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Abstract

TRESK (TWIK-related spinal cord K+ channel, KCNK18) is a major background K+ channel of sensory neurons. Dominant-
negative mutation of TRESK is linked to familial migraine. This important two-pore domain K+ channel is uniquely
activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and
activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which
is responsible for the basal inhibition of the K+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have
examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating
kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK
current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally
involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the
primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279) in the intracellular
loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase.
Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of
14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-
localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that
microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background
potassium channel.
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Introduction

TRESK is abundantly expressed in dorsal root ganglion (DRG)

neurons and has been suggested to play an important role in pain

disorders [1–5]. TRESK is the target of sanshool, the paresthetic

and counter-irritant ingredient of the traditional Chinese medi-

cine, Sichuan pepper [6,7]. The channel has recently attracted

particular attention, because its dominant-negative mutation was

reported to be linked to familial migraine with aura [8]. These

findings indicate the importance of TRESK in pain control and

points to the need for better understanding of the regulatory

properties of the channel.

TRESK regulation is distinguished within the K2P channel

family by the unique sensitivity to the cytoplasmic calcium signal.

The calcium/calmodulin-dependent protein phosphatase calci-

neurin activates TRESK 5–15-fold in Xenopus oocytes [9].

Stimulation of Gq protein-coupled receptors activated TRESK

by 40–80% in COS-7 cells under whole-cell patch clamp

conditions [10,11]. Whole-cell TRESK current in native cells

has not been reliably measured, although several studies

examined TRESK in isolated DRG neurons [5,8,10–13]. In

the absence of specific inhibitors, separation of native whole-cell

TRESK current from the other endogenous background K+

currents remains a challenge to be solved in the future. When

cell-attached patches containing TRESK channels were pains-

takingly selected from DRG neurons, single channel activity

increased by 30–80% in response to receptor stimulation [11].

The mechanism of TRESK activation in mammalian cells, and

the cause of the apparently smaller stimulation of the current in

the mammalian cell lines than in the Xenopus system have not yet

been investigated.

We have recently realized that two inhibitory kinase pathways

converge on TRESK [14]. The two pathways have different target

residues in the intracellular loop of the channel. Protein kinase A

phosphorylates the second serine in the conserved RSNSCPE

sequence (S264 in mouse and S252 in human TRESK), thereby

recruits the adaptor protein 14-3-3 to this motif [15], and exerts

auxiliary channel inhibition [14]. However, the major inhibitory

pathway targets the S274/276/279 cluster; RLSCSILSNLD in

the mouse, corresponding to RLSYSIISNLD (S262/264/267) in

human TRESK. Intriguingly, this pathway was shown to be

inhibited by 14-3-3 even if the direct binding of the adapter

protein to TRESK was abrogated [14]. The major aim of our

present study was to identify the kinase, which phosphorylates the

S274/276/279 cluster and accordingly inhibits TRESK, when

expressed in the Xenopus oocyte system.
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Materials and Methods

Plasmids and reagents
The cloning of human and mouse TRESK cDNAs [9] and

S264E mutant mouse TRESK [14] were previously described.

Mouse TRESK was subcloned to pIRES-CD8 vector [16] for

transfection of HEK293 cells. Human embryonic kidney

(HEK293) cell line (ATCC-CRL-1573) was purchased from

LGC Standards GmbH (Wesel, Germany). The AMPK-related

kinase and tau cDNAs were amplified with RT-PCR. Total RNAs

were purified with TRIzol reagent (Invitrogen, Carlsbad, CA).

Reverse transcription was performed with MMLV-RT (Revertaid,

Fermentas, Vilnius, Lithuania) from mouse brain (BRSK1,

MARK1, MARK2, MARK3, MARK4, NUAK1, tau), embryo

body (SIK1(1–343)), testis (AMPKa1) or placenta (MELK) total

RNAs. MARK1 and MELK PCR products were amplified with

Ultra Pfu (Stratagen, La Jolla, CA), while those of the other kinases

with Pfu polymerase (Fermentas). We have cloned isoform 2 of

MARK2 (722 amino acids, Genebank NP_001073857), and used

this protein throughout the study. For primer sequences, cloning

sites and PCR protocols see Figure S1. All kinase cDNAs were

cloned to pXEN vector (Genebank EU267939), and verified by

automatic sequencing.

Different mutant versions of the kinases were produced with

QuikChange site directed mutagenesis (Stratagen). For primer

sequences see Figure S1. MARK2 T208E or T208E/T539A

mutants were also subcloned into pGEX2TK4T1 and pET32-

DKpn [15] vectors for the production of GST- or Trx-His6-tagged

versions of the kinase in E. coli. (In pGEX2TK4T1 the EcoRI-PstI

fragment of pGEX-4T-1 was cloned into pGEX-2TK, Amersham

Biosciences, Little Chalfont, UK.) Tau coding sequence was

cloned into pGEX-4T-1. Cloning and purification of GST-

TRESKloop, GST-TRESKloop-TAPtag and different versions

of TRESKloop-His8 protein were previously described [15,17].

These proteins are hydrophobic; they are insoluble under non-

denaturing conditions. Therefore, after prurification from bacte-

rial lysates they were kept immobilized on the affinity matrix (on

glutathione or Ni-NTA resins) and they were added in this form to

the kinase reaction.

Ionomycin (calcium salt, Sigma) and FK506 were dissolved in

DMSO as 5 mM stock solutions, and diluted to 0.5 or 1 mM

before the measurement. Chemicals of analytical grade were

purchased from Sigma, Fluka or Merck. Enzymes and kits of

molecular biology applications were purchased from Ambion

(Austin, TX), Fermentas, New England Biolabs (Beverly, MA),

and Stratagene.

