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1. ABBREVIATIONS 

+  positive 

*  p < 0. 05  

2P  two-photon 

3D   3-dimensional 

AP   action potential 

AU  arbitrary unit 

AZ   active zone 

Bkgrd background 

CA  Cornu Ammonis 

CV  coefficient of variation 

DG  dentate gyrus 

duA  ‘detected unitary’ amplitude 

EC  Entorhinal Cortex 

Elfn1  extracellular leucine-rich repeat fibronectin-containing protein 1 

EM  electron microscopic 

EPSC excitatory postsynaptic current 

EPSP excitatory postsynaptic potential 

ER  error rates 

Fv  felszabadulási valószínűség 

FOV  field of view 

FS  fast-spiking 

FWHM full width at half-maximal amplitude 

GABA gamma aminobutyric acid 

GEVI genetically encoded voltage indicators 

IN  interneuron 

IQR  interquartile ranges 

ISI  inter spike interval 

mGluR1α metabotropic glutamate receptor 1α 

MW U Mann-Whitney U test 
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NA  numerical aperture 

NGS  normal goat serum 

O-Bi  oriens-bistratified 

O-LM oriens-lacunosum moleculare 

PB  phosphate buffer 

PC  pyramidal cell 

PFA  paraformaldehyde  

pnonlin  nonlinearity parameter 

Pr  release probability 

PS  piramissejt 

PSD  postsynaptic density 

PSP  postsynaptic potential 

puA  ‘presumed unitary’ amplitude 

PV  parvalbumin 

ROI  region of interest 

SDS-FRL sodium dodecylsulphate- digested freeze-fracture replica labeling 

SNR  signal to noise ratio 

SOM  somatostatin 

str. l-m stratum lacunosum-moleculare 

str. luc. stratum lucidum 

str.ori. stratum oriens 

str. rad. stratum radiatum 

SV  synaptic vesicle 

TBS  Tris-buffered saline 

VGCC voltage-gated Ca2+ channels 
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2. INTRODUCTION 

2.1. Glutamatergic synaptic transmission in the central nervous system 

Regulated control of synaptic transmission is essential for gating the information flow 

through neuronal circuits. Functional parameters such as neurotransmitter release probability 

(Pr), size of postsynaptic response, short- and long-term plasticity and efficacy are different 

depending on the identity of the pre- and postsynaptic neurons. Moreover, different axon 

terminals of a cell can have different release probabilities resulting in a context-dependent 

activation of the postsynaptic cells by the same presynaptic cell (reviewed in Nusser, 2018). 

A depressing synapse with high initial transmitter release probability is more efficacious at 

low frequencies, whereas a facilitating synapse with low initial release probability will be 

more efficacious at high frequencies, and can serve as presynaptic burst detector (Blackman 

et al., 2013). The fact that such a mechanism is present in spite of the necessity of a signaling 

mechanism between the pre-and postsynaptic cells, suggests that this form of diversity is 

potentially crucial for the information processing in the mammalian brain (Blackman et al., 

2013). 

Understanding the rules of formation of synapses with diverse properties is crucial 

for elucidating how neuronal circuits are built up from individual neurons, which are then 

responsible for the emergence of complex behaviors and memory formation. The mechanism 

underlying the differential regulation of synaptic properties however, remains elusive. In the 

next sections, after introducing the studied brain region, I will summarize our current 

knowledge about the anatomical and molecular features and the functional properties of 

synapses. Then, in the first part of my results section I will present my experiments, which 

extended our current knowledge about the mechanisms of target cell-type dependent 

differences in release probability (Éltes et al., 2017). 

Recent results provide evidence that the heterogeneity of principal cells, in concert 

with the heterogeneity of synaptic properties, can constitute several distinct, nonuniform 

parallel circuit modules underlying the diverse downstream effects of circuit activity (Soltesz 

and Losonczy, 2018). In order to observe the extent of the influence of synaptic diversity on 

information processing, storage and retrieval, it is necessary to simultaneously and 

chronically record the activity of large ensembles of neurons in behaving animals that are 
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anatomically and biochemically identifiable. In vivo electrophysiological recordings have the 

required temporal resolution, but they allow the monitoring of the activity of a relatively 

modest number of cells for short periods and provide limited information about the identity 

of the recorded cells (Buzsáki, 2004). Investigating neuronal activity using genetically 

encoded Ca2+ indicators in behaving animals has become a widely used technique. However, 

inferring the spiking activity from fluorescent traces, is still a formidable challenge due to 

the different expression levels and the highly nonlinear nature of the most widely used 

genetically encoded Ca2+ indicators (Jercog et al., 2016; Lin and Schnitzer, 2016). In the 

Introduction I will detail the limitations of the current state of the art optical imaging 

techniques, and in the second part of my results section I will explore how the amount of 

GCaMP6f in the cells affects the amplitude, kinetics and temporal summation of [Ca2+] 

transients, and I will also elucidate the effect of indicators expression level and of the 

variability of the unitary fluorescence signals on the spike inferring performance. Finally I 

will offer a reliable spike inference strategy with a superior accuracy compared to currently 

available methods (Éltes et al., 2019). 

2.2. The hippocampus 

The hippocampal formation, located within the temporal lobe of the brain, forms a 

computational unit that includes the dentate gyrus, hippocampus proper (Cornu Ammonis, 

CA), subiculum, presubiculum, parasubiculum, and entorhinal cortex (EC) (Andersen et al., 

2007). The hippocampus attracted the attention of neuroscientists due to its implications in 

mnemonic processes and episodic memory; and because of its phylogenetically highly 

preserved and simplified structure, with cell bodies, inputs and outputs ordered in distinct 

layers (Andersen et al., 2007). The first evidence pointing towards its role in memory 

retrieval has emerged in the 1950’s when Scoville and Milner reported that patient H.M. 

suffered anterograde memory impairment due to a bilateral hippocampal removal surgery 

(Scoville and Milner, 1957). Since then, the hippocampal formation has been associated with 

several other conditions, such as epilepsy and Alzheimer’s disease (Green, 1964). Beside its 

significance in different pathologies hippocampal neurons can encode spatial locations 

(O’Keefe and Dostrovsky, 1971) and time (Pastalkova et al., 2008; Kraus et al., 2013; 
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MacDonald et al., 2013). Hippocampal neurons can also recognize the position of 

conspecifics (Omer et al., 2018), possibly playing a role in social interactions; they are able 

to code constant landmarks of changing environments (Geiller et al., 2017), and locomotion 

or immobile periods of a task (Arriaga and Han, 2017). Some hippocampal neurons increase 

their activity in reward zones during reverse replays in accordance with the relative amount 

of the reward (Ambrose et al., 2016). Aronov et al hypothesize and provide evidence that the 

spatial representations are just examples of a general mechanism for encoding any arbitrary 

continuous variables that are relevant to an animal (Aronov et al., 2017). Due to these 

intriguing implications and its simplified structure the hippocampus became a model system 

for neuroanatomical and electrophysiological studies relating to the synaptic organization of 

the brain. Therefore, I have chosen to investigate glutamatergic synaptic transmission in this 

brain region. 

2.2.1. The intrinsic organization of the hippocampus 

The hippocampus is devided to four main regions: dentate gyrus, area CA3, CA2, and 

CA1 of the hippocampus proper. The dentate gyrus consists of three layers: 1) the molecular 

layer where the apical dendrites of the granule cells receive their input; 2) the granule cell 

layer in which the somata of principal cells, the granule cells are located in a tightly packed 

manner; 3) a polymorphic layer/ hilus which is comprised of polymorphic cells and the 

efferent fibers of the dentate gyrus (Figure 1) (Andersen et al., 2007).  

 

Figure 1. The hippocampus. 

Drawing of Santiago Ramon y Cajal of the 

hippocampus in his 1911 book Histologie 

de Système Nerveux. The arrows give his 

interpretation of likely impulse direction. 

Abbreviations: D, dentate gyrus; C, 

hippocampus proper. Modified from 

(Andersen et al., 2007). 

The principal cells from the three areas of the hippocampus proper are also organized 

in a single layer; however, the size of their somata are different along the proximodistal axis 
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(Figure 1) (Andersen et al., 2007). All these principal cells release L-glutamate from their 

axon terminals.  

Additionally to the laminar division of the neuronal elements of the hippocampus, the 

pyramidal cells (PCs) of the CA1 region are morphologically, molecularly and functionally 

(physiological properties, connectivity) heterogeneous along a radial axis, that is 

perpendicular to the PC layer (reviewed in Soltesz and Losonczy, 2018). The superficial CA1 

PCs are immunopositive for a Ca2+ binding protein calbindin, which may function as an intra-

neuronal Ca2+  buffering system (Baimbridge et al., 1991). Moreover, another study 

demonstrated transcriptional gradients along the radial axis (Cembrowski et al., 2016), which 

could manifest in differences in protein expression and functional properties (reviewed in 

Soltesz and Losonczy, 2018). The heterogeneity along the radial axis is complemented with 

spatial gradients in the dorsoventral axis (reviewed in Strange et al., 2014) and proximodistal 

axis (reviewed in Igarashi et al., 2014). The PCs located in dorsal hippocampus show more 

precise place fields compared with the more diffuse place fields of ventral hippocampal place 

cells (Jung et al., 1994; reviewed in Basu and Siegelbaum, 2015). CA1 PCs also differ in 

their dendritic morphology (Bannister and Larkman, 1995), connectivity with INs (Lee et al., 

2014), activity during theta oscillations (Mizuseki et al., 2011) and sharp-wave ripples 

(Valero et al., 2015) in vivo. 

The inhibitory neurons of the hippocampus, which release gamma aminobutyric acid 

(GABA) from their terminals, are even more diverse with respect to their functional, 

anatomical properties and neurochemical content (Klausberger and Somogyi, 2008; 

Somogyi, 2010). Distinct types of interneurons (INs) provide subcellular domain-specific 

GABAergic innervation to PCs, allowing the coordination of multiple glutamatergic inputs 

through their temporally distinct activity (Somogyi et al., 2014). The two populations of INs 

that are of interest to my study are the fast-spiking (FS) parvalbumin-positive (PV+) and the 

somatostatin (SOM) and metabotropic glutamate receptor 1α (mGluR1α) expressing INs. 

SOM and mGluR1α-expressing, oriens-lacunosum moleculare (O-LM) and oriens-

bistratified (O-Bi) INs of the CA1 area have their soma and dendrites located in stratum 

oriens and receive facilitating excitatory postsynaptic currents (EPSCs) (Losonczy et al., 

2002; Biro, 2005). In contrast, the somata of PV-expressing INs (basket, axo-axonic, 
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bistratified cells) are located in stratum pyramidale. Due to the expression of Kv3.1b K+ 

channel subunit, these cells are able to fire at very high frequencies (Du et al., 1996). Their 

inputs from PCs display short-term depression (Losonczy et al., 2002). The synaptic outputs 

of these cells also differ, PV+ cells innervate the perisomatic region of the PCs, whereas 

mGluR1α+ cells innervate the distal dendritic compartments; therefore the two cell classes 

can exert their inhibitory effects on different afferent pathways. 

2.2.2. The hippocampal circuit 

The afferents and efferents of the hippocampus are organized in layers in a 

topographical manner. The main hippocampal input is formed by fibers from the layer II and 

III of the entorhinal cortex, which form synapses on the dendrites of dentate gyrus granule 

cells and CA3 PCs; and on the apical dendrites of CA1 PCs respectively (Figure 2) 

(Andersen et al., 2007). These two pathways, the Perforant Path (indirect) and the 

Temporoammonic Path (direct) transfer different information from the medial and lateral 

entorhinal cortices: spatial (Zhang et al., 2013) and nonspatial (Hargreaves et al., 2005), or 

context- and content-related (Knierim et al., 2014) information, respectively (reviewed in 

Basu and Siegelbaum, 2015). This information is then further processed in the hippocampus 

(Figure 2). The axon terminals of granule cells, the Mossy Fibers, form synapses onto 

complex spines, the so-called thorny excrescences on the apical dendrites of the CA3 PCs in 

stratum lucidum. The CA3 PCs form a dense network of reciprocal connections and innervate 

heavily the dendrites of PCs of the CA2 and CA1 regions in the stratum radiatum and oriens 

(via the Schaffer Collateral Pathway). They also send axons to the contralateral hippocampus 

via the anterior commissure (Associational Commisural Pathway) (Andersen et al., 2007; 

Basu and Siegelbaum, 2015). Recent results provide evidence for additional excitatory inputs 

of CA1 PCs directly from layer II of medial EC (Kitamura et al., 2014) and also from the 

CA2 region (Chevaleyre and Siegelbaum, 2010). The CA2 neurons in turn receive similar 

direct and indirect inputs as CA1 PCs from the EC, a weaker input from dentate gyrus granule 

cells through the Mossy Fibers (Kohara et al., 2014), and additional inputs from a number of 

subcortical regions (Cui et al., 2013; Hitti and Siegelbaum, 2014)  
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Several types of INs of the hippocampus are innervated by the direct pathway from 

EC layer III which provides strong feedforward inhibition onto CA1 pyramidal neurons. An 

important GABAergic input to INs arrives from the medial septum, which was proposed to 

contribute to the coordination of network activity through parallel, target area- and cell type-

selective projections (Unal et al., 2018). 

 

Figure 2. The classical hippocampal circuit. 

Perforant path: direct pathway to CA1 PCS: purple; indirect to dentate gyrus (DG) granule 

cells: black; Mossy fibers: dark green; Schaffer collateral: dark red; CA1 output: blue; 

long-range inhibitory projections: green; local GABAergic INs and their local projections: 

red. Arrowheads indicate the direction of information transfer. Modified from Basu and 

Siegelbaum, 2015. 

The major output of the hippocampus is provided by the axons of CA1 PCs (Figure 

2) which innervate a number of brain regions, including subiculum, medial and lateral EC, 

perirhinal cortex, prefrontal cortex, restrosplenial cortex, amygdala, nucleus accumbens, the 

anterior thalamic nuclei, the medial mammillary nucleus, the lateral septum (reviewed in 

Basu and Siegelbaum, 2015). The GABAergic outputs of some projecting INs innervate the 

local INs (Melzer et al., 2012) of subiculum and medial EC, medial septum (Jinno et al., 

2007; Fuentealba et al., 2008), retrosplenial cortex, indusium gresium (Jinno et al., 2007), 

striatum (Melzer et al., 2012). In has been suggested that long-range inhibitory projections 
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may be important for coordinating the timing between the hippocampus and its cortical 

targets (Buzsáki and Chrobak, 1995; reviewed in Basu and Siegelbaum, 2015). 

2.3. Glutamatergic synaptic transmission 

Synapses are specialized sites where neurons communicate in a spatially and 

temporally precise manner. Currently, two major types of synapses are known to exist: 

electrical and chemical. Electrical synapses provide instantaneous signal transmission via 

gap junctions; most synapses are however, chemical and are capable of highly complex  

signaling (Kandel et al., 2013). I will present in more details the chemical synaptic 

transmission. 

2.3.1. Anatomical and molecular structure of the synapse 

Chemical synapses (hereafter synapses) are close appositions of specialized regions 

of the plasma membranes of the pre- and postsynaptic cells (Figure 3), containing electron-

lucent synaptic vesicles (SV), of a size of ~40 nm (Palay and Palade, 1955) which store the 

neurotransmitters. The vesicles are intercalated in a hexagonal grid of dense projections  

anchored to an actin scaffold by synapsin (Akert et al., 1972; Pfenninger et al., 1972; 

reviewed in Südhof, 2012). Those vesicles that are in contact with the plasma membrane are 

called docked vesicles (Figure 3); they seem to localize randomly over the AZ area 

(Schneggenburger et al., 2012) and are believed to be set for fusion and release of the 

neurotransmitter. 

