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Abstract
The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice 
preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of 
oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in con-
trast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of 
extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding 
indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the 
influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration 
([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under 
ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]
DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important 
role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect 
consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC 
combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found 
to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from 
human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ 
from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This 
result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic con-
ditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its 
toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released 
from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the 
extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, 
inhibiting Na+/Cl−-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, 
where they can exert toxic effects.

Keywords  Ischemia · Dopamine release · Dopamine · Non-vesicular · DOPAL · Toxic · Na+/Ca2+ exchanger · Monoamine 
transporter · Extracellular space · Hypothermia

Introduction

Cerebral ischemia is a pathological condition, during which 
blood flow to neurons is insufficient or completely blocked. 
Cerebral ischemia can be focal, such as when a brain artery 
is occluded, or global, such as after cardiac arrest. Ischemic 
stroke is the leading cause of brain dysfunction. However, 
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because the mechanism of stroke pathogenesis has not been 
clarified to date, no effective medical treatments for revers-
ing sensory, motor and cognitive impairments due to stroke 
have been devised [1, 2]. Stroke is the second most prevalent 
cause of death and is the most common cause of permanent 
disability in adults [3].

The brain is a wired instrument, and its neurons process 
cabled information through synapses; however, neurons are 
also able to communicate with each other nonsynaptically, 
without synaptic contact [4–13]. Evidence has shown that 
nonsynaptic receptors and transporters are characterized by 
high affinity [5, 6] and have many implications for psychi-
atric issues, such as depression, changes in mood, changes 
in appetite, and psychiatric disorders. Therefore, it has been 
suggested that many drugs used to treat psychiatric diseases 
may exert their effects through diffusion into extracellular 
spaces, where they may mimic or influence the effects of 
endogenous ligands [5, 6]. Nonsynaptic chemical commu-
nication between neurons and between neurons and their 
target cells, via both pre- and postsynaptic sites, were also 
identified during the excellent studies by Agnati and Fuxe 
[14, 15], who used the term ‘volume transmission’ to denote 
non-synaptic transmission.

Extracellular Ca2+ concentration ([Ca2+]o)-dependent 
release represents vesicular exocytotic release that is evoked 
by axonal action potentials, whereas the [Ca2+]o-independent 
release that can be measured at rest has been identified as 
being a non-exocytotic release from the cytoplasm, caused 
by the reversal of transporter activity [16–18]. Ischemic con-
ditions (oxygen and glucose deficiencies) have previously 
been shown to result in the excessive production of reactive 
oxygen species (ROS) [19–22], oxidative stress (primarily 
during the reperfusion period) and the release of transmit-
ters from the cytoplasm in a [Ca2+]o-independent manner 
[23–26]. Oxidative stress has been implicated as being the 
mechanism through which ischemia results in brain injury 
[21, 22]. This type of transmitter release from nonsynap-
tic varicosities [5, 12] into the extracellular space [21, 22] 
occurs even when the classical Ca2+-dependent vesicular 
transmission is inhibited or impaired. Under this condition 
membrane transporters, when acting in reverse, are able to 
release signaling molecules from the cytoplasm, causing an 
increase in the extracellular concentrations of transmitters. 
This paper addresses this type of release and the possible 
methods for preventing it.

When a train of action potentials (APs) reaches a nerve 
terminal, any residual [Ca2+] above 500 nM begins to be 
extruded by the NCX, which has a low affinity (Kd = 500 nM) 
and a high capacity (5 × 103 Ca2+/s) for Ca2+ [27]. How-
ever, when intracellular Na+ levels increase excessively or 
strong membrane depolarization occurs, the NCX reverses 
and exports three Na+ ions for each imported Ca2+ ion (the 
“reverse” mode of NCX activity [27, 28]). The expression 

patterns of 2 NCX isomers (NCX2 and NCX3) are primarily 
restricted to the brain, where they are presynaptically local-
ized to synaptic terminals [29–31] and control the cytoplas-
mic Ca2+ levels in the nerve terminal, which increase from 
0.1 (during resting conditions) to 20 µM [32, 33] (during an 
action potential).

Various studies have demonstrated that an NCX acting 
in reverse promotes the additional entry of Ca2+ [34] and 
apoptotic neuronal death during stroke and brain trauma. In 
response to neurotoxic glutamate release during ischemic 
insults [26, 35], when amino acid transporters (EAATs) are 
also inhibited, the excessive influx of Na+ and Ca2+ [36] 
results in the reverse activation of the NCX and excitotoxic-
ity. These findings indicate that the NCX may be involved 
in neurotoxicity.

In addition, there is convincing evidence that cytosolic 
dopamine (DA) is highly toxic following deamination by 
MAO, which converts DA to 3,4-dihydroxyphenylacet-
aldehyde (DOPAL) [37] and hydrogen peroxide (H2O2) 
[20], both of which have been shown to be neurotoxic 
[38, 39]. Cytosolic DA can also be auto-oxidized to form 
ROS (hydroxyl radicals, superoxide and H2O2) [20, 40]. 
Therefore, in this study, we measured the levels of DA and 
noradrenaline (NA) uptake and release from striatal and cer-
ebral cortical slices, both at rest and in response to axonal 
activity, under normal and ischemic conditions and in the 
presence and absence of Ca2+ ions in the perfusion solution. 
Using high-performance liquid chromatography (HPLC) 
combined with scintillation spectrometry, we also studied 
whether the toxic metabolites of DA were released. The role 
played by the plasmalemmal exchanger, which is crucial for 
the clearance of cytoplasmic Ca2+, during neurotoxicity and 
targeted treatments is controversial [28, 41]; therefore, we 
attempted to influence the excessive release of transmit-
ters (DA and NA) by using NCX inhibitors under ischemic 
conditions, during which [Na+]i is high, and the NCX is 
expected to operate in reverse. We also studied the effects 
of Ca2+ removal on the cytoplasmic release of transmitters 
in response to ischemia when extraneuronal Ca2+ would 
normally be exchanged for Na+ and predicted to decrease 
[Na+]i.

Recently, 2-[2-[4(-nitrobenzyl-oxy)phenyl]ethyl]isothio-
urea (KB-R7943) was reported to potently inhibit both forms 
of NCX without affecting the Na+-dependent transport sys-
tems [42]. Therefore, we studied the effects of KB-R7943 on 
the release of monoamines in response to ischemia.