Production and purification of recombinant MARK2
proteins

Glutathione S-transferase (GST) fusion constructs of constitu-

tively active MARK2 mutants and tau were expressed in BL21

strain of E. coli. Solution A contained 50 mM Tris-HCl (pH 7.5),

200 mM NaCl, 1 mM b-mercaptoethanol, 1 mM PMSF and

2 mM benzamidine. Bacteria were sonicated in solution A

supplemented with 5 mM CHAPS. GST fusion proteins were

affinity-purified with glutathione-agarose (Sigma). GST-tau pro-

tein immobilized on glutathione-agarose was stored as a 50%

suspension in solution A at 4uC. GST-MARK2 constructs were

eluted from the resin with solution A containing 20 mM reduced

glutathione.

The bacteria expressing the thioredoxin-His-tag (Trx-His6)

fusion proteins were lysed in solution A supplemented with

15 mM imidazole and 5 mM CHAPS. The proteins were affinity-

purified with Ni-NTA agarose (Qiagen, Chatsworth, CA). The

resin was washed 2 times with solution A, and 3 times with

solution A containing 60 mM imidazole. The protein was eluted

with solution A supplemented with 300 mM imidazole. Both

GST-MARK2 and Trx-His6-MARK2 enzymes were dialyzed

against solution A containing 50% glycerol, and stored at 220uC.

Animals, tissue preparation, Xenopus oocyte
microinjection

Mouse tissues derived from NMRI mouse strain (Toxicop,

Hungary). Xenopus oocytes were prepared, the cRNA was

synthesized and microinjected as previously described [9]. Oocytes

were microinjected one day after defolliculation. Fifty nanoliters of

the appropriate RNA solution was delivered with Nanoliter

Injector (World Precision Instruments, Saratosa, Florida, USA).

All treatments of the animals were conducted in accordance with

state laws and institutional regulations. The experiments were

approved by the Animal Care and Ethics Committee of

Semmelweis University (approval ID: 1895/003/2004).

Two-electrode voltage clamp and patch clamp
measurements

Two-electrode voltage clamp experiments were performed three

or four days after the microinjection of cRNA, as previously

described [9],. Low [K+] solution contained (in mM): NaCl 95.4,

KCl 2, CaCl2 1.8, HEPES 5 (pH 7.5 adjusted with NaOH). High

[K+] solution contained 80 mM K+ (78 mM Na+ of the low [K+]

solution was replaced with K+). TRESK background K+ current

was measured at the ends of 250 or 300 ms voltage steps to

2100 mV applied in every 4 s.

For current measurements in HEK293 cells, the whole-cell

patch clamp technique was applied. The Ca2+-free, low [K+]

extracellular solution had the following composition (in mM):

NaCl 140, KCl 2, MgCl2 2.5, glucose 11, EGTA 0.05, HEPES 10,

pH 7.4 (adjusted with NaOH). High [K+] extracellular solution

contained 30 mM K+ (28 mM Na+ of the low [K+] solution was

replaced with K+). During the stimulation with ionomycin a

further version of these extracellular solutions was applied, which

contained 2 mM CaCl2, 0.5 mM MgCl2 and no EGTA. Pipettes

were pulled from borosilicate glass by a P-87 puller (Sutter

Instrument Co., Novato, CA) and fire polished. Pipette resistance

ranged between 4 and 9 MV when filled with the solution

containing (in mM): KCl 140, MgCl2 3, EGTA 0.05, Na2ATP 1,

Na2GTP 0.1, HEPES 10, pH 7.3 (adjusted with NaOH). In some

experiments, ATP and GTP were omitted from the pipette

solution. The pipette was connected to the headstage of a patch-

clamp amplifier Axopatch-1D (Axon Instruments, Inc., Foster

City, CA). Data were filtered at 1 kHz and digitally sampled at

2 kHz by a Digidata 1200 interface board (Axon Instruments).

Data acquisition and analysis was performed with pCLAMP 10

software (Molecular Devices, Sunnyvale, CA). The voltage

protocol consisted of a 200 ms voltage step to 2100 mV followed

by a 600 ms ramp to +60 mV applied in every 2 s. TRESK

background K+ current was analyzed at the end of the voltage

steps to 2100 mV.

In vitro radioactive phosphorylation
Solution B contained 50 mM Tris-HCl (pH 7.5), 5 mM MgCl2,

0.5 mM PMSF and 0.5 mM benzamidine. GST-TRESKloop,

GST-TRESKloop-TAPtag and GST-tau proteins immobilized on

10 ml glutathione-agarose were phosphorylated with Trx-His6-

MARK2-T208E in 50 ml volume of solution B supplemented with

20 mM Na2ATP, 100 kBq 32P-c-ATP, 2 mM EGTA and 0.5 mM

DTT. The constitutively active, T208E mutant form of MARK2

TRESK Is Inhibited by MARK Kinases
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was used, because this version of the kinase did not require the

phosphorylation of T208 in the activation loop. The immobilized

substrates were phosphorylated at 30uC for 1 hour with

continuous shaking at 200 rpm. The proteins were run on 12%

SDS-PAGE gels, the gels were stained with Coomassie Brilliant

Blue, and their radioactivity was detected with phosphorimager

(GS-525, Bio-Rad, Hercules, CA, USA).

The different TRESKloop-His8 constructs immobilized on Ni-

NTA resin were phosphorylated with GST-MARK2-T208E in a

similar manner. In this case, solution B was supplemented with

1.4 mM b-mercaptoethanol in addition to 20 mM Na2ATP and 50

or 100 kBq 32P-c-ATP. The substrate proteins were run on 15%

SDS-PAGE gels because of the small size of TRESKloop-His8.

This highly hydrophobic small protein fragment was weakly

stained with Coomassie Blue, and run anomalously at around

19 kD instead of the calculated 13.5 kD molecular weight.

Statistics and calculations
Data are expressed as means6S.E. Statistical significance was

estimated by Student’s t test for independent samples, with the

exception of a one-way analysis of variance (ANOVA) and Tukey

HSD post hoc test for multiple comparisons (as indicated in the

appropriate figure legend). The Statistica 8.0 program package

(StatSoft, Tulsa, OK) was used for the analysis. The difference was

considered to be significant at p,0.05.