The synaptic vesicle exocytosis is spatially restricted to the active zone (AZ), marked 

by an electrodense material at the precise opposition of the plasma membranes (Gray, 1963; 

reviewed in Südhof, 2012). This is surrounded by the perisynaptic zone which is the site of 

synaptic vesicle endocytosis, contains presynaptic receptors (e.g.: GABAB, group III 

metabotropic glutamate receptors - which can regulate synaptic activity) and proteins 

involved in membrane trafficking and recycling of synaptic vesicles. 

DOI:10.14753/SE.2019.2319



13 

 

 

Figure 3. Electron tomograph of an excitatory synapse. 

(A) Electron tomographic subvolume of a CA3 PC axon terminal establishing asymmetric 

synaptic contact (arrowheads demarcate the edges of the synapse) on a PV+ dendrite 

(labeled with preembedding peroxidase reaction). (B) Higher-magnification view of the 

boxed area showing a docked vesicle. Abbreviations: SV, synaptic vesicle; PSD, 

postsynaptic density. Modified from Éltes et al., 2017, experiment of Noemi Holderith. 

The AZs are composed of specialized, evolutionarily conserved proteins: RIM 

(central organizers of the AZ), Munc13 (mediates vesicle priming), RIM-BP (links Ca2+ 

channels to RIM), α-liprin, ELKS (synapse formation), piccolo and bassoon (provide 

presynaptic skeleton) which are part of the secretory apparatus, and transsynaptic cell-

adhesion molecules (e.g. neurexins). Components of the release machinery (SNARE 

complex, Munc18) are also present; however, these are not enriched in the AZs but 

distributed all over the plasma membrane (reviewed in Südhof, 2012; Kandel et al., 2013). 

The AZs contain P/Q- (Cav2.1) and N-type (Cav2.2) Ca2+ channels, which are responsible 

for the release, and also R-type (Cav2.3) Ca2+ channels (Holderith et al., 2012; Parajuli et al., 

2012; Schneggenburger et al., 2012; reviewed in Südhof, 2012; Althof et al., 2015; Lenkey 

et al., 2015; Éltes et al., 2017). The P/Q- and N-type channels are enriched at the AZs of 

hippocampal glutamatergic and GABAergic, and calyx of Held terminals (Kulik et al., 2004; 

Holderith et al., 2012; Althof et al., 2015; Lenkey et al., 2015; Nakamura et al., 2015; Éltes 

et al., 2017). Their density in the CA3 PC terminals correlates linearly with the AZ area 
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(Holderith et al., 2012; Althof et al., 2015) and they are distributed nonuniformly, arranged 

in clusters (Südhof, 2012a; Althof et al., 2015; Nakamura et al., 2015). 

The presynaptic membrane communicates with the postsynaptic membrane through 

a 20-40 nm synaptic cleft, where the neurotransmitters are released. The postsynaptic 

membrane contains postsynaptic receptors (e.g.: AMPA, NMDA in excitatory, GABAA and 

GABAB, GlyR in inhibitory synapses) and several regulatory proteins embedded in the 

postsynaptic density (Kandel et al., 2013). 

2.3.2. Synaptic release 

Synaptic transmission is initiated by an action potential (AP), that depolarizes the 

presynaptic membrane, and therefore opens the voltage-gated Ca2+ channels (VGCC) (Del 

Castillo and Katz, 1954; Borst and Sakmann, 1996). Due to the low intracellular 

concentration of Ca2+ at rest and due to effective [Ca2+] buffering capabilities (mobile buffers, 

intracellular stores), Ca2+ ions are very efficient chemical signals (Kandel et al., 2013). The 

transient increase in its concentration induces exocytosis of the synaptic vesicles (Katz and 

Miledi, 1967; reviewed in Sudhof, 2004) in a highly cooperative manner (Dodge and 

Rahamimoff, 1967). The ultrafast speed of neurotransmitter release, not much slower then 

the actual opening of the VGCC (~ 100 μs), indicates that a release machinery must exist in 

a primed and ready state (Sabatini and Regehr, 1999; reviewed in Südhof, 2012b, 2013a, 

2013b). 

Synaptic vesicle proteins, such as synapsins target the vesicles to release sites; 

whereas the Ca2+ channels are recruited to the release sites by the collaboration of two 

families of evolutionary conserved active-zone proteins, RIMs and RIM-BPs (binds Ca2+ 

channels). The interaction of RIM with Munc13 and vesicular Rab3/ Rab27 GTPases results 

in the docking of synaptic vesicles (Figure 4). Additionally, Munc13 serves as a catalyzer of 

priming of vesicles for fusion (Wang et al., 1997; Kaeser et al., 2011; reviewed in Südhof, 

2013a, 2013b). Recent results demonstrated a role of Munc13-3 in the regulation of 

developmental localization of Cav2.1 (P/Q-type) and Cav2.2 (N-type) Ca2+ channels and of 

the coupling distance between release sensors and Ca2+ channels at parallel fiber-to-Purkinje 

neuron synapses (Kusch et al., 2018).  
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 Figure 4. Recruitment of 

Ca2+ channels and the 

docking of vesicles at 

release sites.  

Figure from (Südhof, 

2013b). 

In the first step of the priming, two proteins located on the plasma membrane 

(syntaxin and SNAP-25) form a complex (the SNARE complex) with the synaptic vesicle 

protein synaptobrevin (Söllner et al., 1993a). The zippering of the SNARE complexes forces 

the two membranes into close proximity, destabilizes their hydrophilic surfaces and initiates 

fusion (Priming I on Figure 5). The sensors of the Ca2+ ions, the synaptotagmins also bind 

to syntaxin-1 of the SNARE complexes (Bennett et al., 1992; Söllner et al., 1993b; Li et al., 

1995; reviewed in Südhof, 2013b, 2013a). Then, the calcium-activated synaptotagmin 

displaces complexin (a co-factor for synaptotagmin which functions both as a clamp and as 

an activator of calcium- triggered fusion (McMahon et al., 1995; Maximov et al., 2009)), and 

tiggers fusion-pore opening (Priming II on Figure 5). Binding of Munc18-1 protein to 

syntaxin (full trans-SNARE complex) opens the fusion pore (Hata et al., 1993; Dulubova et 

al., 1999; reviewed in Südhof, 2013b, 2013a). 

Fusion-pore expansion transforms the initial trans-SNARE complexes into cis-

SNARE complexes (Fusion completion on Figure 5) that are disassembled by the specialized 

ATPase NSF.  During the multiple cycles of association and dissociation, the function of the 

SNARE complex is maintained by chaperones: cysteine string proteins and synucleins. The 

continued association of Munc18-1 to SNARE complexes throughout their assembly/ 

disassembly cycle is essential for fusion (Khvotchev et al., 2007; reviewed in Südhof, 2013b, 

2013a; Zhou et al., 2013) 
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Figure 5. Key proteins regulating priming of 

synaptic vesicles, fusion of the membranes, 

pore opening and neurotransmitter release. 

(a) Overview of the protein complex assembly 

for synaptic release. (b) Expanded view of the 

primed vesicle fusion complex. Figure from 

(Südhof, 2013b). 

The pioneering work of Katz revealed that neurotransmitter release (at the end-plate 

of frog muscle) results in a postsynaptic response that is composed of several postsynaptic 

potentials (PSPs) of a fixed size  which are released in an all-or-none manner (Del Castillo 

and Katz, 1954). In most neurons however not all APs, but only 10 - 20% of them, are able 
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to trigger the neurotransmitter release (Goda and Südhof, 1997; reviewed in Sudhof, 2004). 

The Pr depends on the number of release ready vesicles, the Ca2+ concentration in the 

terminal, and the coupling of Ca2+ and vesicle fusion. Because these factors can be modulated 

by several mechanisms (e.g.: regulation of Ca2+ channel function, modulation of release 

machinery proteins, regulation of Ca2+ entry by the AP waveform or by different Ca2+ 

buffering capabilities, different composition of Ca2+ channels), the Pr can differ widely 

between different connections and even from bouton to bouton of the same axon (Atwood 

and Karunanithi, 2002; Nusser, 2018). The variability in the number of successfully released 

quanta in concert with the variability in the number of synaptic contacts and the quantal size 

(size of the postsynaptic depolarization caused by the release of a single quanta) results in 

the varying amplitude of the PSP (Katz and Miledi, 1967; reviewed in: Sudhof, 2004; Branco 

and Staras, 2009; Kandel et al., 2013). Moreover, the Pr defines the way a synapse adapts to 

dynamic inputs by being able to change with short-term activity. The PSP at a synapse with 

high initial Pr will decrease upon short-term repetitive activation (short-term depression), 

whereas at low initial Pr synapses the amplitude will increase (short-term facilitation) 

(reviewed in Branco and Staras, 2009).  

The hypothesis that these differences in synaptic properties are underlied by distinct 

molecular mechanisms is currently generally accepted. The multiple isoforms of Ca2+ sensors 

(synaptotagmins), the four presynaptic VGCC subtypes, additionally the several isoforms of 

other synaptic proteins can potentially form thousands of combinations of presynaptic 

functional properties (Nusser, 2018). 

2.4. Diversity of synaptic properties  

Assessing the efficacy and reliability of synaptic transmission in a dynamic system, 

in which a plethora of connection types respond differently to diverse patterns of presynaptic 

firing activity, are crucial to understand the ongoing information transfer. Synapses formed 

by heterogeneous, or even apparently homogeneous pre- and postsynaptic cells demonstrate 

remarkable diversity regarding their synaptic properties (Nusser, 2018). A special form of 

this diversity is the so-called target cell type-dependent form, which results in the 

transmission of different aspects of information coded in a complex spike train to distinct 
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postsynaptic cell types by the same  PC axon (Markram et al., 1998b, 1998a; Reyes et al., 

1998; Pouille and Scanziani, 2004; Koester and Johnston, 2005).  

2.4.1. Postsynaptic target cell type-dependent differences in synaptic properties  

Release probability and the paired-pulse ratio have been demonstrated to show 

inverse correlation. Therefore, performing short-term plasticity experiments and calculating 

the paired pulse ratio between the postsynaptic responses evoked by the first and last APs in 

a train will allow the estimation of the release probability of those synapses. The first 

evidence for target cell-type dependent diversity of synaptic properties was revealed in the 

early 1970s in case of motoneuron synapses, which innervated multiple muscles with 

differing release probabilities and short-term plasticity (Parnas, 1972; Robitaille and 

Tremblay, 1987; Katz et al., 1993). Two decades later,  Thomson reported a similar 

observation in the neocortex, where PC-to-PC connections showed paired-pulse depression, 

whereas PC-to certain IN synapses displayed robust short-term facilitation (Thomson, 1997). 

Later, a similar phenomenon was found in the hippocampus (Ali and Thomson, 1998; Ali et 

al., 1998; Scanziani et al., 1998; Losonczy et al., 2002), where combined functional and 

molecular neuroanatomical approaches led to the identification of the postsynaptic IN types. 

SOM and mGluR1α-expressing, O-LM and O-Bi INs of the CA1 area receive facilitating 

EPSCs with low initial Pr, whereas synaptic inputs onto FS PV-expressing INs (e.g., basket, 

axo-axonic, bistratified cells) display short-term depression and have high initial Pr (Atwood 

and Karunanithi, 2002; Losonczy et al., 2002; Biró et al., 2005; Koester and Johnston, 2005; 

Mercer et al., 2012).  

A candidate protein bestowing different Pr and short-term plasticity to axon terminals 

was mGluR7, a metabotropic glutamate receptor that shows postsynaptic target cell type-

dependent differences in its presynaptic density (Shigemoto et al., 1996). However, a group 

III mGluR-specific antagonist failed to abolish the differences in short-term plasticity of 

synapses expressing or lacking mGluR7 (Losonczy et al., 2003). More recently, Sylwestrak 

and Ghosh (Sylwestrak and Ghosh, 2012) identified the extracellular leucine-rich repeat 

fibronectin-containing protein 1 (Elfn1) as a key molecule in regulation of short-term 

facilitation. This protein is selectively expressed postsynaptically in O-LM cell somata and 
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dendrites. When Sylwestrak et al. overexpressed it in PV+ INs, the short-term properties of 

PC-to-PV IN synapses was converted from short-term depression to short-term facilitation 

(Figure 6). Their results provide evidence that Elfn1 imposes facilitating neurotransmitter 

release to the presynaptic axon terminals (Sylwestrak and Ghosh, 2012). 

 

Figure 6. Overexpression of Elfn1 in PV+ INs converts the short-term synaptic 

properties of PC-to-PV IN synapses.  

(A) Response of control and Elfn1-expressing PV+ neurons to five stimuli delivered to the 

alveus at 20 Hz. (B) Quantification of short-term plasticity in Elfn1 overexpressing PV+ 

cells. Modified from Sylwestrak and Ghosh, 2012. 

There is little data available regarding the mechanisms through which such proteins 

as Elfn1 can regulate the low initial Pr of PC-to-O-LM cell facilitating synapses, and high 

initial Pr of PC-to-PV IN depressing synapses. In 2001 Rozov et al. put forward an elegant 

hypothesis based on their experiments involving fast and slow Ca2+ buffers (Rozov et al., 

2001). Intracellular loading of pyramidal neurons with the fast and slowly acting Ca2+ 

buffers, BAPTA and EGTA respectively, differentially reduced transmitter release in these 

two types of terminals. Unitary excitatory postsynaptic potentials (EPSPs) evoked by PC 

stimulation were reduced by presynaptic EGTA to 50% by much lower concentrations of 

buffers in case of bitufted neurons compared to multipolar neurons. The lower effectiveness 

of the buffers suggest a longer diffusional distance between release sites and Ca2+ channels 

at PC-to multipolar IN synapses. Therefore, they postulated that the low initial Pr of 

facilitating cortical PC synapses can be explained by a larger coupling distance between 

VGCC and Ca2+ sensors on the docked vesicles compared with the high Pr PC synapses on 
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FS INs (Figure 7). Assuming similar Ca2+ sensors and docked vesicle distributions, this 

would suggest a lower average Ca2+ channel density within the AZs of low Pr synapses 

(Rozov et al., 2001). 

 

Figure 7. Possible distribution of Ca2+ 

channels and vesicle release sites.  

(A) bouton of a pyramidal cell axon 

contacting a bitufted cell, (B) bouton of 

a pyramidal cell axon contacting a 

multipolar cell. Voltage-dependent Ca2+ 

channels (VDCC) can be linked to a 

vesicle release site or non-linked. Figure 

from (Rozov et al., 2001). 

2.5. Diverse synaptic properties shaping network activity and behavior 

Target cell-type dependent activation of INs results in differences in information 

processing, due to the different recruitment at low and high frequencies of short-term 

depressing and facilitating synapses, respectively (Blackman et al., 2013). The INs, due to 

their diverse morphological, functional, molecular, properties have been proposed to play a 

key role in shaping network activity (Isaacson and Scanziani, 2011; Kepecs and Fishell, 

2014) and neuronal assembly formation (reviewed in Holtmaat and Caroni, 2016). Recent 

results provide evidence that distinct cognitive functions can be based on heterogeneous 

parallel circuit modules, and not random synaptic connections between homogeneous 

populations of neurons (Soltesz and Losonczy, 2018). One such example is that of deep CA1 

PCs, which receive stronger excitatory input from MEC and from hippocampal area CA2, 

weaker excitatory input from CA3 PCs, and larger inhibitory currents from PV+ basket cells, 

compared to the superficially located CA1 PCs (Figure 8) (Lee et al., 2014; reviewed in 

Soltesz and Losonczy, 2018). These deep CA1 PCs are more active and more likely to form 

place fields than superficial neurons (Mizuseki et al., 2011) and their place cell representation 
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of the goal, during a goal-oriented learning task, was found to be more predictive of 

performance compared to the superficial neurons (Danielson et al., 2016; reviewed in Soltesz 

and Losonczy, 2018). This different relationship of CA1 PC subpopulations to behavior is 

hypothesized to be due to the distinct perisomatic inhibitory interactions between separate 

output channels (Figure 8) (Soltesz and Losonczy, 2018). 

