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PACAP was discovered 30 years ago in Dr. Akira Arimura’s laboratory. In the past

three decades since then, it has become evident that this peptide plays numerous

crucial roles in mammalian organisms. The most important functions of PACAP are

the following: 1. neurotransmitter, 2. neuromodulator, 3. hypophysiotropic hormone, 4.

neuroprotector. This paper reviews the accumulated data regarding the distribution of

PACAP and its receptors in the mammalian hypothalamus and pituitary gland, the role

of PACAP in the gonadotropin hormone secretion of females and males. The review

also summarizes the interaction between PACAP, GnRH, and sex steroids as well as

hypothalamic peptides including kisspeptin. The possible role of PACAP in reproductive

functions through the biological clock is also discussed. Finally, the significance of PACAP

in the hypothalamo-hypophysial system is considered and the facts missing, that would

help better understand the function of PACAP in this system, are also highlighted.
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INTRODUCTION

Pituitary adenylate cyclase activating polypeptide (PACAP) was discovered 30 years ago in
Dr. Akira Arimura’s laboratory in an effort to find the still undefined follicle stimulating
hormone-releasing factor (FRF). It was discovered that a fraction of ovine hypothalamus was
able to stimulate adenylate cyclase (AC) in rat primary anterior pituitary cell cultures (1).
The peptide isolated from this tissue was then characterized. It is composed of 38 amino
acids. The N-terminal sequence shows 68% homology with vasoactive intestinal polypeptide
(VIP); however, its AC stimulating activity is at least 1,000 times greater than that of VIP.
It was named PACAP38. PACAP belongs to the VIP/glucagon/secretin family. Its effect was
tested on superfused pituitary cells and it demonstrated the ability to enhance the release of
growth hormone (GH), prolactin (PRL), corticotropin (ACTH) and luteinizing hormone (LH).
From fractions of hypothalamic tissues, a shorter form composed of 27 amino acids was also
isolated, and it was named PACAP27. PACAP27 showed similar AC stimulating activity as
PACAP38 (2). Further studies showed that PACAP stimulated AC in a multitude of other
tissues. Its official name is now adenylate cyclase activating polypeptide (ADCYAP). It was also
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demonstrated that PACAP could stimulate other intracellular
signal transduction mechanisms such as the phospholipase-
C/protein kinase C (PLC/PKC) cascade (3). The human PACAP
gene is located on chromosome 18p11.32 and encodes a 176–
amino acid preproprotein, which comprises a 24–amino acid
signal peptide (4). The cDNA encoding precursor of PACAP38
was successfully cloned from an ovine hypothalamic cDNA
library by Kimura et al. (5).

The N-terminal domain of PACAP is responsible for the
biological activity. Removal of the first amino acid (His1) of
this domain reduced the potency and affinity of the peptide to
its receptors. The removal of further amino acids decreased its
affinity to the receptors to even greater degree. Finally, removal of
the first five amino acids (PACAP6-38) resulted in an antagonist
of PACAP (6).

PACAP is the most ancient and one of the most conserved
member of the secretin superfamily (7). This peptide is found
from invertebrates to humans. PACAP was demonstrated in
various non-mammalian vertebrates such as different species of
fish (8–11), frogs (12–17) and birds (18, 19). PACAP was able to
stimulate AC in frog anterior pituitary cells (13, 14, 20).

Several important papers have reviewed the distribution of
PACAP and its receptors, and the most important roles including
the significance of PACAP in the reproductive functions (21–24).
In the present paper we have focused on the role of PACAP in the
mammalian reproductive system.

DISTRIBUTION OF PACAP IN THE
HYPOTHALAMUS

In mammals the distribution of PACAP in the hypothalamus
was demonstrated by immunohistochemistry (IHC) (25–30),

Abbreviations: AC, adenylate cyclase; ACN, anterior commissural nucleus;
ACTH, adrenocorticotropic hormone; ADCYAP, adenylate cyclase activating
polypeptide; ADNP, activity dependent neuroprotective protein; αMSH,
α-melanocyte-stimulating hormone; ARC, arcuate nucleus; AVP, arginine
vasopressin; BBB, blood-brain barrier; c-AMP, cyclic adenosine-monophosphate;
CIBA, cell immunoblot assay; CRH, corticotropin hormone-releasing hormone;
DHT, dihydrotestosterone; Dy, dynorphin; EGFP, enhanced green fluorescence
protein; EIA, enzyme immunoassay; ERα, estrogen receptor α; ERβ, estrogen
receptor β; FG, FluoroGold; FRF, follicle-stimulating hormone-releasing
factor; FS, folliculostellate cell; FSH, follicle-stimulating hormone; GFP, green
fluorescence protein; GH, growth hormone; GnRH, gonadotropin hormone-
releasing hormone; GRP, gastrin releasing peptide; HPLC, high pressure
liquid chromatography; IHC, immunohistochemistry; ia, intraarterial; icv,
intracerebroventricular; in, intranasal; ip, intraperitoneal; iv, intravenous; ISH, in
situ hybridization; KNDy, kisspeptin/neurokinin B/dynorphin; KP, kisspeptin; LH,
luteinizing hormone; MBH, medial basal hypothalamus; ME, median eminence;
NKB, neurokinin B; NPY, neuropeptide Y; NSE, neuron specific enolase; ODN,
oligodeoxynucleotide; OT, oxytocin; PACAP, pituitary adenylate cyclase activating
polypeptide; PCR, polymerase chain reaction; Pe, periventricular region; Pf,
perifornical region; RHPA, reverse hemolytic plaque assay; PHI, peptide histidine
isoleucine; PKC, protein kinase C; PLC, phospholipase-C; POA, preoptic area;
POMC, pro-opiomelanocortin; PRL, prolactin; PRP, PACAP related peptide;
PVN, paraventricular nucleus; mPVN, magnocellular portion of PVN; pPVN,
parvocellular portion of PVN; RIA, radioimmunoassay; RT-PCR, reverse
transcription-polymerase chain reaction; SCN, suprachiasmatic nucleus; S-EIA,
sandwich enzyme immunoassay; SON, supraoptic nucleus; T4, tetraiodothyronine;
TSH, thyroid stimulating hormone; VAChT, vesicular acethycholine transporter;
VIP, vasoactive intestinal polypeptide; VMN, ventromedial nucleus.

radioimmunoassay (RIA) (31), sandwich enzyme immunoassay
(S-EIA) (32) and in situ hybridization (ISH) (30, 33, 34).

Mapping of PACAP required the development of antibodies.
The initial antibodies were polyclonal rabbit antibodies. Themost
potent antibodies were characterized by enzyme immunoassay
(EIA) (25) and RIA (31). PACAP in mammals shows the same
amino acid sequence (5, 35–37) therefore, antibody against ovine
PACAP was able to stain not only in ovine tissues (25, 38), but
in many other mammalian species such as rats (26), humans,
monkey (27), hamsters, guinea-pigs, ferrets, cats, and pigs (39).

In the hypothalamus IHC revealed PACAP neuronal cell
bodies in the supraoptic (SON), paraventricular (PVN), anterior
commissural nuclei (ACN), periventricular (Pe) and perifornical
regions (Pf), well-defined immunoreactive fiber network in
the median eminence (ME) and suprachiasmatic nucleus
(SCN) (25, 26, 40). The staining was more prominent in
colchicine pretreated rats. PACAP in similar localization was
also demonstrated by Kivipelto et al. (28) and Tamada et al.
(29). In the ME of intact rats PACAP fibers were mainly found
in the internal zone; however, 3 weeks after hypophysectomy
the fiber staining appeared in the external zone as well (26),
from where PACAP might be released into the pituitary portal
circulation. Dow et al. (41) demonstrated that PACAP was
present in the hypophysial portal blood of both male and
female rats and the amount of PACAP (measured by RIA) was
significantly greater than in the peripheral blood. Reversed phase
high performance liquid chromatography (HPLC) revealed that
the major form in portal blood was PACAP38. The localization
of PACAP hypophyseotropic neurons, which send fibers to
the portal capillaries, was demonstrated with FuoroGold (FG)
tracer injected intraperitoneally (ip). From the intraperitoneal
space, FG can enter the blood stream and the central nervous
system through the ME and the posterior pituitary where the
blood-brain barrier (BBB) is missing (42). In control animals
FG, spreading in a retrograde manner, appeared in several
hypothalamic regions [Pe, arcuate nucleus (ARC), SON and both
parvo- (pPVN) and magnocellular portions of PVN (mPVN)].
In pituitary stalk-sectioned rats FG entered the hypothalamus
only through the capillary loops of the ME. The stalk section
prevented the tracer from entering the hypothalamus through
the posterior pituitary. In this model labeling was found in the
parvocellular nuclei and the ventral portion of the mPVN. The
SON was completely empty. Double labeling revealed that the
FG labeled neurons, located in the periventricular area and the
ventral portion of mPVN, also showed PACAP immunoreactivity
(43). Based on these results the authors concluded that these
neurons were hypophyseotropic. Former electron microscopic
investigations showed that hypophyseotropic PACAP neurons
terminated around the pituitary portal capillaries (29). These
neurons may release PACAP into the portal blood.

Hannibal et al. (30, 33) using RIA, IHC and ISH techniques
also mapped PACAP in the hypothalamus. RIA revealed that
levels of PACAP38 were about 60 times higher than PACAP27
and 10 times higher than the level of PACAP related peptide
(PRP). With the use of monoclonal antibodies PACAP and PRP-
immunoreactive neuronal perikarya were observed in the medial
portion of the pPVN in colchicine pretreated rats. Some PACAP
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cell bodies were found in the mPVN and the dorsal aspect of the
SON. PACAPmRNA containing cells were observed in moderate
numbers in the vascular organ of the lamina terminalis, the
PVN, the medial mammillary nuclei (MM) and the ventromedial
nucleus (VMN).

Moore et al. (34) examined PACAP mRNA expression in
the PVN and anterior pituitary of rats using ISH and reverse
transcription-polymerase chain reaction (RT-PCR) technique. It
was found that PACAP mRNA levels varied significantly during
the estrous cycle. PACAP mRNA levels in the PVN declined on
the morning of diestrus and started to increase on the morning
of proestrus. Highest levels were found 3 h before the proestrous
gonadotropin surge then PACAP mRNA level declined again.

A few years ago an impressive method was used to map
PACAP in the central nervous system of mice. “Transgenic
mouse line that harbors, in its genome, a bacterial artificial
chromosome containing an enhanced green fluorescent protein
(EGFP) expression cassette inserted upstream of the PACAP
ATG translation initiation codon” was generated (44). PACAP
in the hypothalamus was mainly observed in the PVN, VMN
and MM. No green fluorescent protein (GFP) expression was
seen in the SON. Figure 1 compares the data, obtained by
different methods, concerning the distribution of PACAP protein
and PACAP mRNA. It seems that the best correlation is found
between mouse EGFP-PACAP (44) and rat PACAP mRNA (30).

There are several lines of evidence that PACAP in the
rat hypothalamus colocalizes with some other peptides.
Using double labeling immunohistochemistry, Dürr et al.
(45) found that PACAP immunoreactivity was present in
approximately 20% of pro-opiomelanocortin (POMC) neurons
in the ventrolateral part of ARC. These neurons also showed
α-melanocyte-stimulating hormone (α-MSH) immunoreactivity.
PACAP immunoreactivity was also colocalized with the vesicular
acetylcholine transporter (VAChT) in ARC POMC neurons.
Vereczki et al. (47) demonstrated that PACAP and VIP
immunoreactive cells partially overlapped each other’s region
in the PVN and SON. Interestingly, in neither cats nor rats do
PACAP and VIP immunoreactivities colocalize in the same cells.
In spite of the high sequence homology of PACAP and VIP,
the two peptides are synthesized in different subpopulations of
hypothalamic neurons; however, partial colocalization of PACAP
and oxytocin (OT) in the hypothalamic magnocellular neurons
of colchicine treated and pituitary stalk sectioned rats was
demonstrated. In rats, colchicine treatment and pituitary stalk
section enhanced the amount of PACAP and VIP and allowed
successful immunostaining in the hypothalamus. PACAP and
VIP immunoreactive materials were also stored in different
fibers of the posterior pituitary. PACAP fibers formed a dense
plexus at the periphery of the posterior lobe, in the vicinity of the
intermediate lobe; however, VIP fibers were evenly distributed
mainly in the center of the posterior lobe (46, 48).

PACAP IN THE ANTERIOR PITUITARY

The occurrence of PACAP was observed in both lobes of the
pituitary gland. RIA revealed that PACAP levels were much

higher in the posterior than in the anterior lobe of the pituitary
gland, 270 pmol vs. 3.8 pmol/g wet tissue (31). High levels of
PACAP in the posterior pituitary are explained by the fact that
PACAP immunoreactive magnocellular neurons send their axons
to this part of the gland (25, 26). The number of hypophysiotropic
PACAP neurons, those release PACAP to the portal blood,
is limited compared to those sending fibers to the posterior
pituitary. Most studies using RIA were performed in male rats.
There is no available data using RIA to measure levels of PACAP
in the anterior pituitary of female rats having various stage of
estrous cycle. RT-PCR technique demonstrated that the levels
of PACAP in the anterior lobe increased during proestrus (49).
In this stage of the ovarian cycle PACAP immunoreactive cells
were observed in the anterior pituitary of female rats using
IHC. Double labeling showed that PACAP immunoreactivity was
present in LH and follicle stimulating hormone (FSH) cells (50).
Moore et al. (34) examined PACAP mRNA levels not only in the
hypothalamus, but also in the anterior pituitary of female rats.
PACAP mRNA levels also varied on the afternoon of proestrus.
There was a moderate decrease at the time of the gonadotropin
surge (in the afternoon of proestrus between 16 and 20 h) and
a significant increase later in the evening. Expression of mRNA
encoding follistatin increased significantly following the rise in
pituitary PACAP mRNA at the termination of the secondary
surge in FSHβ. ISH clearly showed that PACAP expression in the
anterior pituitary of male rats was negligible similarly to that of
diestrous rats and transiently enhanced in the proestrous stage of
female rats. Significantly higher levels were found late evening
(20 h) with decrease in the numbers of PACAP expressing
cells 2 h later (22 h) (51). IHC was able to reveal PACAP
immunoreactivity only in LH and FSH cells, folliculostellate cells
(FS) were negative (50). However, RT-PCR analysis of enriched
populations of FS did reveal the presence of PACAP in these cells
as well (52). The level of PACAP in individual FS cells has to be
very low, not enough for immunostaining.

PACAP RECEPTORS

PACAP shows high sequence homology with VIP therefore
binding sites have been characterized on the basis of their
relative affinities for PACAP and VIP. Soon after the discovery of
PACAP, its receptors were also identified (53–56). The members
of the International Union of Basic and Clinical Pharmacology
Committee on Receptor Nomenclature and Drug Classification
(NC-IUPHAR) subcommittee on receptors for VIP and PACAP
agreed on a common nomenclature (57, 58). According to
their agreement there are three G-protein coupled receptors:
PAC1 (specific for PACAP), VPAC1 and VPAC2 (both of which
bind PACAP and VIP with equal affinity). The C-terminal
end of PACAP binds to its receptors (59). The receptor is a
protein composed of 495 amino acids with seven transmembrane
domains (60). Dejda et al. (61) identified regions within the
extracellular N-terminal domain of PAC1 which were the major
binding sites for PACAP. Three peptide derivates containing a
photoreactive p-bensoyl-phenilalanine residue were developed.
These photoreactive peptides linked to three fragments of
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FIGURE 1 | (A–H) Distribution of PACAP-immunoreactive cells and fibers and PACAP mRNA- expressing cells in frontal sections of the rat hypothalamus according to

Paxinos and Watson’s stereotaxic coordinates. (I–L) Distribution of PACAP expressing neurons in PACAP-EGFP transgenic mouse hypothalamus according to

Franklin and Paxinos’ Mouse Brain in stereotaxic Coordinates. (A–D) shows PACAP immunoreactive elements in rats. Data were obtained by Köves et al. (26),

Kivipelto et al. (28), and Tamada et al. (29). (E–H) shows PACAP mRNA expressing cells in rats. Data were obtained by Hannibal et al. (33); Moore and et al. (34) and

Dürr et al. (45). (I–L) shows EGFP-PACAP in transgenic mice (44). Asterisks indicate cell bodies, arrows indicate fibers. AC, anterior commissure; AH, anterior
hypothalamus; f, fornix; ME, median eminence; mfb, medial forebrain bundle; ML, medial mammillary nucleus, lateral part, MM, medial mammillary nucleus; mt,
mammillothalamic tract, OT, optic tract; OX, optic chiasm; Pe, periventricular nucleus; Pf, perifornical nucleus; POA, preoptic area; PVN, paraventricular nucleus; SCN,
suprachiasmatic nucleus; scp, superior cerebellar peduncle; SON, supraoptic nucleus; SOR, retrochiasmatic portion of SON; SuM, supramammillary nucleus; ZI, zona
incerta. Reproduced and modified from Köves et al. (46). Permission to reuse was obtained from Springer Nature. Permission # 4762591108219.

extracellular domains: Ser (62)—Met (63) segment, Ser (64)—Glu
(65) dipeptide, and Ser (66)—Met (67).