Lowering the temperature depresses the metabolic rates 
[43] of neurons and prevents the resting release of transmit-
ters induced by transporters operating in reverse [44–46]. 
Furthermore, in clinical practice, therapeutic hypothermia 
has been used with moderate levels of success, not only 
for stroke and myocardial infarction but also for neonatal 
encephalopathy [47, 48]. Mild to moderate hypothermia has 
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been shown [49–51] to have neuroprotective effects against 
ischemic and hypoxic insults [52, 53] in adults, in newborns 
[51, 54–56] and in animal experiments [57–59]. Therefore, 
we also studied the effects of hypothermia, induced by cool-
ing slice preparations, on transmitter (DA and NA) release 
evoked by ischemia from rat striatal and cortical slices.

For the first time, this paper provides neurochemical evi-
dence regarding the mechanism through which hypother-
mia inhibits the resting release of catecholamines from the 
cytoplasm, which may prevent the toxic effects of monoam-
ine metabolites (aldehydes) in the extracellular space. The 
finding that hypothermia preserves the machinery necessary 
for transmitter function, even under hypoxic conditions, in 
human cortical slices provides further evidence of its neu-
roprotective effects.

Materials and Methods

Preparation of Rat Striatal and Cortical Slices

All experiments using Wistar rats (37–48 days old) were 
conducted with the permission of the local Animal Care 
Committee. The rats were lightly anaesthetized with diethyl 
ether and decapitated. The brain was removed and immedi-
ately placed in ice-cold Krebs solution that was continuously 
mixed with 95% O2 and 5% CO2. The Krebs solution used 
in this study contained the following in mmol/l: NaCl, 113; 
KCl, 4.7; CaCl2 2.5; KHPO4, 1.2; MgSO4, 1.2; NaHCO3, 
25; glucose, 11.5; ascorbic acid, 0.3; and Na2EDTA, 0.03. 
The striatum or frontal cortex was dissected and cut trans-
versely into 400-µm slices using a McIlwain tissue slicer. 
The slice preparations used in this study were previously 
described [60]. In our experiments, we did not compensate 
for the changes in osmolarity produced by the removal of 
glucose because we did not observe any differences in the 
release rates when glucose was not replaced [61].

In a series of experiments, olfactory bulb slice prepara-
tions were used, as described previously [62]. The olfac-
tory bulb preparation is advantageous because the release 
of dopamine is dominant in this preparation.

Release of [3H]dopamine/[3H]noradrenaline

Briefly, after the striatal and frontal cortical slices were 
placed in Krebs solution, the tissue slices were incubated 
in 1 ml Krebs solution in the presence of either 5 μCi/ml 
[3H]DA or 5 µCi/ml [3H]NA at 37 °C for 45 min. After 
the loading period, the tissue was washed five times with 
Krebs solution, transferred to a thermoregulated superfu-
sion apparatus [63], and superfused at 37 °C with a Krebs 
solution saturated with 95% O2 + 5% CO2. After a 20 min 
pre-perfusion treatment (flow rate: 0.5 ml/min), the effluent 

samples were collected every three minutes. During the col-
lection of the 3rd (9 min) and the 13th (39 min) samples, the 
tissue was stimulated (S1 and S2, respectively) with square-
wave impulses, using a Grass S88 stimulator (Astro-Med, 
West Warwick, RI, USA). The striatal slices were stimu-
lated at 30 V, 2 Hz, 2 ms for 2 min (240 shocks), and the 
cortical slices were stimulated at 20 V, 2 Hz, 2 ms for 3 min 
(360 shocks). These stimulation parameters proved to be 
supramaximal. Unless otherwise stated, the experimental 
conditions were not changed after the control collection 
periods, and the release of radioactivity was measured and 
expressed in disintegrations per gram of tissue (Bq/g). At 
the end of the experiment, the tritium contents of the tis-
sues were determined, as previously described [64]. Using a 
computer programme, the fractional release (FR) values for 
[3H]DA (FRS1) and [3H]NA (FRS2) in response to stimula-
tion were calculated as percentages of the total radioactiv-
ity present in the tissue at the beginning of stimulation; the 
basal resting release was determined during the collection 
periods before (FRR1) and during ischemia (FRR2). The 
fractional release (FR) values during the R1 resting (FRR1) 
or S1 stimulation (FRS1) periods served as internal controls 
for the calculations of the FRR2/FRR1 and FRS2/FRS1 ratios. 
Samples used to calculate R1 and R2 are indicated in legends. 
The extent of the cytoplasmic DA release during ischemia 
varied in experiments carried out at different time points, but 
always remained very high. Therefore, we tried to carry out 
experiments that addressed a problem within several weeks.

To prevent the metabolism of catecholamines by MAO 
during release experiments, the Krebs solution contained 
10 µM pargyline. A thermoelectric device (Frigomix, B. 
Braun, Germany) was used to rapidly change the tempera-
ture of the bath solution. Ischemia was simulated by placing 
tissue slices in Krebs solution lacking glucose and mixing 
them with 95% N and 2.5% CO2 [65]; ischemic conditions 
were simulated starting with the collection of the 7th frac-
tion and maintained until the end of the experiments. When 
Ca2+-free Krebs solution was used, CaCl2 was omitted, and 
1 mM EGTA was added to the Krebs solution.

The released [3H]NA and [3H]DA levels were meas-
ured using a Packard-Canberra TR 1900 liquid scintillation 
counter. The advantage of our acute slice preparations being 
maintained in a microperfusion system (100 µl) is that the 
slices are very thin (400 µm), and exchanging the perfusion 
fluid within the extracellular space is easily performed; fur-
thermore, drugs may easily exert their effects, and oxygen 
and glucose removal is more efficient.

Chromatographic Analysis of Dopamine and Its 
Metabolites

The method described by Baranyi et al. [64] was used to 
study the metabolism of DA in slices loaded with 5 µC [3H]
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DA. Under this condition, the Krebs solution did not con-
tain pargyline. The slices were superfused, and the collected 
3 min samples were analysed by high-performance liquid 
chromatography (HPLC) combined with liquid scintillation 
spectrometry.