 

Figure 8. Different connectivity and synaptic properties of radially defined CA1 PC 

subpopulations can potentially result in their different recruitment during behavior. 

(A) Biased microcircuits and afferent-efferent connectivity of superficial and deep 

CA1PCs. (C) Differential behavioral functions of radially defined CA1PCs 

subpopulations. Abbreviations: MEC, Medial Entorhinal Cortex Modified; LEC, Lateral 

Entorhinal Cortex. Modified from (Soltesz and Losonczy, 2018). 

Understanding the extent to which diverse synaptic properties shape neuronal 

circuits, is critical to elucidate how neuronal activity is transformed into mnemonic processes 

and complex behaviors. For this neuroscientists must track the dynamics of large ensembles 

of morphologically and neurochemically identifiable cells in behaving animals, over 

timescales equivalent with long-term memory formation (Jercog et al., 2016). However, the 

methods currently available for exploring synaptic transmission in vivo are limited.  

2.6. Limitations of methods exploring synaptic transmission in vivo 

The ideal in vivo recording method is expected to monitor simultaneously the activity 

of large populations of neurons and to capture the temporal dynamics of their spiking activity 

during complex behaviors. In order to understand the function of neuronal networks the 
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recording method should also grant the morphological and molecular identification of 

neurons. 

2.6.1 In vivo electrophysiological recordings 

In vivo single cell electrophysiological recordings (i.e.: intracellular, cell attached, 

juxtacellular) have the required temporal resolution, and permit the post hoc identification 

and molecular analysis of the cells, but they allow the monitoring of the activity of only a 

relatively modest number of cells and only for short periods. Moreover, single cell recordings 

do not provide the opportunity to investigate the simultaneous activity of neuronal 

populations, which is necessary in order to decipher how the combination of their activity is 

coding an environment or a certain behavior. Electrical recordings of large numbers of 

neurons – populations that are statistically representative - is currently feasible by using 

tetrodes, silicon probes or multi-shank probes (Buzsáki, 2004). These techniques are invasive 

and cause local tissue damage. These large-scale electrophysiological recordings provide 

limited information about the identity of the recorded cells and face further limitations, such 

as difficulties in spike sorting (Buzsáki, 2004). 

2.6.2. In vivo optical recordings 

The introduction of two-photon (2P) microscopy (Denk et al., 1990) in concert with 

improvement of the signal to noise ratio (SNR) of the fluorescent probes revolutionized the 

field of optical imaging promoting the real-time investigation of biological processes 

(Helmchen and Denk, 2005; Svoboda and Yasuda, 2006). Optical imaging techniques have 

the advantage of monitoring AP-evoked fluorescent changes simultaneously in a large 

number of individual neurons and in a chronic manner, allowing the examination of activity 

changes during the course of learning, life experience, brain development, or disease 

progression. Moreover, the genetically encoded activity indicators enable selective 

interrogation of genetically defined neuronal subtypes, or of cells with specific patterns of 

anatomical connectivity permitting the sophisticated analyses of ensemble neural activity 

(reviewed in Broussard et al., 2014; Jercog et al., 2016; Lin and Schnitzer, 2016). The 

neuronal damage can also be minimized in case of superficially located areas, such as the 
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neocortex, because most optical preparations are minimally invasive and offer the possibility 

of placing the probe millimeters away from the area of interest. 

The most ideal optical method would be the direct imaging of voltage changes, the 

primary signal of interest, using genetically encoded voltage indicators (GEVI). However, 

the fast nature of the voltage signal requires an indicator with very fast kinetics and high 

sensitivity to secure an acceptable signal to noise ratio. The necessary membrane targeting 

of the voltage sensitive molecules causes additional difficulties in the implementation of this 

imaging method (Broussard et al., 2014). Sensors with response dynamics that are 

compatible with recording of millisecond timescale computations are available in cultured 

cells; however, their use for in vivo imaging at single cell resolution is still sporadic, due to 

critical shortcomings such as low brightness, imperfect membrane localization, or low signal 

to noise ratio (Broussard et al., 2014; Knöpfel et al., 2015). 

Neuronal spiking activity can also be indirectly monitored by recording AP-evoked 

[Ca2+] changes with Ca2+ indicators. The intracellular [Ca2+] is determined by the balance 

between calcium influx and efflux as well as by the exchange of calcium with internal stores 

and buffers, and in most neurons is ~50 - 100 nM. During electrical activity, the influx of 

Ca2+ through VGCC results in a transient increase of [Ca2+] to levels that are ten to hundred 

times higher (Berridge et al., 2000; Schwaller, 2010; reviewed in Grienberger and Konnerth, 

2012). The large concentration difference makes monitoring [Ca2+] a potent measure of 

neuronal activity. The first high affinity, high signal to noise ratio genetically encoded Ca2+ 

indicator was developed by Nakai et al. in 2000 (Nakai et al., 2001) and was named G-CaMP. 

This probe contains a circularly permutated GFP (cpGFP) that is connected to the M13 

fragment of the myosin light chain kinase (a target sequence of calmodulin), and to 

calmodulin. Upon Ca2+ binding to calmodulin, a chain of conformational changes leads to an 

increase of cpEGFP fluorescence intensity (Nakai et al., 2001). The palette of genetically 

encoded Ca2+ indicators was expanded in the following years with indicators demonstrating 

improved affinity, kinetics; and with the addition of blue and red hues (Tian et al., 2009; 

Zhao et al., 2011; Akerboom et al., 2012; Ohkura et al., 2012; Chen et al., 2013; Badura et 

al., 2014; Podor et al., 2015; Lin and Schnitzer, 2016) . The use of red indicators was expected 

to improve the maximal imaging depth and allow parallel optical manipulation of neuronal 
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activity, however they show photoswitching behavior or partial saturation at high number of 

APs, and accumulation in lysosomes which reduces the signal to noise ratio for in vivo 

imaging (Dana et al., 2016; Lin and Schnitzer, 2016). Other promising genetically encoded 

Ca2+ indicator candidates are the ratiometric indicators. Ratiometric imaging with Förster 

resonance energy transfer-based indicators have the advantage to enable the reduction of 

motion related artefacts during in vivo measurements. Their sensitivity only recently became 

comparable to that of synthetic dyes (Twitch family), however still show slower decay 

kinetics (Thestrup et al., 2014; Lin and Schnitzer, 2016).  

The GCaMP family of genetically encoded Ca2+ indicators underwent successive 

structure-guided mutagenesis over the past decade to improve sensitivity, dynamic range, 

SNR and brightness, resulting in the GCaMP6 family with sensitivities comparable to those 

of synthetic Ca2+ indicators (Nakai et al., 2001; Tian et al., 2009; Akerboom et al., 2012; 

Chen et al., 2013). Even though more recent developments yielded more sensitive (GCaMP7) 

or faster (GCaMP6fRS09, GCaMP6f91) indicators, these show more pronounced 

nonlinearity and saturate at lower Ca2+ levels; or have lower sensitivity, respectively (Ohkura 

et al., 2012; Badura et al., 2014; Podor et al., 2015). Thus, GCaMP6f became the most widely 

used genetically encoded Ca2+ indicator in behaving animals because it combines high 

sensitivity and large dynamic range with fast kinetics (Jercog et al., 2016).  

2.6.3. Inference of spiking activity from fluorescence transients 

Despite the improved properties of indicators, APs cannot be directly inferred from 

the fluorescent transients with millisecond temporal resolution (Jercog et al., 2016; Lin and 

Schnitzer, 2016). To overcome this limitation, several approaches have been developed to 

determine the AP firing underlying the fluorescent traces: template-matching (Greenberg et 

al., 2008; Grewe et al., 2010; Oñativia et al., 2013), deconvolution (Yaksi and Friedrich, 

2006; Park et al., 2013), approximate Bayesian inference (Vogelstein et al., 2009; 

Pnevmatikakis et al., 2016) and supervised learning techniques (Sasaki et al., 2008; Theis et 

al., 2016), but the accuracy of estimation for high frequency events is still < 40-60% (Lin 

and Schnitzer, 2016; Theis et al., 2016). Deneux et al. improved spike estimation 

performance by introducing a baseline drift and nonlinearity of the indicator (Deneux et al., 
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2016). They define baseline drifts as low frequency, large amplitude baseline fluctuations, 

which probably reflect slow changes in [Ca2+] which are unrelated to the cell’s firing activity. 

The nonlinearity parameters are: saturation γ, Hill exponent n or polynomial coefficient. 

MLspike software uses a maximum-likelihood approach to find the most likely underlying 

spike train (Figure 9.). 

 

Figure 9. ML spike physiological model and algorithm: Upon emission of s(t) spikes, 

intracellular [Ca2+] C(t) is driven by an increase A (the unitary calcium response) X s(t), 

then decays to the resting value with time constant τ. The measured fluorescence F(t) is 

the product of a drifting baseline fluorescence B(t) with a nonlinear function of C(t) 

accounting for dye saturation and GCaMP nonlinearities; a noise term is added. 

(b) ‘MLspike’ algorithm illustrated on a schematic example without baseline drift. (top 

and middle) The probabilities (white-green colour code) of ‘best trajectories’ originating 

from all possible calcium values (y axis, for display purposes same scale as fluorescence) 

at time t (x axis) are calculated, iteratively for decreasing time. Figure and explanation 

from (Deneux et al., 2016) 

Most of these algorithms are based on the estimation of the model parameters from a 

limited number of available simultaneous optical and electrical recordings, which might not 

capture the full range of the key parameters (Deneux et al., 2016; Theis et al., 2016).  

The spike inferring accuracy is known to depend on peak amplitude and decay 

kinetics of single AP-evoked (unitary) [Ca2+] transients, SNR, baseline fluctuations and the 
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nonlinear nature of genetically encoded Ca2+ indicators (Wallace et al., 2008; Lütcke et al., 

2013; Wilt et al., 2013; Rose et al., 2014; Deneux et al., 2016). These parameters not only 

vary among different cell types, preparations and optical recording conditions, but also 

among individual cells of the same type (Mao et al., 2008; Tian et al., 2009; Akerboom et 

al., 2012; Ohkura et al., 2012; Zheng et al., 2015). A key factor that determines many of these 

parameters is the concentration of the Ca2+ indicator: low concentrations of indicators 

provide signals with higher peak amplitudes, lower SNR and faster kinetics (Hires et al., 

2008; Broussard et al., 2014; Dana et al., 2014; Rose et al., 2014). Unfortunately, the 

concentration/expression of the genetically encoded Ca2+ indicators cannot be controlled and 

made uniform among the transfected cells when they are expressed with viral vectors, leaving 

an inherent source of error for transforming the fluorescent traces to spike trains. 

Understanding the exact relationship of indicator expression level and variability of unitary 

[Ca2+] transients, their SNR and nonlinearity, and how these parameters influence the 

performance of spike inferring algorithms is crucial to achieve higher accuracy.  
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3. OBJECTIVES 

The general aim of my PhD work is to investigate glutamatergic synaptic 

transmission. 

In the first part of my PhD thesis I pursue to answer the question of what mechanism 

underlies the target cell type-dependent differences in release probability (Éltes et al., 2017). 

For this I specifically addressed the following questions: 

1. What is the short-term plasticity of CA3 PC-to-PV+ or -mGluR1α+ IN synapses? 

2. Does the postsynaptic presence of Elfn1/2 determine the short-term plasticity at 

PC-to-mGluR1α+ INs? 

3. Are there target cell type-dependent differences in the [Ca2+] transients in axon 

terminals synapsing onto these two populations of INs? 

4. Do presynaptic kainite receptors contribute to the [Ca2+] transients in the 

mGluR1α+ dendrite-targeting boutons? 

5. Is the contribution of P/Q and N type VGCCs to the Ca2+ influx different in these 

two populations of axon terminals? 

6. Is the degree of [Ca2+] buffering similar in the PV+- or mGluR1α+-dendrite 

targeting boutons? 

Investigation of these properties and their functional consequences on network 

activity and during behavior is hampered by the inaccurate spike inference from the optically 

recorded fluorescent transients. Therefore, in the second part of my PhD work I aimed to 

understand the relationship between the expression level of the most widely used genetically 

encoded Ca2+ indicator, GCaMP6f and the variability in [Ca2+] transients, their signal to noise 

ratio and nonlinearity. I also aimed to elucidate which of these parameters is a key source of 

error in spike inference and to develop a procedure that improves the spike estimation (Éltes 

et al., 2019). For this, I asked the following specific questions: 

1. How large is the variability in the unitary [Ca2+] transients and in the GCaMP6f 

expression level in CA1 hippocampal PCs? 

2. What is the relationship of the GCaMP6f expression level and the peak amplitude 

of unitary [Ca2+] transients? 
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3. Is there a cell-to-cell variability in the temporal summation of GCaMP6f [Ca2+] 

transient? What is the relationship of the supralinearity and of the expression level, 

or the size of unitary responses? 

4. How does variability in the amplitude, kinetics and supralinearity affect the 

precision of spike estimation?  

5. Can we estimate the peak amplitude of the unitary [Ca2+] signals? Can spike 

inference performance be improved by using the peak amplitude of an estimated 

unitary [Ca2+] transient in the spike inferring algorithm? 

Contributions:  

In the first part of my thesis, the short-term plasticity measurements of CA3 PC and 

PV+/mGluR1α+ INs, and the [Ca2+] imaging from boutons of CA3 PCs are pooled from my 

recordings and that of my collaborator, Noémi Holderith’s (for exact contribution see Table 

1; Figures 1 and 2 from Éltes et al., 2017). The Neurolucida reconstructions were performed 

by Borbála Bolonyai. 

In the second part of my thesis the simulations were conducted together with my 

collaborator, Miklós Szoboszlay. He implemented the MLspike algorithm (Deneux et al., 

2016) and performed initial simulations and analysis. My collaborator, Szigeti Katalin 

performed anti-GFP immunoreactions and quantified native GCaMP6f and anti-GFP 

intensities. She also performed 3-dimensional (3D) reconstructions of the somata of a 

subselected population of the recorded cells, measured their surface-to-volume ratios and 

helped with the post hoc identification of some recorded cells (Éltes et al., 2019). 
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Table 1. Details of my contribution in the pooled data in the Part I of the thesis. 

 

 

   

Experiment name
Figure 

number
own contribution contribution of colleagues

own 

contribution 

(%)

Short-term plasticity of CA3 pyramidal 

cell synapses contacting PV+ INs. 

Figures 12, 

14
I recorded 10 cells

Noémi Holderith recorded 6 

cells
62.5%

Short-term plasticity of CA3 pyramidal 

cell synapses contacting mGluR1α+ INs. 

Figures 13, 

14
I recorded 4 cells

Noémi Holderith recorded 

27 cells
12.9%

Short-term plasticity of CA3 pyramidal 

cell synapses contacting mGluR1α+ and 

Elfn1/2+ or Elfn1/2- INs. 

Figure 15 I recorded all  the15 cells  - 100.0%

I imaged 13 PV dendrite-targeting 

boutons

Noémi Holderith imaged 13 

PV dendrite-targeting 

boutons

50.0%

I imaged 32 mGluR1α dendrite-

targeting boutons

Noémi Holderith imaged  29 

mGluR1α dendrite-targeting 

boutons

52.5%

Contribution of N/P/Q type [Ca2+] 

channels to the [Ca2+] transients
Figure 17

I recorded all  the cells, n = 12 PV 

targeting boutons , n = 19 

mGluR1α targeting botuons

 - 100.0%

Measurment of decay time constant of 

[Ca2+] transients in innervating PV+ or 

mGluR1α+ dendrites with lower dye 

concentration

Figure 18

I recorded all  the cells, n = 18 PV 

targeting boutons , n =35 

mGluR1α targeting botuons, n = 

439 boutons on unidentified 

targets

 - 100.0%

[Ca2+] transients in PV+  and mGluR1α+ 

dendrite-contacting boutons.
Figure 16
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4. MATERIALS AND METHODS 

4.1. Animal Care 

All experiments were conducted in accordance with the Hungarian Act of Animal 

Care and Experimentation (1998, XXVIII, section 243/1998) and with the ethical guidelines 

of the Institute of Experimental Medicine Protection of Research Subjects Committee. All 

experimental protocols were approved by the Protection of Research Subjects Committee of 

the Institute of Experimental Medicine. Animals were housed within the vivarium of the 

Institute in a normal 12 h/ 12h light/dark cycle with food and water available ad libitum. 