Results

TRESK is activated by the elevation of cytoplasmic
calcium concentration via calcineurin in HEK293 cells

TRESK current in HEK293 cells was measured under whole-

cell patch clamp conditions with unusual calcium-free pipette and

bath solutions containing EGTA at low (50 mM) concentration.

Combined extracellular application of calcium (2 mM) and the

calcium-ionophore ionomycin (1 mM) activated TRESK current

by 50612% (n = 6, gray control curves, Figure 1.A and B, for further

comments on this stimulation see Figure S2). This moderate

degree of activation corresponded to previous patch clamp data in

the literature [10,11], and allowed the examination of the

mechanism of TRESK activation.

When the cells were pretreated with the calcineurin inhibitor

FK506 (1 mM) for 15–40 min, the application of calcium and

ionomycin resulted in 38618% inhibition of the K+ current (n = 6,

black FK506 curves, Figure 1.A and B, p,0.01 compared to the

control group). This inhibition was likely evoked by the direct

pharmacological effect of ionomycin on TRESK, as it has already

been described in Xenopus oocytes [15]. Pretreatment with the

selective calcineurin inhibitor FK506 prevented the calcium-

dependent TRESK activation, suggesting that endogenous

calcineurin also regulated TRESK in HEK293 cells.

In the above experiment, basal TRESK current appeared to be

larger in the control than in the FK506 group (although the

difference was not statistically significant, p = 0.09, Figure 1.A).

We assumed that despite of the calcium-free solutions TRESK in

the control group was still preactivated by our experimental

manipulations before recording. Therefore ATP was omitted from

the pipette solution, to eliminate possible activation of endogenous

purinergic Gq protein-coupled receptors [18] by the leakage of

ATP from the pipette tip before the formation of gigaseal and the

consequent calcium release from intracellular stores. When this

pipette solution was applied and an additional period after the

stimulation was inserted in order to wash out ionomycin and

clearly evaluate the calcium-dependent effect, TRESK current

was activated 6.061.1-fold (n = 5, Figure 1.C). This degree of

activation is close to that characteristic for TRESK in the Xenopus

oocyte expression system [9].

When TRESK-expressing HEK293 cells were stimulated by the

muscarinic agonist carbachol (50 mM) via endogenous receptors,

TRESK current was activated 3.960.9-fold (n = 5, Figure 1.D).

Thus the calcium release from the intracellular stores was sufficient

to regulate TRESK when calcium-free pipette and bath solutions

were applied. Elevated calcium levels in the physiological range,

evoked by endogenous receptors and signaling mechanisms,

substantially activated the channel in HEK293 cells.

Coexpression of MARK2 with TRESK accelerates the
return of the K+ current to the resting state after the
calcium-dependent activation

The sequence of the S274/276/279 cluster does not match the

consensus motifs of known serine/threonine kinases. On the basis

of different hypotheses, inhibitor sensitivity and consensus

sequence similarity (not shown) we have cloned and functionally

Figure 1. Calcineurin activates mouse TRESK several-fold in
HEK293 cells. A. Calcium-dependent activation of TRESK current was
measured at 2100 mV in HEK293 cells after FK506 pretreatment (1 mM,
15–40 min, FK506, black curve) or without the application of the
calcineurin inhibitor (control, gray curve). Whole-cell patch clamp
recording was performed with calcium-free pipette and bath solutions
containing 50 mM EGTA. Pipette solution contained GTP (0.1 mM) and
ATP (1 mM). Extracellular [K+] was increased from 2 to 30 mM (as
indicated above the graph) and the cells were subsequently challenged
with ionomycin (1 mM) plus Ca2+ (2 mM, Iono.+Ca2+, horizontal black
bar). B. Normalized responses to ionomycin plus calcium were
calculated from the same recordings as represented in panel A. FK506
prevented the calcium-dependent activation of TRESK. C. TRESK
currents during the stimulation with ionomycin plus calcium (Io-
no.+Ca2+, horizontal black bar) were measured with calcium-free pipette
solution containing 50 mM EGTA but neither ATP nor GTP. Calcium
(2 mM) was continuously present after the withdrawal of ionomycin
(Ca2+, horizontal gray bar). Extracellular [K+] was repeatedly changed
between 2 and 30 mM as indicated above the graph. The currents were
normalized to the basal value measured before the stimulation. D.
TRESK current was stimulated with carbachol (50 mM) via endogenous
muscarinic receptors. The pipette and bath solutions were Ca2+-free,
containing 50 mM EGTA and no ATP/GTP. Normalized curves were
plotted; for average current data of panel C and D see Figure S3.
doi:10.1371/journal.pone.0028119.g001
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tested 40 wild type (wt) or constitutively active (ca) kinase constructs

(corresponding to 23 different serine/threonine kinase types, see

Figure S4). The cRNA of these kinases was coinjected with that of

TRESK into Xenopus oocytes. The searched-for regulatory kinase

was expected to (re)phosphorylate TRESK channel after its

calcineurin-mediated dephosphorylation, and accordingly accel-

erate the return of the K+ current to the resting state after the

ionomycin-stimulation. However, these kinases failed to accelerate

recovery (data not shown).

Recently, we have reached the conclusion that the kinase

phosphorylating the S274/276/279 cluster is inhibited by the

adaptor protein 14-3-3 [14]. Therefore we have attempted to

identify TRESK-inhibitory kinase on the basis of its sensitivity to

14-3-3. We examined microtubule-associated-protein/microtu-

bule affinity-regulating kinase 2 (MARK2), since it was reported

to be inhibited by 14-3-3 [19,20]. In the cells coexpressing

MARK2 with mouse TRESK, the K+ current almost completely

recovered (8963%, n = 9) after the ionomycin-stimulation at the

end of the measurement (Figure 2. A and B). This was in sharp

contrast to the control oocytes expressing only the channel

(3669% recovery, n = 6, p,1024). The amplitude of the resting

TRESK current, measured before the application of ionomycin,

was significantly smaller in the MARK2 (0.3460.04 mA) than in

the control group (1.0560.17 mA, p,0.01, Figure 2.A). Thus

coexpression of MARK2 inhibited TRESK under resting

conditions, and dramatically accelerated the (re)phosphorylation

of the channel after the calcineurin-dependent activation. Very

low amounts of MARK2 cRNA (0.16 ng/oocyte) were sufficient

to significantly accelerate TRESK recovery, suggesting that the

effect did not rely on massive overexpression of the kinase.