Human Frontal Cortical Slice Preparation

Human frontal or temporalis cortical samples (n = 8) were 
obtained from bulk brain tissue that was removed during 
elective neurosurgery conducted on 8 patients. The tissues 
were randomly selected from brain surgeries that were per-
formed at the National Institute of Clinical Neuroscience 
(Budapest, Hungary) and were used for histology. This 
study was not limited to any type of surgical procedure or 
day of the week, and no tissue was removed for the express 
purpose of this study. The ages of the patients varied from 
31 to 68 years (mean 48.2 ± 10.8 years old). Daily medica-
tions were continued until surgical intervention. Standard 
premedication and induced anaesthesia procedures (patients 
were ventilated with a mixture of 40% oxygen plus 60% 
nitrous oxide) were used. Total intravenous anaesthesia, 1% 
propofol at a rate of 20 ml/h, was administered by perfusion. 
Fentanyl, at 0.05 mg for 20–30 min, and 2 mg cisatracurium 
every 1.5 h were also used. The patients underwent mul-
timodal monitoring. The specimens were used for in vitro 
experiments within 2 h of collection. The operating centre 
was 45 min away from the laboratory. The slices (400 µm) 
were prepared from human brain samples (13.61 ± 1.26 mg, 
n = 16) after surgical interventions using a McIlwain tissue 
slicer. The slices were stimulated at a supramaximal voltage 
(2 Hz, 2 ms for 2 min (240 shocks)), as described for rat 
brain slices. In several cases, the slices were maintained at 
8 °C for 20 h under hypoxic conditions to determine whether 
the catecholamine uptake and release machinery remained 
intact.

This study was conducted in strict accordance with insti-
tutional guidelines, taking the European Community Coun-
cil Directive (86/609/EEC) into account. The experimen-
tal protocol was approved by the Semmelweis University 
Regional and the Institutional Committee of Science and 
Research Ethics (No. 116/2015). Informed consent was pro-
vided by those patients whose tissue samples were collected 
during operations and separated for histology.

Drugs

Levo-[7-3H]-noradrenaline (specific activity = 44.5  Ci/
mmol, Perkin Elmer, Boston, MA, USA) and 3,4-[7-3H]-
dopamine (specific activity = 60  Ci/mmol) were pur-
chased from ART (St. Louis MO, USA). KB-R7943 
(2-[2-[4(-nitrobenzyloxy)phenyl]ethyl]isothiourea) was 

obtained from Tocris Bioscience (Ellisville, MO). All other 
chemicals were obtained from Sigma (Budapest, Hungary).

Statistical Analysis

The statistical significance of the results was determined 
by Repeated Measures Analysis of Variance followed by 
multiple comparison method of Tukey-test. If the measured 
variables met the normality assumption, two-way facto-
rial measures (FM ANOVA) analysis was performed (see 
Tables 1 and 3).

Student’s t-test was used where appropriate (internal 
standards). A value of p < 0.05 was considered to be sig-
nificant. Unless otherwise indicated, the data represent the 
mean ± S.E. (SEM).

Results

Nonvesicular Cytoplasmic Release of DA/NA 
in Response to Ischemia and Oxidative Stress

Plasmalemmal monoamine transporters exhibit a high 
degree of sequence homology [66]. Accordingly, noradren-
ergic/dopaminergic and serotonergic axon terminals are able 
to take up and release both monoamines (NA and DA) and 
serotonin [67–69], even in humans [70, 71]. Therefore, the 
release of DA and NA were measured separately in striatal 
and cortical slices prepared from rats.

After the rat striatal slices were loaded with [3H]DA, the 
average uptake of radioactivity was 763,000 ± 90,383 Bq/g 
(n = 6), and the average resting release value during a 3 min 
collection period was 0.53 ± 0.07% of total radioactivity. 
Electrical stimulation resulted in the release of radioactivity 
(S1 = 61,553 ± 9724 Bq/g or 1.70 ± 0.25% of total radioactiv-
ity), and this stimulated release was repeatable (S2): FRS2/
FRS1 = 0.75 ± 0.05 (Fig. 1a). Similar control experiments 
were performed using [3H]NA in cortical slice preparations, 
where the FRS2/FRS1 ratio was 0.75 ± 0.05 (Fig. 1b).

The removal of oxygen and glucose gradually increased 
resting DA release levels from striatal and cortical slice 
preparations (Fig. 2a, b), resulting in 23-fold (Fig. 2a) and 
three-fold (Fig. 2b) increases in the resting release level 
after 21 min, respectively. In the striatal slices the DA 
release was forty times higher after 33 min Fig. 2a). The 
effects of ischemic conditions on the resting release levels 
were considerably weaker in cortical slice preparations 
than in the striatal slice preparations (compare Fig. 2a, b). 
In separate experiments the released levels of both mono-
amines (DA and NA) from striatal slices were measured 
during ischemic conditions. The release rates were signifi-
cantly higher than in the released levels of these monoam-
ines from cortical slices (Fig. 3a, b). When supramaximal 
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electrical axonal stimulation was applied during the peak 
resting release level under ischemic conditions, small 
insignificant additional increases were observed (data not 
shown). These findings are consistent with those reported 
by other studies [72, 73], which showed that the disap-
pearance of synaptic activity is the earliest consequence 

of cerebral ischemia. In both preparations, when Ca2+ 
ions were removed and 1 mM EGTA was added to the 
Krebs solution, the resting release levels of both [3H]DA 
(Fig. 4a) and [3H]NA (Fig. 5) increased further in response 
to the combination of oxygen and glucose deprivation.

Table 1   Distribution of [3H] 
activity released from olfactory 
bulb slices loaded with [3H]DA 
at different temperatures (no 
MAO inhibitors were used)

DA dopamine, MAO monoamine oxidase, DOPAL 3,4-dihydroxyphenylacetaldehyde, DOPET 3,4-dihy-
droxyphenilethanol, 3-MT 3-methoxy, 4-hydroxyphenethylamine, DOPAC 3,4-dihydroxyphenylacetic acid, 
HVA homovanillic acid, Daq dopamine quinone, n.d. not detectable
The statistical significance of the results was determined by the TIBC statistical program. To assess the 
normality of all the continuous variables measured, the Kolmogorov–Smirnov test was used and performed 
for each individual repeated measurement. If the measured variables met the normality assumption, two-
way factorial measures (FM ANOVA) analysis was performed. *significant difference (p < 0.05) between 
37 and 17 °C; #p < 0.05 between stimulation evoked and resting release
Note that, at 17 °C, the amount of [3H]DA (60.41% of total radioactivity = 138.53 ± 6.37 kBq) is signifi-
cantly higher than the amount at 37  °C (31.67% = 78.01 ± 12.75 kBq). At 17  °C, the stimulation-evoked 
release of DOPAL and DOPET was inhibited and the evoked release was enhanced. The release is meas-
ured in 3 min collection periods. N = 6
## Significant difference (p < 0.05) between the basal and stimulation release values obtained at 17 °C

[3H] Basal release [%] Electric stimulation (2 Hz, 240 shocks) [%]

37 °C 17 °C 37 °C 17 °C

DA 32.50 ± 2.17
(32.10 ± 2.14 kBq)

26.57 ± 0.49
(22.01 ± 4.06 kBq)