Young experimental rats were kept in a cage with their mothers and were used before 

weaning; whereas, adult mice from the same litter were kept together in the same cage. The 

environment of mice was enriched with Sizzle-Pet and cardboard tubes as play tunnels 

(Akronom). 

4.2. PART I: Investigation of the mechanism of target cell-type dependent differences 

in neurotransmitter release probability 

4.2.1. Slice preparation and electrophysiological recordings of CA3 PCs and INs 

Male Wistar rats (n = 97, 14 - 17 days old) were killed by decapitation and acute 

hippocampal slices were prepared as described previously (Holderith et al., 2012; Éltes et al., 

2017). Briefly, after decapitation, the brain was quickly removed and placed into an ice-cold 

cutting solution containing the following (in mM): sucrose, 205.2; KCl, 2.5; NaHCO3, 26; 

CaCl2, 0.5; MgCl2, 5; NaH2PO4, 1.25; and glucose, 10, saturated with 95% O2 and 5% 

CO2. Then, 300 µm-thick horizontal slices were cut from the ventral part of the hippocampus 

using a Leica Vibratome (VT1200S). Slices were incubated in an interface-type holding 

chamber in ACSF containing the following (in mM): NaCl, 126; KCl, 2.5; NaHCO3, 26; 

CaCl2, 2; MgCl2, 2; NaH2PO4, 1.25; and glucose, 10; saturated with 95% O2 and 5% CO2, 

pH 7.2 - 7.4, at 36°C that was gradually (~1 hour) cooled down to room temperature (22 - 

24°C). Experiments were performed at 22 - 24°C up to 6 h after slicing.  

Cells were visualized using a Femto2D microscope equipped with oblique 

illumination and a water-immersion lens (25X, numerical aperture (NA) = 1.05, Olympus, 
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or 25X, NA = 1.1, Nikon). Whole-cell voltage- or current-clamp recordings were performed 

from CA3 PCs or INs located in the strata oriens and pyramidale using MultiClamp 700A 

and B amplifiers (Molecular Devices). Recorded traces were filtered at 3 - 4 kHz and 

digitized online at 20 kHz. Patch pipettes (resistance 3 - 6 MΩ) were pulled from thick-walled 

borosilicate glass capillaries with an inner filament. Intracellular solution contained the 

following (in mM): K-gluconate, 110; KCl, 5; creatine phosphate, 10; HEPES, 10; ATP, 2; 

GTP, 0.4; and biocytin, 5, pH 7.3; 290 - 300 mOsm. For voltage-clamp recordings of evoked 

EPSCs in INs, the intracellular solution contained picrotoxin (0.6 - 0.8 mM). For current-

clamp recordings and Ca2+ imaging in PC axons, 100 or 300 µM Fluo5F (Invitrogen) and 20 

µM Alexa Fluor 594 (Invitrogen) were added to the intracellular solution. The firing pattern 

of the INs was determined with a series of 500 ms long hyperpolarizing and depolarizing 

current pulses with amplitudes of 125 - 500 pA. A cell was considered fast spiking if the 

average firing frequency exceeded 70 Hz. For extracellular stimulation, a unipolar 

stimulating electrode was placed in the stratum oriens at least 100 µm away from the soma.  

INs were held at -70 mV and 5 stimuli (0.2 - 0.3 ms duration, 20 - 200 pA) at 40 or 

50 Hz with 30 s interstimulus interval (15 - 70 repetitions) were applied. Data from 40 and 

50 Hz stimulations were pooled (see Figure 14). Series resistance was monitored and was < 

20 MΩ. Pyramidal cells were held at -70 mV (with a maximum of -100 pA DC current) and 

single APs at 0.05 - 0.016 Hz were evoked with 2- to 4-ms-long depolarizing current pulses 

(1 - 1.2 nA). Peak amplitude and full width at half-maximal amplitude (FWHM) of the APs 

were monitored and cells were rejected if any of these parameters changed > 10%.  

4.2.2. In vitro two-photon [Ca2+] imaging of CA3 PC axon terminals 

Experiments were performed with a Femto2D (Femtonics) laser scanning microscope 

equipped with a MaiTai femtosecond pulsing laser tuned to 810 nm (described in (Holderith 

et al., 2012). Electrophysiological data and image acquisition were controlled with software 

written in MATLAB (The MathWorks). Cells were filled for 2 h with a Ca2+-insensitive (20 

µM Alexa Fluor 594) and a Ca2+-sensitive fluorophore (100 or 300 µM Fluo5F). Boutons 

were selected at 150 - 300 µm distances from the soma on the second- and third order 

collaterals of the main axon in the stratum oriens at 35 - 80 µm slice depth. They were imaged 

DOI:10.14753/SE.2019.2319



32 

 

in line scan mode (scan duration 500 or 1200 ms at 1 kHz, 1 - 3 per minute repetition, 2 - 3 

scans averaged for each bouton) with a laser intensity of 2 - 6 mW at the back aperture of the 

objective lens. Single AP-evoked changes in fluorescence were quantified during the 

recording as deltaG/R(t) = (Fgreen(t) - Frest, green)/(Fred - Idark, red) where Fgreen(t) represents the 

green fluorescence signal as a function of time, Frest, green is the green fluorescence before 

stimulation, and Idark, red is the dark current in the red channel (Figure 10). 

 

Figure 10. In vitro two-photon [Ca2+] 

imaging of CA3 PC axon terminals. 

(A) A single AP was evoked by a 2 - to 4 ms 

long depolarizing current pulse. Inset shows 

the scanned bouton (white line, scanline for 

background; yellow line, scanline on 

bouton). (B) Fluorescence intensities in the 

red (Alexa Fluor 594), green (Fluo-5F) 

channels, and overlay respectively. Note the 

abrupt fluorescence change in the green 

channel upon the AP, and the lack of 

fluorescence change in the red channel. (C) 

Raw [Ca2+] trace (from the green channel). 

All panels are on the same timescale as A and 

are aligned accordingly. Abbreviations: 

Bkgrd, background. 

To normalize data across batches of dyes, Gmax/R values were measured by imaging 

a sealed (tip melted and closed by heating) pipette filled with intracellular solution containing 

10 mM CaCl2 for each cell at the same position where the boutons were imaged. DeltaG/R 

measurements from boutons were divided by Gmax/R, yielding the reported values of G/Gmax. 

The effects of 1 µM ω-CTX MVIIC (diluted in 1 mg/ml BSA; Tocris Bioscience and 

Alomone Laboratories) were tested by comparing the peak amplitudes of presynaptic [Ca2+] 
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transients in individual boutons, averaged from two to three consecutive scans, in control 

conditions, and after 30 min (for ω -CTX MVIIC) of wash-in of the drug. 

4.2.3. Identification of the postsynaptic target of the imaged boutons 

At the end of the recordings a high resolution image stack of the measured boutons 

was acquired; after which the slices were fixed in a solution containing 4% paraformaldehyde 

(PFA), 0.2% picric acid in 0.1 M phosphate buffer (PB), pH 7.4, at 4°C for either 12- 36 h 

(PV or mGluR1α immunolabeling) or 1 - 3 h (for Elfn1/2 labeling). Slices containing filled 

PCs were incubated in 10% and 20% sucrose as a cryoprotectant, repeatedly freeze-thawed 

above liquid nitrogen, embedded in agarose (2%), and resectioned at 70 – 90 µm thickness. 

Slices containing filled INs were immunolabeled without resectioning.  

Sections/slices were washed in 0.1 M PB and blocked in normal goat serum (NGS, 

10%) for 1 h made in Tris-buffered saline (TBS; pH 7.4), incubated in the following primary 

antibodies: mouse anti-PV (1:1000, RRID:AB_10000343; Swant); rabbit anti-PV (1:1000, 

RRID:AB_1210396; Synaptic Systems), guinea pig anti-mGluR1α (1:1000, 

RRID:AB_2531897; Frontier Institute; Mansouri et al., 2015), or rabbit anti-Elfn1/2 (1:500, 

RRID:AB_1079280; Sigma-Aldrich) diluted in TBS containing 2% NGS. After several 

washes, the following secondary antibodies were applied: Alexa Fluor 488- or Cy5-

conjugated goat antimouse or goat anti-rabbit and Cy3-conjugated donkey anti-guinea pig 

IgGs. Biocytin was visualized with Alexa Fluor 488-conjugated (Invitrogen) or Cy5-

conjugated (Jackson Laboratories) streptavidin (1:500). Sections were mounted in 

Vectashield (Vector Laboratories). Image stacks including the measured axon segment were 

acquired with an Olympus FV1000 confocal microscope with 20X and 60X (oil-immersion) 

objectives. The measured boutons were then identified based on superposition of the 2P and 

post hoc acquired confocal image stacks. Contacts between PC boutons and IN dendrites 

were considered as putative synapses if they had no apparent gap between them in the focal 

plane. 
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4.3. PART II. Investigation of variability in GCaMP6f Ca2+ transients, its relationship 

with GCaMP6f expression level and their impact on spike inference accuracy 

4.3.1. Stereotaxic viral delivery of GCaMP6f to the CA1 region of the hippocampus 

Male FVB/Ant mice (n = 57, 30 - 52 days old) were anesthetized with 100 µl / 10 g body 

weight of the mixture of Ketamine (625 µl in 10 ml), Xylazin (625 µl in 10 ml) and 

Pypolphen (250 µl in 10 ml). The head was fixed in a Kopf stereotaxic apparatus (David 

Kopf Instruments) and a small craniotomy (0.5 - 1 mm) was made bilaterally, above the CA1 

region of dorsal hippocampus, at the following coordinates: anterior - posterior: 2.46 - 2.0 

mm, medial - lateral: -1.5 mm, dorsal - ventral 1.3 - 1.5 mm. To obtain a sparse expression 

of the genetically encoded Ca2+ indicator GCaMP6f, I used a mixture of 

AAV9.Syn.Flex.GCaMP6f.WPRE.SV40 (qTiter 7.744e13 GC/ ml, Penn Vector Core) and 

AAV9.CMV.PI.CRE.rBG (qTiter 5.86e13 GC/ ml, Penn Vector Core) in 1:100 dilution. A 

volume of 100 nl was injected (2.3 nl steps at a speed of 11 bpm) bilaterally using thin glass 

pipettes (World Precision Instruments) and a Nanoject II Injector (Drummond Scientific 

Company). Mice were returned to their cage for at least two weeks before performing in vivo 

imaging or the preparation of acute slices.  

4.3.2. Imaging window implant for in vivo [Ca2+] imaging 

The surgery was performed according to the method of Dombeck et al. (Dombeck et 

al., 2010) 21 days after virus injection. Briefly, a 73 days old mouse was anesthetized with 

isoflurane and a craniotomy (~3 mm) was made centered above the left dorsal hippocampus. 

After removing the dura, the cortex was slowly removed by aspiration. A cannula (3 mm 

diameter, 1.5 mm long, filled with optical adhesive (Norland Products)) with glass coverslips 

on both ends was introduced and sealed to the skull with a mix of RelyX Luting cement (3M) 

and superglue. Once the cement has set, a custom-made head plate (Supertech Instruments) 

was also cemented to the skull and all exposed skull surface was covered. The animal 

recovered 5 -15 minutes after surgery. 
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4.3.3. In vivo two-photon [Ca2+] imaging and data analysis 

Imaging was performed 9 days after window implant surgery with a Femto2D 

(Femtonics Ltd., Budapest, Hungary) resonant scanning microscope equipped with a 

Chameleon Vision (Coherent) femtosecond pulsing laser tuned to 925 nm and a water-

immersion lens (16X, NA = 0.8, Nikon). The animal was anaesthetized with isoflurane (4 – 

5% for induction, 1 – 1.5% during imaging). A field of view (FOV) of 300 µm x 300 µm was 

imaged at a frame rate of 32 Hz and a resolution of 0.65 µm / pixel for 10 minutes. After 

performing rigid motion correction (NonRigid4Reso Toolbox, Femtonics Ltd.) I drew 

regions of interest (ROIs) by hand around somata and exported the fluorescent traces. The 

ΔF/F value was calculated as follows: ΔF/F = (Fpeak – Fbaseline) / Fbaseline. A uniform 

Gaussian filtering was applied to all fluorescent traces and the peak fluorescence was 

measured as the maximum value of the fluorescence.  To correct for drifts in baseline I 

subtracted the mean baseline measured before each [Ca2+] transient individually. Changes in 

fluorescence with a SNR >2 (2*SD of the baseline) were considered [Ca2+] transients. To 

estimate the variability in the ΔF/F caused by variations of the background fluorescence (Fbk), 

I measured Fbk in ROIs of similar areas (n = 9) in the vicinity of each GCaMP6f expressing 

cell. Then, I subtracted its values from each cell’s baseline fluorescence. I recalculated the 

ΔF/F as ΔF/F = (Fpeak - Fbaseline) / (Fbaseline - Fbk) with the 9 different Fbk values and their mean, 

and found a mean coefficient of variation (CV) of 0.29 (n = 14 cells, 1 transient for each cell 

with 10 Fbk values). This variance accounts for only 7.3% of the total variability observed in 

our in vivo recordings (CV = 1.07).   

4.3.4. Slice preparation for electrophysiological recordings in CA1 hippocampal region 

from adult mice 

Adult male mice (n = 53, 43 - 81 days old for GCaMP6f cell-attached recordings; n 

= 7, 42 - 59 days old control mice for Flou5F whole-cell recordings) were anaesthetized with 

100 µl / 10 g body weight of the mixture of Ketamine (625 µl in 10 ml), Xylazin (625 µl in 

10 ml) and Pypolphen (250 µl in 10 ml). Mice were transcardially perfused with an ice-cold 

cutting solution containing the following (in mM): sucrose, 205.2; KCl, 2.5; NaHCO3, 26; 

CaCl2, 0.5; MgCl2, 5; NaH2PO4, 1.25; and glucose, 10; saturated with 95% O2 and 5% CO2. 
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After decapitation, the brain was quickly removed and placed into the ice-cold cutting 

solution. 300 µm thick coronal slices were cut from the dorsal part of the hippocampus with 

a Vibratome (Leica VT1200S). Slices were incubated in an interface-type holding chamber 

in ACSF containing the following (in mM): NaCl, 126; KCl, 2.5; NaHCO3, 26; CaCl2, 2; 

MgCl2, 2; NaH2PO4, 1.25; and glucose, 10; saturated with 95% O2 and 5% CO2, pH 7.2 - 7.4, 

at 36°C that was gradually (~1 hour) cooled down to room temperature. Experiments were 

performed at 22 - 24°C up to 6 h after slicing. Cells were visualized using a Femto2D 

microscope equipped with oblique illumination and a water-immersion lens (25X, NA = 1.1, 

Nikon). A MultiClamp 700A amplifier (Molecular Devices) was used to obtain cell-attached 

recordings from CA1 PCs expressing GCaMP6f, and whole-cell voltage-clamp recordings in 

experiments using the synthetic Ca2+ indicator Fluo5F (300 μM). Recorded traces were 

filtered at 3 - 4 kHz and digitized online at 20 kHz. Patch pipettes (resistance 4 - 7 MΩ) were 

pulled from thick-walled borosilicate glass capillaries with an inner filament. Recording 

pipettes for cell-attached recordings were filled with ACSF. For whole-cell experiments the 

intracellular solution contained the following (in mM): Fluo5F (Invitrogen), 0.3; Alexa Fluor 

594 (Invitrogen), 0.02; K-gluconate, 110; KCl, 5; creatine phosphate, 10; HEPES, 10; ATP, 

2; GTP, 0.4; and biocytin, 5, pH = 7.3; 290 - 300 mOsm. APs were evoked antidromically 

by extracellular stimulation (0.2 - 0.3 ms duration, ~500 µA) using a monopolar stimulating 

electrode, placed at least 100 µm away from the soma, in the stratum oriens/alveus. Several 

stimulating protocols were used: single stimulus, 5 stimuli at 10 Hz or 50 Hz, 3 stimuli at 

100 Hz, 12 stimuli at 0.25 Hz, place cell firing pattern stimuli (timing of spikes from 

Losonczy et al., 2002 and a burst recovery protocol. For whole-cell recordings, PC were held 

at -70mV. APs were evoked with 2- to 4 ms-long depolarizing current pulses (1 - 1.2 nA). 