The stimulation of Gq protein-coupled receptors activate a

complex signaling network and the elevation of cytoplasmic [Ca2+]

is only a part of the process. Therefore we examined whether

MARK2 was able to accelerate TRESK current recovery after the

more physiological, but at the same time more complex, receptor

stimulation (Figure 2.C and D). In the cells coexpressing TRESK,

M1 muscarinic receptor and MARK2 (triple coexpression),

recovery of the K+ current after the withdrawal of carbachol

(1 mM) was more rapid (8763% in the end, n = 10, black curve,

Figure 2.D) than in the control oocytes coexpressing only the

receptor and the channel (33611%, n = 13, gray curve, p,0.001).

Thus MARK2 was also effective in the case of receptor

stimulation. It is interesting to note that the apparent activation

of K+ current in the MARK2 group was 30.064.9-fold (black

curve, Figure 2.C). This indicates that TRESK has a remarkable

at least 30-fold dynamic range of receptor-mediated regulation.

The major regulatory region is not identical in the mouse

(RLSCSILSNLD) and human channel (RLSYSIISNLD). The

discrepancy, especially the cysteine to tyrosine substitution, raised

the question whether human TRESK was also inhibited by

MARK2. Therefore the experiment plotted in Figure 2.A and B

was also performed with the human channel (Figure 2.E and F).

The recovery was 7564% (n = 7) in the control and 10262%

(n = 7) in the MARK2 group at the end of the measurement

(p,0.001, Figure 2. F). MARK2 accelerated the return of the K+

current to the resting state, irrespectively of the different regulatory

sequences in the two TRESK orthologs.

MARK2 inhibits S264E mutant mouse TRESK
We have previously reported that calcium-dependent TRESK

regulation relies on two regions, S264 and the S274/276/279

cluster [14]. In order to elucidate whether S264 was necessary for

TRESK regulation by MARK2, we examined the effect of the

kinase on the S264E mutant channel (Figure 3). Evidently,

MARK2 could not regulate TRESK through the phosphorylation

of S264 in this mutant, and the direct recruitment of 14-3-3 to the

channel was also abrogated by the mutation.

Figure 2. The coexpression of MARK2 with TRESK accelerates
the return of the background K+ current to the resting state
after the calcium-dependent activation. A. Background K+

currents of Xenopus oocytes coexpressing mouse wild type TRESK with
MARK2 kinase (MARK2, black curve) or expressing only the channel
(control, gray curve) were stimulated with ionomycin (Iono., 0.5 mM,
horizontal black bar). Extracellular [K+] was changed from 2 to 80 mM
and back as indicated above the graph. Note that the resting K+ current
(the difference between the currents in 2 and 80 mM [K+] at the
beginning of the measurement) was smaller in the cells coexpressing
MARK2 with TRESK than in the control oocytes, whereas the average
peak currents after stimulation in the two groups were identical in this
experiment. B. The recovery of the currents of each oocyte (the same
cells as in panel A) was calculated as a percent. The K+ current of the
oocytes coexpressing MARK2 with TRESK almost completely returned to
the resting value in contrast to that of the control cells expressing only
the channel. C. A similar experiment as in panel A was performed with
oocytes coexpressing mouse TRESK and M1 muscarinic receptor with
MARK2 (MARK2, triple coexpression, black curve) or without the kinase
(control, gray curve). The cells were stimulated with carbachol (1 mM, as
indicated by the horizontal black bar). D. Recovery data were calculated
from the recordings represented in panel C. MARK2 accelerated the
return of K+ current to the resting value after receptor stimulation. E.
The same experiment as in panel A was performed with human TRESK.
(For further comments on these results see Figure S5.) F. Recovery data
were calculated from the currents of panel E. The recovery of human
TRESK current to the resting state was accelerated by MARK2 after the
calcium-dependent activation.
doi:10.1371/journal.pone.0028119.g002
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In accordance with the elimination of one of the regulatory

pathways, the activation of the S264E mutant channel in response

to ionomycin was smaller (3.160.4-fold in the control group) than

the about 6-fold activation characteristic for wt TRESK under

identical conditions [9]. The coexpression of MARK2 accelerated

the recovery of the current of S264E mutant TRESK after the

ionomycin-stimulation (5367% recovery at the end of the

measurement in the cells coexpressing S264E mutant TRESK

with MARK2 (n = 8) vs. 12612% in the control oocytes

expressing only the channel (n = 8), p,0.02, Figure 3.B). Although

the current amplitudes in the control group were larger than in the

MARK2 group (Figure 3.A), this was not so in a similar

experiment performed with MARK2-T208E (where the constitu-

tively active kinase also significantly accelerated the recovery, see

Figure S6). Thus MARK2 accelerated the recovery of S264E

mutant TRESK irrespectively of the current amplitudes. Serine

264 and the direct interaction of 14-3-3 with TRESK were not

indispensable for the effect of MARK2, suggesting that this kinase

acted via the S274/276/279 cluster.

MARK1, MARK2 and MARK3 inhibit TRESK, but not all
AMPK-related kinases regulate the channel

We have cloned all four MARK kinases, and one representative

member from each family of AMPK-related kinases: AMPKa1,

BRSK1 (also called synapses of amphids defective, SAD1, SAD-B),

NUAK1, MELK and a SIK1 construct containing amino acids 1–

343, including the kinase domain (Figure 4. A). These kinases were

coexpressed with mouse wt TRESK, and the recovery of the K+

current to the resting state after the stimulation with ionomycin

was examined.

