
Multifractal analysis of spontaneous 

hemodynamic fluctuation in the aging brain  

 
Ph.D. theses 

Peter Mukli, MD 

 
Doctoral School of Basic and Translational Medicine 

Semmelweis University 

 
Supervisor:  Andras Eke, MD, Ph.D. 

 

Official reviewers: 

Levente Herenyi, MD, Ph.D. 

Zsuzsanna Vago, Ph.D. 

 

 

Head of the Final Examination Committee:   

Peter Csermely, Ph.D., D.Sc. 

Members of the Final Examination Committee:  

Kinga Karlinger MD, Ph.D.  

Tamas Tel, Ph.D., D.Sc. 

 

Budapest  

2018  



2 

Introduction 

Majority of self-organizing natural structures could be described 

by mathematical models of self-similarity. The advent of 

analytical tools of fractal geometry enabled the investigation of 

this phenomenon on empirical (e.g. biological) data which carry 

fractal properties in a statistical (not exact, like mathematical 

objects) manner. Eventually, the so-called scale-free behavior of 

numerous physical, chemical, physiological processes can be 

quantified with the aid of fractal analytical tools. 

Fractal parameters usually varies with time which could be 

captured by multifractal analysis that is suitable for characterizing 

local scale-free properties. Traditional monofractal algorithms 

use the entire record to give an offline (post-acquisition) estimate 

of a global scale-free parameter. Until now no method has been 

published that could genuinely perform fractal analysis in real 

time and give estimates of the time-varying scale-free parameter 

(such as Hurst exponent) rendering such method potentially 

effective in monitoring and forecasting applications. 

It is possible to describe the local scale-free property with the 

distribution of local scale-free parameters. This analytical 

approach is implemented in the indirect formalism, which begins 
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with computing the scaling function: 𝑆(𝑞, 𝑠) =

[
1

𝑁𝑠
∑ 𝜇𝑣

𝑞(𝑠)
𝑁𝑠
𝑣=1 ]

1/𝑞

∝ 𝑠𝐻(𝑞) by using statistical moments of the 

selected measure (e.g. standard deviation). Subsequently, the 

power-law exponents – generalized Hurst exponent function, 

H(q) – characterizing the scale-dependence of S(q, s) are 

estimated by using a linear regression model which is the key step 

of (multi)fractal analysis.  The endpoint of the analysis is the 

singularity spectrum, which is obtained by the Legendre-

transformation of: 𝑞 ∙ 𝐻(𝑞) − 1 yielding 𝐷(ℎ) = inf
𝑞

(𝑞ℎ(𝑞) −

𝜏(𝑞)). We often observed this sequence of calculation leading to 

corrupted results. 

According to Beer-Lambert law, near-infrared spectroscopy 

(NIRS) is able to capture hemoglobin (Hb) concentration changes 

(HbO – oxy-Hb, HbR – deoxy-Hb, HbT=HbO+HbR) in the brain 

cortex. The long-range correlation (LRC) of HbT fluctuations and 

bimodal nature (different scaling behavior in the low and high 

range of temporal scales) have already been recognized, 

moreover its age-dependence has also been revealed. NIRS 

signals are influenced by local and systemic effects, having a 

different impact on HbO–HbR cross-correlation. Among the local 

effects, neural activity has a major contribution to HbT 
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fluctuation mediated via neurovascular coupling (NVC) typically 

accompanied by an anticorrelated HbO–HbR dynamics. 

 

 

Objectives 

Improvement of a real time (RT-)  fractal algorithm: My first 

goal was to achieve the most precise and reliable modification of 

detrended fluctuation analysis (DFA). The performance was 

evaluated during a set of numerical tests in a numerical testing 

framework. The final aim was to demonstrate the applicability of 

the implemented real-time algorithm. 

Focus-based multifractal time series analysis: In order to 

validate the algorithms developed in our research group, I used 

multifractal version of DFA to examine the quality of the 

outcome obtained with the focus-based regression model 

compared with standard regression. My further goal was to 

provide numerical and analytical evidences that could explain the 

results of the test, especially the frequently observed corrupted 

outcome yielded by the standard indirect formalism. 