More detailed analysis using RT-PCR technique with PAC1-
specific primers revealed splice variants of PAC1: PAC1s (short

form and very short form), PAC1hop1, PAC1hop2, PAC1hip,
PAC1hiphop1, PAC1hiphop2, PAC13a and PAC1TM4. Except
for the short form (also called null form) the splice variants
have inserts in the third intracellular loop. The hip cassette
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contains 28 amino acids, hop1 28, and hop2 27 amino acids.
Stimulation of short and hop1 variants potently increase AC and
PLC (3). The very short form lacks 57 amino acids in the first
extracellular loop and displays decreased affinity to PACAP27
and PACAP38, but its affinity toward VIP remains the same (68).
Blechman and Levkowitz (69) summarized all data concerning
the splice variants of PAC1 receptor. An alternative splicing of N-
terminal part of the receptor was also found. Alternative splicing
alters ligand binding properties and induces different outcomes
of the receptor function. A 21-amino acid deletion in the N-
terminal extracellular domain resulted in a new splice variant of
PAC1 receptor. This domain modulates receptor selectivity and
controls the relative potencies of PACAP27 and PACAP38 in PLC
stimulation (70).

PACAP Receptors in the Hypothalamus
In the hypothalamus, PACAP dose dependently stimulates
both AC and PLC activities. RT-PCR revealed that in the
hypothalamus the major receptor splice variants were PAC1s and
PAC1hop2 (71, 72). Joo et al. (73) investigated the distribution
of PAC1, VPAC1 and VPAC2 receptors using IHC. In the
hypothalamus the most intensive PAC1 labeling was found in
ARC, anterior and intermediate Pe, medial preoptic area (POA)
and SCN. Occurrence of PAC1 receptors overlaps the major
part of the location of gonadotropin hormone-releasing hormone
(GnRH) neurons and the termination of the retinohypothalamic
pathway in SCN. ISH (74) revealed that PAC1 gene expression
showed similarly widespread distribution in the hypothalamus.
Autoradiography (75) demonstrated binding sites for PACAP
which were not shared with VIP. The most dense and consistent
labeling was found in SON and ARC, and moderate presence
in SCN, Pe and the lateral hypothalamus by both methods.
Additionally, ISH showed labeling in PVN, ventromedial (VMN)
and dorsomedial nuclei (DMN). A physiological role of PACAP
receptors in the latter two nuclei was also demonstrated (76).
Moderate PAC1 receptor mRNA expression was also found in
SON and PVN of rat by Nomura et al. (77) using ISH. On the
basis of the above-mentioned data it seems that the distribution
pattern of PACAP receptors, described by various researchers,
depends on the applied methods.

What kind of cells exhibits PAC1 expression or
immunoreactivity? The cells exhibiting PAC1 immunoreactivity
in the hypothalamus are not fully characterized. Rat brain
astrocytes in cell culture exhibit PACAP binding (78, 79),
which is associated with proliferation of astrocytes (80). Some
research groups (81–83) identified a specific PACAP receptor
on astrocytes besides VIP type2 receptor. It was also shown that
the VIP neuronal survival effect was partially mediated via PAC
hop2 splice variants present in astrocytes (81).

It is also unclear what the source of PACAP is for
PACAP binding sites of astrocytes. Do neurons also express
PAC1 receptors? Shioda et al. (84) examined SON and they
found PACAP innervation and PAC1 expression on arginine
vasopressin (AVP) but not on OT neurons. PACAP was present
in noradrenergic fibers frommedulla. PAC1was found on arcuate
POMC cells. About 50% of POMC cells express this receptor
(45, 85). Later PAC1 and VPAC2 receptor mRNA was also found

on neuropeptide Y (NPY) neurons in the ARC (86). It is possible
that PACAP receptors are also present on GnRH neurons. Olcese
et al. (87) were able to show PACAP receptors on immortalized
GnRH neuronal cell lines, but not on processed hypothalamic
slides. Nakamachi et al. (88) reported that activity dependent
neuroprotective protein (ADNP) inmouse brain colocalized with
PAC1 and in the septum and hippocampus ADNP positive cells
also exhibited neuron specific enolase (NSE) immunoreactivity.
The results obtained by the variousmethods on the localization of
PAC1 receptor in the hypothalamus are summarized in Figure 2.

PACAP Receptors in the Anterior Pituitary
Soon after the discovery of PACAP, specific binding sites were
reported on rat and human pituitary cell membranes (54, 89, 90).
ISH and Northern blot analysis revealed a high expression of
PAC1 in the anterior and intermediate lobes of the pituitary;
however, a very low expression was found in the posterior
pituitary (3, 91). Vígh et al. (92) demonstrated that biotinylated
PACAP38 could bind to each cell type in anterior pituitary cell
culture. About 90% of S-100-positive cells bound biotinylated-
PACAP38. A considerable number of GH, PRL and ACTH, and
only a few LH, FSH and thyroid stimulating hormone (TSH)
producing cells bound PACAP.

All PACAP receptor types including PAC1, VPAC1 and
VPAC2 were found in normal rat anterior pituitary tissue and
αT3-1 gonadotrope cell lines (93, 94), although PACls and
PAClhop1 variants were the dominant forms. Stimulation of
short and hop1 variants potently increases AC and PLC as well
as intracellular [Ca2+] levels (95).

ROLE OF PACAP IN THE GONADOTROPIC
HORMONE SECRETION OF FEMALES

The Effect of PACAP on the GnRH-LH Axis
Hypothalamic Level
At the advent of PACAP research, it seemed that PACAP was
a hypophysiotropic factor which stimulated AC in rat anterior
pituitary cell cultures (1). In vivo experiments were carried out
in rats (96–99), mice (100, 101), and sheep (102). As mentioned
before, the release of PACAP into rat portal circulation was
demonstrated by Dow et al. (41).

Studying the effects of PACAP administration and
investigating the lack of PACAP or its specific receptors
(PAC1) in certain tissues provide good insight into the role of
PACAP in the reproductive functions. The effect of PACAP
administration on the gonadotropic hormone secretion varies by
dose and route of administration, the studied species, sex, as well
as on stages of estrous cycle in females.

Intravenous (iv) administration
There are only some experiments where PACAP38 was
administered iv to female rats before the critical period of
proestrous stage of estrous cycle, when the central nervous
system prepares itself for the GnRH release. Its effect was
examined on plasma LH levels and ovulation. 10 µg iv PACAP38
had no effect on plasma LH level and did not interfere with
ovulation (96, 97).
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FIGURE 2 | Distribution of PAC1 receptor in frontal sections of the hypothalamus according to Paxinos and Watson’s stereotaxic coordinates. (A–D) shows data

obtained by autoradiography (75). (E–H) shows distribution of PAC1 mRNA. Data were obtained by ISH (74, 77). (I–L) shows distribution of PAC1 receptor

immunoreactivity using IHC (73). Asterisks indicate the place of PACAP binding, or where PAC1 mRNA was expressed or where PAC1 immunoreactivity was

detected. AH, anterior hypothalamus; f, fornix; ME, median eminence; mfb, medial forebrain bundle; mt, mammillothalamic tract; OT, optic tract; OX, optic chiasm; Pe,
periventricular nucleus; Pf, perifornical nucleus; POA, preoptic area; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus; scp, superior cerebellar peduncle;
SON, supraoptic nucleus; SOR, retrochiasmatic portion of SON; ZI, zona incerta. Reproduced and modified from Köves et al. (46). Permission to reuse was obtained
from Springer Nature. Permission # 4762591108219.

Intracerebroventricular (icv) administration
In the above-mentioned model 10 µg of PACAP38 administered
icv before the critical period of the proestrous stage prevented
the proestrous LH surge and the expected ovulation on the
next morning (96, 103); however, PACAP27 in a same model
enhanced plasma LH level and did not influence ovulation (97).
The inhibitory effect of PACAP was not a direct action on GnRH

neurons; rather it was mainly mediated through corticotropin-
releasing hormone (CRH) and endogenous opioids (97, 98). It
is possible that CRH directly acts on GnRH neurons because
MacLusky et al. (104) have shown interaction between CRH and
GnRH neurons in rats. It was also shown that the inhibitory effect
of CRHon LH secretion ismediated through endogenous opioids
(105). Sawangjaroen and Curlewis (102) used ovariectomized
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ewes for their experiments. PACAP38 was effective when it was
administered icv and it depressed the frequency and amplitude
of LH pulses. The same research group demonstrated that the
inhibitory effect of PACAP was mediated through the medial
basal hypothalamus of sheep (106). We have to consider that the
migration of GnRH neurons caudally differs amongmammals. In
rats, GnRH neurons, forming a loose network, are located in the
septo-preoptico-anterior hypothalamic area, and the neuronal
cell bodies do not reach the medial basal hypothalamus. Only
their axons project to the ME (107, 108); however, in humans,
similarly to most mammals (including sheep, monkeys, bat, cat,
horse, rabbit, guinea pig), GnRH neurons are present in the
tuberoinfundibular region as well [reviewed by (109)].

Intranasal (in) administration
The effect of many drugs has been studied by the intranasal
(in) application as well. When PACAP is given iv it can cross
the blood-brain-barrier (BBB) to a modest degree by way of a
saturable transport system (110). It is possible that 10 µg PACAP
given iv was not enough to prevent ovulation (96, 97). Nonaka
et al. (111) demonstrated that PACAP given in was effective
in improving memory in a very low dose (0.01 µg). In our
laboratory, 10 µg of PACAP38 (similar dose which was effective
icv) was sprayed through the left nostril onto the olfactory region
of rats before the critical period of proestrous stage. PACAP
prevented ovulation in half of the animals. When ovulation was
blocked plasma LH remained at basal levels (99).

The effect of PACAP on the onset of puberty
When PACAP was administered to neonatal female rats on the
2nd day of life in a subcutaneous injection (1 µg/animal), it
delayed puberty and decreased the number of expelled ova at the
first ovulation (112). The intensity of GnRH immunostaining in
the septo-preoptico-infundibular systemmeasured in 30-day-old
rats was decreased, although there was no difference in the weight
of the anterior pituitaries. The pituitary LH content also showed a
decrease in PACAP treated rats. PACAP antiserum had a reverse
effect on GnRH immunoreactivity. Image analysis supported
the light microscopic observations of GnRH immunostaining
(112). When PACAP was injected on the 7th day of life, it had
no effect on the onset of puberty (46). It seems that neonatal
PACAP administration delayed the onset of puberty through the
influence of the GnRH neuronal system. It is well-known that
the GnRH neurons in mammals derive from the olfactory region
(113, 114). Likely PACAP administration on the 2nd day of life
does not inhibit, but slows down the migration of the GnRH
neurons. But how it is realized, has not been clarified.

Choi et al. (115) examined the role of PACAP and PAC1 in
the onset of puberty in female rats. They found that PACAP
and PAC1hop1 mRNA in the hypothalamus decreased during
the first proestrous day. Disruption of PAC1 synthesis by icv
administration of a PAC1 antisence oligodeoxynucleotide (ODN)
in the late juvenile period considerably decreased GnRH levels
in the hypothalamus, GnRH receptor mRNA and LHβ in the
anterior pituitary. These alterations induced delay of vaginal
opening and first ovulation. It is probable that, in the lack of PAC1
synthesis, PACAP is not effective. In adult rats PACAP mRNA

levels rise just before the critical period of the proestrous stage
then it decreases during the critical period (34). Without PAC1
receptor in this period, elevated PACAP cannot exert its effect.
Because the development of GnRH system is completed by the
late juvenile period, it is logical that the onset of puberty is only
delayed, not missed.

The effect of hypophysectomy on hypothalamic PACAP
Köves et al. (26) demonstrated, that 3 weeks after
hypophysectomy, PACAP immunoreactive fibers appeared
in the external zone of the ME, although they were not seen in
intact or colchicine treated rats. It is possible that under normal
physiological conditions PACAP is continuously released into
the portal circulation, but this baseline level of the peptide in
the ME is insufficient for immunostaining. However, significant
decreases in PACAP mRNA and radioimmunoassayable
PACAP contents were observed in the hypothalamus 1–2
weeks after hypophysectomy. These decreased levels were
restored by administration of GH, PRL, tetraiodothyronine (T4),
corticosterone, and testosterone (62).

Pituitary Level
Dow et al. (41) clearly showed that hypothalamic born PACAP
was released into the pituitary portal circulation. Later it became
evident that PACAP mRNA was present in the anterior pituitary
(51, 116) and PACAP is synthetized in the gonadotropes (50). The
amount of pituitary born PACAP is very low when measured by
S-EIA (117), much lower than that of LH (118). Cell immunoblot
assay (CIBA) demonstrated release of PACAP from anterior
pituitary cells into the culture medium (117). The number of
PACAP releasing cells was very low in male and diestrous female
rats, and tremendously enhanced in the cultures taken from the
pituitaries of proestrous rats late in the evening (20 h) (119).
These data clearly show that PACAP is transiently expressed
in the anterior pituitary and the number of PACAP releasing
cells “in adult rat anterior pituitary cell culture depends on the
gender, stage of the estrous cycle in female animals, and on
the time of day when the animals were sacrificed” (46). The
low amount of PACAP in the anterior pituitary confirms the
previous hypothesis that pituitary born PACAP is an auto- and
paracrine regulator as it was demonstrated by Radleff-Schlimme
et al. (62). Usually two gonadotrope cell lines (Lβ-T2 and αT3-
1) derived from transgenic female mice are used to study the
effect of drugs on gonadotropin hormone secretion. αT3-1 cells
express the α-subunit gene even though they do not express the
β-subunit and cannot synthesize LH or FSH, but also express
GnRH receptor. Radleff-Schlimme et al. (116) showed that in
αT3-1 cell cultures PACAP was released into the medium. This
observation well correlates with results showing that PACAP is
present in gonadotropes (50) and these cells release PACAP into
the cell culture medium (117).

The effect of PACAP on gonadotropic hormone release
Soon after the discovery of PACAP Culler and Paschall (120),
Hart et al. (121) demonstrated a weak stimulatory effect of
PACAP on LH, FSH and α-subunit release in primary pituitary
cell cultures. It was also shown that PACAP and GnRH interacted
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synergistically to stimulate LH release (120). Szabó et al. (119)
demonstrated that PACAP could stimulate LH release in pituitary
cell cultures derived from proestrous rats. It was visualized by
CIBA. This technique is able to show the LH release from
individual cells. It was found that “the responsiveness of LH cells
to PACAP depends on the gender, on the time of day when the
animals were sacrificed and in females on the stage of estrous
cycle”. LH cells kept the information received in vivo. Those cells
taken from the proestrous animals in the morning (10h) were
most sensitive to PACAP stimulus.

Kanasaki et al. (122–124) used Lβ-T2 cell lines to investigate
the role of PACAP on LHβ subunit release. It was found that
PACAP (similarly to GnRH) administered to the cell culture
in high frequency pulses, increased LHβ subunit secretion and
in low frequency pulses it increased FSHβ subunit secretion.
They hypothesize that, under physiological conditions, PACAP
contributes to the dynamic control of gonadotropin hormone
secretion. In another experiment, PACAP dose-dependently
increased cAMP accumulation and increased the basal levels of
the α-subunit through the PAC1 receptors and had a synergistic
effect on GnRH in αT3-1 cells (125).

The effect of PACAP on pituitary gonadotropin gene

expression
Tsujii et al. (126, 127) used anterior pituitary cells from adult
intact and orchidectomized rats. In a perifusion system, pulsatile
PACAP stimulated α-subunit and LHβ mRNA levels but did not
affect FSHβ mRNA. By contrast, continuous PACAP increased
α-subunit mRNA levels, but suppressed FSHβ mRNA without
affecting LHβ mRNA. With the use of αT3-1 cell line it was
found that the effect of PACAP on the α-subunit expression
was mediated by PAC1 receptor and in part by the cAMP/PKA
pathway (128). In other experiments in rat gonadotropes
and folliculostellate cells PACAP stimulated follistatin gene
expression. PACAP or continuous GnRH downregulated FSHβ

mRNA. This action required follistatin (63, 129).
Another research group compared the effect of PACAP and

GnRH on gonadotropin gene expression in static pituitary
culture and in Lβ-T2 perifused cells (122). In their experiment,
high-frequency PACAP pulse preferentially enhanced LHβ gene,
whereas low-frequency PACAP pulses specifically enhanced
FSHβ gene. This pattern imitated the effect of GnRH pulses.
Follistatin gene expression showed similar changes to that of
LHβ gene expression; it was increased following high-frequency
pulses of either GnRH or PACAP. Low-frequency PACAP pulses
enhanced PAC1 expression, whereas high-frequency pulses
enhanced GnRH receptor expression.

The above-mentioned results clearly show that the rate
of gonadotropin hormone secretion is under a very complex
regulation, and the results depend on the circumstances
[reviewed by (130)]. In in vivo experiments, we have to take
into account many other known and unknown factors which
may influence the effect of PACAP. The factors may derive
from the hypothalamus, from the pituitary itself or from the
periphery. Because the cell cultures used in the studies were not
taken from different stages of the estrous cycle, we cannot claim

TABLE 1 | Effect of PACAP38 on the LH level in vivo.

Route of

administration

Dose of PACAP38 LH

Female

iv 10 µg/250 g rat – (131)*

icv 10 µg/250 g rat ↓

icv 10 µg/250 g rat ↓ (97)*

in 10 µg/250 g rat ↓ (99)*

icv 45 µg/ewe ↓ (102)**

Male

ia 10 µg/250 g rat ↑ (157)

30 µg/250 g rat ↑↑

100 µg/250 g rat ↑↑↑

icv 0.8 µg/250 g rat –

8 µg/250 g rat ↑

32 µg/250 g rat ↑↑

iv 10 × 10µg rat ↑ (116)***

icv 0.4 µg/100 g rat ↑ (132)

*Given before the critical period of proestrous stage.
**Given to ovariectomized ewes.
***Given in hourly injection.
Ia, intraarterial; icv, intracerebroventricular; in, intranasal; iv intravenous.
↓ decrease, ↑ moderate increase, ↑↑ high increase, ↑↑↑ very high increase.

that the findings completely mirror the changes in the female
pituitary gland.