4.3.5. In vitro two-photon [Ca2+] imaging of somatic GCaMP6f signals and data analysis 

Experiments were performed using a Femto2D (Femtonics) laser scanning 

microscope equipped with a Chameleon femtosecond pulsing laser (Coherent) tuned to 925 

nm (as described in Holderith et al., 2012). Somata of CA1 PCs expressing GCaMP6f were 

imaged in line scan mode (0.5-1 kHz sampling rate) with 10 - 15 mW laser intensity at the 

back aperture of the objective lens. To measure background fluorescence (Fbk), each linescan 
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protocol included a short (~10 μm) background line over the neuropil in the vicinity of the 

cell (~10 μm; Fbk), which was scanned for 45 ms. After that, the cell was scanned for 400 ms 

before delivering the stimulus (Fbaseline).  The resting fluorescence of the cell was calculated 

as Frest = Fbaseline – Fbk and the peak fluorescence was measured as the maximum value of the 

fluorescence within a 300 ms window following the stimulus. The ΔF/F value was calculated 

as: ΔF/F = (Fpeak - Fbaseline) / Frest. Raw fluorescence values (Frest and ΔF) and SNR (peak 

amplitude divided by standard deviation of Fbaseline) are reported only for cells imaged with 

the same laser intensity (10 mW, ~90% of data). We acquired images of the cells at the start 

of the recordings (either before or immediately after the cell was patched) and after the 

withdrawal of the recording pipette. We excluded cells from our analysis if the mean intensity 

of fluorescence changed >25% from the beginning to the end of the cell-attached recordings. 

The remaining cells had a mean intensity at the start of the recording of 364 ± 367 AU and 

377 ± 355 AU (n = 55) at the end of the recordings. Image z-stacks (2 µm step size) were 

also taken to allow post hoc identification of the recorded cells. ROIs around the somata were 

drawn in Icy BioImage Analysis software (http://icy.bioimageanalysis.org/, De Chaumont et 

al., 2012) and mean GCaMP6f intensities were measured in the optimal focus plane. The 

laser intensity (10 mW) and PMT setting were the same for all images used for quantification. 

My collaborator, Katalin Szigeti reconstructed the soma of a subset of cells in 3D and 

calculated their surface and volume as follows: (1) volume: she multiplied the ROI areas 

measured from each frame with the z-step size; (2) surface: she multiplied the ROI 

circumference measured from each frame with the z-step size, and added the areas of top and 

bottom ROIs. 

In another set of experiments, cells were filled with a Ca2+-insensitive (20 µM Alexa 

Fluor 594) and a Ca2+-sensitive fluorophore (300 µM Fluo5F). After 7 to 10 minutes in 

whole-cell configuration the stabilization of peak amplitude and decay time constant 

indicated the dye reached an equilibrium. For the measurement of variability of unitary peak 

amplitudes only data from this time period was used. For determining the linearity I used 

data from similar time intervals after establishing the whole-cell configuration. Fluorescence 

changes were quantified as reported previously (Holderith et al., 2012; Éltes et al., 2017). A 

uniform Gaussian filtering was applied to all fluorescent traces. 
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4.3.6. Tissue processing for post hoc identification of the imaged GCaMP6f expressing 

cells 

After recordings, the slices were fixed in a solution containing 4% PFA, 0.2% picric 

acid in 0.1 M PB, pH = 7.4, at 4°C overnight. 

Image stacks were acquired with an Olympus FV1000 confocal microscope with 20X 

and 60X (oil-immersion) objectives. The recorded cells were identified based on two-photon 

image stacks. For quantification of post hoc native GCaMP6f intensities I used the same laser 

and PMT settings. Mean native GCaMP6f intensities were quantified as described above. 

The background was measured in each slice over five ROIs placed close to each cell, and 

their mean value was subtracted from the fluorescence values measured over the cells. I also 

measured the GCaMP6f intensity for 15 cells from ROIs including or excluding the nuclei 

and found almost perfect correlation between these values (ρ = 0.96; Spearman correlation), 

indicating that both measurements reflect equally well the intensity of GCaMP6f 

fluorescence. 

4.3.7. Immunohistochemistry and quantification of nativeGCaMP6f and anti-GFP 

intensities 

One month after virus injection, together with my collaborator, we deeply 

anesthetized male mice (n = 3, 55 - 76 days old) with isoflurane and i.p. injection of Ketamine 

(0.2 ml / 20 g body weight). The mice were transcardially perfused with 0.9% saline (for 1 

min) followed by 2% PFA and 0.2% picric acid in 0.1M PB for 16 min. The brain was quickly 

removed from the skull and postfixed for another hour after which it was placed in PB. Blocks 

were cut out from the forebrain and 50 µm coronal sections were cut with a vibratome. Then, 

Katalin Szigeti performed immunoreactions as follows: Sections from one mouse were 

washed in 0.1M PB and TBS (pH 7.4) containing 0.1% TritonX-100 and blocked in NGS 

(10%) for 1 h made up in TBS. Sections were then incubated in mouse anti-GFP (1:5000, 

catalog number 75-132, NeuroMab) IgG diluted in TBS containing 0.3% TritonX-100 and 

2% NGS overnight. Sections were then washed and Cy3 conjugated goat anti-mouse IgG2a 

(1:500, Jackson Laboratories) secondary antibody was applied for 2.5 h at room temperature. 

Sections were mounted in Vectashield (Vector Laboratories). 

DOI:10.14753/SE.2019.2319



39 

 

Image stacks were acquired with an Olympus FV1000 confocal microscope with 20X 

(NA = 0.75, Olympus) and 60X (NA = 1.35, oil-immersion, Olympus) objectives. Laser 

intensity and PMT settings were the same for all cells. Cells located within the top 6 µm of 

the sections were selected for quantification. The recorded cells were identified based on 

two-photon image stacks. For quantification of post hoc native GCaMP6f intensities we used 

the same laser and PMT settings as above. Mean native GCaMP6f and anti-GFP intensities 

were quantified as described above. The background fluorescence was determined over 78 

ROIs and its mean value was subtracted from each cell. 

4.3.8. Simulations 

The simulations were conducted together with my collaborator, Miklós Szoboszlay. 

To infer actions potentials from Ca2+ traces, we used the MLspike software (Deneux et al., 

2016), which detects the most likely underlying spike train. The spike matching tolerance 

window, i.e. the maximal time difference between an inferred and the original AP, within 

which the AP is registered as ‘correctly detected’, was set to 60 ms, almost an order of 

magnitude shorter than that used by Deneux et al. (0.5s) for all simulations. My colleague, 

Miklós Szoboszlay implemented MLspike and wrote additional code that permitted an easy 

execution of complex simulations and analysis. First, he fitted in vitro recorded fluorescent 

[Ca2+] transients evoked by either a single AP or bursts consisting of 5 APs at 50 Hz with 

MLspike. From the burst protocol (n = 37 cells), he first estimated the pnonlin (and ‘baseline 

drift’ parameters (low frequency fluctuations of the baseline fluorescence). The accuracy of 

the fitting is quantified in error rates (ERs) as the harmonic mean of sensitivity (% of missed 

spikes, i.e.: that were not detected within the 60 ms time window from the real spike) and 

precision (% of false detections). The ERs were calculated for pnonlin values ranging from 0 

to 2.1 with an increment of 0.1 and baseline drift values from 0.001 to 0.101 with an 

increment of 0.005 for determining those parameters that produce the smallest ERs (see 

Figure 28). If there were multiple parameter combinations resulting in minimal ER values, 

the smallest baseline drift value was selected with its corresponding maximal pnonlin value. 

Miklós Szoboszlay then generated synthetic fluorescent transients with MLspike at 

three different frequencies (0.1 Hz, 1 Hz, 10 Hz) of Poisson spike trains (n = 10 repetitions 
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for each cell). The fluorescent transients were generated with 37 cells’ experimentally 

determined amplitude and decay of single AP-evoked unitary fluorescent [Ca2+] transients, 

their measured noise and the abovementioned pnonlin and baseline drift values. For spike 

inference, we implemented the following four scenarios: 1) all of the parameters were the 

cells’ own (i.e. with which the synthetic fluorescent data were generated); 2) own amplitude, 

pnonlin and baseline drift parameters, average of n = 37 cells’ decay; 3) own decay, pnonlin and 

baseline drift parameters and average of n = 37 cells’ amplitude; and 4) all four parameters 

were the averages of the 37 cells. 

To test the efficacy of our approach under more realistic conditions, we generated 

fluorescent Ca2+ traces using in vivo recorded spike times of hippocampal CA1 PCs 

(Grosmark, Long and Buzsaki; CRCNS.org, http://dx.doi.org/10.6080/K0862DC5; 

Grosmark and Buzsáki, 2016). I estimated the peak amplitude of putative unitary [Ca2+] 

transients with two methods. (1) First, I approximated the percentage of temporally isolated 

(no spike > 4s before and >1s after a given AP), single AP-evoked [Ca2+] transients. From 

the spike train of the in vivo recorded data, I calculated that two third of the temporally 

isolated events are single APs, the rests are burst with inter-spike intervals <20 ms. I detected 

well temporally isolated fluorescent [Ca2+] transients and calculated the ‘presumed unitary’ 

peak amplitudes as the mean of the smallest 66.6 % of the events. (2) In a second procedure, 

I inferred spiking activity with MLspike using the mean amplitude, decay time constant, 

pnonlin and baseline drift parameters of weakly GCaMP6f expressing cells (n = 20). Then, I 

selected the temporally isolated (no spike > 4s before and >1s after), potentially single AP-

evoked [Ca2+] transients and measured the peak amplitudes of these so called ’detected 

unitary’ [Ca2+] transients. In few cases, the detected isolated AP followed a missed AP, and 

a preceding [Ca2+] transient was clearly distinguishable. These transients were omitted when 

more than 10 isolated [Ca2+] transients were already detected in the cell (n = 4 cells).  

Finally, I performed spike inference using the ‘putative unitary’ or ‘detected unitary’ 

[Ca2+] transient amplitude of each cell (n = 20) with the mean of the decay, pnonlin and baseline 

drift parameters. All simulations were performed on a desktop computer, running Matlab 

(version: 2017b) under Windows 10. 
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4.4. Statistical analysis 

All statistical tests and plotting of data were performed using OriginPro. Normality 

of data was tested using Shapiro - Wilk test. Statistical significance was assessed with: Two-

way repeated-measures ANOVA and Bonferroni post hoc test (Figure 14, Figure 15C, D); 

Kruskal-Wallis ANOVA test (multiple independent samples; Figure 16I, Figure 26B); 

Mann-Whitney U test (MW U) (two unpaired groups; Figure 16I, Figure 17B, Figure 18C); 

Spearman correlation for non-normally distributed data (Figure 19D inset; Figure 21D; 

Error! Reference source not found.A,B; Figure 23 F,G,H; Figure 25A, B; Figure 26A,C, 

D; Figure 27B,C,E,F; Figure 28J; Figure 30B,C;); Pearson correlation for normally 

distributed data Figure 27H); Two-Sample Kolmogorov-Smirnov Test (Figure 21B; Figure 

26D; Figure 30A); Three-Way ANOVA and Bonferroni post hoc test (Figure 28 E,G,I,K); 

Friedman ANOVA, with Paired Sample Wilcoxon Signed Rank post hoc test and Bonferroni 

correction (Figure 30G).  Data are presented as mean ± SD or median and interquartile range 

1 - 3 (IQR). Results were considered significant when p < 0.05. 
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5. RESULTS 

5.1. PART I. Target cell type-dependent differences in Ca2+ channel function underlie 

distinct release probabilities at hippocampal glutamatergic terminals 

5.1.1. Distinct short-term plasticity of EPSCs in different IN types of the hippocampal 

CA3 region 

I chose CA3 PC local axon collaterals as the subject of my study because they are 

amenable to presynaptic [Ca2+] measurements (Holderith et al., 2012) and establish synaptic 

contacts onto both FS/PV+ INs and mGluR1α+ INs. First, I characterized the short-term 

plasticity of EPSCs recorded from PV+, and mGluR1α+ INs in the CA3 region of young 

Wistar rats. For this, I performed whole-cell voltage-clamp recordings from the somata of 

GABAergic INs located in the stratum oriens or stratum pyramidale with biocytin-containing 

intracellular solutions and I evoked five EPSCs by extracellular stimulation of PC axons (as 

illustrated in Figure 11). The intracellular solution also contained picrotoxin (0.6 - 0.8 mM) 

to block GABAergic responses. These recordings were performed together with my 

colleague Noémi Holderith. 

 

Figure 11. Illustration: Recording synaptic activity of CA3 PC to PV+ or mGluR1α+ 

IN synapses.  

(A, B) Recording of EPSCs in PV+ (A) or mGluR1α+ (B) INs evoked by extracellular 

stimulation of local CA3 PC axon collaterals. The stimulating electrode is placed in 

stratum oriens at least 200 μm away from the recorded cell. 
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The cells were characterized based on their firing patterns (Figure 12C, Figure 13C), 

post hoc determined dendritic and axonal arbors (Figure 12A, Figure 13A), and their PV or 

mGluR1α immunoreactivity (Figure 12B, Figure 13B). Even though the FS firing pattern is 

characteristic to PV+ cells, I detected PV in only 63% of cells. It is known that during 

intracellular recordings PV often dilutes to undetectable levels. Because I found no difference 

in the short-term synaptic properties of FS and PV+ cells and of FS cells with undetectable 

levels of PV/ PV- (p > 0.05, MW U test), I pooled these data together. 

 

Figure 12. Short-term plasticity of CA3 pyramidal cell synapses contacting PV+ INs. 

(A) Neurolucida reconstruction of an in vitro recorded basket cell in stratum pyramidale 

(str. pyr.) of the CA3 region of the hippocampus (soma and dendrites orange, axon black). 

(B) Confocal image of the biocytin-filled IN (left) showing immunoreactivity for PV 

(right). Arrows indicate PV immunoreactivity of the biocytin-filled boutons. (C) 

Membrane potential responses upon depolarizing and hyperpolarizing current injections. 

The depolarizing suprathreshold response shows FS characteristics. (D) EPSCs (average 

of 20 traces) evoked by extracellular stimulation in the stratum oriens (str. ori.) display 

short-term depression. str. luc., stratum lucidum; str. rad., stratum radiatum; str. l-m, 

stratum lacunosum-moleculare. 