The three closely related members of the MARK family

accelerated the recovery of K+ current (Figure 4.B), indicating that

MARK1, MARK2 and MARK3 inhibited TRESK channel.

MARK4, AMPKa1, NUAK1, MELK and SIK1(1–343) did not

significantly influence the recovery (Figure 4.C). The effect of

BRSK1 on K+ current recovery could not be determined in this

experiment, because BRSK1 completely blocked the activation of

TRESK (Figure 4.D). When the amount of coinjected BRSK1

cRNA was decreased and limited activation of the channel was

allowed, the recovery from this activation was or was not

accelerated depending on the amount of BRSK1 cRNA (see

Figure S7). Thus it cannot be excluded that BRSK1 also inhibits

TRESK. Nevertheless, the complete block of activation

(Figure 4.D) was not caused by overwhelming TRESK inhibition;

BRSK1 rather interfered with the regulation at multiple points.

Figure 3. The coexpression of MARK2 accelerates the recovery
of the K+ current of S264E mutant mouse TRESK after the
stimulation with ionomycin. A. Average currents of two groups of
oocytes coexpressing S264E mutant TRESK with MARK2 kinase (MARK2,
black curve), or expressing only the S264E mutant channel (control, gray
curve) were plotted. The cells were stimulated with ionomycin (Iono.,
0.5 mM, as indicated by the horizontal black bar) in 80 mM extracellular
[K+] (as shown above the graph). B. Recovery was calculated from the
same recordings as in panel A. Note the accelerated recovery in the cells
coexpressing MARK2 with the S264E mutant channel.
doi:10.1371/journal.pone.0028119.g003

Figure 4. MARK1, 2 and 3 inhibit TRESK, BRSK1 is a possible
regulator, whereas the other tested AMPK-related kinases do
not influence the recovery of the K+ current. A. Multiple
alignment and phylogenetic tree of mouse full-length AMPK-related
kinases was created with Clustal W2 and TreeView. The enzymes, which
have been cloned and functionally tested on TRESK, are shown in colors
different from gray. The MARK kinases, which efficiently inhibit TRESK,
are indicated with an orange ellipse. B. Time-dependent recovery of
background K+ currents after the ionomycin stimulation (Iono., 0.5 mM,
as indicated by the horizontal black bar) is shown for the groups of
oocytes coexpressing the different AMPK-related kinases with mouse
TRESK. Color code is the same as in panel A. Rapid recovery of K+

current in the MARK1, 2 and 3 groups is indicated with an orange
ellipse. C. Average recoveries at the end of the measurement are shown
for the different groups. The number in the columns indicates the
sample size. SIK1 construct (SIK1#) contained amino acids 1–343, which
included the kinase domain. The recovery in the MARK1, 2 and 3 groups
was significantly different from that of the control cells (one-way
ANOVA, followed by Tukey HSD test, *p,0.01, **p,0.001). D. Oocytes
coexpressing BRSK1 and mouse TRESK (BRSK1, ferruginous curve, n = 16)
or expressing only the channel (control, black curve, n = 15) were
stimulated with ionomycin as in the case of the other AMPK-related
kinases in panels A, B and C. Note that ionomycin did not activate
TRESK current in the cells, which coexpressed BRSK1 with the channel.
E. Representative photograph of a control oocyte expressing TRESK
channels. Appearance is not different from a non-injected cell (not
shown). F. Representative photograph of an oocyte coexpressing TRESK
with MARK2 kinase. Note the reduced pigmentation on the animal pole,
and the peculiar dark dots on the vegetative hemisphere following a
more or less hexagonal arrangement.
doi:10.1371/journal.pone.0028119.g004
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Coexpression of MARK or BRSK1 kinases with TRESK

induced striking morphological changes of Xenopus oocytes,

whereas the coexpression of the other AMPK-related kinases did

not affect the appearance of the cells. We did not find the

description of this morphology in the literature, thus it is possible

that we report it for the first time. MARK1, MARK2 and

MARK3 reduced the surface area of brown pigmentation at the

animal pole, and also resulted in peculiar dark dots on the

vegetative hemisphere (compare Figure 4.E and F for MARK2;

for further details see Figure S8). The cell biology behind this

complex morphology has not been further examined, however, the

question was raised whether TRESK inhibition was the

consequence of the long-term structural rearrangements induced

by MARK kinases or was independent of them.

Microinjection of constitutively active MARK2 protein
acutely inhibited TRESK, and the enzyme activity of the
coexpressed kinase was required for TRESK regulation

GST-MARK2-T208E,T539A, a constitutively active, partially

14-3-3-insensitive MARK2 protein was produced in E. coli. This

protein was microinjected 144–169 min before the application of

ionomycin into oocytes coexpressing human TRESK with 14-3-3g.

(The latter was used to suppress the endogenous kinase phosphor-

ylating TRESK). In the oocytes microinjected with constitutively

active MARK2 protein, the recovery of TRESK current to the

resting state after the ionomycin-stimulation was accelerated

(compared to the control cells microinjected with heat-inactivated

MARK2 protein, Figure 5.A and B). Characteristic changes of

cellular morphology did not develop during this short period of

MARK2-treatment (not shown), indicating that long-term structural

rearrangements were not required for TRESK inhibition.

As another approach to confirm that the kinase activity of

MARK2 was required for TRESK inhibition and MARK2 did

not only compete with an endogenous oocyte kinase for 14-3-3, we

tested two further modified versions of the enzyme. In these

constructs the phosphorylation-dependent binding sites of 14-3-3

were disrupted by S400A and T539A mutations [19–21]. In order

to obtain constitutively active (ca) or kinase-dead (kd) constructs,

T208E or T208A/S212A mutations were additionally introduced

[22,23]. The coexpression of MARK2-T208E,S400A,T539A

(caMARK2, Figure 5.C and D) accelerated the recovery of TRESK

current after the ionomycin-stimulation (p,1025, compared to

either the control oocytes expressing only TRESK (gray control

curve and column, Figure 5.C and D) or the kdMARK2 group).