Clarify the role of of healthy aging in case of cerebral 

hemodynamic fluctuations: Utilizing validated adaptive bimodal 
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variant of the implemented focus-based multifractal analytical 

tool we aimed to elucidate the age-dependency of the multifractal 

endpoint parameters corresponding to the local scale-free HbT 

fluctuations. Finally, I aimed to verify if  HbO–HbR relationship 

is responsible for the results, and to what extent.  

 

 

Methods 

Generating statistical fractal processes for testing purposes 

In order to test real-time fractal analytical methods (RT-DFA és 

RT-SSC) in the time domain fGn (fractional Gaussian noise) and 

fBm signals (fractional Brownian motion) were created with the 

method of Davies and Harte (DHM) at a given Hurst exponent 

(defining degree of LRC). Since fractality of empirical data needs 

to be confirmed prior to analysis, we checked the presence of 

inverse of power-law relationship (1/fβ) by using a set of reference 

monofractals generated with the spectral synthesis method. 

Multifractal time series were obtained with the generalized 

binomial multifractal cascade model, in which the Hurst exponent 

and degree of multifractality could be independently controlled. 
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Registration and preprocessing of hemoglobin fluctuations 

In our study (approved by Semmelweis University Regional 

and  Institutional Committee of Science and Research Ethics) 52 

healthy volunteers participated, who were assigned to four groups 

based on age (young: ≤45 years) and gender. Continuous wave 

NIRS-measurements sampled the resting HbO, HbR and HbT 

dynamics in one region (channel) in the prefrontal cortex with 2 

Hz sampling frequency, collecting ≥214 data points in the resting 

state. In order to attenuate non-neural effects on hemodynamics 

we applied correlation-based signal improvement (CBSI), which 

builds on the anticorrelated HbO–HbR dynamics elicited locally 

by NVC. Results of multifractal analyses performed both on raw 

and CBSI-pretreated signals were evaluated together. 

 

Real-time fractal time series analysis 

DFA applies linear detrending (‘) prior to calculation of 

fluctuation (F), where:  𝐹(𝑣, 𝑠) = √
1

𝑠
∙ ∑ (𝑌𝑣

′(𝑖))
2𝑠

𝑖=1 , in the vth 

time window (of a given size s) for the Y(i) time series obtained 

via cumulative summation of the raw X(i) signal. Computation of 

scale-dependent quantity was carried out starting with both X(i) 

and Y(i) in a sliding window (of size M) by using helper variables 
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constructed only from preceding points of the time series: 

𝐹2(𝑣, 𝑠) =
𝑚2∙𝑠2

3
+

𝑚2∙𝑠 

2
+

𝑚2

6
+ 𝑚 ∙ 𝑏 ∙ 𝑠 + 𝑚 ∙ 𝑏 + 𝑏2 +

1

𝑠
∙

∑ 𝑌2(𝑖) − 2𝑚 ∙ 𝑌(𝑖) ∙ 𝑖 − 2𝑏 ∙ 𝑌(𝑖)𝑠
𝑖=1 . The measure of SSC is 

bridge-detrended standard deviation: 𝜎(𝑣, 𝑠) =

√
1

𝑠
∙ ∑ (𝑌𝑣

′(𝑖) − 〈𝑌𝑣
′〉)2𝑠

𝑖=1 , from a similar formula can be deduced. 

Subsequent steps were identical with traditional fractal analysis. 

 

Characterization of real-time fractal analytical tools 

Precision of algorithm were described in terms of the bias of 

estimated Hurst exponent (Ĥ), the low value of which indicates 

stability of floating point calculations. However, variation 

coefficient was used as a specific measure of numerical 

instability. In order to eliminate its distorting effect on the 

analysis, I implemented real-time classification according to the 

fGn/fBm dichotomy (separated by H=1), the reliability of this 

procedure were assessed in separate tests. Minimally biased 

estimation of fractal parameters become possible after identifying 

signal class not affected by numerical instability. During 

quantitative tests a population of synthesized fGn and fBm 

monofractals with different dyadic length (28≤L≤214) and Hurst 
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exponent (0<Htrue<2, step: 0.01) were evaluated (statistics were 

obtained for n=100 realization for each L and Htrue). A specific 

measure of precision was expressed as a % of signals with bias 

less than a predefined tolerance (0.05 és 0.2). Finally, the 

dynamic response of the RT-analysis to time-varying scaling 

properties in the signal was assessed on synthesized processes 

(concatenated monofractals with different H) and on cerebral 

hemodynamics (recorded by NIRS) during cardiac surgery to 

demonstrate the applicability of the algorithm.  