EPSCs evoked by a train of stimuli at 40 or 50 Hz in PV+ INs showed short-term 

depression (EPSCfifth/EPSCfirst: 0.52 ± 0.19, n=16; Figure 12 D, Figure 14), the extent of 

which was similar upon stimulation at 20 Hz (EPSCfifth/EPSCfirst : 0.67 ± 0.28, n = 6). In 
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contrast, EPSCs in mGluR1α+ INs elicited by five stimuli at 50 Hz (EPSCfifth/ EPSCfirst = 

3.02 ± 1.9, n = 31; Figure 13D, Figure 14) or at 20Hz (EPSCfifth/EPSCfirst : 3.02 ± 2.42, n = 

12) showed short-term facilitation. 

 

Figure 13. Short-term plasticity of CA3 pyramidal cell synapses contacting 

mGluR1α+ INs.  

(A) Neurolucida reconstruction of an in vitro recorded and biocytin-filled oriens-

bistratified IN (soma and dendrites blue, axon black) in the str. ori. (B) The biocytin-filled 

cell (left) is intensely labeled for mGluR1α+ (right). (C) Membrane potential responses to 

hyperpolarizing and depolarizing current pulses. Firing pattern shows moderate spike 

frequency adaptation and amplitude accommodation. Note the prominent sag and the slow 

membrane time constant in response to the hyperpolarizing current step. (D) Extracellular 

stimulation-evoked EPSCs display short-term facilitation (average of 20 traces). str. luc., 

stratum lucidum; str. rad., stratum radiatum; str. l-m, stratum lacunosum-moleculare. 

The group of cells positive to mGluR1α included several cell-types, such as: oriens-

lacunosum moleculare, oriens-oriens, radiatum associated, and basket cells. These cells 

showed marked heterogeneity based on their dendritic and axonal arbors, firing patterns, and 

short-term plasticity; with some cells receiving initially facilitating, then depressing, or 

depressing EPSCs. On average the excitatory inputs to mGluR1α+ cells showed a different 

short-term plasticity pattern compared with those recorded from PV+ cells (Figure 14).  
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Figure 14. Short-term plasticity of CA3 

pyramidal cell synapses contacting PV+ or 

mGluR1α+ INs.  

The short-term plasticity of evoked EPSCs onto 

PV+ and mGluR1α+ INs differs significantly (p 

< 0.01 for cell type, p = 0.2 for stimulus number 

and p = 0.01 for cell type and stimulus number 

interaction, two-way repeated-measures 

ANOVA, Bonferroni post hoc test). Data are 

presented as mean ± SD. 

The colocalization experiments of my colleague, Noémi Holderith demonstrated that 

unlike the CA1 and CA3 regions of dorsal hippocampus (Ferraguti et al., 2004), less than 4% 

of the mGluR1α+ cells are immunopositive for PV in the ventral CA3 area. She also 

demonstrated an almost complete colocalization in these cells of mGluR1α with Elfn1/2 

(Éltes et al., 2017); a protein of interest because of its critical role in the short-term facilitation 

of EPSCs onto mGluR1α+ O-LM cells of the CA1 region (Sylwestrak and Ghosh, 2012). 

Therefore, I next tested the potential role of Elfn1/2 in the diverse short-term plasticity of 

EPSCs onto mGluR1α+ cells. Elfn1/2 and mGluR1α double-labeled INs showed a robust 

short-term facilitation, the degree of which was significantly larger than that detected in 

mGluR1α+, but Elfn1/2- cells (Figure 15 C,D). I did not find any Elfn1/2+ IN that received 

short-term depressing excitatory input, whereas most of Elfn1/2- cells received short-term 

depressing EPSCs (depressing, n = 3; initial slight facilitation followed by depression, n = 1; 

facilitation, n = 1, Figure 15D). These results reveal a previously unseen diversity in the 

short-term plasticity of PC-to-mGluR1α+ IN synapses and indicate a potential role of Elfn1/2 

in its regulation. 
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Figure 15. Different short-term plasticity of CA3 pyramidal cell synapses contacting 

mGluR1α+ and Elfn1/2+ or Elfn1/2- INs.  

(A) A biocytin-filled IN is intensely labeled for mGluR1α and Elfn1/2. (B) Peak amplitude 

of evoked EPSCs onto the same representative cell. (C -D) Peak amplitudes of evoked 

EPSCs onto Elfn1/2 double-positive INs are significantly larger ( p < 0.05 for cell type, p 

= 0.31 for stimulus number and p = 0.17 for cell type and stimulus number inter- action, 

two-way repeated-measures ANOVA, Bonferroni post hoc test) than those recorded from 

mGluR1α+, but Elfn1/2- cells. (C, traces are mean of 10 cells for double-positive and mean 

of 5 cells for Elfn1/2-.) 

The demonstrated robust differences in the short-term plasticity of evoked EPSCs in 

PV+ and mGluR1α+ INs in the CA3 area, are similar to those observed in the CA1 area and 

the neocortex, offering the use of these molecules in this brain region as markers to label the 

postsynaptic compartments of functionally distinct presynaptic axon terminals. Elfn1/2 

seems to be an ideal molecular marker for postsynaptic INs that receive strongly facilitating 

inputs, but its post hoc visualization requires very mild fixation (see Materials and Methods) 

that is incompatible with post hoc recovery of axonal arbor and electron microscopic (EM) 

analysis. However, because 90% of mGluR1α+ IN dendrites are also Elfn1/2+ I decided to 

use mGluR1α as my molecular marker for facilitating synapses. 
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5.1.2. Target cell type-dependent differences in Ca2+ inflow in axon terminals 

To provide data that is necessary for estimating the functional Ca2+ channel density 

in the presynaptic AZs of CA3 PCs (Holderith et al., 2012), I measured the Ca2+ influx in the 

PV+- and mGluR1α+-dendrite targeting boutons. This approach requires the measurements 

of [Ca2+] transients in local axon terminals of PCs using two-photon microscopy with an 

intracellularly applied Ca2+-sensitive dye (300 µM Fluo5F). These recordings were 

performed together with my colleague Noémi Holderith. 

I performed whole-cell voltage-clamp recordings of CA3 PCs and evoked single APs 

by a depolarizing current pulse. Single AP-evoked [Ca2+] transients showed sizeable 

variability in their peak amplitudes (coefficient of variation (CV) = 0.37, n = 692 boutons in 

30 cells). To examine [Ca2+] specifically in axon terminals with identified postsynaptic target 

cell types, I fixed the slices after the in vitro imaging experiments and then, I visualized the 

intracellular biocytin and immunolabeled the tissue for mGluR1α and PV for confocal 

microscopic analysis (Figure 16). 
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Figure 16. Larger [Ca2+] transients in PV+ than in mGluR1α+ dendrite-contacting 

boutons.  

(A) Two-photon (2P) image stack of a CA3 PC basal dendritic tree and axonal arbor filled 

with 20 μM Alexa Fluor 594 (Alexa594, red), 300 µM Fluo5F, and biocytin. Boxed area 

is shown at higher magnification in C. Diagram at the upper left corner illustrates the 

position of the cell in the CA3 area. (B) Neurolucida reconstruction of the cell shown in 

A. Boxed areas correspond to A and C. (C-D) High-magnification two-photon (C) and 

confocal (D) images of the scanned axon collaterals after fixation and visualization of the 

biocytin. Numbers indicate the boutons that have been line scanned. Inset in C shows 

bouton #1 at a higher magnification. The line indicates the position of the line scan. (E-G) 

Some of the imaged boutons are in contact with PV (E,F, boutons #6 and #12) or mGluR1α 

(G, boutons #15 and #16) immunolabeled dendrites (white, biocytin; orange, PV; cyan, 

mGluR1α). (H) Single AP-evoked [Ca2+] transients (n = 16 transients from 16 boutons, 

each trace is the average of two scans) recorded in the axon terminals shown in C. Orange 

and cyan traces are transients from PV+ and mGluR1α+ dendrite-contacting boutons, 

respectively. Inset shows the same traces after Gaussian filtering on an extended time scale. 

(I) Peak [Ca2+] transient amplitudes are significantly larger (Kruskal–Wallis test: p < 0.01, 

MW U post hoc test, p < 0.01 between unidentified and PV; p < 0.01 between PV and 

mGluR1α) in PV+ (orange) compared to mGluR1α dendrite-contacting (cyan) or all other 

boutons (gray, n = 605 boutons from 30 cells). Black symbols correspond to individual 

data points obtained from the cell shown in A-G. (J) Cumulative probability plot of the 

same peak amplitudes indicates higher probability of a larger transients in PV+ dendrite-

innervating terminals. Data are presented as median and IQR. 

In most experiments, I imaged 15 - 30 boutons, of which few had apparently PV+ or 

mGluR1α+ dendrites as postsynaptic targets. From the total of 692 imaged boutons, we found 

26 and 61 as potential presynaptic elements to PV+ and mGluR1α+ INs, respectively. My post 

hoc analysis revealed that the peak amplitude of the [Ca2+] transient was 1.25 times larger in 

PV+ dendrite-targeting boutons compared with their mGluR1α+ dendrite-targeting 

counterparts (PV: median: 0.134 G/Gmax, IQR: 0.105 - 0.168 G/Gmax, n = 26; mGluR1α: 

DOI:10.14753/SE.2019.2319



49 

 

median: 0.107 G/Gmax, IQR: 0.081 - 0.138 G/Gmax, n = 61, unidentified target: median: 0.114 

G/Gmax, IQR: 0.084 - 0.145 G/Gmax, n = 605; Figure 16I, Table 2). 

To minimize potential errors caused by slightly different dye concentrations in 

distinct PCs, I calculated peak amplitude ratios with two other methods. First, I restricted my 

analyses to cells that contained both PV+ and mGluR1α+ dendrite-targeting boutons and 

calculated within-cell ratios and found a 1.28 times higher value in boutons targeting PV+ 

dendrites (n = 10 cells). Second, I normalized the peak amplitude of the [Ca2+] transients in 

each PV+ and mGluR1α+ dendrite innervating bouton to the mean of peak amplitudes 

recorded from all boutons of a given cell and again found a 1.21 times larger value in boutons 

targeting PV+ dendrites. In a separate set of experiments, I performed [Ca2+] imaging with 

100 µM Fluo5F and calculated the above mentioned peak amplitude ratios. The within-cell 

ratio of peak [Ca2+] in boutons innervating PV+ or mGluR1α+ dendrites was 1.32 (n = 11 

cells), whereas the [Ca2+] transients in PV or mGluR1α- innervating boutons normalized to 

the mean [Ca2+] transients were 1.33 (n = 18) and 1.04 (n = 35), respectively, yielding a ratio 

of 1.27 (Table 2). 

Table 2. Properties of [Ca2+] transients in PV+ and mGluR1α+ dendrite-innervating 

axon terminals. 

* Used for the statistical comparisons. 

a[Ca2+] transients were normalized to the mean of all measured [Ca2+] transients of the 

given cell. 

 

Mean SD Median n # animal Mean SD Median n # animal Test p

Peak amplitude of [Ca
2+

] 

transient (300 mM Fluo5F) 

(G/Gmax)

0.14 0.05 0.13 26* 15 0.11 0.04 0.11 61* 23 MW U-test 0.012

Normalized peak amplitude 

of [Ca
2+

]
 
transient (300 mM 

Fluo5F)
a

1.20 0.41 1.12 26* 15 1.00 0.28 0.98 61* 23 t-test 0.024

Peak amplitude of [Ca
2+

] 

transient (100 mM Fluo5F) 

(G/Gmax)

0.21 0.10 0.22 14* 9 0.17 0.11 0.14 21* 13 MW U-test 0.100

Normalized peak amplitude 

of [Ca
2+

]
 
transient (100 mM 

Fluo5F)
a

1.33 0.51 1.36 18* 12 1.04 0.25 1.03 35* 18 t-test 0.037

PV
+
 dendrite-targeting boutons mGluR1a

+
 dendrite-targeting boutons
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Next, I assessed the contribution of the N/P/Q-type Ca2+ channels to the [Ca2+] 

transients. For this, I applied ω-CTX MVIIC (a selective N- and P/Q-type Ca2+ channel 

blocker) in a concentration (1 µM) that almost completely abolished the evoked EPSCs in 

both INs in the stratum oriens of the CA3 area (Éltes et al., 2017, demonstrated in a different 

set of experiments testing the effect of 1 µM ω-CTX MVIIC on evoked EPSCs which were 

performed by Noémi Holderith). The toxin reduced the peak amplitudes of the presynaptic 

[Ca2+] transients by 47% (n = 296 boutons in n = 13 cells). The extent of the block was similar 

in PV-innervating boutons (45 ± 10% ; n = 12) and in mGluR1α- innervating boutons (46 

±18%; n = 19; p > 0.05, MW U test, Figure 17). These results demonstrate that N/P/Q-type 

Ca2+ channels contribute similarly to the [Ca2+] transients in the two bouton populations. 

 

Figure 17. Contribution of N/P/Q type [Ca2+] channels to the [Ca2+] transients. 

(A) Mean of single AP-evoked [Ca2+] transients before and after application of 1 μM ω-

CTX MVIIC (n = 12 PV -innervating boutons, n = 19 mGluR1α -innervating boutons). (B) 

[Ca2+] transients are blocked to a similar extent in boutons targeting PV or mGluR1α 

dendrites (p > 0.05, MW U test). Data are presented as mean ± SD. 

A larger [Ca2+] transient might be the consequence of lower Ca2+ buffering, a smaller 

bouton volume, or a larger amount of Ca2+ entering the bouton. In my thesis I approached 

the question of potential differences in buffering, whereas the other questions were tested by 

my colleague Noémi Holderith (Éltes et al., 2017).  

I fitted the decay of the averaged [Ca2+] transients with single exponentials and found 

very similar time constants (PV: 352 ms, n = 25 boutons; mGluR1α: 413 ms, n = 61 boutons; 

other: 475 ms, n = 605 boutons, Figure 18A). However, in these recordings I minimized the 
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scanning time after the AP to avoid photo damage. Therefore, the fit was restricted to 260 

ms, during which the [Ca2+] transients did not decay back to baseline (Figure 18A). 

Moreover, the high fluorescent dye concentration (300 µM) used in these experiments might 

dominate the decay, masking potential differences in the fixed buffer concentration. To 

circumvent this problem, I recorded [Ca2+] transients with 100 μM Fluo5F and analyzed their 

decay times (Figure 18B, C). The [Ca2+] transients recorded with lower dye concentrations 

displayed a substantially faster decay (300 µM: 463 ms, n = 691 boutons; 100 μM: 210 ms, 

n = 439 boutons; fitted to the first 260 ms of the averaged traces). When I compared the decay 

time constants of [Ca2+] transients in boutons innervating PV+ or mGluR1α+ dendrites, I 

found no significant difference (PV: median: 277 ms, IQR: 212 - 403 ms, n = 18; mGluR1α: 

median: 259 ms, IQR: 207 - 322 ms, n = 35; p < 0.61, MW U test; Figure 18B, C), arguing 

against a robust difference in Ca2+ buffering. 
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Figure 18. Decay time constant of [Ca2+] transients in innervating PV+ or mGluR1α+ 

dendrites is similar.  

(A) Normalized mean [Ca2+] transients recorded with 300 μM Fluo5F. Transients are fitted 

with a monoexponential (orange, PV+ dendrite targeting boutons, n = 25; cyan, mGluR1α+ 

dendrite targeting boutons, n = 61). (B) Monoexponential fit on [Ca2+] traces recorded with 

lower dye concentration, 100 μM Fluo5F (orange, PV+ dendrite targeting boutons, n = 18; 

cyan, mGluR1α+ dendrite targeting boutons, n = 35). (C) Decay time constants of [Ca2+] 

transients are similar in the two bouton populations (p > 0.05, MW U test). Traces are 

Gauss filtered for optimal visualization of the fits. Data are presented as median and IQR. 

To test for potential differences in bouton volumes, Noémi Holderith performed 3D 

EM reconstructions of PV+ or mGluR1α+ dendritic segments and their presynaptic axon 

terminals in the stratum oriens of perfusion fixed tissue, and of a randomly selected subset 

of our in vitro two-photon imaged boutons. Her experiments revealed no significant 

difference in the volume of the boutons innervating these IN types, demonstrating that 

distinct bouton volumes are not the main cause of the observed differences in peak [Ca2+]. 