Table 1 summarizes the data concerning the effect of
PACAP38 on LH levels in living animals. Table 2 shows data on
the effect of PACAP38 and GnRH on gonadotropin hormone
release and gene expression obtained in various cell cultures.
It seems that in vitro PACAP is basically stimulatory on
gonadotropic hormone secretion. As it wasmentioned above, our
data, obtained by CIBA and pituitary cell cultures, clearly showed
that the stimulatory or inhibitory role of PACAP on LH release
depends “on the gender, stage of the estrous cycle in female
animals, and on the time of day when the animals were sacrificed”
(119).

Knock Out of PACAP or Its Receptor on

Gonadotropin Hormone Secretion
Several research groups generated PAC1 or PACAP knock-out
mice (100, 133–135). The mortality of PAC1 null mice was
extremely high, 60% in a month after birth. The animals showed
serious metabolic disorders. The surviving females showed
reduced fertility, but not the males. Normal LH, FSH and PRL
staining was observed in their pituitaries (133). Another research
group generated both PACAP and PAC1 null mice. Mortality
of both PACAP and PAC1 null mice was very high in the
first month of life. However, females, that survived beyond this
period, exhibited onset of puberty in time. They showed normal
estrous cycle. The seminal plug was also normal after pairing.
The most strinking abnormality was that only 13% of fertilized
eggs were implanted on day 6.5 after mating. Because PRL and
progesterone levels were reduced in these animals the authors
suggested that the impaired implantation was due to low PRL and
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TABLE 2 | Effect of PACAP38 and GnRH on the gonadotropic hormone level and

gene expression in cell cultures.

Type of Cell

Cultures

Examined Parameters

Perifused cell

culture

α-subunit LH FSH

cPACAP ↑ – ↑ (126, 127)

pPACAP ↑ ↑ – (63, 129)

Primary cell culture α-subunit α-subunit (128)

mRNA protein

PACAP ↑

GnRH ↑↑ ↑↑

αT3-1 cell line (128)

PACAP ↑ ↑

GnRH ↑ ↑

Primary cell culture α-subunit LHβ FSHβ PAC1 (122)

promoter activity

cPACAP ↑

cGnRH ↑ ↑ ↑

mRNA

cPACAP ↑ ↑ ↑

CGnRH + PACAP ↑ ↑ ↑

perifused Lβ-T2

pPACAP high f ↑↑ ↑ ↑

pPACAP low f ↑ ↑↑ ↑↑

GnRH ↑

P, pulsatile; c, continuous; f, frequency.
↑ moderate increase, ↑↑ high increase.

progesterone levels (101). Similarly, low birth rates were found by
Shintani et al. (135), but they found reducedmating andmaternal
behavior as well.

The Effect of PACAP on PRL Secretion
Hypothalamic Level
PRL is one of the anterior pituitary hormones. The most
prominent role of PRL is to stimulate milk secretion. Later it
became evident that PRL was synthetized in many structures
other than pituitary. PRL was found in the central nervous
system, the immune system, the uterus and in the mammary
gland itself and it is accepted that PRL has a multifunctional role
[reviewed by (136)].

The effect of PACAP on PRL release is well-established.
Miyata et al. (1) found that in superfused cell cultures PACAP
stimulated PRL release. Nagy et al. (137) used a special model
to examine the effect of PACAP on PRL release. Rat pups
were separated from their mother, suckling was suspended.
During this refractory period, iv injection of PACAP was able
to stimulate PRL release in the mothers. However, in sheep
PACAP administered icv stimulated dopamine release from the
tuberoinfundibular dopaminergic neurons and this effect was
associated with a suppression of PRL level in the peripheral
blood (138). Tohei et al. (139) observed a similar effect after icv
administration of PACAP to lactating rats exposed to suckling

stimuli. PACAP38 decreased PRL secretion and increased the
activity of thyrosin hydroxydase (TH) inME of the pituitary stalk.
On the other hand, icv injection of PACAP38 did not affect PRL
secretion and TH activity in lactating rats, who had their pups
taken away, removing the suckling stimuli. Contrary to this, Nagy
et al. (137) found that iv administration was stimulatory in these
same circumstances. It means that PACAP directly stimulated
PRL release from the lactotropes.

Pituitary Level
PACAP stimulated PRL release from superfused pituitary cells
at a very low dose (10−10 M) (1). It has been also shown
that lactotropes bind biotinylated PACAP38 with high affinity
(92). Later, in PRL producing cells three PAC1 variants were
detected using RT-PCR method (140). The question arises:
what is the source of PACAP for these receptors? Does it
originate from the hypothalamus or from the pituitary itself?
It seems that PACAP may originate from both sources. Jarry
et al. (141) found contrasting in vivo and in vitro effects
of PACAP on PRL release. In the in vitro experiments, they
used reverse hemolytic plaque assay (RHPA). In this model
PRL was inhibited by PACAP. In in vivo experiments, they
have used medial basal hypothalamus lesioned rats. The lesion
destroyed tuberoinfundibular dopaminergic neurons and plasma
PRL levels rose. Iv administered PACAP further stimulated PRL
release. Another research group used a monolayer pituitary cell
culture. In this model PACAP inhibited PRL release; however,
in aggregated cell cultures or in pituitary fragments, PACAP
was stimulatory. This means that a paracrine cell to cell
communication is mandatory for the action of PACAP on PRL
release. This communicating factor may be interleukin-6 (IL6)
which was also stimulated by PACAP in both models (142).
PACAP also induced PRL release using AtT-20 and GH3 cell
lines (143). Oride et al. (23) summarized the data concerning
the role of PACAP in the hypothalamic-pituitary system. They
concluded that PACAP alone has a relatively weak simulatory
effect on PRL gene expression in lactotropes and PACAP and
TRH have a synergistic effect in this regard.

PRL and PACAP in Milk
Both PRL and PACAP are present in the milk. The level of PRL
in milk is similar to the level found in the general circulation
(144). Recently it was shown that dopamine agonists reduce
not only milk yield through PRL inhibition, but also mammary
epithelial cell activity, survival, and proliferation (145). PACAP
was first demonstrated in human milk by Börzsei et al. (123).
No significant differences were found in plasma PACAP level of
women of different ages or hormone cycles. However, PACAP
levels significantly increased in the second and third trimesters
of pregnancy and during lactation (64). In milk whey the content
of PACAP was 5–20-fold higher than in plasma, and the highest
concentration was in colostrum. PACAP content is stable until
the tenth month of lactation then it rises again (65). PACAP
was also found in the plasma and milk of other mammals such
as cow, goat and sheep (146). The source of PACAP, present in
the milk, may originate from plasma or from autonomic and
sensory nerve endings. PACAP has been shown to be present
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in nerve fibers, which innervate the smooth muscles of vessels,
and in lactiferous ducts and fibers surrounding the alveoli. It
was suggested that PACAP immunoreactive sensory fibers might
transmit the suckling stimulus to the central nervous system
(147). PACAP may also have an effect on mammary epithelium
because PAC1 was demonstrated in this tissue using IHC (65). It
is not known what the exact function of PACAP in milk is. Tamás
et al. (148) hypothesized that “1. PACAP may be essential for the
growth and development of newborn; 2. PACAPmay be required
for the development of the immune system and immunological
microenvironment of the gastrointestinal tract; 3. PACAP could
be important in the growth and function of the mammary gland.”

PACAP in Plasma
PACAP is present in plasma. It was also demonstrated that
plasma PACAP38 level increased during the second and the
third trimester (64). Lactation moderately enhanced PACAP
concentration (149). Kanasaki et al. (123) investigated plasma
PACAP levels in human subjects. They found lower PACAP
concentration in the second trimester of pregnancy and in
several pathological conditions such as premature ovarian failure
and idiopathic hypogonadotropic hypogonadism than in normal
menstruating women. There is no clear evidence for the source
of PACAP in plasma.We exclude the possibility that PACAPmay
originate from the anterior pituitary. Low PACAP concentration
here is only enough for auto- and paracrine actions. Likely
magnocellular PACAP neurons sending fibers to the posterior
pituitary release a sufficient amount of PACAP into the general
circulation (25, 26, 47). PACAP could also originate from
sensory nerve endings. Helyes et al. (150) found 2-fold higher
PACAP levels in the blood after systematic stimulation of
capsaicin-sensitive sensory nerves than in control animals. The
most likely option is that PACAP originates from the placenta
because PACAP immunoreactive fibers innervate vessels in the
uteroplacental unit in humans (151). PACAP38 and PAC1mRNA
has been demonstrated in the placenta as well as immunoreactive
stromal and decidual cells in humans and rats (152–155).

THE ROLE OF PACAP IN THE
GONADOTROPIN HORMONE SECRETION
OF MALES

At the beginning of PACAP research several research groups
investigated the effect of PACAP in adult male rats in vivo. They
used different routes of administration (iv, icv and intraarterial
[ia]). Iv administration of PACAP38 (10 µg/100 g bw) decreased
plasma LH levels (156), while its antagonist, PACAP6-38 elevated
it. When PACAP38 was repeatedly administered as an iv bolus
injection (10× 10 µg), LH concentration was enhanced. Parallel
with LH elevation, PACAP mRNA increased seven times in
the anterior pituitary. It means that PACAP regulated its own
expression (116). The authors supposed that the source of PACAP
was the gonadotropes where PACAP exerted an autocrine effect.
In another in vivo experiment icv administration of PACAP (0.4
µg/100 g bw) enhanced LH levels while PACAP6-38 in a same
dose decreased it (132). Osuga et al. (157) observed elevations of

plasma LH after both ia and icv administration of PACAP38 (see
above Table 1).

Ample experiments were carried out in in vitro models (126–
128). In monolayer anterior pituitary cell cultures from 7-week-
old orchidectomized rats, PACAP attenuated GnRH stimulated
LH secretion. When the cells were stimulated by GnRH in a
pulsatile manner, continuous presence of PACAP in the culture
further enhanced LH, FSH and the α-subunit secretory episodes.
This suggests that there is a synergistic effect between the two
peptides (126). Later the same research group examined the
effect of pulsatile administration of PACAP and found that
“pulsatile PACAP stimulated α-subunit and LHβ mRNA level
but did not affect FSHβ mRNA. In contrast, continuous PACAP
increased α-subunit mRNA level, but suppressed FSHβ mRNA
without affecting LHβ mRNA” (127). With the use of a perifused
pituitary system PACAP (10 nM) was applied continuously. This
treatment induced a rapid and transient release of gonadotropins
from pituitary cells of both intact and orchidectomized 7-week-
old rats. However, hourly pulsatile PACAP administration in a
same dose induced episodic release of LH, FSH and α-subunit,
but frequency of these epsiodes gradually decreased. PACAP was
a slightly more effective stimulator of LH release by pituitary
cells deriving from castrated than from intact rats (127). It was
also shown that PACAP stimulated follistatin gene expression
in both gonadotropes and folliculostellate cells, and follistatin
was required for PACAP to downregulate FSH-β mRNA (129).
Kanasaki et al. (122) found a striking difference between the
effect of continuous and pulsatile administration of GnRH and
PACAP on gonadotropic hormone secretion using Lβ-T2 cell
line. The frequency of administration also influenced the effect
of the two peptides. High-frequency PACAP pulses enhanced
better LHβ gene expression than low frequency pulses and low-
frequency pulses enhanced better FSHβ gene expression than
high-frequency pulses. The pattern of the effect of PACAP was
similar to that of GnRH.

Winters et al. (63) demonstrated that PACAP was able to
stimulate α-subunit expression and LH secretion and repress
FSH synthesis in fetal male rat pituitary glands as well. Moore
et al. (158, 159) revealed a reciprocal relationship between
PVN PACAP and FSHβ gene expression in maturing rats. They
observed that PACAP and follistatin levels decreased at birth
and, as a consequence of it, FSH and the GnRH receptor
levels increased. The onset of puberty is also characterized
by the increase of FSH synthesis. Later the above-mentioned
research group (160) created a transgenic mouse model in which
pituitary PACAP was overexpressed. The overexpression was
proven by IHC, Western blot, and ELISA analyses. Follistatin,
GnRH receptor, and gonadotropin subunit mRNAs were also
measured in the pituitary of male transgenic and wild-type mice
of various ages using real-time PCR. FSH, LH, and testosterone
levels appeared suppressed. In PACAP transgenic mice, in which
gonadotropin subunit and GnRH receptor mRNA levels were
reduced and the pituitary follistatin expression was increased, the
onset of puberty was delayed. After orchidectomy, the testicular
negative feedback of pituitary gonadotropin expression remained
intact when it was examined in young adult animals (at age 70
days) (160).
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INTERACTIONS BETWEEN PACAP, GNRH,
AND SEX STEROIDS

Lariviere et al. (161) demonstrated that in Lβ-T2 gonadotrope
cell line PACAP38 treatment effectively increased intracellular
cAMP while GnRH treatment was only mildly effective. In
contrast, GnRH very potently enhanced inositol phospholipid
turnover and PACAP had a very weak effect. They further
investigated the mechanism of the cross-talk between the two
peptides (66, 162). It was previously shown that PACAP38
stimulated cAMP via PAC1 receptors (163). Lariviere et al. (162)
revealed the molecular mechanism of the cross-talk between
PACAP and GnRH in the gonadotropes. They observed that
GnRH inhibited the functional coupling of PACAP to the
cAMP pathway via novel protein kinase-C (PKC) isoforms. They
also demonstrated that GnRH-activated PKC phosphorylated
PAC1-R. Grafer et al. (164) found that GnRH stimulated
PACAP gene expression in pituitary gonadotropes via multiple
signaling pathways acting on CRE/AP-1 sites in the proximal
gene promoter.

Ample evidence indicates that there is an interaction not only
between PACAP and GnRH, but between these neuropeptides
and peripheral sex steroids. It is well-known that ovarian steroids
modulate LH secretion. Ortmann et al. (165) pretreated adult
female pituitary cell cultures with estradiol, progesterone or both,
then added GnRH or PACAP and analyzed the media for LH
and cAMP production. Estradiol alone was able to enhance
basal LH and cAMP levels, progesterone enhanced only LH, not
cAMP. GnRH and PACAP stimuli further enhanced the steroid
induced LH release. In another experiment in male rat anterior
pituitary cell cultures GnRH treatment enhanced PACAP mRNA
expression, dihydrotestosterone (DHT) or progesterone further
enhanced this increase; however, DHT or progesterone alone
had no effect on PACAP mRNA. On the contrary, estradiol
alone depressed PACAP gene expression but did not alter the
effect of GnRH on it. Expression of PACAP receptor mRNA was
decreased by GnRH treatment, and minimally increased by DHT
treatment, but was not altered by the addition of estradiol or
progesterone. DHT andGnRH together blunted PACAP receptor
gene expression (166). Grafer and Halvorson (167) confirmed the
regulatory role of androgens in the function of PACAP. They
showed that androgens stimulated rat PACAP promoter-reporter
activity in the Lβ-T2 mouse gonadotrope cell line.

A reciprocal interaction between PACAP and ovarian steroids
in female rats was also demonstrated in the ovarietomized and sex
steroid replacement model. PACAP and PAC1 mRNA expression
was enhanced in the medial basal hypothalamus (MBH) and
PAC1 mRNA in POA as well upon treatment with progesterone
or progesterone + estradiol (168). Németh et al. (169) published
data about the effect of sex steroid deficiency on PACAP levels in
the central nervous system. Gonadectomy temporarily decreased
PACAP38 levels in many regions including the hypothalamus
and the pituitary gland of both male and female rats. By 2–
3 weeks post gonadectomy PACAP 38 levels were restored
and actually continued to increase in the pituitary, surpassing
concentrations of those seen in controls by the fourth month
after gonadectomy.

The above-mentioned data suggest that there is a regulatory
feed-backmechanism between the gonads and the hypothalamo–
hypophyseal system. Interestingly, GnRH neurons do not express
progesterone, androgen and α-estrogen receptors. Ha et al. (168)
suggested that the effect of progesterone on GnRH neurons
may be mediated by PACAP neurons. The authors injected
PAC1 ODN into the 3rd ventricle. This treatment depressed the
progesterone induced enhancement of GnRHmRNA expression.
We have to consider that there is no evidence that PACAP
neurons exhibit progesterone receptors.

INTERACTION BETWEEN PACAP AND
OTHER HYPOTHALAMIC PEPTIDES

Based on documented data in the literature, LH secretion seems
to depend on the balance of the amount of GnRH and PACAP.
Before the critical period of the proestrous stage, PACAP mRNA
in the hypothalamic PVN is enhanced, followed by a decline
during the critical period (34). Parallel to this, a large amount
of GnRH is released into the portal circulation overwhelming
PACAP and inducing LH surge. As GnRH release into the
pituitary declines, local pituitary PACAP levels start to rise, now
overwhelming GnRH and resulting in cessation of LH release
from the anterior pituitary late in the afternoon (46).

PACAP38 regulates GnRH gene expression. Li et al. (156)
investigated the effect of icv and iv administered PACAP38 and
its antagonist, PACAP6-38 on GnRH and somatostatin gene
expression in the hypothalamus of male rats. Icv administration
of PACAP induced increases of both GnRH and somatostatin
gene expression. PACAP6-38 and iv administration of PACAP
had an opposite effect. In female rats PACAP applied icv or in
inhibited the proestrous GnRH release. This inhibitory effect
may be mediated by the PVN (46), where a majority of CRH
neurons are located (170). PACAP increases the hybridization
signal of CRH in the PVN (132). The morphological basis of
this observation is that CRH fibers establish synaptic contact with
GnRH neurons in rats (104) and are found in close juxtaposition
with GnRH neurons in the human infundibulum and ME
(171). In rats PACAP fibers innervate the paraventricular CRH
neurons (172). These observations strongly suggest that PACAP
receptors are present on CRH neurons. In concordance with this
morphological observation is the finding that CRH antagonist
applied icv partially prevented the blocking effect of PACAP38
on ovulation (98).