MARK2-T208A,S212A,S400A,T539A (kdMARK2) did not accel-

erate TRESK recovery (Figure 5.C and D). Since caMARK2

inhibited TRESK but kdMARK2 did not evoke this effect, the

kinase activity of MARK2 was indispensable for TRESK

regulation.

MARK2 directly phosphorylates the S274/276/279 cluster
but does not affect S264

We examined whether the intracellular loop region of TRESK

was phosphorylated by MARK2 in vitro. To compare the

phosphorylation of TRESK with that of a well-known substrate

of the kinase, we have cloned a version of the microtubule-

associated protein tau and produced it as a GST-fusion construct

(GST-tau). This version of tau contained three repeat domains

including the KXGS motifs. (KXGS is the generally-used

substrate sequence in MARK2 kinase assays.) The loop region

of TRESK was produced in two forms as GST-TRESKloop or

GST-TRESKloop-TAPtag fusion proteins, both containing amino

acids 185–292 of mouse TRESK. The substrate proteins were

immobilized on glutathione-agarose beads, and Trx-His6-

MARK2-T208E, the thioredoxin-hexahistidine-tagged constitu-

tively active MARK2 kinase was added in the presence of

[c-32P]ATP. The GST-TRESKloop substrates were similarly

labeled with 32P as the positive control GST-tau under identical

assay conditions (Figure 6.A), indicating that the intracellular loop

of TRESK was efficiently phosphorylated by MARK2.

In the tag-reversed experiment, TRESKloop-His8 substrates,

immobilized on Ni-NTA agarose, were phosphorylated with GST-

MARK2-T208E kinase. Wild type TRESKloop-His8 contained

10 serines and 1 threonine, including S264 and the S274/276/279

cluster. (In further experiments we focused on these four

regulatory serines, because we have previously demonstrated that

Figure 5. Microinjection of constitutively active MARK2 protein
into Xenopus oocytes accelerates the recovery of TRESK current
to the resting state after ionomycin-stimulation. The coexpres-
sion of a 14-3-3-insensitive, constitutively active form of MARK2, but not
the kinase-dead version of the enzyme, inhibits TRESK. A. Xenopus
oocytes coexpressing human TRESK with human 14-3-3g were
microinjected with the constitutively active, partially 14-3-3-insensitive
GST-MARK2-T208E,T539A kinase (caMARK2, black curve), or with the
heat-inactivated form of the same protein (control, gray curve). The cells
were stimulated with ionomycin as in Figure 2.A. The microinjection of
the proteins was performed 144–169 min before the application of
ionomycin. B. Average K+ current recoveries are shown at the end of
the measurement in the groups introduced in panel A. Recovery in the
group of oocytes microinjected with the active kinase (caMARK2) was
significantly accelerated, compared the control oocytes (*p,0.002). C.
Average currents of three groups of oocytes were compared. In the first
group, mouse TRESK was coexpressed with 14-3-3-insensitive constitu-
tively active MARK2 (caMARK2, MARK2-T208E,S400A,T539A construct,
black curve,). In the second group, the channel was coexpressed with
kinase-dead MARK2 (kdMARK2, MARK2-T208A,S212A,S400A,T539A con-
struct, black curve). In the third group, only TRESK was expressed
(control, gray curve). The experimental protocol was the same as in
Figure 2.A. D. Average recoveries at 10 minutes in the three groups
shown on panel C were plotted as indicated below the columns. The K+

current recovered more rapidly in the caMARK2 group than in the
control or kdMARK2 cells (**p,1025 for both comparisons with
Student’s t-test, which is significant at the p,0.05/3 limit according
to Bonferroni correction.) The numbers in the bars in panel B and D
indicate the number of measured oocytes.
doi:10.1371/journal.pone.0028119.g005
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mutation of the other residues did not interfere with TRESK

regulation in Xenopus oocytes [9].) In addition to wild type

TRESKloop-His8, a mutant version of this substrate was also

tested, which contained only the three serines of the S274/276/

279 cluster, whereas the other 7 serines and threonine were

replaced with alanine. GST-MARK2-T208E phosphorylated both

wild type TRESKloop-His8 (wt, lane 2, Figure 6.B) and the

substrate protein containing only the S274/276/279 cluster

(S274/276/279, lane 1, Figure 6.B). In conclusion, the S274/

276/279 cluster is a direct target of MARK2-mediated phosphor-

ylation.

Another TRESKloop-His8 construct was used to evaluate

whether MARK2 phosphorylated S264. In this construct, all the

serines and threonine residues, except S264 were mutated. This

substrate was not phosphorylated by GST-MARK2-T208E (S264,

lane 2, Figure 6.C). Thus the specificity of MARK2 for the two

regulatory sites in TRESK is complementary to that of protein

kinase A. Protein kinase A phosphorylates S264 but not the S274/

276/279 cluster [15], whereas MARK2 phosphorylates the S274/

276/279 cluster but not S264.

In the KXGS substrate sequence of tau, the phosphorylated

serine is in the +3 position from the positively charged lysine

residue. The RLSCSILS sequence of TRESK does not follow the

same rule. While S274 and S276 (positions +2 and +4 from the

positively charged arginine) are adjacent to position +3, S279 (+7)

is far away from it. Accordingly, the TRESKloop-His8 construct

containing only S274 and S276 (S274/276, lane 3, Figure 6.C) was

similarly phosphorylated as the substrate containing all three

serines of the S274/276/279 cluster (lane 1, Figure 6.C). This

suggests that S279 is not a major target of MARK2. (The

TRESKloop-His8 construct containing only S279 was not

phosphorylated by MARK2 (not shown). However, this may also

be the consequence of impaired interaction between the enzyme

and the S274A/S276A double-mutant substrate.).