31.67 ± 5.18
(78.01 ± 12.75 kBq)#

60.41 ± 2.78*#

(138.53 ± 6.37 kBq)#

DOPAC 37.50 ± 3.13 52.46 ± 3.92# 24.47 ± 6.20 27.52 ± 2.47
DOPAL n.d. n.d. 5.49 ± 0.31* 0.89 ± 0.10*
DOPET n.d. n.d. 16.88 ± 3.42* 1.93 ± 0.11*
3-MT 11.91 ± 2.94 12.24 ± 1.72 5.55 ± 2.10 1.67 ± 0.65
HVA 18.10 ± 1.97 8.72 ± 3.83 11.13 ± 3.29 4.28 ± 0.60
Daq n. d n.d 4.80 ± 0.82* 3.30 ± 0.11
[3H] activity [kBq] 98.77 ± 5.64 82.87 ± 3.90 246.30 ± 42.06## 229.32 ± 24.72##
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Fig. 1   Release of monoamines (DA and NA). a The release of [3H]
dopamine (3H-DA) from rat striatal slices in response to stimulation 
and at rest. The preparations were stimulated during the 3rd (S1) and 
13th (S2) fractions (2 Hz, 2 ms, 240 shocks). The release of [3H]DA 
is expressed as the fractional release (FR). S1 = 61,553 ± 9,724 Bq/g 

(n = 6). The increase by S1 p < 0.05 (t-test for Dependent Samples). 
b The release of [3H]NA from rat cortical slices following stimula-
tion (2 Hz, 2 ms, 360 shocks). S1 = 27,636 ± 1,554 Bq/g (n = 5). The 
increase by S1 p < 0.05 (Wilcoxon Matched Pairs Test). The stimula-
tions are indicated. For further details see “Materials and Methods”
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It is generally accepted that oxidative stress (through 
H2O2, a breakdown product of DA metabolism) caused 
by ischemia is also involved in brain injury [74]. H2O2 is 
a stable molecule both in the intracellular and extracel-
lular space, which makes this ROS nonsynaptically exert 
its effect of inhibiting stimulation-induced transmitter 
release [75]. A previous study showed that endogenous 
glutamate acting on AMPA receptors generates H2O2 that 
diffuses and reduces stimulation-evoked release of DA 
[75]. In our experiments, H2O2 at a 250 µM concentra-
tion increased the non-vesicular resting release of [3H]
DA (Fig.  2c), producing a threefold increase (FRR2/
FRR1 = 3.30 ± 0.43, n = 6). These findings are consistent 

with our previous observations [19, 20]. Moreover, in the 
effluent toxic metabolites (DOPAL, DOPET) and qui-
none were detected in addition to DA and its metabolites 
(DOPAC, HVA) (Table 3).

Effects of NCX Inhibition

The presence of the reverse NCX inhibitor KB-R7943 
[41] at a concentration of 10 µM significantly reduced 
the effects of ischemia on striatal (Fig. 4a, b) and cortical 
(Fig. 5) slice preparations, as determined by measuring the 
resting release levels of [3H]DA and [3H]NA.

When extracellular Ca2+ was removed in the presence 
of KB-R7943, preventing nerve terminals from exchanging 
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Fig. 2   The effects of oxygen and glucose deprivation on the rest-
ing release of [3H]DA from rat striatal (a) and cortical (b) slices. 
The removal of oxygen and glucose (ischemia) was introduced, as 
indicated, during the 8th fraction and continued until the end of the 
experiment. The striatal (2 Hz, 2 ms, 240 shocks) and cortical (2 Hz, 
2  ms, 360 shocks) slices were stimulated as indicated. n = 6–6. The 
release of radioactivity is expressed as the fractional release (FR). 
The effect of ischemia on resting release was expressed as the ratio 
of the FR values measured at the 7th (R1) and at 15th (R2)(FRR2/
FRR1 = 22.91 ± 3.90) p < 0.05 (t-test for Dependent Samples) and at 
the 7th (R1) and 19th (R2) fractions (FRR2/FRR1 = 39.68 ± 7.64) (a) 

(t-test for Dependent Samples). In cortical slices FRR2/FRR1 ratio 
was calculated measuring FR values at 19th (R2) and 7th (R1) col-
lection periods (b) (t-test for Dependent Samples). 2 For further 
information, see the “Materials and Methods” section. c The effect 
of oxidative stress (H2O2, 250 µM) on the resting release of [3H]DA 
from striatal slice preparations (n = 6). H2O2 was in the Krebs solu-
tion as indicated. The administration of oxidative stress started at the 
7th fraction and continued until the end of experiments. The release 
is expressed as fractional release. For experimental conditions, see 
“Materials and Methods”
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Fig. 3   The resting release of [3H]DA (A) and [3H]NA (B) from rat 
cortical and striatal slice preparations and the effects of oxygen and 
glucose deprivation (ischemia) on resting release (n = 6–6). Cortical 
and striatal slice preparations were exposed to ischemia starting with 
the 8th fraction and rate of release after 18  min during ischemia at 
14th fraction was taken into account (R2). Release in 7th fraction is 
R1. For further details, see the “Materials and Methods” section. The 
effect of ischemia was expressed as FRR2/FRR1. FRR1 was used as an 

internal control. When either [3H]DA or [3H]NA release was meas-
ured, the effects of oxygen and glucose deficiency were more pro-
nounced in striatal slices than in cortical slices. *p < 0.05, #p < 0.05. 
Note that these experiments were carried out separately from the 
experiments shown in Figs.  2, 4 and 5. Repeated measures analysis 
of variance followed by multiple comparison method of Tukey-test. 
*p < 0.05

Fig. 4   a The resting release of [3H]DA from rat striatal slices in 
response to oxygen and glucose deficiency (ischemia) (n = 6) and 
the potentiation of release by Ca2+ removal (n = 6). In the con-
trol experiments, FRR2/FRR1 = 0.91 ± 0.07 (n = 5). The effect of 
ischemia on resting release was expressed as the ratio of the FR val-
ues between the second FR measurement (FRR2 noted after 18 min 
during ischemia) and the first FR measurement (FRR1 internal con-
trol) (FRR2/FRR1) of released radioactivity. During hypothermic 
experiments, the preparations were exposed to a temperature of 17 °C 
(beginning 30 min before the start of sample collection). KB-R7943 
(10 µM) was present in the Krebs solution starting with the 7th col-
lection period and was maintained in the solution throughout the 
experiments (n = 6). Ca2+-free Krebs solution was prepared (Ca2+ was 
removed and 1 mM EGTA was added to the solution starting with the 

5th fraction). Note that KB-R7943 significantly reduced the excessive 
release of [3H]DA in response to both ischemia (starting from the 7th 
collection period) and fully inhibited the release of [3H]DA. Repeated 
measures analysis of Variance followed by multiple comparison 
method of Tukey-test *p < 0.05. b The effect of ischemia on the rest-
ing release of [3H]NA from striatal slice preparations. KB-R7943 
(10 µM) was added to the Krebs solutions starting with the 7th frac-
tion and was maintained in the solution for the remainder of the 
experiment. The effect of ischemia on resting release was expressed 
as the ratio between the FR values of the second measurement (FRR2, 
during ischemia) and those of the first measurement (FRR1, internal 
control)(FRR2/FRR1) of released radioactivity. For condition see leg-
end of a. Repeated Measures Analysis of Variance followed by multi-
ple comparison method of Tukey-test). *p < 0.05
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Na+ for Ca2+, the released levels of transmitters induced by 
ischemia were significantly reduced compared to release 
under ischemia in Ca2+-free Krebs solution (Figs. 4 and 5).