She also measured the total AZ areas in the 3D reconstructed boutons and found significantly 

smaller AZs in PV+ dendrite-innervating boutons. Her bouton volume and active zone 

measurements, and our [Ca2+] imaging experiments allowed the calculation of the total Ca2+ 

that enters upon an AP (peak [Ca2+] * volume). Assuming that this Ca2+ enters through Ca2+ 

channels located in the AZs, we could calculate the functional Ca2+channel density (i.e. total 

amount of Ca2+ that enters the boutons through a unit AZ area). These two combined 

functional- structural approaches indicated an 1.7 - 1.9 times larger functional Ca2+ channel 

density for boutons innervating PV+ INs compared to the mGluR1α+ dendrite-targeting ones.  
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5.2. PART II. Improved spike inference accuracy by estimating the peak amplitude of 

unitary [Ca2+] transients in weakly GCaMP6f expressing hippocampal CA1 pyramidal 

cells   

5.2.1. Variability in the amplitude of GCaMP6f [Ca2+] transients 

I obtained sparse expression of GCaMP6f in dorsal hippocampal CA1 PCs by 

injecting the mixture of highly diluted Cre-recombinase-expressing AAV vectors and 

concentrated flexed GCaMP6f-containing AAVs. Three weeks after the virus injection, I 

implanted a chronic imaging window above the dorsal hippocampus to provide optical access 

for recording neuronal activity in a head-fixed, lightly anaesthetized mouse. The peak 

amplitude of [Ca2+] transients (0.26 ± 0.3 ΔF/F, median = 0.16 ΔF/F, IQR: 0.07 - 0.36 ΔF/F, 

n = 311 transients) showed substantial variability (mean CV = 1.07 ± 0.42, n = 13 cells; 

Figure 19A-C) in my imaged cells, similar to that published previously (Chen et al., 2013). 

The variability in the peak [Ca2+] transients could reflect different single AP-evoked, unitary 

[Ca2+] transient among cells, different ratios of single APs and bursts of APs, different 

numbers of APs within bursts and the different degrees of nonlinearity of the genetically 

encoded Ca2+ indicator. 

To address the contribution of these parameters, I recorded single AP-evoked unitary 

[Ca2+] transients in acute hippocampal slices. Whole-cell patch-clamp recording perturbs the 

intracellular milieu of the cells and dialyzes soluble proteins, including GCaMP6f; therefore, 

I decided to record extracellularly-evoked APs in cell-attached configuration and the 

corresponding [Ca2+] transients with two-photon microscopy in a line-scan mode over the 

somata. Antidromic APs were evoked by extracellularly stimulating PC axons in stratum 

oriens/alveus. The mean peak amplitude of [Ca2+] transients evoked by a single AP (0.2 ± 

0.2 ΔF/F, median = 0.14, IQR: 0.06 - 0.27, n = 121 cells) was similar to that described earlier 

(e.g. Chen et al., 2013), with profound cell-to-cell variability (CV = 0.96; Figure 19D, E). 

The signal to noise ratio was also highly variable (11.4 ± 7.4, median = 10.3, IQR: 5.6 - 15, 

n = 115), and positively correlated with the unitary [Ca2+] signals (ρ = 0.88, p < 0.01; 

Spearman correlation; Figure 19D inset).  
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The trial-to-trial variability in the amplitude of unitary [Ca2+] transients was assessed 

by evoking 12 APs at 0.25 Hz. These experiments revealed similar peak amplitudes 

throughout the train without any significant run-up or run-down (normalized mean of the 12th 

transient = 1.06 ± 0.16, n = 45 cells) and demonstrated very little within-cell, trial-to-trial 

variance (CV = 0.13 ± 0.06, median = 0.12, IQR: 0.1 – 0.17, n = 45 cells; Figure 19E). 
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Figure 19. Variability in the amplitude of [Ca2+] transients.  

(A) A representative image z-stack (maximum intensity projection of 20 images) of the 

hippocampal CA1 area in vivo in an anaesthetised, head-fixed micemouse. The ROIs for 

some of the analysed cells are overlaid. (B) Fluorescence traces recorded from the cells 

shown in (A). (C) Histogram of peak amplitudes of in vivo recorded [Ca2+] transients (n = 

311 transients from 13 GCaMP6f-expressing PCs, 10 minutes long recording). (C) 

Representative single AP-evoked unitary [Ca2+] transients recorded from the somata of CA1 

PCs in vitro. Black trace corresponds to average of all recorded PCs (n = 121). Inset: peak 

amplitude shows significant (p < 0.01, Spearman correlation) positive correlation with signal 

to noise ratio (SNR). (E) Cumulative probability plot of mean unitary [Ca2+] transients (black, 

n = 121 cells) demonstrates large cell-to-cell variability, with a much smaller trial-to-trial 

variance of individual cells (5 individual cells color coded, each with multiple trials). 

This is large cell to cell variance is not only found for the extracellularly evoked 

unitary responses, but is also observed for the occasionally occurring (n = 6 cells) 

spontaneous single AP-evoked responses, which had peak amplitudes and variances very 

similar to the evoked responses (CV = 0.81, Figure 20).  
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Figure 20. Spontaneous and evoked unitary [Ca2+] transients show similar 

amplitudes and cell-to-cell variability. 

(A-B) A fluorescence trace shows two spontaneous (cyan and orange) and one stimulus-

evoked (grey) [Ca2+] transients (A) and the corresponding APs recorded in the cell-

attached configuration (B). (C-D) The spontaneous and evoked [Ca2+] transients (C) and 

APs (D) have similar shapes and amplitudes. (E-F) The amplitude of spontaneous single 

AP-evoked [Ca2+] transients is on average 27% larger compared to that of the stimulus-

evoked [Ca2+] transients (e; n = 6 cells, p = 0.036, Paired Sample Wilcoxon Signed Rank 

test), but their amplitudes show perfect correlation (f, Spearman correlation). 

 

5.2.2. Variability in the GCaMP6f expression level  

Virally expressed proteins, including GCaMP6f are known to demonstrate variable 

expression levels (Dana et al., 2014). To quantify the variability in the expression level in 

acute hippocampal slices I first measured GCaMP6f intensities in slices following fixation 

in 4% PFA-containing fixative using confocal microscopy (Figure 21A, B). I argue that by 

chemically fixing the slices, variability in fluorescence will no longer reflect differences in 

intracellular [Ca2+], but will purely reflect GCaMP6f expression levels. I found that CA1 PCs 

show widely differing GCaMP6f intensities (482 ± 542 AU, median = 262 AU, IQR: 109 – 

654 AU; CV = 1.12, n = 297 cells). It is known that intensive GCaMP expressing cells with 

nuclear fluorescence show signs of abnormal physiology and have impaired Ca2+ 

homeostasis (Tian et al., 2009). It is thus likely that these cells do not survive acute 

hippocampal slicing procedures, resulting in the observed GCaMP6f intensity distribution 

compared to that observed in vivo. To reveal the full range of the GCaMP6f expression, mice 

-sparsely expressing GCaMP6f in the dorsal hippocampus- were perfusion fixed and the 

intensity of the labelled cells was quantified using confocal microscopy with identical 

acquisition settings. The distribution of CA1 PCs according to their GCaMP6f expression 

showed large variability (IQR: 131 – 979 AU, CV = 1.05, n = 639 cells) with a somewhat 

higher mean intensity (624 ± 653 AU, median = 345 AU), compared to that obtained from in 
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vitro slices after fixation (p < 0.01; Two-Sample Kolmogorov Smirnoff test, Figure 21B), 

consistent with preferential death of the most intensive cells following slicing.  

Another readout of the expression level of GCaMP6f might be determined by 

measuring the intensity at the isosbestic wavelength of GCaMP6f (~810nm). We therefore 

measured the fluorescent intensity in acute hippocampal slice at 810 nm excitation 

wavelength and found that it significantly correlates with the intensity determined post hoc 

after fixation (ρ = 0.76, p < 0.001, Spearman correlation; Figure 21C). However, we failed 

to find a significant correlation for cells that weakly express GCaMP6f (ρ = 0.33, p = 0.12, 

Spearman correlation, Figure 21D). 

To provide unequivocal evidence that the intrinsic fluorescence of GCaMP6f in fixed 

tissue is indeed proportional to the amount of GCaMP6f protein, Katalin Szigeti 

immunolabeled the perfusion fixed tissue with an anti-GFP antibody (Figure 21E) and 

examined its relationship with the native GCaMP6f intensity. The almost perfect positive 

correlation (n = 87; ρ = 0.97, p < 0.01; Spearman correlation; Figure 21F) between the anti-

GFP immunoreactivity and intrinsic GCaMP6f fluorescence after fixation indicates that the 

latter is an excellent correlate of GCaMP6f protein level.  
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Figure 21. Large variability in the 

GCaMP6f expression level in CA1 

PCs. (A) Maximum intensity projection 

image showing variability in native 

GCaMP6f intensity in perfusion fixed 

tissue. (B) Histograms of native GCaMP6f 

intensities. (C) GCaMP6f intensity after 

fixation (measured with confocal 

microscopy) correlates with GCaMP6f 

intensity as measured in acute slices using 

810 nm excitation light with two-photon 

microscopy for the whole population (p < 

0.001, Spearman correlation). (D) For the 

intensity sub-selected cells (lower 65 

percentiles of all cells) no significant 

correlation is found between these 

parameters (p = 0.12, Spearman 

correlation). (E) High magnification 

confocal images of perfusion fixed tissue 

showing native GCAMP6f expression 

(green) and their anti-GFP 

immunoreactivity (orange). * and # 

indicate weakly and moderately 

expressing cells, respectively. (F) The 

intensity of the native GCaMP6f signal 

and that of the anti-GFP immunosignal 

shows a significantly positive correlation 

(n = 87, p < 0.01, Spearman correlation). 

AU, arbitrary unit. 

 

5.2.3. Variability of unitary [Ca2+] transients among cells with similar GCaMP6f 

expression level 

Having demonstrated large cell-to-cell variability in the amplitude of unitary [Ca2+] 

transients and GCaMP6f expression levels, I asked whether these parameters show any 

correlation. To ensure that even cell-attached recordings do not cause any alterations in the 

fluorescence of the cells, I measured GCaMP6f intensities before establishing the cell-
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attached configuration and after the withdrawal of the pipette in 83 out of 121 PCs in acute 

slices. I observed that in 28 out of 83 recorded neurons, the fluorescence intensities increased 

more than 25% during the 10 - 30 minutes cell-attached recordings, resulting in a large 

increase in the mean intensity of the cells. Thus, I restricted my further analysis to cells that 

showed changes <25%. The peak amplitudes of unitary [Ca2+] transients (0.20 ± 0.16 ΔF/F, 

median = 0.15 ΔF/F, IQR: 0.07 - 0.3 ΔF/F, n = 55) and the variability (CV = 0.79) of these 

subselected cells were very similar to those of the whole population (0.20 ± 0.20 ΔF/F, 

median = 0.14 ΔF/F, IQR: 0.06 - 0.27 ΔF/F, n = 121 cells, CV = 0.96, Table 3), indicating 

that the changes in fluorescence during the recordings did not selectively occur in cells 

showing small or large unitary [Ca2+] transients. This large variance was also apparent among 

cells recorded from the same slices (CV = 0.64 ± 0.4, n = 10 slices) and from the same 

animals (CV = 0.65 ± 0.36, n = 18 animals, 2 – 4 cells/animal). At the end of the recordings 

I acquired Z image stacks of the recorded cells and the surrounding areas to enable their post 

hoc identification after fixation (Figure 22). 

 

Figure 22. Post hoc identification of in vitro, extracellularly recorded cells. 

(A, B) Maximum intensity projection images from two-photon (2P; A) and confocal (B) 

image Z stacks of the recorded cell (*) and surrounding area. 

Despite the lack of intracellular labels (e.g. biocytin or fluorescent dyes), I could 

unequivocally identify 43 of the 55 recorded cells in the fixed sections. Then, I measured 

their native GCaMP6f intensity levels using confocal microscopy (Figure 23C) and observed 

a substantial variability in their intensity (277 ± 478 AU, median = 151 AU, IQR 66 – 252 

AU, CV = 1.73, n = 43 cells; Figure 23E). I found a significant negative correlation between 
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the peak amplitude of unitary [Ca2+] transients and the GCaMP6f expression level (n = 43, ρ 

= -0.69, p < 0.01; Spearman correlation, Figure 23F), with highly expressing cells showing 

very small fluorescence change upon an AP. The relationship seems to follow a power law, 

where the peak amplitude is proportional to the expression level-1. However, there was a very 

pronounced variance around the fit at cells with low expression levels. In cells selected for 

similarly low native GCaMP6f intensities (the lowest 65% of the cells, < 180 AU) the peak 

amplitudes were somewhat higher (0.26 ± 0.14 ΔF/F, median = 0.22 ΔF/F, IQR: 0.14 - 0.39 

ΔF/F), but were still highly variable (CV = 0.56, n = 26). 

Table 3. Mean peak amplitudes according to the successive selection criteria. 

 

When the peak amplitude of unitary [Ca2+] transient was plotted against the GCaMP6f 

expression level for these subselected cells, no significant correlation was found (ρ = -0.22, 

p = 0.28; Spearman correlation, Figure 23G, Table 3). The amount of GCaMP6f also 

correlates negatively with the signal to noise ratio (ρ = -0.58, p < 0.01; Spearman correlation, 

Figure 23H), but it is also highly variable (IQR: 10.5 - 19.3, CV = 0.6, n = 25) for cells with 

low intensities. 
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Figure 23. Single AP-evoked [Ca2+] fluorescence transients show large variability 

among cells with similar GCaMP6f expression level.  

 (A) Two-photon (2P) images of CA1 PCs before cell-attached recordings (white lines: 

scanning lines). (B) 2P images of the same cells after recording pipette was withdrawn at 

the end of the recordings. Note the lack of detectable changes in the native GCaMP6f 

intensity in these cells. (C) Confocal images of the same cells following immersion fixation 

(outline of ROIs in white; see the post hoc identification of the third cell on Figure 22) (D) 

Single AP-evoked unitary [Ca2+] transients in the same 6 cells as shown above (individual 

transients: semi-transparent, mean: bold) show large variability in amplitude. (E) 

Histogram of native GCaMP6f intensities of PCs for which the intensity between the start 

of the recording and withdrawal of the pipette did not change more than 25% (n = 43). (F) 

The amplitude of unitary [Ca2+] transients correlate negatively with the native GCaMP6f 

intensity of the cells (p < 0.01, Spearman correlation; colored symbols represent the 6 cells 

shown in A-D). (G) Single AP-evoked [Ca2+] fluorescence signals show large variability 

among cells with similar intensities (same data as in F, but sub-selected for cells with 

intensities <180 AU; p = 0.28, Spearman correlation). (H) Native GCaMP6f intensity 

levels correlate negatively with signal to noise ratio of unitary [Ca2+] transients, but show 

large variability among cells with similar intensities (p < 0.01, Spearman correlation). 