There may be interactions between PACAP and endogenous
opioids as well. This hypothesis well correlates with the
observation that POMC neurons exhibit PAC1 and VPAC2
receptors in the ARC (45). The inhibitory effect of PACAP on
ovulation can be prevented by ip administration of naloxone, a
general opioid antagonist (98).

About two decades ago it was recognized that kisspeptin
(KP) played an important role in the regulation of gonadotropic
hormone secretion. In sheep, dynorphin (Dy), neurokinin B
(NKB) and KP were co-expressed in some ARC neurons. These
cells were named kisspeptin/neurokinin B/dynorphin (KNDy)
neurons (173).
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KNDy neurons were also observed in mammals other than
sheep (174, 175). Ramaswamy et al. (176) demonstrated close
interaction between the KP neurons located in the ARC
and GnRH neurons in male rhesus monkey using confocal
microscopy. KNDy neurons modulate GnRH pulsatile release
into the pituitary portal vessels through Kiss1R and subsequent
LH release into the circulation. These are the neurons, not
GnRH ones, that are the target of ovarian steroids because
KNDy neurons exhibit ERα (177, 178). Researchers have come
to the consensus that these neurons are what mediate estrogen
negative feedback on gonadotropin secretion (179). This cell
group is called the GnRH pulse generator. ERα is also expressed
by KP neurons located in the POA. These neurons are the
place of positive estrogen feedback which is responsible for the
GnRH and LH surge (177). ERβ, another estrogen receptor was
discovered by Kuiper et al. (180) and a few years later its presence
was demonstrated on GnRH cells using ISH, 125I-estrogen
binding (181) and IHC (182, 183). Soon after the discovery
of KP it became evident that this peptide plays an important
role in reproductive functions. Mutation in the KP receptor
(KISS1R /GPR54) leads to hypogonadotropic hypogonadism and
infertility in humans (184). KP neurons contain not only ERα but
progesterone receptors as well (185).

With the use of Lβ-T2 it was recently demonstrated that
KP10 and PACAP stimulated the expression of gonadotropin
subunits, and their expression was further increased when KP10
and PACAP were administered together. KP10 increased PAC1
expression. KP neurons may be targets for PACAP in the
hypothalamus (186). In a recent study PACAP neurons located in
the premammillary nucleus were found to establish direct contact
with KP neurons residing in ARC and preoptic Pe. “Targeted
deletion of PACAP from the premammillary nucleus through
stereotaxic virally mediated cre- injection or genetic cross to
LepR-i-cre mice with PACAPfl/fl mice led to delayed puberty
onset and impaired reproductive function in female, but not
male, mice” (187).

In 2019, Tumurbaatar et al. (188) used immortalized female
rat hypothalamic cell lines containing KP expressing neurons
from anteroventral Pe (mHypoA-50) or the ARC (mHypo A-
55). In both models PACAP enhanced the expression of Kiss1,
CRH and neurotensin genes. Its effect was prevented by a protein
kinase inhibitor. PACAP was expressed in both cell models and
its expression was increased by estradiol.

PACAP IN THE RETINOHYPOTHALAMIC
PATHWAY AND ITS ROLE IN THE
CIRCADIAN CLOCK

Under normal environmental illumination the LH and FSH
plasma hormone levels show cyclic, circadian and circhoral
fluctuations. If the illumination is constant, ovulation is
interrupted and in rats continuous estrus is found in the
vaginal smear. This phenomenon is explained by the “Scharrer
hypothesis” (189), which states that photic stimuli from the eye
are conducted not only to the main visual centers, but also
to some hypothalamic neurons and then to neuroendocrine

effector cells. He called this the photoneuroendocrine system.
The anatomical basis of this system is the retinohypothalamic
tract (190, 191). The retinohypothalamic tract consists of axons
of a distinct population of ganglion cells that contain melanopsin
and are responsible for non-image-forming photosensation and
transmit signals to the brain (192). The main neurotransmitter
of the retinohypothalamic tract is the glutamate. The presence
of PACAP was demonstrated in this pathway (103, 193) and
found to colocalizes with glutamate (194). PACAP, similarly to
glutamate, has a light-like effect on circadian rhythms (195). It is
generally accepted that interruption of this important pathway
induces alterations in the circadian and cyclic rhythms, such
as in the ovarian cycle. Studies conducted on rats show that
blind animals with heavily degenerated photoreceptors, but with
intact non-image forming light perception, have the ability to be
synchronized to the light/dark cycle because they have an intact
retinohypothalamic tract (196). The main retinorecipient area of
the hypothalamus is the SCN which regulates biological rhythms
(biological clock). The most characteristic neurotransmitter in
this nucleus is VIP. Other important peptides in this area
are: histidin isoleucin (PHI), gastrin-releasing peptide (GRP)
and AVP. PACAP fibers, present in the retinohypothalamic
tract, terminate in the SCN (67). PAC1 receptor mRNA was
demonstrated in this region and there was a significant variation
in PAC1 mRNA within the SCN and SON during both the
light-dark cycle and constant darkness. The expression pattern
was similar, but the expression level was higher during constant
darkness. Peak levels were observed in the middle of both real
and subjective days and nights (197, 198). Mice that are deficient
in PAC1 receptors exhibit altered responsiveness of the biological
clock to light-induced phase-shifts, but display robust circadian
patterns of wheel-running behavior (199). In contrary, mice
lacking the VPAC2 receptor, which responds to both PACAP and
VIP, indicate that this receptor plays a crucial role in rhythm
generation in the SCN. It was also shown that in PAC1 null
mice the circadian expression of VIP mRNA in the SCN was
altered (200).

It is probable that the effect of PACAP on KP neurons may
be mediated by VIP and AVP neurons. Both VIP and AVP
were found to activate about half of KP neurons located in the
caudal ARC of female mice, but in males just about 10% of these
cells (201). KP neurons in the rostral Pe of female mice receive
vasopressinergic innervation from SCN, which is thought to play
a critical role in the mediation of the circadian signal to GnRH
neurons for timing of the proestrous GnRH and consequent LH
surge (202).

RECENT POINT OF VIEW ON THE ROLE
OF PACAP IN THE
HYPOTHALAMO-HYPOPHYSIAL
GONADOTROPIN SYSTEM

Experimental data clearly show that PACAP38 is involved in
the hypothalamo-hyphyseal gonadotropin regulation. As it was
mentioned before, in the last two decades a new regulatory
peptide was recognized. KP was discovered in 2001. During
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FIGURE 3 | Schematic illustration of the hypothetical pathway of how PACAP may be involved in the regulation of the GnRH release. Retinal PACAP may influence

AVP and VIP cells located in the suprachiasmatic nucleus (biological clock). AVP fibers terminate on KP neurons which create the surge generator. PACAP neurons,

located in PV, may receive information from the suprachiasmatic VIP neurons. PACAP may exert its effect directly on GnRH cell bodies or via CRH and POMC neurons

on GnRH axons. PACAP neurons residing in MM may influence KP neurons which create the “pulse generator.” ARC, arcuate nucleus; AVP, arginine vasopressin;

CRH, corticotropic hormone-releasing hormone; Eα, estrogen receptor alpha; Eβ, estrogen receptor beta; GnRH, gonadotropic hormone-releasing hormone; KP,

kisspeptin; MM, medial mammillary nucleus; PACAP, pituitary adenylate cyclase activating polypeptide; Pe, periventricular area; POMC, proopiomelanocortin; PR,

progesterone receptor; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus; VIP, vasoactive intestinal polypeptide.

the last 18 years it became evident that this peptide plays a
crucial role in stimulating GnRH. KP relays steroid hormone
negative and positive feedback signals to GnRH neurons. It
also stimulates the onset of puberty and relays photoperiodic
information to GnRH neurons (203). In Kiss1 knockout male
and female mice pulsatile LH secretion is suppressed, gonads

are atrophic and puberty does not occur (204). It seems that
KP plays an indispensable role as surge and pulse generator.
Recent studies have demonstrated that iv administration of
KP induces ovulation in heifers, where a mature follicle was
maintained (205). KP administration, given as a slow constant
iv infusion of Kp10 (the shortest endogenous form of the
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KP molecules having biological activity), was also able to
stimulate LH secretion and induced ovulation in anoestrus
acyclic ewes (206).

PACAP knockout experiments suggest that PACAP is
modulatory rather than mandatory in reproductive functions,
and it has a fine tuning role in the regulation of gonadotropin
hormone secretion. Its hypothalamic level decreases just before
the critical period of proestrous stage (34) then GnRH starts
to release into the portal blood. If we artificially enhance
hypothalamic PACAP levels by icv administration (97), it inhibits
the effect of KP and GnRH. Recent experiments show that in
Lβ-T2 cells there is an additive effect of KP and PACAP on
gonadotropic hormone secretion (186). There is evidence that
both KP and PACAP are released into the portal circulation
(41, 207); however, it is not clear what the impact of this is.
An in vivo experiment, when KP alone or KP and PACAP
together administered icv to proestrus rats before the critical
period, would help elucidate whether KP could induce ovulation
when blocked by another agent for example by pentobarbital or
PACAP. This experiment would give more insight into the role of
these peptides. Figure 3 schematically illustrates the hypothetical
pathway of how PACAP may influence GnRH release. PACAP,
present in the retinal ganglion cells, may relay photic stimuli
through AVP and KP neurons to the GnRH neuronal cell
bodies residing in the septo-preoptico area. PACAP, present
in the PVN, may receive information from suprachiasmatic
VIP cells and may act directly on the septo-preoptico GnRH
neuronal cell bodies or through CRH and POMC neurons on
GnRH terminals. PACAP neurons located in MM region may
influence GnRH release into the portal circulation via arcuate
KP neurons.

Concerning the role of pituitary born PACAP, we only have
data from in vitro experiments carried out by Kanasaki et al.
(123, 124). Under physiological conditions “the locally produced
pituitary PACAP and its receptor (PAC1) may be involved in the
GnRH pulse frequency-dependent gonadotropin subunit gene
expression”. Pituitary born PACAP influences the responsiveness
of gonadotropes to GnRH (119) in an autocrine and paracrine
manner (116). The roles of PACAP on the hypothalamo-
hypophysial gonadotropin system are as follows:

1. In physiological conditions PACAP in the hypothalamus of
males is mainly stimulatory and in females it is inhibitory on
gonadotropin hormone secretion.

2. PACAP delays puberty in both genders.
3. Pituitary-born PACAP is an auto- and paracrine factor. It

is stimulatory in males. In females it is stimulatory on
gonadotropin hormone secretion in the morning of proestrus,
but inhibitory in the afternoon of proestrus.

4. It seems that PACAP and PAC1 knockout leads to impared
fertilization. This implies that PACAP is necessary for the
full implantation of fertilized ova. In this sense PACAP and
PAC1 knockout conditions are very similar to the effect of ERβ

knockout on reproduction. PACAP knockout reduces mating
and maternal behaviors as well.

SIGNIFICANT GAPS IN RESEARCH

Reviewing the data concerning the effect of PACAP on
pituitary hormone release, it seems that the researchers mostly
used pituitary cell cultures from male animals. It is clear
that there is a sexual dimorphism in the responsiveness of
pituitary cells to PACAP. This is the reason why it is difficult
to draw a clear conclusion from the divergent data. The
other difficulty is that in some experiments immortalized
pituitary cells were used to study the effect of PACAP
on hormone release and gene expression. These cell lines
are removed from their natural environment and other
factors are eliminated which are present in the pituitary
in vivo.

There are many in vitro, but not enough in vivo experiments
with PACAP38. Fournier et al. (208) summarized the
modification of PACAP and the consequence of modifications
for the binding properties and biological activity of the analogs.
The main need is to produce stable, potent and selective
agonists. However, the results also depend on the tissue used
and the presence of PAC1 splice variants existing in the selected
tissue. The use of PACAP in clinical treatment needs stable
analogs because the half-life of the natural PACAP in the blood
circulation is only 5–10min (209) and only a very small amount,
about 0.05% of the iv injected dose enters the central nervous
system from the blood circulation (210, 211).

AUTHOR CONTRIBUTIONS

KK, ÁC, ES, OK, AH, and FS have collected data in the literature
in order to give timely and accurate review.

FUNDING

The work was supported by the Department of Anatomy,
Histology and Embryology, Faculty of Medicine, Semmelweis
University, Budapest, Hungary.

ACKNOWLEDGMENTS

For the memory of Dr. Akira Arimura who initiated and
supported our PACAP research 30 years ago.

REFERENCES

1. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. A
Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates
adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. (1989)
164:567–74. doi: 10.1016/0006-291X(89)91757-9

2. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M,
et al. Isolation of a neuropeptide corresponding to the N-
terminal 27 residues of the pituitary adenylate cyclase activating
polypeptide with 38 residues (PACAP38). Biochem Biophys

Res Commun. (1990) 170:643–8. doi: 10.1016/0006-291X(90)
92140-U

Frontiers in Endocrinology | www.frontiersin.org 14 March 2020 | Volume 11 | Article 88

https://doi.org/10.1016/0006-291X(89)91757-9
https://doi.org/10.1016/0006-291X(90)92140-U
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

3. Spengler D,Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, et al.
Differential signal transduction by five splice variants of the PACAP receptor.
Nature. (1993) 365:170–5. doi: 10.1038/365170a0

4. Hosoya M, Kimura C, Ogi K, Ohkubo S, Miyamoto Y, Kugoh H,
et al. Structure of the human pituitary adenylate cyclase activating
polypeptide (PACAP) gene. Biochim Biophys Acta. (1992) 1129:199–206.
doi: 10.1016/0167-4781(92)90488-L

5. Kimura C, Ohkubo S, Ogi K, Hosoya M, Ithoh Y, Onda H, et al. A
novel peptide which stimulates adenylate cyclase: molecular cloning and
characterization of the ovine and human cDNAs. BBRC. (1990) 166:81–9.
doi: 10.1016/0006-291X(90)91914-E

6. Robberecht P, Gourlet P, De Neef P, Woussen-Colle MC, Vandermeers-
Piret MC, Vandermeers A, et al. Structural requirements for the occupancy
of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and
adenylate cyclase activation in human neuroblastoma NB-OK-1 cell
membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J

Biochem. (1992) 207:239–46. doi: 10.1111/j.1432-1033.1992.tb17043.x
7. Sherwood NM, Krueckl SL, McRory JE. The origin and function of

the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon
superfamily. Endocrinol Rev. (2000) 21:619–70. doi: 10.1210/edrv.21.6.0414

8. Adams BA, David Lescheid DW, Vickers ED, Crim LW, Sherwood NM.
Pituitary adenylate cyclase-activating polypeptide and growth hormone-
releasing hormone-like peptide in sturgeon, whitefish, grayling, flounder
and halibut: cDNA sequence, exon skipping and evolution. Reg Pep. (2002)
109:27–37. doi: 10.1016/S0167-0115(02)00167-2

9. Jakab B, Reglodi D, Józsa R, Hollósy T, Tamás A, Lubics A, et al. Distribution
of PACAP-38 in the central nervous system of various species determined by
a novel radioimmunoassay. J Biochem Biophys Methods. (2004) 61:189–98.
doi: 10.1016/j.jbbm.2004.03.002

10. Matsuda K, Nagano Y, Uchiyama M, Onoue S, Takahashi A, Kawauchi
H, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP)-
like immunoreactivity in the brain of a teleost, Uranoscopus japonicus:
immunohistochemical relationship between PACAP and adenohypophysial
hormones. Regul Pept. (2005) 126:129–36. doi: 10.1016/j.regpep.2004.08.019

11. Nakamachi T, Kamata E, Tanigawa A, Konno N, Shioda S,
Matsuda K. Distribution of pituitary adenylate cyclase-activating
polypeptide 2 in zebrafish brain. Peptides. (2018) 103:40–7.
doi: 10.1016/j.peptides.2018.03.006

12. Yon L, Feuilloley M, Chartrel N, Arimura A, Conlon JM, Fournier A,
et al. Immunohistochemical distribution and biological activity of pituitary
adenylate cyclase-activating polypeptide (PACAP) in the central nervous
system of the frog Rana ridibunda. J Comp Neurol. (1992) 324:485–9.
doi: 10.1002/cne.903240403

13. Yon L, Jeandel L, Chartrel N, Feuilloley M, Conlon JM, Arimura A,
et al. Neuroanatomical and physiological evidence for the involvement
of pituitary adenylate cyclase-activating polypeptide in the regulation of
the distal lobe of the frog pituitary. J Neuroendocrinol. (1993) 5:289–96.
doi: 10.1111/j.1365-2826.1993.tb00485.x

14. Yon L, Alexandre D, Montéro M, Chartrel N, Jeandel L, Vallarino M,
et al. Pituitary adenylate cyclase-activating polypeptide and its receptors in
amphibians.Microsc Res Tech. (2001) 54:137–57. doi: 10.1002/jemt.1129

15. Hu Z, Lelievre V, Tam J, Cheng JW, Fuenzalida G, Zhou X, et al. Molecular
cloning of growth hormone-releasing hormone/pituitary adenylyl cyclase-
activating polypeptide in the frog Xenopus laevis: brain distribution
and regulation after castration. Endocrinology. (2000) 141:3366–76.
doi: 10.1210/endo.141.9.7663

16. Hu Z, Lelievre V, Rodriguez WI, Cheng JW, Waschek JA. Comparative
distributions of pituitary adenylyl cyclase-activating polypeptide and its
selective type I receptormRNA in the frog (Xenopus laevis) brain. Regul Pept.
(2002) 109:15–26. doi: 10.1016/S0167-0115(02)00166-0

17. Matsuda K, Kawaura H, Onoue S, Kashimoto K, Uchiyama M, Mochizuki
T, et al. Regional concentration and chromatographic characterization
of pituitary adenylate cyclase-activating polypeptide (PACAP) in the
brain of the bullfrog, Rana catesbeiana. Zoolog Sci. (2003) 20:1003–9.
doi: 10.2108/zsj.20.1003

18. Józsa R, Somogyvári-Vigh A, Reglödi D, Hollósy T, Arimura A. Distribution
and daily variations of PACAP in the chicken brain. Peptides. (2001) 22:1371–
7. doi: 10.1016/S0196-9781(01)00477-6

19. Nowak JZ, Zawilska JB. PACAP in avians: origin, occurrence, and receptors–
pharmacological and functional considerations. Curr Pharm Des. (2003)
9:467–81. doi: 10.2174/1381612033391586

20. Chartrel N, Tonon MC, Vaudry H, Conlon JM. Primary structure of
frog pituitary adenylate cyclase-activating polypeptide (PACAP) and effects
of ovine PACAP on frog pituitary. Endocrinology. (1991) 129:3367–71.
doi: 10.1210/endo-129-6-3367

21. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary
adenylate cyclase-activating polypeptide and its receptors: from structure to
functions. Pharmacol Rev. (2000) 52:269–324.

22. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz
O, et al. Pituitary adenylate cyclase-activating polypeptide and its
receptors: 20 years after the discovery. Pharmacol Rev. (2009) 61:283–357.
doi: 10.1124/pr.109.001370

23. Oride A, Kanasaki H, Kyo S. Role of pituitary adenylate cyclase-activating
polypeptide in modulating hypothalamic-pituitary system. Reprod Med Biol.
(2018) 17:234–41. doi: 10.1002/rmb2.12094

24. Dénes V, Geck P, Mester A, Gabriel R. Pituitary adenylate cyclase-activating
polypeptide: 30 years in research spotlight and 600 million years in service. J
Clin Med. (2019) 8:E1488. doi: 10.3390/jcm8091488

25. Köves K, Arimura A, Vigh S, Somogyvári-Vigh A, Miller J.
Immunohistochemical demonstration of a novel peptide, pituitary adenylate
cyclase activating polypeptide, in the ovine hypothalamus. Endocrinology.
(1990) 127:264–71. doi: 10.1210/endo-127-1-264

26. Köves K, Arimura A, Görcs TJ, Somogyvári-Vígh A. Comparative
distribution of immunoreactive pituitary adenylate cyclase activating
polypeptide and vasoactive intestinal polypeptide in rat forebrain.
Neuroendocrinology. (1991) 54:159–69. doi: 10.1159/000125864

27. Vigh S, Arimura A, Köves K, Somogyvári-Vigh A, Sitton J,
Fermin CD. Immunohistochemical localization of the neuropeptide,
pituitary adenylate cyclase activating polypeptide (PACAP), in
human and primate hypothalamus. Peptides. (1991) 12:313–8.
doi: 10.1016/0196-9781(91)90018-K

28. Kivipelto L, Absood A, Arimura A, Sundler F, Håkanson R, Panula
P. The distribution of pituitary adenylate cyclase-activating polypeptide-
like immunoreactivity is distinct from helodermin and helospectin-like
immunoreactivities in the rat brain. J Chem Neuroanat. (1992) 5:85–94.
doi: 10.1016/0891-0618(92)90036-P

29. Tamada Y, Tanaka M, Ichitani Y, Okamura H, Yanaihara N, Ibata Y. Pituitary
adenylate cyclase-activating polypeptide (PACAP)-like immunoreactive
neuronal elements in rat hypothalamus and median eminence with special
reference to morphological background of its effect on anterior pituitary—
light and electron microscopic immunocytochemistry. Neurosci Lett. (1994)
180:105–8. doi: 10.1016/0304-3940(94)90498-7

30. Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central
nervous system: an immunohistochemical and in situ hybridization study. J
Comp Neurol. (2002) 453:389–417. doi: 10.1002/cne.10418

31. Arimura A, Somogyvári-Vígh A, Miyata A, Mizuno K, Coy DH,
Kitada C. Tissue distribution of PACAP as determined by RIA: highly
abundant in the rat brain and testes. Endocrinology. (1991) 129:2787–9.
doi: 10.1210/endo-129-5-2787

32. Masuo Y, Suzuki N, Matsumoto H, Tokito F, Matsumoto Y, Tsuda M,
et al. Regional distribution of pituitary adenylate cyclase activating
polypeptide (PACAP) in the rat central nervous system as determined
by sandwich-enzyme immunoassay. Brain Res. (1993) 602:57–63.
doi: 10.1016/0006-8993(93)90241-E

33. Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug
J. Gene expression of pituitary adenylate cyclase activating polypeptide
PACAP) in the rat hypothalamus. Regul Pept. (1995) 55:133–48.
doi: 10.1016/0167-0115(94)00099-J

34. Moore JP Jr, Burger LL, Dalkin AC, Winters SJ. Pituitary adenylate cyclase
activating polypeptide messenger RNA in the paraventricular nucleus and
anterior pituitary during the rat estrous cycle. Biol Reprod. (2005) 73:491–9.
doi: 10.1095/biolreprod.105.041624

35. Ogi K, Kimura C, Onda H, Arimura A, Fujino M. Molecular cloning
and characterization of cDNA for the precursor of rat pituitary adenylate
cyclase-activating polypeptide (PACAP). BBRC. (1990) 173:1271–9.
doi: 10.1016/S0006-291X(05)80924-6

Frontiers in Endocrinology | www.frontiersin.org 15 March 2020 | Volume 11 | Article 88

https://doi.org/10.1038/365170a0
https://doi.org/10.1016/0167-4781(92)90488-L
https://doi.org/10.1016/0006-291X(90)91914-E
https://doi.org/10.1111/j.1432-1033.1992.tb17043.x
https://doi.org/10.1210/edrv.21.6.0414
https://doi.org/10.1016/S0167-0115(02)00167-2
https://doi.org/10.1016/j.jbbm.2004.03.002
https://doi.org/10.1016/j.regpep.2004.08.019
https://doi.org/10.1016/j.peptides.2018.03.006
https://doi.org/10.1002/cne.903240403
https://doi.org/10.1111/j.1365-2826.1993.tb00485.x
https://doi.org/10.1002/jemt.1129
https://doi.org/10.1210/endo.141.9.7663
https://doi.org/10.1016/S0167-0115(02)00166-0
https://doi.org/10.2108/zsj.20.1003
https://doi.org/10.1016/S0196-9781(01)00477-6
https://doi.org/10.2174/1381612033391586
https://doi.org/10.1210/endo-129-6-3367
https://doi.org/10.1124/pr.109.001370
https://doi.org/10.1002/rmb2.12094
https://doi.org/10.3390/jcm8091488
https://doi.org/10.1210/endo-127-1-264
https://doi.org/10.1159/000125864
https://doi.org/10.1016/0196-9781(91)90018-K
https://doi.org/10.1016/0891-0618(92)90036-P
https://doi.org/10.1016/0304-3940(94)90498-7
https://doi.org/10.1002/cne.10418
https://doi.org/10.1210/endo-129-5-2787
https://doi.org/10.1016/0006-8993(93)90241-E
https://doi.org/10.1016/0167-0115(94)00099-J
https://doi.org/10.1095/biolreprod.105.041624
https://doi.org/10.1016/S0006-291X(05)80924-6
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

36. Okazaki K, Itoh Y, Ogi K, Ohkubo S, Onda H. Characterization
of murine PACAP mRNA. Peptides. (1995) 16:1295–9.
doi: 10.1016/0196-9781(95)02018-R

37. Yamamoto K, Hashimoto H, Hagihara N, Nishino A, Fujita T, Matsuda
T, et al. Cloning and characterization of the mouse pituitary adenylate
cyclase-activating polypeptide (PACAP) gene. Gene. (1998) 211:63–9.
doi: 10.1016/S0378-1119(98)00110-3

38. Köves K, Arimura A, Vigh S, Somogyvári-Vigh A, Miller J.
Immunohistochemical localization of PACAP in the ovine digestive
system. Peptides. (1993) 14:449–55. doi: 10.1016/0196-9781(93)90131-Y

39. Sundler F, Ekblad E, Absood A, Håkanson R, Köves K, Arimura A.
Pituitary adenylate cyclase activating peptide: a novel vasoactive intestinal
peptide-like neuropeptide in the gut. Neuroscience. (1992) 46:439–54.
doi: 10.1016/0306-4522(92)90064-9

40. Köves K. Distribution of PACAP in mammalian nervous system. In: Reglodi
D, Tamás A, editors. Current Topics In Neurotoxicity, Vol. 11. Pituitary

Adenylate Cyclase Activating Polypeptide – PACAP. New York, NY: Springer
Nature (2016). p. 161–78.

41. Dow RC, Bennie J, Fink G. Pituitary adenylate cyclase-activating peptide-38
(PACAP)-38 is released into hypophysial portal blood in the normal male
and female rat. J Endocrinol. (1994) 142:R1–4. doi: 10.1677/joe.0.142R001

42. Silverman AJ, Witkin JW, Silverman RC, Gibson MJ. Modulation
of gonadotropin-releasing hormone neuronal activity as evidenced by
uptake of fluorogold from the vasculature. Synapse. (1990) 6:154–60.
doi: 10.1002/syn.890060206

43. Köves K, Vereczki V, Kausz M, Kántor O, Molnár J, Nemeskéri Á, et al.
PACAP and VIP in the photoneuroendocrine system (PNES).Med Sci Mon.
(2002) 8:SR5–20.

44. Condro MC, Matynia A, Foster NN, Ago Y, Rajbhandari AK, Van C,
Jayaram B, et al. High-resolution characterization of a PACAP-EGFP
transgenic mouse model for mapping PACAP-expressing neurons: PACAP-
EGFP transgenic mouse model. J Comp Neurol. (2016) 524:3827–48.
doi: 10.1002/cne.24035

45. Dürr K, Norsted E, Gömüç B., Suarez E, Hannibal J, Meister B. Presence
of pituitary adenylate cyclase-activating polypeptide (PACAP) defines a
subpopulation of hypothalamic POMCneurons. Brain Res. (2007) 1186:203–
11. doi: 10.1016/j.brainres.2007.10.015

46. Köves K, Kántor O, Heinzlmann A, Lakatos A, Szabó E., Kirilly
E, et al. Advent and recent advance of the research on the role
of pituitary adenylate cyclase activating polypeptide (PACAP) in the
gonadotropic hormone secretion. J Mol Neurosci. (2014) 54:494–511.
doi: 10.1007/s12031-014-0294-7

47. Vereczki V, Köves K, Tóth ZE, Baba A, Hashimoto H, Fógel K, et al.
Pituitary adenylate cyclase-activating polypeptide does not colocalize with
vasoactive intestinal polypeptide in the hypothalamic magnocellular nuclei
and posterior pituitary of cats and rats. Endocrine. (2003) 22:225–37.
doi: 10.1385/ENDO:22:3:225

48. Köves K, Görcs TJ, Arimura A. Colocalization of PACAP, but not of VIP, with
oxytocin in the hypothalamic magnocellular neurons of colchicine treated
and pituitary stalk sectioned rats. Endocrine. (1994) 2:1169–75.

49. Wuttke W, Benter S, Jarry H. Evidence for a steroid modulated expression
of pituitary adenylate cyclase activating polypeptide (PACAP) in the anterior
pituitary of rats. Neuroendocrinology. (1994) 60 (suppl. 1):17.

50. Köves K, Kántor O, Scammel JG, Arimura A. PACAP colocalizes
with luteinizing and follicle-stimulating hormone immunoreactivities in
the anterior lobe of the pituitary gland. Peptides. (1998) 19:1069–72.
doi: 10.1016/S0196-9781(98)00049-7

51. Heinzlmann A, Kirilly E, Meltzer K, Szabó E., Baba A, Hashimoto H, et al.
PACAP is transiently expressed in anterior pituitary gland of rats. In situ

hybridization and cell immunoblot assay studies. Peptides. (2008) 29:571–7.
doi: 10.1016/j.peptides.2007.12.009

52. Jin L, Tsumanuma I, Ruebel KH, Bayliss JM, Lloyd RV. Analysis
of homogenous population of anterior pituitary folliculostellate cells
by laser capture microdissection and reverse transcription polymerase
chain reaction. Endocrinology. (2001) 142:1703–9. doi: 10.1210/endo.142.
5.8117

53. Gottschall PE, Tatsuno I, Miyata A, Arimura A. Characterization and
distribution of binding sites for the hypothalamic peptide, pituitary

adenylate cyclase-activating polypeptide. Endocrinology. (1990) 127:272–7.
doi: 10.1210/endo-127-1-272

54. Gottschall PE, Tatsuno I, Arimura A. Hypothalamic binding
sites for pituitary adenylate cyclase activating polypeptide:
characterization and molecular identification. FASEB J. (1991) 5:194–9.
doi: 10.1096/fasebj.5.2.1848519

55. Cauvin A, Buscail L, Gourlet P, De Neef P, Gossen D, Arimura A, et al. The
novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity
receptors in the human neuroblastoma cell line NB-OK. Peptides. (1990)
11:773–7. doi: 10.1016/0196-9781(90)90194-A

56. Robberecht P, Gourlet P, Cauvin A, Buscail L, De Neef P, Arimura A, et al.
PACAP and VIP receptors in rat liver membranes. Am J Physiol. (1991)
260:G97–102. doi: 10.1152/ajpgi.1991.260.1.G97

57. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, et al.
International union of pharmacology. XVIII Nomenclature of receptors
for vasoactive intestinal peptide and pituitary adenylate cyclase-activating
polypeptide. Pharmacol Rev. (1998) 50:265–70.

58. Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al.
Pharmacology and functions of receptors for vasoactive intestinal peptide
and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br
J Pharmacol. (2012) 166:4–17. doi: 10.1111/j.1476-5381.2012.01871.x

59. Bokaei PB, Ma XZ, Byczynski B, Keller J, Sakac D, Fahim S, et al.
Identification and characterization of five-transmembrane isoforms
of human vasoactive intestinal peptide and pituitary adenylate
cyclase-activating polypeptide receptors. Genomics. (2006) 88:791–800.
doi: 10.1016/j.ygeno.2006.07.008

60. Pisegna JR, Wank SA. Molecular cloning and functional expression of the
pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl
Acad Sci USA. (1993) 90:6345–9. doi: 10.1073/pnas.90.13.6345

61. Dejda A, Bourgault S, Doan ND, Létourneau M, Couvineau A, Vaudry
H, et al. Identification by photoaffinity labeling of the extracellular
N-terminal domain of PAC1 receptor as the major binding site
for PACAP. Biochimie. (2011) 93:669–77. doi: 10.1016/j.biochi.2010.
12.010

62. Shuto Y, Somogyvári-Vigh A, Onda H, Arimura A. Effect of
hypophysectomy on pituitary adenylate cyclase activating polypeptide
gene expression in the rat hypothalamus. Peptides. (1995) 16:407–13.
doi: 10.1016/0196-9781(94)00198-F

63. Winters SJ, Dalkin AC, Tsujii T. Evidence that pituitary adenylate cyclase
activating polypeptide suppresses follicle-stimulating hormone-messenger
ribonucleic acid levels by stimulating follistatin gene transcription.
Endocrinology. (1997) 138:4324–9. doi: 10.1210/endo.138.10.5441

64. Reglodi D, Gyarmati J, Ertl T, Borzsei R, Bodis J, Tamas A, et al. Alterations
of pituitary adenylate cyclase-activating polypeptide-like immunoreactivity
in the human plasma during pregnancy and after birth. J Endocrinol Invest.
(2010) 33:443–45. doi: 10.1007/BF03346621

65. Csanaky K, Banki E, Szabadfi K, Reglodi D, Tarcai I, Czegledi L, et al.
Changes in PACAP immunoreactivity in human milk and presence of
PAC1 receptor in mammary gland during lactation. J Mol Neurosci. (2012)
48:631–7. doi: 10.1007/s12031-012-9779-4

66. Counis R, Laverrière JN, Garrel-Lazayres G, Cohen-Tannoudji J, Larivière S,
Bleux C, et al. What is the role of PACAP in gonadotrope function? Peptides.
(2007) 28:1797–804. doi: 10.1016/j.peptides.2007.05.011

67. Klein DC, Moore RY, Reppert SM. Suprachiasmatic Nucleus. The Mind’s

Clock. New York, NY; Oxford: Oxford University Press (1991).
68. Journot L, Waeber C, Pantaloni C, Holsboer F, Seeburg PH, Bockaert J,

et al. Differential signal transduction by six splice variants of the pituitary
adenylate cyclase-activating peptide (PACAP) receptor. Biochem Soc Trans.
(1995) 23:133–7. doi: 10.1042/bst0230133

69. Blechman J, Levkowitz G. Alternative splicing of the pituitary adenylate
cyclase-activating polypeptide receptor PAC1, mechanisms of fine tuning of
brain activity. Front Endocrinol. (2013) 4:55. doi: 10.3389/fendo.2013.00055

70. Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, et al.
Alternative splicing in the N-terminal extracellular domain of the pituitary
adenylate cyclase-activating polypeptide (PACAP) receptor modulates
receptor selectivity and relative potencies of PACAP-27 and PACAP-38
in phospholipase C activation. J Biol Chemistry. (1996) 271:22146–51.
doi: 10.1074/jbc.271.36.22146