Effects of Hypothermia

The temperature sensitivity of Na+/Cl−-dependent monoam-
ine transporters was also demonstrated [76]. The released 
levels of transmitters evoked by oxygen and glucose removal 
were significantly reduced in both striatal and cortical slices 
when the bath temperature was lowered from 37 to 17 °C, 
even in the absence of extracellular Ca2+ (Figs. 4 and 5). 
This effect is likely due to the temperature dependence of 
both the uptake process and NCX [77] and provides evi-
dence that the reversed activity of the transporter is respon-
sible for the release of monoamines.

DOPAL is a toxic by-product caused by the oxidation of 
DA by MAO-B. 3,4-dihydroxyphenilethanol (DOPET) is a 
subsequent metabolite of DOPAL, produced by aldehyde 
reductase. No toxic metabolites were detected during rest-
ing release, although [3H]DA was present in the perfusate 
obtained from the olfactory bulb slice preparations (Table 1). 
Electrical stimulation (2 Hz, 240 shocks) enhanced the 
release of both [3H]DA and its toxic metabolites (Table 1). 

When the temperature was reduced from 37 to 17 °C, the 
proportion of released [3H]DA was increased, and the 
released levels of [3H]DOPAL and [3H]DOPET were sig-
nificantly reduced (Table 1). During DA metabolism, the 
catechol ring of DA undergoes oxidation and forms a qui-
none, a toxic metabolite of DA [64] and an ROS [40]. Dopa-
mine quinone (Daq) was also detected in the perfusate when 
the tissue was stimulated. Interestingly, the release of this 
metabolite in response to stimulation was not affected by 
hypothermia (Table 1).

Effects of Hypothermia on NA Release from Human 
Cortical Slices

In our previous study, we showed that the release of trans-
mitters at rest and in response to axonal stimulation can be 
studied in human cortical slice preparations that are freshly 
obtained from brain operations [78]. Therefore, to study 
the preservative effects of hypothermia against brain tissue 
damage, human frontal cortical slices were maintained at 
8 °C for 20 h without oxygen. After rewarming and load-
ing the samples with [3H]NA, the uptake and release values 
did not differ from those measured in tissues that were not 
exposed to long-lasting hypoxic conditions at low tempera-
tures (Table 2). The release of transmitters that was evoked 
by stimulation was repeatable in both freshly prepared slices 
(Fig. 6a) and in slices prepared after being stored at 8 °C 
under hypoxic conditions (Fig. 6b); this result indicates that 
even after 20 h, the uptake and release functions were main-
tained in stored brain tissues. These findings are in accord-
ance with those reported by others that cooling preserves 
brain tissue and allows it to function for a limited time [79, 
80].

Fig. 5   The resting release of [3H]NA from rat cortical slices in 
response to oxygen and glucose deficiency (ischemia) at rest, and the 
potentiation of release by Ca2+ removal. For the control experiment, 
FRR2/FRR1 = 0.89 ± 0.60 (n = 5). The preparations were superfused, 
3-min fractions were collected, and the effects of ischemia were noted 
after 18  min (n = 6). KB-R 7943 (10  µM) was present in the Krebs 
solution starting from the 7th collection and was maintained in the 
solution throughout the experiments (n = 6). Ca2+-free Krebs solution 
was used (Ca2+ was removed and 1 mM EGTA was added to the solu-
tion starting with the 5th fraction). Note that KB-R7943 significantly 
reduced the excessive release of [3H]NA in response to both ischemia 
+ Ca2+-free solution. Hypothermia (starting from the 7th collection 
period) also inhibited the [Ca2+]o-independent resting release of [3H]
NA. For details, see the legend of Fig. 4. Repeated measures analysis 
of variance followed by multiple comparison method of Tukey-test. 
*p < 0.05

Table 2   Uptake and stimulation-evoked release of [3H]-noradrenaline 
from human cortical slices (for further information see the “Materials 
and Methods” section)

Repeated measures analysis of variance followed by multiple compar-
ison method of Tukey-test

Fresh tissue Tissue maintained 
at 8 °C for 20 h

Significance

Uptake (Bq/g) 104,551 ± 8842 119,479 ± 26,467 n.s
(8) (6)

S1 (Bq/g) 6991 ± 975 5941 ± 1731 n.s
(8) (8)

S2 (Bq/g) 3895 ± 461 3148 ± 372
(8) (2)

FRS2/FRS1 0.71 ± 0.04 0.72 ± 0.05 n.s
(8) (4)
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Discussion

Stroke is a leading cause of disability in adults, resulting in 
social and economic burdens worldwide [81, 82]. Numer-
ous attempts [1, 2, 13, 83–94] have been made to reveal the 
pathological mechanisms underlying cerebral ischemia and 
to design new drugs [2, 95–99] that reduce the effects of 
complications due to stroke [100–102]. Because all of the 
pharmacological interventions that have been tested to date 
have failed, new targets for novel therapies are needed.

The human brain is highly metabolically active and 
accounts for approximately 20% of the oxygen consumption 
and 25% of the glucose utilization in the body [103]. During 
chemical neurotransmission, the exocytosis of each vesicle 
containing transmitters from the presynaptic nerve terminal 
requires approximately 12,000 ATP molecules [104]. There-
fore, the maintenance of functional communications within 
and among neuronal circuitries in the brain is very sensitive 
to energy supply deficits. Synaptic transmission failure is the 
earliest consequence of cerebral ischemia [72, 73].