It is not feasible to distinguish the phosphorylation of S274 from

that of S276 by mutational analysis, since the mutation of one of

these residues likely interferes with the phosphorylation of the

other. Nevertheless, we pursued the phosphorylation of S276

further, because the mutations of this residue evoked the most

substantial effect on TRESK in Xenopus oocytes; the S276A and

S276C mutants were constitutively active channels [9]. The

TRESKloop-His8 construct containing only S276 was also

phosphorylated by MARK2, although to a lesser extent than the

substrate retaining both S274 and S276 (Figure 6.D). This weak

phosphorylation of the S274A mutant protein still suggests that

S276 is a target of MARK2 in the native substrate sequence.

Irrespective of the distribution of phosphorylation between the two

residues, S274 and S276 together are efficiently phosphorylated by

MARK2. These in vitro results with the unequivocal functional

data in Xenopus oocytes suggest that the phosphorylation of S274

and S276 is directly responsible for the regulatory effects of

MARK kinases on TRESK in the living cell.

Discussion

Enzymatic interaction between MARK and TRESK is novel in

the sense that no other ion channel is known to be phosphorylated

by this kinase, and the connection between the functions of

MARK [24] and those of TRESK [25] has not been suspected.

The identification of this kinase/substrate pair raises the question

whether TRESK is related to the regulation of cell polarity [26],

axonal/dendritic differentiation [27–30] and microtubule dynam-

ics [22] in the specific neuron populations where the channel is

expressed [8,10,12,31–33]. The intensively studied and presently

emerging signaling pathways, which control MARK (for review

see [34,35]), may also regulate the background K+ conductance of

the plasma membrane and neuronal excitability.

The interaction between MARK and TRESK is highly specific.

More than 20 other serine/threonine kinase types failed to inhibit

TRESK current via the S274/276/279 cluster when they were

functionally tested in Xenopus oocytes. Among them were several

enzymes of wide substrate specificity (such as protein kinase A,

protein kinase C, casein kinase 2, etc.), also including kinases often

Figure 6. MARK2 directly phosphorylates the S274/276/279
cluster of mouse TRESK in vitro. A. GST-TRESKloop, GST-
TRESKloop-TAPtag or GST-tau (positive control) fusion proteins were
phosphorylated with constitutively active Trx-His6-MARK2-T208E in the
presence of [c232P]ATP. The upper panel shows the SDS-PAGE gel
stained with Coomassie Blue, whereas the autoradiogram of the same
gel is on the lower panel. The two GST-fusion constructs containing
amino acids 185–292 of mouse TRESK were labeled with 32P to a similar
intensity as the GST-tau control (see the lower32P panel). In the GST-
TRESKloop-TAPtag sample, an incompletely translated (or degradation)
product (slightly larger than GST-TRESKloop in the other lane, see the
upper panel) was also phosphorylated. B. Wild type TRESKloop-His8 (wt.)
or the mutant version of this protein containing only S274, S276 and
S279 (S274/276/279 lane) were phosphorylated with GST-MARK2-T208E.
Note that the substrate containing only the three serines of the S274/
276/279 cluster was also strongly labeled with 32P. C. The mutant
TRESKloop-His8 substrates, containing only the serines indicated above
the lanes, were phosphorylated with GST-MARK2-T208E. Both sub-
strates retaining S274 and S276 (S274/276/279 and S274/276 lanes) were
labeled with 32P, in contrast to the protein containing only serine 264
(S264 lane). D. The mutant TRESKloop-His8 substrates, containing both
serine 274 and 276 (S274/276 lane) or only serine 276 (S276 lane) were
phosphorylated with GST-MARK2-T208E. Note that the S276 substrate
was labeled with 32P, although to a lesser extent than the protein
retaining both S274 and S276.
doi:10.1371/journal.pone.0028119.g006
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responsible for the regulation of other ion channels. The number

of possible kinase candidates for TRESK regulation was

significantly reduced [36,37], when the negative effect of 14-3-3

on the TRESK-regulatory kinase was recognized in the Xenopus

system [14]. We have found MARK on the basis of this

observation. Because MARK kinases are widely-expressed regu-

lators of cellular polarity, they are likely present and phosphorylate

TRESK in the cells, which express the channel. The mRNA of a

MARK kinase (MARK3) is specifically transported to and

translated in axons of adult DRG neurons [38].

In Xenopus oocytes, TRESK is activated several-fold by

calcineurin. However, in mammalian cells, only limited TRESK

activation (30–100%) was observed, and the mechanism of

TRESK regulation has not been previously examined [10,11].

In the present study, we found that the selective calcineurin

inhibitor FK506 prevented TRESK activation in HEK293 cells.

(Another inhibitor, cyclosporin A (0.5 mM) also blocked TRESK

activation when endogenous muscarinic receptors were stimulated;

results not shown.) Thus the pivotal role of endogenous calcineurin in

TRESK activation has been verified in mammalian cells. General

regulation of TRESK by calcineurin is in good accordance with

the previous result that TRESK and calcineurin are associated via

direct protein-protein interaction [17].

We have shown for the first time that several-fold TRESK

activation can be evoked in mammalian cells, if appropriate Ca2+-

and ATP-free solutions are applied under whole-cell patch clamp

conditions. This indicates that robust TRESK activation is not

restricted to the Xenopus oocyte expression system. Instead, special

conditions are required for its detection in mammalian cells.

Particular care must be taken to avoid unwanted and at the same

time also allow stimulated elevation of [Ca2+] during whole-cell

patch clamp measurements. The application of Ca2+- and ATP-

free solutions is not a diversion from physiology, since these

experimental conditions are required to preserve the basal

phosphorylation characteristic for TRESK channels in cultured

HEK293 cells. The analysis of kinase effects in mammalian cells

and the investigation of TRESK regulation in isolated neurons

were beyond the scope of the present study. The conditions of

whole-cell recording optimized for TRESK activation (no ATP,

low Ca2+-buffering) do not adequately support the recovery phase,

although the preceding activation is necessary for the measure-

ment of current recovery. Further methodological improvements

are also required to distinguish TRESK current from the other

endogenous background K+ currents in native cells.