Frontiers in Endocrinology | www.frontiersin.org 16 March 2020 | Volume 11 | Article 88

https://doi.org/10.1016/0196-9781(95)02018-R
https://doi.org/10.1016/S0378-1119(98)00110-3
https://doi.org/10.1016/0196-9781(93)90131-Y
https://doi.org/10.1016/0306-4522(92)90064-9
https://doi.org/10.1677/joe.0.142R001
https://doi.org/10.1002/syn.890060206
https://doi.org/10.1002/cne.24035
https://doi.org/10.1016/j.brainres.2007.10.015
https://doi.org/10.1007/s12031-014-0294-7
https://doi.org/10.1385/ENDO:22:3:225
https://doi.org/10.1016/S0196-9781(98)00049-7
https://doi.org/10.1016/j.peptides.2007.12.009
https://doi.org/10.1210/endo.142.5.8117
https://doi.org/10.1210/endo-127-1-272
https://doi.org/10.1096/fasebj.5.2.1848519
https://doi.org/10.1016/0196-9781(90)90194-A
https://doi.org/10.1152/ajpgi.1991.260.1.G97
https://doi.org/10.1111/j.1476-5381.2012.01871.x
https://doi.org/10.1016/j.ygeno.2006.07.008
https://doi.org/10.1073/pnas.90.13.6345
https://doi.org/10.1016/j.biochi.2010.12.010
https://doi.org/10.1016/0196-9781(94)00198-F
https://doi.org/10.1210/endo.138.10.5441
https://doi.org/10.1007/BF03346621
https://doi.org/10.1007/s12031-012-9779-4
https://doi.org/10.1016/j.peptides.2007.05.011
https://doi.org/10.1042/bst0230133
https://doi.org/10.3389/fendo.2013.00055
https://doi.org/10.1074/jbc.271.36.22146
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

71. D’Agata V, Cavallaro S, Stivala F, Canonico PL. Tissue-specific and
developmental expression of pituitary adenylate cyclase-activating
polypeptide (PACAP) receptors in rat brain. Eur J Neurosci. (1996)
8:310–8. doi: 10.1111/j.1460-9568.1996.tb01215.x

72. Apostolakis EM, Riherd DN, O’Malley BW. PAC1 receptors mediate
pituitary adenylate cyclase-activating polypeptide- and progesterone-
facilitated receptivity in female rats. Mol Endocrinol. (2005) 19:2798–811.
doi: 10.1210/me.2004-0387

73. Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, et al. Distribution
of vasoactive intestinal peptide and pituitary adenylate cyclase-activating
polypeptide receptors (VPAC1, VPAC2, and PAC1 eceptor) in the rat brain.
J Comp Neurol. (2004) 476:388–413. doi: 10.1002/cne.20231

74. Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R,
Yamamoto K, et al. Distribution of mRNA for a pituitary adenylate
cyclase-activating polypeptide receptor in the rat brain: an in

situ hybridization study. J Comp Neurol. (1996) 371:567–77.
doi: 10.1002/(SICI)1096-9861(19960805)371:4<567::AID-CNE6>3.0.CO;2-2

75. Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M. Binding sites for pituitary
adenylate cyclase activating polypeptide (PACAP): comparison with
vasoactive intestinal polypeptide (VIP) binding site localization in rat brain
sections. Brain Res. (1992) 575:113–23. doi: 10.1016/0006-8993(92)90430-H

76. Resch JM, Boisvert JP, Hourigan AE, Mueller CR, Yi SS, Choi S.
Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate
cyclase activating polypeptide induces hypophagia and thermogenesis.
Am J Physiol Regul Integr Comp Physiol. (2011) 301:R1625–34.
doi: 10.1152/ajpregu.00334.2011

77. Nomura M, Ueta Y, Serino R, Kabashima N, Shibuya I, Yamashita
H. PACAP type I receptor gene expression in the paraventricular
and supraoptic nuclei of rats. Neuroreport. (1996) 8:67–70.
doi: 10.1097/00001756-199612200-00014

78. Tatsuno I, Gottschall PE, Köves K, Arimura A. Demonstration of specific
binding sites for pituitary adenylate cyclase activating polypeptide (PACAP)
in rat astrocytes. Biochem Biophys Res Commun. (1990) 168:1027–33.
doi: 10.1016/0006-291X(90)91132-C

79. Tatsuno I, Gottschall PE, Arimura A. Specific binding sites for pituitary
adenylate cyclase activating polypeptide (PACAP) in rat cultured astrocytes:
molecular identification and interaction with vasoactive intestinal peptide
(VIP). Peptides. (1991) 12:617–21. doi: 10.1016/0196-9781(91)90110-B

80. Jaworski DM, Proctor MD. Developmental regulation of pituitary
adenylatecyclase-activating polypeptide and PAC(1) receptor mRNA
expression in the rat central nervous system. Brain Res Dev Brain Res. (2000)
120:27–39. doi: 10.1016/S0165-3806(99)00192-3

81. Ashur-Fabian O, Giladi E, Brenneman DE, Gozes I. Identification
of VIP/PACAP receptors on rat astrocytes using antisense
oligodeoxynucleotides. J Mol Neurosci. (1997) 9:211–22.
doi: 10.1007/BF02800503

82. Grimaldi M, Cavallaro S. Functional and molecular diversity of PACAP/VIP
receptors in cortical neurons and type I astrocytes. Eur J Neurosci. (1999)
11:2767–72. doi: 10.1046/j.1460-9568.1999.00693.x

83. Masmoudi O, Gandolfo P, Leprince J, Vaudry D, Fournier A, Patte-
Mensah C, et al. Pituitary adenylate cyclase-activating polypeptide
(PACAP) stimulates endozepine release from cultured rat astrocytes
via a PKA-dependent mechanism. FASEB J. (2003) 17:17–27.
doi: 10.1096/fj.02-0317com

84. Shioda S, Yada T, Nakajo S, Nakaya K, Nakai Y, Arimura A. Pituitary
adenylate cyclase-activating polypeptide (PACAP): a novel A regulator
of vasopressin-containing neurons. Brain Res. (1997) 765:81–90.
doi: 10.1016/S0006-8993(97)00512-X

85. Mounien L, Bizet P, Boutelet I, Gourcerol G, Fournier A, Vaudry H,
et al. Pituitary adenylate cyclase-activating polypeptide directly modulates
the activity of proopiomelanocortin neurons in the rat arcuate nucleus.
Neuroscience. (2006) 143:155–63. doi: 10.1016/j.neuroscience.2006.07.022

86. Mounien L, Bizet P, Boutelet I, Gourcerol G, Basille M, Gonzalez B,
et al. Expression of PACAP receptor mRNAs by neuropeptide Y neurons
in the rat arcuate nucleus. Ann NY Acad Sci. (2006) 1070:457–61.
doi: 10.1196/annals.1317.061

87. Olcese J, McArdl CA, Middendorff R, Greenland K. Pituitary adenylate
cyclase activating peptide and vasoactive intestinal peptide receptor

expression in immortalized LHRH neurons. J Neuroendocrinol. (1997)
9:937–43. doi: 10.1046/j.1365-2826.1997.00663.x

88. Nakamachi T, Ohtaki H, Yofu S, Dohi K, Watanabe J, Hayashi D,
et al. Pituitary adenylate cyclase activating polypeptide (PACAP) type
1 receptor (PAC1R) co-localizes with activity-dependent neuroprotective
protein (ADNP) in the mouse brains. Regul Pept. (2008) 145:88–95.
doi: 10.1016/j.regpep.2007.09.025

89. Shivers BD, Görcs TJ, Gottschall PE, Arimura A. Two high affinity
binding sites for pituitary adenylate cyclase-activating polypeptide
have different tissue distributions. Endocrinology. (1991) 128:3055–65.
doi: 10.1210/endo-128-6-3055

90. Suda K, Smith DM, Ghatei MA, Murphy JK, Bloom SR. Investigation
and characterization of receptors for pituitary adenylate cyclase-
activating polypeptide in human brain by radioligand binding and
chemical cross-linking. J Clin Endocrinol Metab. (1991) 72:958–64.
doi: 10.1210/jcem-72-5-958

91. Morrow JA, Lutz EM, West KM, Fink G, Harmar AJ. Molecular cloning
and expression of a cDNA encoding a receptor or pituitary adenylate
cyclase activating polypeptide (PACAP). FEBS Lett. (1993) 329:99–105.
doi: 10.1016/0014-5793(93)80202-6

92. Vigh S, Arimura A, Gottschall PE, Kitada C, Somogyvári-Vigh A, Childs
GV. Cytochemical characterization of anterior pituitary target cells for
the neuropeptide, pituitary adenylate cyclase activating polypeptide
(PACAP), using biotinylated ligands. Peptides. (1993) 14:59–65.
doi: 10.1016/0196-9781(93)90011-5

93. Rawlings SR, Piuz I, Schlegel W, Bockaert J, Journot L. Differential
expression of pituitary adenylate cyclase-activating polypeptide/vasoactive
intestinal polypeptide receptor subtypes in clonal pituitary
somatotrophs and gonadotrophs. Endocrinology. (1995) 136:2088–98.
doi: 10.1210/endo.136.5.7720658

94. Hezareh M, Journot L, Bépoldin L, Schlegel W, Rawlings SR. PACAP/VIP
receptor subtypes, signal transducers, and effectors in pituitary cells. Ann N

Y Acad Sci. (1996) 805:315–27. doi: 10.1111/j.1749-6632.1996.tb17493.x
95. Rawlings SR, Hezareh M. Pituitary adenylate cyclase-activating polypeptide

(PACAP) and PACAP/vasoactive intestinal polypeptide receptors:
actions on the anterior pituitary gland. Endocr Rev. (1996) 17:2–29.
doi: 10.1210/edrv-17-1-4

96. Köves K, Molnár J, Kántor O, Görcs T, Arimura A. New aspects of
the neuroendocrine role of PACAP. Ann NYAcad Sci. (1996) 805:648–54.
doi: 10.1111/j.1749-6632.1996.tb17535.x

97. Kántor O, Molnár J, Arimura A, Köves K. PACAP38 and PACAP27
administered intracerebroventricularly have an opposite effect on LH
secretion. Peptides. (2000) 21:817–20. doi: 10.1016/S0196-9781(00)00214-X

98. Kántor O, Molnár J, Heinzlmann A, Arimura A, Fürst Z, Köves K. Study
on the hypothalamic factors mediating the inhibitory effect of PACAP38 on
ovulation. Peptides. (2001) 22:2163–8. doi: 10.1016/S0196-9781(01)00548-4

99. Heinzlmann A, Oláh Márk, Köves K. Intranasal application of PACAP and
β-cyclodextrin before the “critical period of proestrous stage” can block
ovulation. Biol Futura. (2019) 70:62–70. doi: 10.1556/019.70.2019.08

100. Sherwood NM, Adams BA, Isaac ER, Wu S, Fradinger EA.
Knocked down and out: PACAP in development, reproduction and
feeding. Peptides. (2007) 28:1680–7. doi: 10.1016/j.peptides.2007.
03.008

101. Isaac ER, Sherwood NM. Pituitary adenylate cyclase-activating polypeptide
(PACAP) is important for embryo implantation inmice.Mol Cell Endocrinol.
(2008) 280:13–9. doi: 10.1016/j.mce.2007.09.003

102. Sawangjaroen K, Curlewis JD. Effects of pituitary adenylate cyclase-
activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP)
on prolactin, luteinizing hormone and growth hormone secretion in the ewe.
J Neuroendocrinol. (1994) 6:549–55. doi: 10.1111/j.1365-2826.1994.tb00618.x

103. Köves K, Kausz M, Fogel K, Arimura A. Presence of PACAP
and in the retinohypothalamic pathway. Regul Pept. (1996) 64:98.
doi: 10.1016/0167-0115(96)87915-8

104. MacLusky NJ, Naftolin F, Leranth C. Immunocytochemical evidence
for direct synaptic connections between corticotrophin-releasing factor
(CRF) and gonadotrophin releasing hormone (GnRH)-containing
neurons in the preoptic area of the rat. Brain Res. (1988) 439:391–35.
doi: 10.1016/0006-8993(88)91501-6

Frontiers in Endocrinology | www.frontiersin.org 17 March 2020 | Volume 11 | Article 88

https://doi.org/10.1111/j.1460-9568.1996.tb01215.x
https://doi.org/10.1210/me.2004-0387
https://doi.org/10.1002/cne.20231
https://doi.org/10.1002/(SICI)1096-9861(19960805)371:4<567::AID-CNE6>3.0.CO;2-2
https://doi.org/10.1016/0006-8993(92)90430-H
https://doi.org/10.1152/ajpregu.00334.2011
https://doi.org/10.1097/00001756-199612200-00014
https://doi.org/10.1016/0006-291X(90)91132-C
https://doi.org/10.1016/0196-9781(91)90110-B
https://doi.org/10.1016/S0165-3806(99)00192-3
https://doi.org/10.1007/BF02800503
https://doi.org/10.1046/j.1460-9568.1999.00693.x
https://doi.org/10.1096/fj.02-0317com
https://doi.org/10.1016/S0006-8993(97)00512-X
https://doi.org/10.1016/j.neuroscience.2006.07.022
https://doi.org/10.1196/annals.1317.061
https://doi.org/10.1046/j.1365-2826.1997.00663.x
https://doi.org/10.1016/j.regpep.2007.09.025
https://doi.org/10.1210/endo-128-6-3055
https://doi.org/10.1210/jcem-72-5-958
https://doi.org/10.1016/0014-5793(93)80202-6
https://doi.org/10.1016/0196-9781(93)90011-5
https://doi.org/10.1210/endo.136.5.7720658
https://doi.org/10.1111/j.1749-6632.1996.tb17493.x
https://doi.org/10.1210/edrv-17-1-4
https://doi.org/10.1111/j.1749-6632.1996.tb17535.x
https://doi.org/10.1016/S0196-9781(00)00214-X
https://doi.org/10.1016/S0196-9781(01)00548-4
https://doi.org/10.1556/019.70.2019.08
https://doi.org/10.1016/j.peptides.2007.03.008
https://doi.org/10.1016/j.mce.2007.09.003
https://doi.org/10.1111/j.1365-2826.1994.tb00618.x
https://doi.org/10.1016/0167-0115(96)87915-8
https://doi.org/10.1016/0006-8993(88)91501-6
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

105. Almeida OF, Nikolarakis KE, Herz A. Evidence for the involvement
of endogenous opioids in the inhibition of luteinizing hormone by
corticotropin-releasing factor. Endocrinology. (1988) 122:1034–41.
doi: 10.1210/endo-122-3-1034

106. Anderson ST, Sawangjaroen K, Curlewis JD. Pituitary adenylate cyclase-
activating polypeptide acts within the medial basal hypothalamus to
inhibit prolactin and luteinizing hormone secretion. Endocrinology. (1996)
137:3424–9. doi: 10.1210/endo.137.8.8754770

107. Silverman AJ, Jhamandas J, Renaud LP. Localization of luteinizing hormone-
releasing hormone (LHRH) neurons that project to the median eminence. J
Neuroscience. (1987) 7:2312–9.

108. Merchenthaler I, Görcs T, Sétáló G, Petrusz P, Flerkó B. Gonadotropin-
releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tiss
Res. (1984) 237:15–29. doi: 10.1007/BF00229195

109. Silverman AJ, Livne I, Witkin JW. The gonadortophin-releasing hormone
(GnRH) neural systems: immunocytochemistry and in situ hybridization. In:
Knobil E, editor. The Physiology of Reproduction. New York, NY: Raven Press
(1994). p. 1683–709.