 

Focus-based multifractal analysis 

The indirect formalism of multifractal time series analysis 

requires a scaling function, in case of  multifractal DFA (MF-

DFA: 𝑆𝐹(𝑞, 𝑠) = {
1

𝑁𝑠
∑ {𝐹(𝑣, 𝑠)}𝑞/2𝑁𝑠

𝑣=1 }
1/𝑞

. The scaling 

exponents (here Ĥ(q)) were obtained both with standard and 

focus-based regression analysis, where the former refers to a 

fitting procedure performed independently for each and every q: 

ln(𝑆(𝑞, 𝑠)) = 𝐶 + 𝐻(𝑞) ∙ ln 𝑠. In contrast a focus (ln(Ŝ(L))) is 

incorporated in the alternative model, where all estimated 

parameters (Ĥ(q) and focus) are obtained once:  ln(𝑆(𝑞, 𝑠)) =

𝐻̂(𝑞) ∙ (ln 𝑠 − ln 𝐿) + ln(𝑆̂(𝐿)). 
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Qualitative assessment of multifractal analytical tools 

Focus-based formalism were tested on a population of 

synthesized multifractal time series (n=50 realizations for each 

preset H(q)). Signals were created at two different signal lengths 

(L1=1024 or L2=16384) and wide parameter space was explored 

in terms of degree of LRC and multifractality. The DFA-specific 

scaling function values were calculated at dyadic scales and at a 

predefined set of statistical moments: 𝑄𝑀𝐹 ≔  {∀𝑞 ∈ 𝑍 |  − 15 ≤

𝑞 ≤ +15}. I compared the behavior of standard- and focus-based 

methods based on the quality of the obtained D(h), distinguishing 

a corrupted multifractal spectrum showing an ill-defined 

functional relationship with an inversion.  

 

Variance profiles of NIRS-signals, HbO–HbR relationship 

Time series of the original and CBSI-pretreated hemoglobin 

fluctuations were analyzed by focus-based multifractal SSC 

(FMF-SSC), the scaling function of which were obtained at 60 

logarithmically spaced scales between smin=16 and smax=8192 and 

QMF: 𝑆𝜎(𝑞, 𝑠) = {
1

𝑁𝑠
∑ {𝜎(𝑣, 𝑠)2}𝑞/2𝑁𝑠

𝑣=1 }
1/𝑞

. The signal contains L 

values of Hb concentration and is divided into Ns = int(L/s) non-

overlapping time windows (index: v = 1, 2, ..., Ns).  
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Variance profiles of HbO, HbR and HbT=HbT dynamics are 

defined as 𝑆𝜎(2, 𝑠) for q=2. Their exact relationship is expressed 

by the so-called Bienaymé-formula: 𝑆𝜎(2, 𝑠) 
𝑇 2 = 𝑆𝜎(2, 𝑠) 

𝑂 2 +

𝑆𝜎(2, 𝑠) 
𝑅 2 + 2𝑟𝜎(𝑠) ∙ 𝑆𝜎(2, 𝑠) ∙ 

𝑂 𝑆𝜎(2, 𝑠) 
𝑅 , where rσ(s) is the 

scale-wise cross-correlation coefficient. This measure of HbO–

HbR relationship can be derived from the above equation. 

Scaling-range adaptive bimodal multifractal analysis (FMF-

SSC) was performed directly yielding estimates for H(q) and 

focus, separately for the low and high range of temporal scales, 

representing a slow and fast dynamics. For each of these 

component, the obtained Ĥ(q) and D(h) were characterized by the 

following endpoint-parameters: Ĥ(2) and hmax (Hölder exponent 

belonging to D(h) maximum, where D=1); ΔH15=H(-15)–H(15), 

and full-width at half maximum (fwhm) of D(h) in addition to the 

ln(Ŝ(L)). 

 

Statistical analyses 

One-sided tests were used to compare NIRS-signals with a 

population of signals with known stochastic/fractal properties to 

verify true multifractality, while F-test was used for the 

assessment of bimodality. Only correlation-type bimodal 

multifractals were made subject of further analyses. 
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Group-level comparisons were carried out depending on 

normality of distributions for each independent sample and 

homogeneity of variances. Means or medians of different groups 

were compared with two-way ANOVA (second factor: gender, 

post-hoc test: Tukey) or Mann-Whitney U test, respectively. 