Rapid synaptic chemical transmission induced in a quan-
tal form requires synchronous vesicle fusion that is evoked 
by an action potential-induced Ca2+-influx (Fig. 7a). How-
ever, transmitter release also occurs from the cytoplasm, and 
this release is independent of action potentials and [Ca2+]o 
[25]. While quantal release is subject to presynaptic modula-
tion, [Ca2+]o-independent resting release is not affected by 
presynaptic receptor activation [105]. A prominent feature of 
cerebral ischemia is the excessive cytoplasmic accumulation 
of both Ca2+ and Na+ ions and the excessive production of 
ROS [21, 22, 106], a condition that can also result in cell 
death [107].

Cytoplasmic Release of Catecholamines

In previous studies, it was shown that hypoxic or hypogly-
caemic conditions can increase the [Ca2+]o-independent 
release of transmitters at rest, including monoamines (DA 
and NA) [11, 24–26, 108–110] and glutamate [23, 26, 35, 
111, 112]. Glutamate released into the extraneuronal space 
is neurotoxic via the activation of extrasynaptic GluN2B 
glutamate receptors [113, 114] and the subsequent massive 
increase in Ca2+ influx [115]. Furthermore, H2O2 produced 
by glutamate [75, 76] via activation of AMPA receptors is 
also involved in excitotoxicity. Convincing pharmacological 
and clinical evidence has demonstrated that the ability of 
fluoxetine to inhibit GluN2B receptors may have neuropro-
tective effects [116]. Despite the validation of glutamate tox-
icity in pharmacological experiments, clinical trials targeting 
NMDA receptors have failed to achieve beneficial effects [2].

When ischemia was simulated by the removal of oxygen 
and glucose, the resting cytoplasmic release of catecho-
lamines was enhanced (Figs. 4, 5, and 7b). Ca2+ removal 
potentiated the ischemia-induced resting release of trans-
mitters (Figs. 4 and 5). Similar to our results, the effects 
of veratridine, a compound that is able to increase [Na+]i, 
on GABA release were also potentiated in a [Ca2+]o-free 
medium [117]. In both cases, [Na+]I is not able to be reduced 
by NCX operating in reverse, due to the lack of extracellular 
Ca2+ to be exchanged for intracellular Na+. When extracel-
lular Ca2+ is removed, [Na+]i increases further, forcing trans-
porters (NET and DAT) to operate in reverse and resulting 
in the excessive release of transmitters from the cytoplasm 
into the extracellular space (Fig. 7c). These neurochemical 
data are in accordance with observations from neocortical 
cell cultures [115] showing that neuronal swelling and death 

Fig. 6   The release of [3H]NA from human cortical slices that were 
either freshly prepared immediately after the operation (a) or pre-
pared from tissue maintained at 8 °C for 20 h (b) under hypoxic con-
ditions. The release was measured at 37  °C. The slices were stimu-
lated (2 Hz, 2 ms, 240 shocks) twice (S1 and S2), as indicated. The 

fractional release (FR) values measured in the samples obtained from 
the frontal, occipital and parietal cortices were pooled. Increase of 
[3H]NA release evoked by S1 p < 0.05 (t-test for Dependent Samples 
for a and b)



25Neurochemical Research (2020) 45:16–33	

1 3

Fig. 7   a The effects of ischemia on transmitter release (dopamine, 
DA) and the roles played by the Na+/Cl− transporter (DAT) and the 
Na+/Ca2+ exchanger (NCX) in the nonvesicular resting release of 
DA. Dopamine represents an example of various transmitters (NA, 
serotonine, glutamate, GABA) which under physiological condition 
stored in vesicles and could be released in response to depolarization 
followed by Ca2+ influx and taken back by Na+/Cl− transporters. a 
In response to an action potential (Act. pot.), Na+ enters the neuron 
through voltage dependent sodium channels (VDNaCs), followed by 
a Ca2+ influx through voltage-activated channels (VDCC). The Na+/
Ca2+ exchanger (NCX) is activated when [Ca2+]i is ˃ 100  nM. In 
response to action potentials, [Ca2+]i in the nerve terminal can reach 
concentrations of > 10 µM [32, 33]. The depolarization results in the 
vesicular release of transmitters (dopamine (DA)). Under physiologi-
cal conditions, the intraterminal Ca2+  levels rise in response to an 
action potential, and the plasma membrane NCX couples the export 
of one Ca2+  ion to the import of three Na+  ions (“forward” mode 
of NCX activity [28, 77]). Monoamine [108] and glutamate [112] 
transporters, using ATP as an energy source, operate exclusively in 
the inward mode, rapidly removing exocytotically released trans-
mitters from the extracellular space and returning them to the nerve 
terminals to be reused during [Ca2+]o-dependent vesicular release. b 
Under ischemic conditions, when ATP synthesis is partially or fully 
blocked [25, 155], the exchanger (NCX) begins to operate in the 
reverse mode, producing additional Ca2+ influx and resulting in Na+ 
efflux. Under this condition, the action potential (Act. pot.) fails, and 
exocytotic chemical neurotransmission does not occur; the transmit-

ter is released from the cytoplasm by transporters operating in the 
reverse mode, and the cytoplasmic pool of transmitters (monoamines 
[23–25], glutamate [23, 26, 156, 157] and GABA [23]) are released. 
Because ATP is primarily generated by oxidative phosphorylation, 
the energy supply of the brain depends on a permanent oxygen sup-
ply. Any interruption in the oxygen and blood glucose supply, even 
for only a few minutes, can result in energy delivery failures and 
cell death [158]. The carrier operates in the reverse mode under the 
conditions of a reduced Na+ electrochemical gradient, such as when 
nerve terminals become energy compromised during the following 
events: during ischemia; during the selective inhibition of Na+/K+-
ATPase by ouabain [127, 129, 159]; and after the administration of 
transporter substrates, such as β-phenylethylamine (β-PEA), mephe-
drone or amphetamines [46]. The inward transport of substrates by 
DAT, accompanied by an influx of 2 Na+ and 1 Cl− [160], results in 
a transporter-mediated current [161]. Therefore, in all cases, a high 
intraterminal [Na+] results in the Ca2+-independent resting release 
of catecholamines, their toxic MAO metabolites (aldehydes, DOPAL 
(3,4-dihydroxyphenylacetaldehyde), quinone and DOPEGAL [133]), 
in a [Ca2+]o-independent manner. Glutamate is also released and 
is involved in neurotoxicity, and a depolarization occurs due to the 
enhanced [Na+]i. In addition, a Na+ influx through voltage-dependent 
Na channels (VDNaCs) occurs. c Schematic diagram showing that 
the exchanger (NCX) plays a crucial role in the [Ca2+]o-independent 
release of the transmitter DA. When the exchanger is inhibited by a 
lack of extraneuronal Ca2+, it fails to operate in a reverse mode and is 
not able to reduce [Na+]i
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were increased by the removal of Ca2+ from the ischemic 
medium.