110. Banks WA, Uchida D, Arimura A, Somogyvári-Vigh A, Shioda S. Transport
of pituitary adenylate cyclase-activating polypeptide across the blood-brain
barrier and the prevention of ischemia induced death of hippocampal
neurons. Ann N Y Acad Sci. (1996) 805, 270–7; discussion 277–9.
doi: 10.1111/j.1749-6632.1996.tb17489.x

111. Nonaka N, Farr SA, Nakamachi T, Morley JE, Nakamura M, Shioda
S, et al. Intranasal administration of PACAP: uptake by brain and
regional brain targeting with cyclodextrins. Peptides. (2012) 36:168–75.
doi: 10.1016/j.peptides.2012.05.021

112. Szabó F, Horváth J, Heinzlmann A, Arimura A, Köves K. Neonatal
PACAP administration in rats delays puberty through the influence
of the LHRH neuronal system. Regul Pep. (2002) 109:49–55.
doi: 10.1016/S0167-0115(02)00185-4

113. Daikoku S, Koide I, Chikamori-Aoyama M, Shimomura Y. Migration of
LHRH neurons derived from the olfactory placode in rats. Arch Histol Cytol.
(1993) 56:353–70. doi: 10.1679/aohc.56.353

114. Schwanzel-Fukuda M. Origin and migration of luteinizing hormone-
releasing hormone neurons in mammals. Microsc Res Tech. (1999) 44:2–10.
doi: 10.1002/(SICI)1097-0029(19990101)44:1<2::AID-JEMT2>3.0.CO;2-4

115. Choi EJ, Ha CM, Kim MS, Kang JH, Park SK, Choi WS, et al.
Central administration of an antisense oligodeoxynucleotide against type
I pituitary adenylate cyclase-activating polypeptide receptor suppresses
synthetic activities of LHRH-LH axis during the pubertal process.
Brain Res Mol Brain Res. (2000) 80:35–45. doi: 10.1016/S0169-328X(00)
00116-9

116. Radleff-Schlimme A, Leonhardt S, Wuttke W, Jarry H. Evidence for PACAP
to be an autocrine factor on gonadotrope cells. Ann N Y Acad Sci. (1998)
865:486–91. doi: 10.1111/j.1749-6632.1998.tb11222.x

117. Szabó E, Nemeskéri Á, Heinzlmann A, Suzuki N, Arimura A, Köves
K. Cell immunoblot assay study demonstrating the release of PACAP
from individual anterior pituitary cells of rats and the effect of PACAP
on LH release. Regul Pep. (2002) 109:75–81. doi: 10.1016/S0167-0115(02)
00186-6

118. Hulting AL, Lindgren JA, Hökfelt T, Eneroth P, Werner S, Patrono C,
et al. Leukotriene C4 as a mediator of luteinizing hormone release from
rat anterior pituitary cells. Proc Natl Acad Sci USA. (1985) 82:3834–8.
doi: 10.1073/pnas.82.11.3834

119. Szabó E, Nemeskéri Á, Arimura A, Köves K. Effect of PACAP on LH release,
studied by cell immunoblot assay, depends on the gender, on the time of day
and in female rats on the day of estrous cycle. Regul Pep. (2004) 123:139–45.
doi: 10.1016/j.regpep.2004.04.021

120. Culler MD, Paschall CS. Pituitary adenylate cyclase-activating polypeptide
(PACAP) potentiates the gonadotropin-releasing activity of luteinizing
hormone-releasing hormone. Endocrinology. (1991) 129:2260–2.
doi: 10.1210/endo-129-4-2260

121. Hart GR, Gowing H, Burrin JM. Effects of a novel hypothalamic peptide
pituitary adenylate cyclase-activating polypeptide, on pituitary hormone
release in rats. J Endocrinol. (1992) 134:33–41. doi: 10.1677/joe.0.1340033

122. Kanasaki H, Mutiara S, Oride A, Purwana IN, Miyazaki K. Pulse frequency-
dependent gonadotropin gene expression by adenylate cyclase activating

polypeptide 1 in perifused mouse pituitary gonadotroph LβT2 cells. Biol
Reprod. (2009) 81:465–72. doi: 10.1095/biolreprod.108.074765

123. Kanasaki H, Purwana IN, Oride A, Mijiddorj T, Sukhbaatar U, Miyazaki K.
Circulating kisspeptin and pituitary adenylate cyclase activating polypeptide
(PACAP) do not correlate with gonadotropin serum levels. Gynecol

Endocrinol. (2013) 29:583–7. doi: 10.3109/09513590.2013.788624
124. Kanasaki H, Purwana IN, Miyazaki K. Possible role of PACAP and its PAC1

receptor in the differential regulation of pituitary LHbeta- and FSHbeta-
subunit gene expression by pulsatile GnRH. stimulation. Biol Repro. (2013)
88:1–5. doi: 10.1095/biolreprod.112.105601

125. Schomerus E, Poch A, Bunting R, Mason WT, McArdle CA. Effects of
pituitary adenylate cyclase-activating polypeptide in the pituitary: activation
of two signal transduction pathways in the gonadotrope-derived alpha T3-1
cell line. Endocrinology. (1994) 134:315–23. doi: 10.1210/endo.134.1.7903932

126. Tsujii T, Ishizaka K, Winters SJ. Effects of pituitary adenylate cyclase-
activating polypeptide on gonadotropin secretion and subunit messenger
ribonucleic acids in perifused rat pituitary cells. Endocrinology. (1994)
135:826–33. doi: 10.1210/endo.135.3.7915230

127. Tsujii T, Winters SJ. Effects of pulsatile pituitary adenylate cyclase
activating polypeptide (PACAP) on gonadotropin secretion and subunit
mRNA levels in perifused rat pituitary cells. Life Sci. (1995) 56:1103–11.
doi: 10.1016/0024-3205(95)00047-A

128. Tsujii T, Attardi B, Winters SJ. Regulation of alpha-subunit mRNA
transcripts by pituitary adenylate cyclase-activating polypeptide (PACAP)
in pituitary cell cultures and alpha T3-1 cells. Mol Cell Endocrinol. (1995)
113:123–30. doi: 10.1016/0303-7207(95)03613-C

129. Fujii Y, Okada Y, Moore JP Jr, Dalkin AC, Winters SJ. Evidence that
PACAP and GnRH down-regulate follicle-stimulating hormone-β mRNA
levels by stimulating follistatin gene expression: effects on folliculostellate
cells, gonadotrophs and LβT2 gonadotroph cells.Mol Cell Endocrinol. (2002)
192:55–64. doi: 10.1016/S0303-7207(02)00109-0

130. Winters SJ, Moore JP Jr. PACAP an autocrine/paracrine
regulator of gonadotrophs. Biol Reprod. (2011) 84:844–50.
doi: 10.1095/biolreprod.110.087593

131. Köves K, Molnár J, Kántor O, Lakatos A, Görcs TJ, Somogyvári-Vigh A, et al.
PACAP and participates in the regulation of the hormonal events preceding
the ovulation. Acta Biol Hung. (1996) 47:239–49.

132. Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate cyclase-
activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH)
gene expression in the rat hypothalamic paraventricular nucleus. Brain Res.
(1997) 773:190–6. doi: 10.1016/S0006-8993(97)01011-1

133. Jamen F, Rodriguez-Henche N, Pralong F, Jegou B, Gaillard R, Bockaert J,
et al. PAC1 null females display decreased fertility. Ann N Y Acad Sci. (2000)
921:400–4. doi: 10.1111/j.1749-6632.2000.tb07004.x

134. Gray SR, Cummings KJ, Jirik FR, Sherwood NM. Targeted disruption
of the pituitary adenylate cyclase-activating polypeptide gene results
in early postnatal death associated with dysfunction of lipid and
carbohydrate metabolism. Mol Endocrinol. (2001) 15:1739–47.
doi: 10.1210/mend.15.10.0705

135. Shintani N, Mori W, Hashimoto H, Imai M, Tanaka K, Tomimoto S, et al.
Defects in reproductive functions in PACAP-deficient female mice. Regul
Pept. (2002) 109:45–8. doi: 10.1016/S0167-0115(02)00169-6

136. Freeman ME, Kanyicska B, Lerant A, Nagy GM. Prolactin: structure,
function, and regulation of secretion. Physiol Rev. (2000) 80:1523–631.
doi: 10.1152/physrev.2000.80.4.1523

137. Nagy GM, Vígh S, Arimura A. PACAP induces prolactin and growth
hormone release in lactating rats separated from their pups. Endocrine J.
(1993) 40:169–73.

138. Anderson ST, Curlewis JD. PACAP stimulates dopamine neuronal activity
in the medial basal hypothalamus and inhibits prolactin. Brain Res. (1998)
790:343–6. doi: 10.1016/S0006-8993(98)00176-0

139. Tohei A, Ikeda M, Hokao R, Shinoda M. The different effects of i.c.v.
injection of pituitary adenylate cyclase activating polypeptide (PACAP) on
prolactin secretion in adult male and lactating rats. Exp Anim. (2009)
58:489–95. doi: 10.1538/expanim.58.489

140. Vertongen P, Velkeniers B, Hooghe-Peters E, Robberecht P. Differential
alternative splicing of PACAP receptor in pituitary cell subpopulations. Mol

Cell Endocrinol. (1995) 113:131–5. doi: 10.1016/0303-7207(95)03626-I

Frontiers in Endocrinology | www.frontiersin.org 18 March 2020 | Volume 11 | Article 88

https://doi.org/10.1210/endo-122-3-1034
https://doi.org/10.1210/endo.137.8.8754770
https://doi.org/10.1007/BF00229195
https://doi.org/10.1111/j.1749-6632.1996.tb17489.x
https://doi.org/10.1016/j.peptides.2012.05.021
https://doi.org/10.1016/S0167-0115(02)00185-4
https://doi.org/10.1679/aohc.56.353
https://doi.org/10.1002/(SICI)1097-0029(19990101)44:1<2::AID-JEMT2>3.0.CO;2-4
https://doi.org/10.1016/S0169-328X(00)00116-9
https://doi.org/10.1111/j.1749-6632.1998.tb11222.x
https://doi.org/10.1016/S0167-0115(02)00186-6
https://doi.org/10.1073/pnas.82.11.3834
https://doi.org/10.1016/j.regpep.2004.04.021
https://doi.org/10.1210/endo-129-4-2260
https://doi.org/10.1677/joe.0.1340033
https://doi.org/10.1095/biolreprod.108.074765
https://doi.org/10.3109/09513590.2013.788624
https://doi.org/10.1095/biolreprod.112.105601
https://doi.org/10.1210/endo.134.1.7903932
https://doi.org/10.1210/endo.135.3.7915230
https://doi.org/10.1016/0024-3205(95)00047-A
https://doi.org/10.1016/0303-7207(95)03613-C
https://doi.org/10.1016/S0303-7207(02)00109-0
https://doi.org/10.1095/biolreprod.110.087593
https://doi.org/10.1016/S0006-8993(97)01011-1
https://doi.org/10.1111/j.1749-6632.2000.tb07004.x
https://doi.org/10.1210/mend.15.10.0705
https://doi.org/10.1016/S0167-0115(02)00169-6
https://doi.org/10.1152/physrev.2000.80.4.1523
https://doi.org/10.1016/S0006-8993(98)00176-0
https://doi.org/10.1538/expanim.58.489
https://doi.org/10.1016/0303-7207(95)03626-I
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

141. Jarry H, Leonhardt S, Schmidt WE, Creutzfeldt W, Wuttke W. Contrasting
effects of pituitary adenylate cyclase activating polypeptide (PACAP) on in

vivo and in vitro prolactin and growth hormone release in male rats. Life Sci.
(1992) 51:823–30. doi: 10.1016/0024-3205(92)90609-S

142. Benter S, Leonhardt S, Wuttke W, Jarry H. Paracrine cell to cell interactions
determine the effects of pituitary adenylate cyclase activating polypeptide
(PACAP) on in vitro prolactin release from rat pituitary cells. Exp Clin

Endocrinol Diabetes. (1995) 103:386–90. doi: 10.1055/s-0029-1211383
143. Propato-Mussafiri R, Kanse SM, Ghatei MA, Bloom SR. Pituitary adenylate

cyclase-activating polypeptide releases 7B2, adrenocorticotrophin,
growth hormone and prolactin from the mouse and rat clonal
pituitary cell lines AtT-20 and GH3. J Endocrinol. (1992) 132:107–13.
doi: 10.1677/joe.0.1320107

144. Ostrom KM. A review of the hormone prolactin during lactation. Prog Food
Nutr Sci. (1990) 14:1–43.

145. Lacasse P, Ollier S, Lollivier V, Boutinaud M. New insights into the
importance of prolactin in dairy ruminants. J Dairy Sci. (2016) 99:864–74.
doi: 10.3168/jds.2015-10035

146. Czeglédi L, Tamas A, Borzsei R, Bagoly T, Kiss P, Horvath G, et al. Presence
of pituitary adenylate cyclase-activating polypeptide (PACAP) in the plasma
and milk of ruminant animals. Gen Comp Endocrinol. (2011) 172:115–9.
doi: 10.1016/j.ygcen.2010.12.012

147. Skakkebaek M, Hannibal J, Fahrenkrug J. Pituitary adenylate cyclase
activating polypeptide (PACAP) in the rat mammary gland. Cell Tissue Res.
(1999) 298:153–9. doi: 10.1007/s004419900086

148. Tamás A, Vass RA, Helyes ZS, Csanaky K, Szanto Z, Nemeth J, et al.
Exmination of PACAP During Lactation. In: Reglodi D, Tamás A, editors.
Current Topics In Neurotoxicity, Vol. 11. Pituitary Adenylate Cyclase

Activating Polypeptide – PACAP. New York, NY: Springer Nature (2016).
p. 161–78.

149. Börzsei R, Mark L, Tamas A, Bagoly T, Bay C, Csanaky K, et al. Presence of
pituitary adenylate cyclase activating polypeptide-38 in human plasma and
milk. Eur J Endocrinol. (2009) 160:561–5. doi: 10.1530/EJE-08-0911

150. Helyes Z, Pozsgai G, Börzsei R, Németh J, Bagoly T, Márk L, et al.
Inhibitory effect of PACAP-38 on acute neurogenic and non-neurogenic
inflammatory processes in the rat. Peptides. (2007) 28:1847–55.
doi: 10.1016/j.peptides.2007.07.001

151. Steenstrup BR, Jørgensen JC, Alm P, Hannibal J, Junge J, Fahrenkrug J,
et al. Pituitary adenylate cyclase activating polypeptide (PACAP): occurrence
and vasodilatory effect in the human uteroplacental unit. Regul Pept. (1996)
61:197–204. doi: 10.1016/0167-0115(95)00156-5

152. Scaldaferri ML, Modesti A, Palumbo C, Ulisse S, Fabbri A, Piccione E, et al.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP-
receptor type 1 expression in rat and human placenta. Endocrinology. (2000)
141:1158–67. doi: 10.1210/endo.141.3.7346

153. Koh PO, Won CK, Noh HS, Cho GJ, Choi WS. Expression of pituitary
adenylate cyclase activating polypeptide and its type I receptor mRNAs in
human placenta. J Vet Sci. (2005) 6:1–5. doi: 10.4142/jvs.2005.6.1.1

154. Oride A, Kanasaki H, Mijiddorj T, Sukhbaatar U, Yamada T, Kyo S.
Expression and regulation of pituitary adenylate cyclase-activating
polypeptide rat placental cells. Reprod Sci. (2016) 23:1080–106.
doi: 10.1177/1933719116630421

155. Horvath G, Nemeth J, Brubet R, Opper B, Koppan M, Tamás A, et al.
Occurrence and functions of PACAP in the placenta. In: Reglodi D, Tamás, A,
editors. Current Topics In Neurotoxicity, Vol. 11. Pituitary Adenylate Cyclase

Activating Polypeptide – PACAP. New York, NY: Springer Nature (2016).
p. 389–403.

156. Li S, Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate
cyclase-activating polypeptide (PACAP) on gonadotropin-releasing
hormone and somatostatin gene expression in the rat brain. Brain Res Mol

Brain Res. (1996) 41:157–62. doi: 10.1016/0169-328X(96)00086-1
157. Osuga Y, Mitsuhashi N, Mizuno M. In vivo effect of pituitary adenylate

cyclase activating polypeptide 38 (PACAP 38) on the secretion of
luteinizing hormone (LH) in male rats. Endocrinol Jpn. (1992) 39:153–6.
doi: 10.1507/endocrj1954.39.153

158. Moore JP Jr, Wilson L, Dalkin AC, Winters SJ. Differential expression of
the pituitary gonadotropin subunit genes during male rat sexual maturation:

reciprocal relationship between hypothalamic pituitary adenylate cyclase-
activating polypeptide and follicle stimulating hormone expression. Biol
Reprod. (2003) 69:234–41. doi: 10.1095/biolreprod.102.012757

159. Moore JP Jr, Villafuerte BC, Unick CA, Winters SJ. Developmental
changes in pituitary adenylate cyclase activating polypeptide expression
during the perinatal period: possible role in fetal gonadotroph regulation.
Endocrinology. (2009) 150:4802–9. doi: 10.1210/en.2008-1649

160. Moore JP Jr, Yang RQ, Winters SJ. Targeted pituitary overexpression
of pituitary adenylate-cyclase activating polypeptide alters postnatal
sexual maturation in male mice. Endocrinology. (2012) 153:1421–34.
doi: 10.1210/en.2011-1115

161. Larivière S, Garrel G, Robin MT, Counis R, Cohen-Tannoudji J.
Differential mechanisms for PACAP and GnRH cAMP induction contribute
to cross-talk between both hormones in the gonadotrope LβT2 cell
line. Ann N Y Acad Sci. (2006) 1070:376–39. doi: 10.1196/annals.13
17.048

162. Larivière S, Garrel-Lazayres G, Simon V, Shintani N, Baba A, Counis
R, et al. Gonadotropin-releasing hormone inhibits pituitary adenylyl
cyclase activating polypeptide coupling to 3’,5’-cyclic adenosine-5’-
monophosphate pathway in LβT2 gonadotrope cells through novel protein
kinase C isoforms and phosphorylation of pituitary adenylyl cyclase-
activating polypeptide type I receptor. Endocrinology. (2008) 149:6389–698.
doi: 10.1210/en.2008-0504

163. Winters SJ, Moore JP. Paracrine control of gonadotrophs. Semin ReprodMed.
(2007) 25:379–87. doi: 10.1055/s-2007-984744

164. Grafer CM, Thomas R, Lambrakos L, Montoya I, White S, Halvorson LM.
GnRH stimulates expression of PACAP in the pituitary gonadotropes via
both the PKA and PKC signaling systems. Mol Endocrinol. (2009) 23:1022–
32. doi: 10.1210/me.2008-0477

165. Ortmann O, Asmus W, Diedrich K, Schulz KD, Emons G. Interactions
of ovarian steroids with pituitary adenylate cyclase-activating polypeptide
and GnRH in anterior pituitary cells. Eur J Endocrinol. (1999) 140:207–14.
doi: 10.1530/eje.0.1400207

166. Zheng W, Grafer CM, Halvorson LM. Interaction of gonadal steroids
and gonadotropin-releasing hormone on pituitary adenylate cyclase-
activating polypeptide (PACAP) and PACAP receptor expression
in cultured rat anterior pituitary cells. Reprod Sci. (2014) 21:41–51.
doi: 10.1177/1933719113488454

167. Grafer CM, Halvorson LM. Androgen receptor drives transcription of
rat PACAP in gonadotrope cells. Mol Endocrinol. (2013) 27:1343–56.
doi: 10.1210/me.2012-1378