Null-hypothesis was rejected  in case of p<0.05. 

Statistical evaluation of the Bienaymé-formula was carried 

out in general linear model (GLM) framework (dependent 

variable was the variance profile of HbT) for describing the effect 

of HbO–HbR relationship. Multiple regression analyses were 

performed with scale-wise correlation coefficient as a regressor; 

while age- and gender-related effects were taken into account  

only during analysis of covariance (AnCOVA), while rσ(s) was a 

covariate. 

 

Results 

Performance of real-time fractal analytical methods 

Numerical instability was observed for fGn signal with lowest 

Htrue value and for persistent fBm (Htrue>1.5) processes. The 

implementation of real-time signal classification (Ĥ<1: fGn; 

Ĥ>1: fBm) proved to be effective for eliminating this source of 
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bias. Less precise estimates were obtained for signals with Htrue 

≈1 (close to 1/f boundary separating fGn and fBm class) due to 

misclassification and for shorter signals. RT-DFA and RT-SSC 

did not differ from each other in terms of neither signal 

classification nor precision. Interestingly, Ĥs obtained by RT-

DFA were less biased compared to „offline” DFA without signal 

classification. Dynamic responses of the algorithm to processes 

with time-varying H were faster in case of smaller sliding window 

size. In addition, the analysis followed a step decrease in H with 

shorter delay compared with signals featuring a step increase in 

H (with same magnitude). Real-time algorithms turned out to be 

applicable on in vivo – acquired during cardiac surgery – NIRS-

signals, specifically the result of RT-DFA was influenced both by 

hemodynamic artefacts and stage of operation. 

 

Focus-based multifractal time series analysis 

Inversion of singularity spectrum obtained with FMF-DFA was 

not observed at all neither for in vivo NIRS-records nor for 

synthesized signals. I evaluated the analytical behavior of both 

standard (MF) and focus-based (FMF) regression model. Using 

binomial logistic regression  (dependent variable: presence / 

absence of D(h) inversion, independent variable: sum of square 
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error describing goodness of model fit, SSE) allowed statistical 

comparison of the models and revealed a significant positive 

correlation between the ratio of FMF-SSE to MF-SSE and the 

inversion of D(h). 

 

True bimodal multifractality of hemoglobin-fluctuations 

In case of eight subjects, their recorded spectrum significantly 

deviated from the f-β-model which features fractal processes. In 

addition, bimodality was not confirmed for hemodynamic signals 

of two other subjects, therefore results from 42 subjects were 

promoted to group-level statistical comparison. 

 

Impact of age on multifractal endpoint parameters 

Signal component of raw HbT associated with low range of 

temporal scales (slow: s) and another component CBSI-pretreated 

HbT spanning across a range of high temporal scales (fast: f) 

showed age-dependence. Specifically: slow component of the 

HbT was found more correlated (increased Ĥ(2) and hmax) in the 

elderly group, while there were no age-group differences in foci. 

Parallelly, a decrease in Ĥ(2), hmax and ln(Ŝ(L)) was found for the 

fast component CBSI-HbT. Degree of multifractality did not 

differ between young and aged group. Notably, significant 
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influence of gender has not been identified regarding any of the 

calculated endpoint parameters. 

 

Age-dependence and significance of HbO–HbR relationship 

The scale-wise cross-correlation coefficients were elevated in 

case of elderly participants, with a significant difference at high 

temporal scales (>2000 seconds) correlating with higher Ĥ(2), 

too. Statistical analysis of the Bienaymé-formula confirmed the 

significant effect of altered rσ(s) on the variance profile of HbT 

on almost every time scale independently from age and gender. 

 

 

Conclusions 

Real-time fractal analysis 

With the aid of RT-DFA method, calculation of scaling function 

for monofractal analysis is fast and the approximation of 

monofractal paramaters at least as precise as obtained with offline 

DFA. Moreover, the methods described in the dissertation are 

capable of estimating fractal measures in real-time. 

 I obtained less biased estimate of Hurst exponent by 

implementing real-time signal classification, which prevented 
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a major source of error in the calculations due to numerical 

instability. Accordingly, I demonstrated the dynamic 

behavior of the real-time signal classification methods using 

synthesized signals with time-varying H and assessing the 

H(t) function from hemodynamic signals recorded from the 

brain cortex during cardiac surgery. 

