromatic rings (R), one hydrogen bond do-
nor (D) and one acceptor (A) and also a hydro-
phobic region (Figure 6b). It must be pointed out, 
that despite the structural differences of the in-
hibitors, these hypotheses showed some signifi-
cant similarities (four out eight groups had a 
perfect match), which further indicates the va-
lidity of our model.

4. Conclusions

Based on a previously published CDK9 X-ray 
structure and 41 CDK9 inhibitor compounds, a 
docking study was completed. Our investigations 

also included ligand-based pharmacophore-, and 
QSAR modeling studies. Judging from our best 
pharmacophore hypothesis and the docking pos-
es, a hydrogen bond donor and acceptor at close 
proximity are essential in the binding, because 
they both interact with the backbone atoms of 
Cys106. These interactions presumably help to fas-
ten the compound in the binding pocket. Accord-
ing to our opinion, the orientation and presence of 
the aromatic rings could also be important, be-
cause they are able to form π-π interactions with 
Phe30 and Phe103. The importance of the sulfon-
amide group lies in the fact, that its NH group is 
able to form a hydrogen bond with Ile25, while 
other components of the inhibitors like thiazole- 
and dimethylisoxazole groups are usually un-
bound so their orientations were varied in the 
poses. The bent conformation of the ligands and 
the shape and surface of the binding pocket are 
also key factors that determine the nature of the 
interactions between CDK9 and its inhibitors. To 
sum up, we generated a pharmacophore hypothe-
sis and determined the main features of these 
molecules that play a role in their activity as in-
hibitors. Then we docked all of these compounds 
to deepen our understanding of the binding, and 
reveal new interactions and connections, and fi-
nally we built a robust field-based QSAR model 
with a strong predictive power, which might be 
able to predict the activity of inhibitor candidates 
in the future. If we apply the three above detailed 
methods in the right order, it gives us a powerful 
tool that can facilitate our CDK9 inhibitor re-
search. We could screen databases and compound 
libraries by using our pharmacophore hypothesis. 
After that we could dock the selected ligands to 
compare their ability to bind to CDK9 and finally 
test them with a QSAR model to predict their ac-
tivities. We are confident that all the models and 
knowledge that we gathered by this project can 
improve the CDK9 inhibitor design and can lead 
to new and – after completing the protocol with 
further targets – probably more selective inhibi-
tors. We also believe that our method can reduce 
time and costs of CDK9 inhibitor drug develop-
ment and can assist in lead selection and optimi-
zation.
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