168. Ha CM, Kang JH, Choi EJ, Kim MS, Park J-W, Kim Y, et al.
Progesterone increases mRNA levels of pituitary adenylate cyclase-activating
polypeptide (PACAP) and type I PACAP receptor (PAC1) in the rat
hypothalamus.Mol Brain Res. (2000) 78:59–68. doi: 10.1016/S0169-328X(00)
00070-X

169. Németh J, Tamas A, Jozsa R, Horvath JE, Jakab B, Lengvari I, et al. Changes in
PACAP levels in the central nervous system after ovariectomy and castration.
Ann N Y Acad Sci. (2006) 1070:468–73. doi: 10.1196/annals.1317.063

170. Bloom FE, Battenberg ELF, Rivier J, Vale W. Corticotropin releasing factor
(CRF) immunoreactive neurons and fibers in rat hypothalamus. Reg Peptides.
(1982) 4:43–8. doi: 10.1016/0167-0115(82)90107-0

171. Dudás B, Merchenthaler I. Close juxtapositions between luteinizing
hormone-releasing hormone-immunoreactive neurons and corticotropin-
releasing factor-immunoreactive axons in the human diencephalon.
J Clin Endocrinol Metab. (2002) 87:5778–84. doi: 10.1210/jc.2002-0
20996

172. Légrádi G, Hannibal J, Lechan RM. Pituitary adenylate cyclase-activating
polypeptide-nerve terminals densely innervate corticotropin-releasing
hormone-neurons in the hypothalamic paraventricular nucleus of the rat.
Neurosci Lett. (1998) 246:145–8. doi: 10.1016/S0304-3940(98)00255-9

173. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV,
Jafarzadehshirazi MR, et al. Kisspeptin neurons in the arcuate nucleus of
the ewe express both dynorphin A and neurokinin B. Endocrinology. (2007)
148:5752–60. doi: 10.1210/en.2007-0961

174. Skrapits K, Borsay BA, Herczeg L, Ciofi P, Liposits Z, Hrabovszky
E. Neuropeptide co-expression in hypothalamic kisspeptin neurons

Frontiers in Endocrinology | www.frontiersin.org 19 March 2020 | Volume 11 | Article 88

https://doi.org/10.1016/0024-3205(92)90609-S
https://doi.org/10.1055/s-0029-1211383
https://doi.org/10.1677/joe.0.1320107
https://doi.org/10.3168/jds.2015-10035
https://doi.org/10.1016/j.ygcen.2010.12.012
https://doi.org/10.1007/s004419900086
https://doi.org/10.1530/EJE-08-0911
https://doi.org/10.1016/j.peptides.2007.07.001
https://doi.org/10.1016/0167-0115(95)00156-5
https://doi.org/10.1210/endo.141.3.7346
https://doi.org/10.4142/jvs.2005.6.1.1
https://doi.org/10.1177/1933719116630421
https://doi.org/10.1016/0169-328X(96)00086-1
https://doi.org/10.1507/endocrj1954.39.153
https://doi.org/10.1095/biolreprod.102.012757
https://doi.org/10.1210/en.2008-1649
https://doi.org/10.1210/en.2011-1115
https://doi.org/10.1196/annals.1317.048
https://doi.org/10.1210/en.2008-0504
https://doi.org/10.1055/s-2007-984744
https://doi.org/10.1210/me.2008-0477
https://doi.org/10.1530/eje.0.1400207
https://doi.org/10.1177/1933719113488454
https://doi.org/10.1210/me.2012-1378
https://doi.org/10.1016/S0169-328X(00)00070-X
https://doi.org/10.1196/annals.1317.063
https://doi.org/10.1016/0167-0115(82)90107-0
https://doi.org/10.1210/jc.2002-020996
https://doi.org/10.1016/S0304-3940(98)00255-9
https://doi.org/10.1210/en.2007-0961
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

of laboratory animals and the human. Front Neurosci. (2015) 9:29.
doi: 10.3389/fnins.2015.00029

175. Moore AM, Coolen LM, Porter DT, Goodman RL, Lehman MN. KNDy
cells revisited. Endocrinology. (2018) 159:3219–34. doi: 10.1210/en.2018-
00389

176. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions
between kisspeptin and GnRH neurons in the mediobasal hypothalamus
of the male rhesus monkey (Macaca mulatta) as revealed by double
immunofluorescence and confocal microscopy. Endocrinology. (2008)
149:4387–95. doi: 10.1210/en.2008-0438

177. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1

Neurons in the Forebrain as Central Processors for Generating the
Preovulatory Luteinizing Hormone Surge. J Neurosci. (2006) 26:6687–94.
doi: 10.1523/JNEUROSCI.1618-06.2006

178. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A. Kisspeptin
immunoreactive cells of the ovine preoptic area and arcuate nucleus
co-express estrogen receptor alpha. Neurosci Lett. (2006) 401:225–30.
doi: 10.1016/j.neulet.2006.03.039

179. Rance NE. Menopause and the human hypothalamus: evidence for the
role of kisspeptin/neurokinin B neurons in the regulation of estrogen
negative feedback. Peptides. (2009) 30:111–22. doi: 10.1016/j.peptides.2008.
05.016

180. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning
of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci

USA. (1996) 93:5925–3. doi: 10.1073/pnas.93.12.5925
181. Hrabovszky E, Shughrue PJ, Merchenthaler I, Hajszan T, Carpenter CD,

Liposits Z, et al. Detection of estrogen receptor-beta messenger ribonucleic
acid and 125I- estrogen binding sites in luteinizing hormone-releasing
hormone neurons of the rat brain. Endocrinology. (2000) 141:3506–9.
doi: 10.1210/endo.141.9.7788

182. Hrabovszky E, Steinhauser A, Barabas K, Shughrue PJ, Petersen SL,
Merchenthaler I, et al. Estrogen receptor-beta immunoreactivity
in luteinizing hormone-releasing hormone neurons of the rat
brain. Endocrinology. (2001) 142:3261–4. doi: 10.1210/endo.142.
7.8176

183. Hrabovszky E, Kallo I, Szlavik N, Keller E, Merchenthaler I, Liposits Z.
Gonadotropin-releasing hormone neurons express estrogen receptor-beta. J
Clin Endocrinol Metab. (2007) 92:2827–30. doi: 10.1210/jc.2006-2819

184. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E.
Hypogonadotropic hypogonadism due to loss of function of the KiSS1-
derived peptide receptor GPR54. Proc Natl Acad Sci USA. (2003) 100:10972–
6. doi: 10.1073/pnas.1834399100

185. Stephens SBZ, Tolson KP, Rouse ML Jr, Poling MC, Hashimoto-Partyka
MK, Mellon PL, et al. Absent Progesterone Signaling in Kisspeptin Neurons
Disrupts the LH Surge and Impairs Fertility in Female Mice Endocrinology.
(2015) 156:3091–7. doi: 10.1210/en.2015-1300

186. Mijiddorj T, Kanasaki H, Oride A, Hara T, Sukhbaatar U, Tumurbaatar
T, et al. Interaction between kisspeptin and adenylate cyclase-activating
polypeptide 1 on the expression of pituitary gonadotropin subunits: a
study using mouse pituitary LβT2 cells. Biol Reprod. (2017) 96:1043–51.
doi: 10.1093/biolre/iox030

187. Ross R, León S, Joseph C, Madara JC, Schafer D, Fergani C, et al.
PACAP neurons in the ventral premammillary nucleus regulate
reproductive function in the female mouse. Elife. (2018) 7:e35960.
doi: 10.7554/eLife.35960

188. Tumurbaatar T, Kanasaki H, Oride A, Okada H, Hara T, Tumurgan
Z, et al. Effect of pituitary adenylate cyclase-activating polypeptide
(PACAP) in the regulation of hypothalamic kisspeptin expression.
Gen Comp Endocrinol. (2019) 270:60–6. doi: 10.1016/j.ygcen.2018.
10.006

189. Scharrer E. Photo-neuro-endocrine systems: general concepts. Ann

N Y Acad Sci. (1964) 117:13–22. doi: 10.1111/j.1749-6632.1964.tb
48155.x

190. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp

Neurol. (1972) 146:1–14. doi: 10.1002/cne.901460102
191. Hendrickson AE, Wagoner N, Cowan WM. An autoradiographic and

electron microscopic study of retino-hypothalamic connections. Z Zellforsch

Mikrosk Anat. (1972) 135:1–26. doi: 10.1007/BF00307084

192. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD.
A novel human opsin in the inner retina. J Neurosci. (2000) 20:600–5.
doi: 10.1523/JNEUROSCI.20-02-00600.2000

193. Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette
MU, et al. Pituitary Adenylate Cyclase-Activating Peptide
(PACAP) in the retinohypothalamic tract: a potential daytime
regulator of the biological clock. J Neurosci. (1997) 7:2637–44.
doi: 10.1523/JNEUROSCI.17-07-02637.1997

194. Hannibal J, Møller M, Ottersen OP, Fahrenkrug J. PACAP and glutamate are
co-stored in the retinohypothalamic tract. J Comp Neurol. (2000) 418:147–
55. doi: 10.1002/(SICI)1096-9861(20000306)418:2<147::AID-CNE2>
3.0.CO;2-#

195. Hannibal J, Fahrenkrug J. Neuronal input pathways to the brain’s biological
clock and their functional significance. Adv Anat Embryol Cell Biol.
(2006) 182:1–71.

196. Provencio I, Rollag MD, Castrucci AM. Photoreceptive net in the
mammalian retina. This mesh of cells may explain how some blind
mice can still tell day from night. Nature. (2002) 415:493. doi: 10.1038/
415493a

197. Cagampang FR, Piggins HD, Sheward WJ, Harmar AJ, Coen CW.
Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the
rat suprachiasmatic and supraoptic nuclei. Brain Res. (1998) 813:218–22.
doi: 10.1016/S0006-8993(98)01044-0

198. Ajpru S, McArthur AJ, Piggins HD, Sugden D. Identification
of PAC1 receptor isoform mRNAs by real-time PCR in rat
suprachiasmatic nucleus. Brain Res Mol Brain Res. (2002) 105:29–37.
doi: 10.1016/S0169-328X(02)00387-X

199. Harmar AJ. An essential role for peptidergic signalling in the control of
circadian rhythms in the suprachiasmatic nuclei. J Neuroendocrinol. (2003)
15:335–8. doi: 10.1046/j.1365-2826.2003.01005.x

200. Georg B, Hannibal J, Fahrenkrug J. Lack of the PAC1 receptor alters the
circadian expression of VIP mRNA in the suprachiasmatic nucleus of mice.
Brain Res. (2007) 1135:52–7. doi: 10.1016/j.brainres.2006.12.001

201. Schafer D, Kane G, Colledge WH, Piet R, Herbison AE. Sex- and sub
region-dependent modulation of arcuate kisspeptin neurons by vasopressin
and vasoactive intestinal peptide. J Neuroendocrinol. (2018) 30:e12660.
doi: 10.1111/jne.12660

202. Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW,
et al. Evidence for suprachiasmatic vasopressin neurones innervating
kisspeptin neurones in the rostral periventricular area of the mouse
brain: regulation by oestrogen. J Neuroendocrinol. (2010) 22:1032–9.
doi: 10.1111/j.1365-2826.2010.02045.x

203. Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr
Rev. (2009) 30:713–43. doi: 10.1210/er.2009-0005

204. Uenoyama Y, Nakamura S, Hayakawa Y, Ikegami K, Watanabe Y, Deura
C, et al. Lack of pulse and surge modes and glutamatergic stimulation
of luteinising hormone release in Kiss1 knockout rats. J Neuroendocrinol.
(2015) 27:187–97. doi: 10.1111/jne.12257

205. Leonardi CEP, Dias FCF, Adams GP, Araujo ER, Singh J. Kisspeptin
induces ovulation in heifers under low plasma progesterone concentrations.
Theriogenology. (2020) 141:26–34. doi: 10.1016/j.theriogenology.2019.
08.033

206. Caraty A, Lomet D, Sébert ME, Guillaume D, Beltramo M, Evans NP.
Gonadotrophin-releasing hormone release into the hypophyseal portal
blood of the ewe mirrors both pulsatile and continuous intravenous
infusion of kisspeptin: an insight into kisspeptin’s mechanism of action. J
Neuroendocrinol. (2013) 25:537–46. doi: 10.1111/jne.12030

207. Smith JT, Rao A, Pereira A, Caraty A, Millar RP, Clarke IJ. Kisspeptin is
present in ovine hypophysial portal blood but does not increase during
the preovulatory luteinizing hormone surge: evidence that gonadotropes are
not direct targets of kisspeptin in vivo. Endocrinology. (2008) 149:1951–9.
doi: 10.1210/en.2007-1425

208. Fournier A, Bourgault S, Chatenet D. The pharmacophoric determinants of
PACAP. In: Reglodi D, Tamás A, editors. Current Topics In Neurotoxicity,

Vol. 11. Pituitary Adenylate Cyclase Activating Polypeptide – PACAP. New
York, NY: Springer Nature (2016). p. 111–32.

209. Li M, Maderdrut JL, Lertora JJ, Batuman V. Intravenous infusion of pituitary
adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple

Frontiers in Endocrinology | www.frontiersin.org 20 March 2020 | Volume 11 | Article 88

https://doi.org/10.3389/fnins.2015.00029
https://doi.org/10.1210/en.2018-00389
https://doi.org/10.1210/en.2008-0438
https://doi.org/10.1523/JNEUROSCI.1618-06.2006
https://doi.org/10.1016/j.neulet.2006.03.039
https://doi.org/10.1016/j.peptides.2008.05.016
https://doi.org/10.1073/pnas.93.12.5925
https://doi.org/10.1210/endo.141.9.7788
https://doi.org/10.1210/endo.142.7.8176
https://doi.org/10.1210/jc.2006-2819
https://doi.org/10.1073/pnas.1834399100
https://doi.org/10.1210/en.2015-1300
https://doi.org/10.1093/biolre/iox030
https://doi.org/10.7554/eLife.35960
https://doi.org/10.1016/j.ygcen.2018.10.006
https://doi.org/10.1111/j.1749-6632.1964.tb48155.x
https://doi.org/10.1002/cne.901460102
https://doi.org/10.1007/BF00307084
https://doi.org/10.1523/JNEUROSCI.20-02-00600.2000
https://doi.org/10.1523/JNEUROSCI.17-07-02637.1997
https://doi.org/10.1002/(SICI)1096-9861(20000306)418:2<147::AID-CNE2>3.0.CO;2-
https://doi.org/10.1038/415493a
https://doi.org/10.1016/S0006-8993(98)01044-0
https://doi.org/10.1016/S0169-328X(02)00387-X
https://doi.org/10.1046/j.1365-2826.2003.01005.x
https://doi.org/10.1016/j.brainres.2006.12.001
https://doi.org/10.1111/jne.12660
https://doi.org/10.1111/j.1365-2826.2010.02045.x
https://doi.org/10.1210/er.2009-0005
https://doi.org/10.1111/jne.12257
https://doi.org/10.1016/j.theriogenology.2019.08.033
https://doi.org/10.1111/jne.12030
https://doi.org/10.1210/en.2007-1425
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Köves et al. PACAP and the Gonadotropin Functions

myeloma and myeloma kidney: a case study. Peptides. (2007) 28:1891–5.
doi: 10.1016/j.peptides.2007.05.002

210. Banks WA, Kastin AJ, Komaki G, Arimura A. Passage of pituitary adenylate
cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating
polypeptide1-38 across the blood-brain barrier. J Pharmacol Exp Ther.
(1993) 267:690–6.

211. Uchida D, Arimura A, Somogyvári-Vigh A, Shioda S, Banks
WA. Prevention of ischemia-induced death of hippocampal
neurons by pituitary adenylate cyclase activating polypeptide.
Brain Res. (1996) 736:280–6. doi: 10.1016/0006-8993(96)
00716-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Köves, Szabó, Kántor, Heinzlmann, Szabó and Csáki. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Endocrinology | www.frontiersin.org 21 March 2020 | Volume 11 | Article 88

https://doi.org/10.1016/j.peptides.2007.05.002
https://doi.org/10.1016/0006-8993(96)00716-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

	Current State of Understanding of the Role of PACAP in the Hypothalamo-Hypophyseal Gonadotropin Functions of Mammals
	Introduction
	Distribution of PACAP in the Hypothalamus
	PACAP in the Anterior Pituitary
	PACAP Receptors
	PACAP Receptors in the Hypothalamus
	PACAP Receptors in the Anterior Pituitary

	Role of PACAP in the Gonadotropic Hormone Secretion of Females
	The Effect of PACAP on the GnRH-LH Axis
	Hypothalamic Level
	Intravenous (iv) administration
	Intracerebroventricular (icv) administration
	Intranasal (in) administration
	The effect of PACAP on the onset of puberty
	The effect of hypophysectomy on hypothalamic PACAP

	Pituitary Level
	The effect of PACAP on gonadotropic hormone release
	The effect of PACAP on pituitary gonadotropin gene expression

	Knock Out of PACAP or Its Receptor on Gonadotropin Hormone Secretion

	The Effect of PACAP on PRL Secretion
	Hypothalamic Level
	Pituitary Level
	PRL and PACAP in Milk
	PACAP in Plasma


	The Role of PACAP in the Gonadotropin Hormone Secretion of Males
	Interactions Between PACAP, GnRH, and Sex Steroids
	Interaction Between PACAP and Other Hypothalamic Peptides
	PACAP in the Retinohypothalamic Pathway and Its Role in the Circadian Clock
	Recent Point of View on the Role of PACAP in the Hypothalamo-Hypophysial Gonadotropin System
	Significant Gaps in Research
	Author Contributions
	Funding
	Acknowledgments
	References