High stability of long recordings and unperturbed cytoplasmic

composition during two-electrode voltage clamp of Xenopus oocytes

were suitable for the investigation of kinase effects on TRESK

regulation. Using this test system, we examined, which relatives of

MARK2 can regulate the channel. Distribution of TRESK-

regulatory MARK-like kinases within the AMPK-related kinase

family did not respect the boundaries of nomenclature and

sequence similarity. While MARK1, 2 and 3 undoubtedly

regulated TRESK, the closely related MARK4 did not inhibit

the channel even if high cRNA amounts were microinjected. In

turn, it could not be excluded that BRSK1, which was more apart

from the effective MARK kinases on the phylogenetic tree than

MARK4, also regulated TRESK. BRSK and MARK kinases are

functionally related; they share several substrates among the

microtubule-associated proteins (e.g. tau, MAP2 and MAP4) and

have overlapping roles in the determination of neuronal polarity

[34,35]. In contrast, the function of MARK4 deviates from those

of the other three MARK kinases; MARK4 directly binds to

tubulin, and it is accordingly localized to the cellular microtubule

network and to centrosomes [39].

Several well-established roles of MARK kinases are intimately

related to the plasma membrane. In mammalian epithelial cells,

MARK2 is localized to the lateral membrane, but it is excluded

from the apical region [40]. Under the apical membrane, MARK2

is phosphorylated by atypical protein kinase C (aPKC), binds 14-3-

3 and detaches to the cytoplasm [19,20]. This mechanism

stabilizes the steady-state subcellular localization of MARK2 and

contributes to the maintenance of cellular polarity in both

epithelial cells and neurons [26]. It has recently been reported

that KA1 (kinase-associated 1) domain of MARK binds phospha-

tidylserine, and can directly attach the kinase to the lipid bilayer

[41]. Because MARK kinases can dynamically associate to the

plasma membrane, their in vivo localization is compatible with the

regulation of ion channels.

Serine 264 and the S274/276/279 cluster are the primary

determinants of calcineurin-dependent TRESK regulation; the

mutation of other intracellular serine and threonine residues does

not interfere with the mechanism [9,14]. MARK2 accelerated the

return of K+ current to the resting state after the calcium-

dependent activation, even if serine 264, the 14-3-3 binding site of

mouse TRESK, was mutated. This indicates that MARK2 does

not act via the phosphorylation of S264 and the recruitment of 14-

3-3 to the channel in the living cell, but targets the other regulatory

region, the S274/276/279 cluster. On the basis of our results,

phosphorylation of other intracellular residues of TRESK by

MARK kinases also can not be ruled out, however, these residues

may have less impact on the channel activity. Phosphorylation of

(unknown) TRESK-regulatory proteins by MARK is also possible,

especially because modulation of multiple target proteins is the

general theme in known kinase-mediated regulations of ion

channels [42]. Evidently, further studies are required for the

complete elucidation of TRESK regulation by MARK kinases.

Nevertheless, the MARK2-induced acceleration of current

recovery of S264E mutant TRESK is in good accordance with

the in vitro specificity of the kinase for the S274/276/279 cluster.

While the constitutively active MARK mutants accelerated

TRESK current recovery, the kinase-dead version failed to do so.

It is essential to point out that phosphorylation is required, and the

effect does not rely only on protein-protein interactions. We have

previously shown that the recovery kinetics of TRESK is

profoundly affected by the level of 14-3-3 adaptor protein in the

cytoplasm [15]. However, MARK kinases did not act via the

reduction of the amount of functionally available 14-3-3, and the

consequent stimulation of endogenous TRESK-regulatory kinase

activity. Overexpression of 14-3-3 did not eliminate the effect of

MARK on TRESK (Figure 5.A and Figure S6). Moreover, the

S400A/T539A double-mutation, which was reported to ablate 14-

3-3 binding to MARK [21], did not interfere with the effect of the

enzyme on the channel (Figure 5. C and D). Thus, MARK does

not work as a 14-3-3-scavanger, and its kinase activity is absolutely

required for TRESK regulation.

After six years of testing the coexpression of more than 20

kinases with TRESK, several inhibitors and known kinase-

activating experimental manipulations without any effect on

TRESK recovery in the Xenopus system, we have finally found a

kinase, which phosphorylates the S274/276/279 cluster and also

regulates the channel. It is evidently beyond our resources to test

all the known serine/threonine kinases in order to examine

whether there are other TRESK-regulatory kinase types. On the

basis of our experimental data and irrespective of these other

putative kinases, we conclude that heterologously-expressed

MARK inhibits TRESK background potassium channel in

Xenopus oocytes. This finding has major physiological importance

if TRESK is similarly regulated by MARK kinases in some
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neuronal cell types. Furthermore, it is tempting to speculate that

TRESK may be related to the regulation of neuronal polarity

and/or microtubule cytoskeleton. It is generally accepted that

MARK kinases control these systems [24,34,35], and we have now

shown that they also phosphorylate TRESK. Thus, it is plausible

to assume that the regulation of TRESK is connected to the well-

established functions of MARK. In addition, preliminary data

from other independent experiments, currently in progress in our

laboratory, are also consistent with these conclusions. We hope

that we will be able to provide further insight into the coordination

of cellular polarity, microtubule cytoskeleton and TRESK in the

following years.

In summary, we have demonstrated that MARK directly

phosphorylates TRESK in vitro and specifically inhibits the

channel in Xenopus oocytes. These results connect two presently

emerging fields and suggest that the control of cellular polarity and

microtubule dynamics is coupled to the regulation of background

K+ current in the cells which express TRESK.
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