Effects of NCX Inhibition

NCX has been shown to be involved in stroke pathophysiol-
ogy, and its acute and long-term activation reduces brain 
injury and restores behavioural functions [59]. Further-
more, convincing evidence was obtained demonstrating that 
KB-R7943 attenuates the elevation of [Ca2+]i in response to 
chemical ischemia [107] and protects CA1 neurons in hip-
pocampal slices against hypoxic and hypoglycaemic injury 
[41]. These effects also imply that under this condition, 
[Na+]i continues to increase [107]. Based on our study with 
Ca2+ removal, it appears likely that excessive Na+ influx, in 
the absence of NCX-driven Na+ efflux results in additional 
Na+ loading and further enhances the [Ca2+]o-independent 
cytoplasmic release of transmitters (Fig. 7).

The present study demonstrated that the inhibition of 
the reverse activation of NCX using KB-R7943 [118–120] 
preferentially suppressed the resting release of transmitters, 
which was enhanced by oxygen and glucose removal in both 
the presence and absence of external Ca2+ (Figs. 4 and 5). 
These findings reveal the role played by the NCX during 
resting transmitter release. The restricted localizations of 
the NCX2 and NCX3 isomers primarily to neurons [30] and 
of NCX1 to cardiac muscle also clarifies the roles played 
by NCX2 and NCX3 in regulating [Ca2+]i and transmitter 
release in the CNS. Our findings suggest that NCX function-
ing in reverse mode is involved not only in increasing the 
level of Ca2+ influx but also in increasing the resting release 

levels of transmitters during ischemia (Fig. 7b). The depo-
larization caused by high [Na+]i further increases Na+ influx 
through the voltage-dependent sodium channel (VDNaC, 
Fig. 7b, c). Enhanced [Na+]I appears likely to trigger trans-
mitter release through a carrier-dependent process. Our 
findings that hypothermia, a condition that is able to inhibit 
monoamine transporter function [121], was able to reduce 
or prevent increased levels of transmitter release (Figs. 4 and 
5) strongly supports this mechanism.

Based on our experimental data, the inhibitory effects of 
KB-R7943 on ischemia-induced transmitter release could 
easily be ascribed to its inhibitory effects on the reverse 
operation of NCX. When NCX activity was inhibited by 
removing Ca2+ from the perfusion fluid, KB-R7943 was 
still able to reduce the ischemia-induced release, a contra-
diction that requires discussion. Several explanations may 
explain this discrepancy. KB-R7943 also has several other 
actions that may be involved in its effects on transmitter 
release and neuroprotection [28]. The inhibitory effects of 
KB-R7943 on NMDA channels (IC50 = 0.1–11 µM) [122] 
appears to be one logical explanation for this contradictory 
effect on transmitter release. Recent evidence suggests that 
NMDA, but not AMPA receptor antagonists prevented the 
increased release of transmitters, including those mediated 
by glutamate and neuronal injury [115]. Furthermore, the 
fact that Na+ channel blockades reduce or inhibit the effects 
of ischemia on transmitter release [123] supports this expla-
nation. To confirm that the inhibition of the NCX isomer is 
indeed responsible for the moderation of ischemia-induced 
transmitter release, selective antagonists, with and without 
effects on NMDA and Na+ channels, are needed that are 

Table 3   Effects of oxidative 
stress, induced by H2O2 
(250 µM), on the distribution of 
resting release of [3H]DA and 
its [3H] metabolites from striatal 
slices

Note that during ischemia, oxidative stress is constantly occurring
The release and distribution of [3H]DA and its metabolites were measured using HPLC combined with 
scintillation spectrometry at the 2nd (control) and 13th (oxidative stress) collection points. Note that the 
data shown in this Table were not obtained from the experiments shown in Fig. 2c. n = 4
see Table 1, n.s. not significant, n.d. not detectable
The statistical significance of the results was determined by the TIBC statistical program. To assess the 
normality of all the continuous variables measured, the Kolmogorov–Smirnov test was used and performed 
for each individual repeated measurement. If the measured variables met the normality assumption, two-
way factorial measures (FM ANOVA) analysis was performed

[3H] Control resting [%] Oxidative stress resting
H2O2, 250 µM [%]

Significance

DA 65.64 ± 2.25
63.32 ± 6.11 kBq

50.66 ± 4.69
82.29 ± 7.61 kBq

n.s.

DOPAC 13.99 ± 1.46 10.97 ± 1.12 n.s.
DOPAL n.d. 3.65 ± 1.07  < 0.05
DOPET n.d. 8.33 ± 2.73  < 0.05
3-MT 10.49 ± 0.64 10.62 ± 1.30 n.s.
HVA 9.88 ± 0.43 6.07 ± 0.79  < 0.05
Daq n.d. 9.7 ± 0.97  < 0.05
[3H] activity [kBq] 96.48 ± 8.85 162.44 ± 13, 18 kBq  < 0.05
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capable of inhibiting NCX acting in reverse mode. Fur-
thermore, the findings that KB-R7943 inhibits the nicotine 
receptors expressed in neurons [124] and the noradrenaline 
transporter [125] also demonstrate the need to study a more 
selective NCX inhibitor.

The role played by NCX during cerebral ischemia also 
depends on the anatomical region injured by the insult 
[28]. In the penumbral region, where the Na+/K+-activated 
ATPase is not fully blocked and remains operational, the 
NCX continues to operate in the forward mode. However, 
in the ischemic core region, which is primarily represented 
in our experiments involving oxygen and glucose removal 
(Fig. 7b), ATP synthesis and the Na+/K+-activated ATPase 
are fully blocked; accordingly, [Na+]i remains high. When 
the activity of the Na+/K+-activated ATPase was inhib-
ited by ouabain, resting transmitter release increased 
[126–130].

Protective Effects of Hypothermia on the Release 
of DA and Its Toxic Metabolites

The beneficial effects of hypothermia on brain function in 
response to global and local cerebral ischemia have been 
demonstrated previously [131, 132]. In animal experiments, 
local short-term cooling after tissue plasminogen activation 
was shown to protect against side effects, such as oedema, 
and increased infarct volumes [132]. In our experiments 
hypothermia inhibited the cytoplasmic release of catecho-
lamines in response to ischemia (Figs. 3, 4, 5) and prevented 
the release of deaminated toxic DA byproducts (DOPAL) 
into the extraneuronal space (Tables 1 and 3). These results 
also provide explanations for the neuroprotective effects of 
hypothermia.