Focus-based multifractal analysis 

Algorithms following standard indirect multifractal formalism 

apply the Legendre-transformation that potentially, often leads to 

corruption of singularity spectrum (inversion of D(h)). Indeed, 

this phenomenon has often been observed in case of ideal 

stochastic multifractal that we generated for testing purposes, 

more frequently for shorter than for longer signals. 

 During the examination of model fit, I revealed that the source 

of error was the finite size effect attributable to the finite 

length and discrete representation of the analyzed process. 

Consequently, the values of generalized Hurst exponent 

function become biased often leading to a non-monotonously 

decreasing Ĥ(q) implicated by the geometry of the scaling 

function. In fact, the non-concave property of τ(q) is directly 
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responsible for the inversion of D(h), since it violates the 

prerequisite of Legendre-transformation. 

 Relying on  the analytical evaluation of τ(q) concavity 

(d2τ(q)/dq2<0) I give a proof for the tight relationship between 

this feature and monotonicity of Ĥ(q). The negativity of 

2𝑑𝐻(𝑞)

𝑑𝑞
+ 𝑞 ∙

𝑑2𝐻(𝑞)

𝑑𝑞2
 (the second derivative of 𝜏(𝑞) = 𝑞 ∙

𝐻(𝑞) − 1) is dominated by the monotonous decay of Ĥ(q). 

Furthermore, it can be shown that focus-based regression 

model – building on the monotonously decreasing Ĥ(q) – 

ultimately guarantees inversion-free D(h). The successful 

handling of finite size effect is due to enforcing the 

convergence of scaling function profiles. The ratio behind 

such model fitting procedure is that i) in case of s=L the 

obtained S(q,s) values become independent from moment 

order and ii) monotonicity suggested by the algebraic 

inequality between power means: 𝑞2 > 𝑞1 ⇒ 𝑆(𝑞2, s) >

𝑆(𝑞1, s). 

 

Impact of aging on local scale-free properties on hemoglobin 

fluctuations in the brain cortex 
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In case of the majority of participants, the measured rsNIRS 

signal proved to be true bimodal correlation-type multifractal. 

The corresponding endpoint parameters and measures of HbO–

HbR relationship were subsequently analyzed for a statistically 

significant effect of age and gender (group level statistical 

significance was not affected by the excluded subjects whose 

hemoglobin fluctuations could not be fitted with a genuine fractal 

model). 

Based on the bimodality of local scale-free behavior of both 

raw and CBSI-pretreated signals it become possible to interpret 

changes in calculated variables as age-dependent neurogenic and 

vasogenic influences. Accordingly, we found that the significant 

age-related increase of Ĥ(2) and hmax obtained for the slow 

component of raw NIRS signals disappeared after applying CBSI, 

suggesting the vasogenic origin of group-level difference. Vice 

versa, the age-related differences of the calculated Ĥ(2), hmax and 

focus revealed for the fast component of only the CBSI-pretreated 

signal should reflect altered neurogenic fluctuations. The most 

likely explanation is that such age-related difference existing also 

between raw HbT signals was obscured by vasogenic fluctuations 

and became detectable of after the majority of this signal 

component – as it mainly renders the dynamics of HbO–HbR 



18 

relationship more correlated – was removed by CBSI. Spectral 

analyses of the raw and CBSI-HbT signals also support this view, 

and several studies have evidenced, that the age-dependent 

changes of the slow component of raw HbT fluctuations occur 

dominantly due to vascular (e.g. endothelial), while such changes 

regarding the fast component of CBSI-HbT are dominated by 

neural factors. Regarding the latter component, the observed 

decrease in the calculated endpoint parameters can be interpreted 

as the decreased incoming signaling to the region of interest of 

the elderly persons participating in our study. Difference between 

parameters reflecting degree of multifractality of the examined 

cerebral hemodynamics was not age-dependent. 

 I found the elevation of scale-wise cross-correlation 

coefficient especially at high temporal scales. This pattern 

contributes to the causal explanation of age-dependent 

changes of the multifractal parameters concerning the 

vasogenic influences based on the Bienaymé-formula. 

Furthermore, the statistical analysis of this formula reveals the 

significant effect of rσ(s). These observations suggest an age-

related attenuation of NVC, which is also indicated by an 

increased cross-correlation of HbO–HbR dynamics.   
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