Under local hypothermic conditions, both the NCX and 
the uptake transporters become partially or fully inhibited; 
this inhibition prevents or reduces the excessive carrier-
mediated release of transmitters from the cytoplasm and 
the secondary [Ca2+]i elevation caused by the accumula-
tion of [Na+]i. The level of [3H]DA release at 17 °C was 
significantly enhanced compared to that at 37 °C, although 
its metabolites were observed at much higher proportions 
at the higher temperature (Table 1). Gerkau et al. [107] per-
formed in vivo experiments showing that Na+ elevation in 
periinfarct regions results in the reversal of the NCX, trig-
gering a massive secondary [Ca2+]I influx while promoting 
the export of Na+. The sustained elevation of [Ca2+]i results 
in the activation of various degradative enzymes, such as 
phospholipases and proteases. This condition represents a 
serious risk for neurons. Under this condition, the role of the 
reversed operation of Na+/Cl− transporters is crucial. Hypo-
thermia reduces their operation and prevents transmitters 
(monoamines and glutamate) from being released into the 

extracellular space, where they can exert neurotoxic activi-
ties, allowing the tissue to recover from an energy-compro-
mised state. Many stroke patients may still fall outside of the 
clinical time windows for effective treatment. The adminis-
tration of local hypothermia by emergency services may be 
an important step, as hypothermia with thrombolysis rep-
resents a chance to improve our neuroprotective strategies.

Toxic Metabolites of Catecholamine Metabolism

Toxic MAO-B metabolites of catecholamines (DOPAL and 
3,4-dihydroxyphenylglycolaldehyde, DOPEGAL) can also 
cause neuronal injury [37, 133]. Dopamine is also metabo-
lized into H2O2 by MAO-B, and if dopamine is not reduced 
by cellular antioxidants (GSH and GSH peroxidase), it will 
react with iron and form hydroxy radicals [134]. In addition, 
the catechol ring of DA can undergo oxidation and form 
quinone [64] and H2O2 + superoxide anions, which are neu-
rotoxic and alter mitochondrial respiration [135]. The energy 
depletion of mitochondria evoked by ischemic insult results 
in excessive production of ROS. Mitochondrial oxidative 
stress is one of the mediators of ischemic brain injury [74].

DOPAL, the toxic metabolite of DA, was detected in the 
superfusate when [3H]DA release was induced by electri-
cal stimulation (Table 1). DOPET, the product of the sub-
sequent metabolism DOPAL by aldehyde reductase, was 
also enhanced (Table 1). Under these conditions, DA was 
released from the vesicles. In contrast in our study, we also 
observed the presence of DOPAL and quinone when DA was 
released from the cytoplasm under oxidative stress (H2O2) 
conditions (Tables 1 and 3). Thus, during ischemia, when 
dopaminergic axon terminals are energy compromised the 
resting, non-vesicular release of DA is accelerated. The 
occurence of neurotoxic DA metabolites (DOPAL and qui-
none) in the perfusate indicates that they play roles in neu-
ronal toxicity [133, 136, 137].

In our experiments (Fig. 2c), oxidative stress induced by 
H2O2, a side product of catecholamine breakdown, resulted 
in the excessive cytoplasmic release of catecholamines [106] 
and increased levels of toxic DA metabolites (DOPAL) 
(Table 3). Furthermore, evidence was obtained that oxida-
tive stress (H2O2) combined with Na+ load drains energy 
sources, ATP level decreases in the nerve terminal [138, 
139]. The importance of our observation with H2O2 is fur-
ther supported by findings that the production of ROS is 
increased in response to stroke and reperfusion [134] and 
that the presence of H2O2 at a concentration of 0.1 mM 
could be detected in the striatum [140]. These findings sug-
gest that ischemia-associated oxidative stress and the toxic 
metabolites of catecholamines may also be responsible for 
neurotoxicity.
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Extracellular Space as the Route for Non‑synaptic 
Communication and the Location of Toxic Dopamine 
Metabolites During Ischemia

Recently, we have provided neurochemical and pharmaco-
logical evidence [46] that amphetamine-like drugs of abuse 
and the trace amine β-phenylethylamine (β-PEA) excessively 
increase the [Ca2+]o-independent, non-vesicular release of 
DA from the cytoplasm into the extracellular space and 
inhibit the high-affinity transporter. Increases in the DA 
concentration in the extrasynaptic space tonically control 
the activity of neurons equipped with DA receptors and are 
likely to be associated with the reinforcing effects and abu-
sive potential of amphetamines. An overwhelming number 
of varicosities within the central nervous system are non-
synaptically localized [6, 141–143], and they directly release 
their transmitters into the extracellular space [12, 127, 144]. 
Therefore, the volume of the extracellular space [145, 146], 
as an important factor that influences the ambient concen-
trations of transmitters and their toxic metabolites, and the 
drugs used in practice that inhabit the extracellular space [6] 
must also be discussed.

After monoamine transmitters (DA and NA), their toxic 
metabolites or glutamate have been released into the extra-
cellular space, their diffusion and concentrations are affected 
by the volume of the space they are released into and their 
tortuosity [146–150]. During ischemia, a rapid decrease 
in the volume of the extracellular space and an increase in 
tortuosity have been reported [151]. These ischemic effects 
result in the increased concentrations of transmitters released 
into the extracellular space, augmenting their toxic effects 
[147]. In addition, Dr. Sykova and her colleagues provided 
evidence of the roles played by the volume of the extracel-
lular space in various central nervous system diseases [147, 
152, 153].

Summary

The mechanism underlying the ischemia-induced release of 
transmitters from the cytoplasm involves the inhibition of 
the Na+/K+–ATPase enzyme due to energy depletion, the 
subsequent intracellular Na+ accumulation, and the sodium-
dependent reversal of the Na+/Ca2+ exchanger (Fig. 7b) and 
monoamine uptake carrier [5]. Moreover, the auto-oxidation 
of catecholamines by the cytoplasmic monoaminoxidase 
enzyme results in the formation of H2O2 and toxic metabo-
lites (DOPAL), which are then released into the extracellular 
space.

Our findings not only suggest the role played by NCX 
in the reduction of [Na+]i under ischemic conditions but 
also suggest that the brain NCX isoforms, which are able 

to operate in reverse mode and produce Ca2+ overload in 
neurons, may represent therapeutic targets for the develop-
ment of new drugs [154]. Moreover, in ischemic insults, 
local cooling might be a potential treatment for acute stroke 
intervention, preventing the excessive release of transmit-
ters and their toxic metabolites into the extraneuronal space 
and lengthening the clinical time windows for effective 
treatment.
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