Non-biological sources of variance could contribute to the observed large variability 

in the peak amplitude of unitary [Ca2+] transients. The background fluorescence (Fbk) varies 

within the slices and because its exact value influences our estimate of ΔF/F, we estimated 

its contribution to the total variance of unitary [Ca2+] transients. In a subset of slices, we 

recorded 2 cells each having its ‘own’ background line (i.e.: scanned quasi simultaneously 

with the recorded cell). We calculated the ΔF/F for each cell with its ‘own’ Fbk and also with 

the other cell’s Fbk and calculated the variance in ΔF/F. The mean CV was 0.17, which 

accounts for ~10% of the total variance (CV = 0.56). Furthermore, the positioning of our 

scanning line over the cell body can result in different nucleus/cytosol ratios, which could be 

another biologically-irrelevant source of variance. We, therefore, divided the scanned line 

over the cells into two halves, having different cytoplasm/nuclei ratios and intensities and 

calculated ΔF/F. This analysis revealed a very tight, significant correlation (ρ = 0.94, p < 
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0.001, Spearman correlation) between the ΔF/F values of the two halves, but some variance 

was apparent (CV = 0.13 ± 0.1, n = 20 cells). We acknowledge that this is again a biologically 

irrelevant source of error, but it is responsible only for 5.3% of the total variance in the peak 

amplitude of unitary [Ca2+] transients (CV = 0.56). Out-of-focus fluorescence light has little 

if any contribution to the recorded fluorescent transient in sparse labelling conditions. We 

tested such contribution by two methods: First, we argue that if a labelled process passed 

below or above our imaged cell and its activity contributed to the fluorescence signal, then 

the chance that it contributes equally to both the ‘left’ and ‘right’ halves is very small. Thus, 

we divided our line scans into two halves and analysed them separately and we found a 

coefficient of variation of only 0.13 ± 0.1 (n = 20 cells). In addition to this analysis, we 

performed the experiments requested by the reviewer. We measured unitary peak amplitudes 

in three different focal planes (middle of the cell and 3-4 µm above or below this plane) over 

cell bodies of low GCaMP6f expressing cells and we calculated the coefficient of variations 

in the mean fluorescent unitary response amplitudes between the three focal planes.  The 

mean amplitudes showed very little dependencies on the focal planes, resulting in a CV of 

0.10 ± 0.07 (n = 7 cells, Figure 24). Finally, we also tested how the variance in the peak 

amplitude of unitary [Ca2+] transients depended on the time between the virus injection and 

the recordings (i.e. expression time). For this, we calculated the variance in the peak 

amplitudes measured from the cells recorded in the same slice, or in the same animals (same 

expression time). We found similarly large variance both within cells from the same slices 

(mean CV = 0.64 ± 0.4, n = 10 slices) or from cells from different slices but the same animal 

(mean CV = 0.65 ± 0.36, n = 18 animals, 2 – 4 cells/animal). The variance in the unitary peak 

amplitude within cells recorded from the same animal (i.e.: same expression time) was large 

at any given expression time and showed no correlation with the expression time (ρ= 0.25, p 

= 0.32; n = 18 animals, Spearman correlation). 
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Figure 24. Negligible contribution of out of focus fluorescence to the peak amplitude 

of unitary responses.  

(A) Images of the same weakly GCaMP6f expressing cell in three different focal planes 

separated by 3-4 μm. (B) Averaged unitary fluorescent transients recorded in the three 

focal planes shown in (A). (C) The peak amplitudes recorded in the different focal planes 

show little variability (CV = 0.10, n =7 cells; open circles: individual cells; green triangles: 

mean).  

Next, I analysed the relationship between the decay time constants of the unitary 

[Ca2+] transients and the GCaMP6f expression level and found a significant positive 

correlation for the whole population (ρ = 0.6, p < 0.01; n = 41, Spearman correlation, Figure 

25A), and also for the cells subselected based on their GCaMP6f intensity (ρ = 0.51, p < 0.01; 

n = 26, Spearman correlation, Figure 25B). When analysing the relationship of unitary peak 

amplitudes and decay time constants, we found that cells with smaller unitary peak 

amplitudes (and higher GCaMP6f intensity) displayed mostly longer decay times, resulting 

in a significant correlation between them (ρ = -0.27, p = 0.048; n = 53, Spearman correlation, 

Figure 25C, D); whereas for the GCaMP6f intensity subselected group of cells (intensity < 

180 AU) there was no significant correlation between these parameters (ρ = -0.001, p = 0.99; 

n = 26, Spearman correlation, Figure 25C, E). 
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Figure 25. Correlation of the decay time constant of unitary [Ca2+] transients with 

the GCaMP6f expression level. 

(A, B) The decay time constant of single-AP evoked [Ca2+] transients correlates positively 

with the GCaMP6f intensity of the recorded PCs (n = 41; p < 0.01, Spearman correlation) 

for the whole population (A) and for the sub-selected cells (B, same data as in A, but sub-

selected for cells with intensities <180 AU, corresponding to the bottom 65% of the cells; 

n = 26; p = 0.008, Spearman correlation). (C) Heatmap plot showing the relationship 

between decay time constants, the peak amplitudes of unitary [Ca2+] transients and 

GCaMP6f expression level of the recorded cells. (D) The decay time constants correlate 

negatively with the peak amplitudes of the unitary responses (ρ = -0.27, p = 0.048; n = 53, 

Spearman correlation) when all cells are examined.  (E) However, when only the weakly 

GCaMP6f expressing cells are subselected (< 180 AU), there is no significant correlation 

between these parameters (ρ = -0.001, p = 0.99; n = 26, Spearman correlation). 

Variability in the amplitude of unitary [Ca2+] transients reported by GCaMP6f can be 

the consequence of different amounts of [Ca2+] entering the soma, different somatic surface 
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to volume ratios or different [Ca2+] buffering. Because the amount of [Ca2+] entering through 

VGCC during an AP is strongly dependent on the AP waveform (Sabatini and Regehr, 1999; 

Geiger and Jonas, 2000), I measured AP width (full width at half-maximal amplitude) as 

recorded in the cell-attached configuration. The AP width does not correlate significantly 

with the peak amplitude of unitary [Ca2+] transients (ρ = 0.20, p = 0.17; Spearman correlation, 

Figure 26A). To assess the effect of potential differences in endogenous buffers such as 

calbindin, which is expressed in superficial PCs (Baimbridge et al., 1991), I grouped the 

recorded cells based on their somatic location in the PC layer as deep, middle and superficial 

cells. I found no significant difference in the peak amplitude of unitary [Ca2+] transients 

among the three groups (superficial: 0.19 ± 0.15 ΔF/F, n = 20; middle: 0.23 ± 0.14 ΔF/F, n 

= 18; deep: 0.14 ± 0.15 ΔF/F, n = 12; p = 0.13, Kruskal-Wallis ANOVA test with multiple 

independent samples; Figure 26B). Next, I fitted the decay of averaged [Ca2+] transients with 

single exponentials and found very similar decay time constants within these subgroups 

(superficial: 419 ± 154 ms, n = 19; middle: 376 ± 127 ms, n = 18; deep: 400 ± 210 ms, n = 

11; p = 0.35, Kruskal-Wallis ANOVA test with multiple independent samples), arguing 

against considerable differences in endogenous Ca2+ buffering. To test for potential 

differences due to different surface to volume ratios, Katalin Szigeti reconstructed the soma 

of a subset of the recorded PCs in 3D from the two-photon Z image stacks and calculated 

their surface to volume ratios. The peak amplitude of the unitary [Ca2+] transients of the 

subselected cells (0.20 ± 0.16 ΔF/F, median = 0.15 ΔF/F, IQR: 0.06 – 0.35 ΔF/F, CV = 0.8, 

n = 21) did not correlate with the surface to volume ratio (ρ = 0.07, p > 0.05; Spearman 

correlation, Figure 26C). Differences in resting [Ca2+] could also be an important factor in 

determining cell-to-cell variability in the peak unitary [Ca2+] transients. To obtain a measure 

that should reflect the resting [Ca2+] I normalized the resting fluorescence (Frest) of each cell 

to its native GCaMP6 fluorescence intensity after fixation. The lack of correlation between 

this measure and the amplitude of its unitary [Ca2+] transients (ρ = -0.25, p = 0.12, Figure 

26C) indicates that the large variance in unitary [Ca2+] transient amplitudes is primarily not 

the consequence of the variability in resting [Ca2+]. 

Finally, I tested cell-to-cell variability in the amplitude of unitary [Ca2+] transients in 

CA1 PCs using a synthetic Ca2+ dye, which is known to report physiologically relevant [Ca2+] 
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linearly Figure 26E. I filled CA1 PCs for 10 minutes with 300 μM Fluo5F and recorded 

single AP-evoked [Ca2+] transients in the whole-cell configuration. I found substantially 

smaller variability in the peak amplitude (0.02 ± 0.006 G/Gmax, median = 0.02 G/Gmax, IQR: 

0.019 - 0.023 G/Gmax, n = 23) with a CV of only 0.27. The mean-normalized distribution of 

unitary [Ca2+] signals reported with Fluo5F was significantly narrower than that reported by 

GCaMP6f (p = 0.014, Two-Sample Kolmogorov Smirnoff test, Figure 26F), suggesting that 

the variability in the amplitude of GCaMP6f [Ca2+] transients is not the consequence of a 

biological variability in peak [Ca2+]. 
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Figure 26. The amplitude of unitary 

GCaMP6f [Ca2+] fluorescent 

transients does not correlate with 

the AP width, soma location in the 

PC layer or surface to volume ratio. 

(A) Peak amplitude of unitary [Ca2+] 

transients do not correlate with AP 

width recorded in cell-attached 

configuration (p = 0.17, Spearman 

correlation; n = 46 cells). (B) Unitary 

[Ca2+] transients are not significantly 

different among cells situated in 

superficial, middle or deep part of the 

stratum pyramidale (p = 0.13, Kruskal 

Wallis test). (C) Surface to volume 

ratio does not correlate with the 

amplitude of unitary [Ca2+] transients 

(p = 0.78, Spearman correlation; n = 21 

cells). (D) Peak amplitude of unitary 

[Ca2+] transients does not correlate 

with the GCaMP6f intensity-

normalized Frest (p = 0.12, Spearman 

correlation). (E) Representative [Ca2+] 

transients (grey: three individual 

traces; pink: averaged trace) recorded 

with 300 µM Fluo5F. Inset shows the 

scanning line over the PC somata. (F) 

The distribution of single AP-evoked 

GCaMP6f [Ca2+] transients 

(normalized to mean) is wider (CV = 

0.79, n = 55) and significantly different 

(p = 0.014, two-sample Kolmogorov-

Smirnoff test), compared to that of 

unitary [Ca2+] transients measured with 

Fluo5F (CV = 0.27, n = 23 cells). 

 

5.2.4. Supralinear temporal summation of GCaMP6f [Ca2+] transients  

To examine the relationship between GCaMP6f expression levels and the temporal 

summation of fluorescent [Ca2+] transients, I evoked trains of APs at different frequencies. 
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[Ca2+] transients showed substantial temporal summation already at 10 Hz and the 

summation was even more pronounced at 50 Hz (Figure 27). I calculated a linearity index 

by dividing the peak of [Ca2+] transients evoked by the short trains with the respective 

mathematical sum of their unitary events. The summation of GCaMP6f [Ca2+] transients was 

was use-dependent (Figure 27G) and supralinear at every tested frequency and showed a 

slight frequency dependence (linearity index: 5AP at 10 Hz: 1.67 ± 0.54, median = 1.54, IQR: 

1.31 – 1.94, n = 34; 3AP at 50 Hz: 1.70 ± 0.51, median = 1.57, IQR: 1.42 – 2.02, n = 26; 5AP 

at 50 Hz: 1.92 ± 0.63, median = 1.89, IQR: 1.48 – 2.27, n = 40; 3AP at 100 Hz: 1.83 ± 0.66, 

median = 1.82, IQR: 1.23 – 2.26, n = 18). In contrast, the summation of [Ca2+] transients 

measured with Fluo5F was quasi linear (linearity index: 5AP at 10 Hz: 0.93 ± 0.07, median 

= 0.95, IQR: 0.9 - 0.96, n = 10), indicating that the supralinear summation of GCaMP6f 

fluorescent transients is not the consequence of an increased Ca2+ influx during the AP trains. 

The linearity of 5 AP evoked GCaMP6f [Ca2+] transients at 10 Hz did not show significant 

correlation either with the unitary [Ca2+] transient amplitude (ρ = 0.14, p = 0.4; Spearman 

correlation, Figure 27B), or with GCaMP6f expression level (ρ = -0.33, p = 0.09; Spearman 

correlation, Figure 27C). The correlation between the linearity of [Ca2+] transients evoked 

by 5APs at 50 Hz and the peak amplitude of unitary [Ca2+] transients was also not significant 

(ρ = 0.3, p = 0.06; Spearman correlation, Figure 27E), but the correlation between the 

linearity at 50 Hz and the GCaMP6f expression level reached significance (ρ = -0.46, p = 

0.006; Spearman correlation, Figure 27F). The tight correlation between the linearity index 

for 3APs and 5APs at 50Hz indicates similar summation for a lower number of APs (r2 = 

0.86, Pearson correlation; Figure 27H). 
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Figure 27. Nonlinearity of GCaMP6f fluorescence signals.  

(A, D) Examples of [Ca2+] transients normalized to their unitary peak amplitude evoked by 

5 APs at 10 or 50 Hz (blue) and the mathematical sum of its corresponding five, spike time-

adjusted, unitary [Ca2+] transients (cyan). (B, C) Fluorescent signals evoked by 5 APs at 10 

Hz are supralinear (mean linearity = 1.67 ± 0.54, n = 34). The linearity index does not 

correlate with either the peak amplitude of unitary [Ca2+] transients (p = 0.4; Spearman 

correlation) or with their native GCaMP6f expression level (p = 0.09; Spearman correlation). 

(E, F) [Ca2+] transients evoked by 5 APs at 50 Hz sum supralinearly (mean linearity = 1.92 

± 0.63, n = 40). The linearity index does not correlate with the peak amplitude of unitary 

[Ca2+] signals (E, p = 0.06, Spearman correlation), but shows a negative correlation with the 

expression of GCaMP6f (F, p = 0.006, Spearman correlation). (G) Normalized peak 

amplitudes of 3 or 5 AP-evoked [Ca2+] transients are highly variable and show different 

degrees of summation. (H) The linearity index for 3 and 5 APs at 50 Hz shows a significant 

positive correlation (r2 = 0.86, p < 0.001, Pearson correlation). (I) A large [Ca2+] transient is 

followed after 10.8 s by 12 APs evoked at 0.25 Hz. Note the gradual decrease of the unitary 

[Ca2+] signal during the train. (J) Example of several [Ca2+] transients evoked by burst 

recovery protocols (magenta, 2.5 s; red, 4 s; cyan,10 s; blue, 15 s after a 10 AP at 50 Hz 

burst). Bottom: lines illustrate the timing of the recovery stimuli for the different protocols. 

Inset: Same traces zoomed in and compressed in time for better visualization of the transients 

evoked by the recovery pulses. (K) The increase in peak amplitude of unitary [Ca2+] transients 

after a burst of 10 APs at 50 Hz persists for several seconds (open circles: mean of individual 

cells, closed circles: average ± SD). Data are normalized to unitary [Ca2+] transients measured 

before the burst. (L) Mono-exponential fit (τ = 3.95 s) to the normalized unitary [Ca2+] 

transients evoked by the recovery pulses (color code same as above). 

Interestingly, I observed a dramatic increase in the peak amplitude of the unitary 

[Ca2+] transients, when they followed high frequency bursts by several seconds (Figure 

27G). To quantitatively describe this phenomenon, I applied a burst recovery protocol 

consisting of a 10 AP 50 Hz burst and single recovery pulses at different time points (2.5, 4, 

6, 8, 10 or 15 s; Figure 27J). I normalized the amplitude of [Ca2+] transients to the amplitude 

of a unitary [Ca2+] transient evoked >8 seconds before the burst. [Ca2+] transients evoked by 
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10 AP at 50 Hz were supralinear (linearity index: 2.54 ± 0.94, median = 2.24, IQR: 1.98 – 

3.14, n = 8 cells). 2.5 s after the burst the peak amplitude of the unitary [Ca2+] transient was 

more than twice (2.06 ± 0.46, median = 2.14, IQR: 1.7 - 2.45, n = 6 cells) that of the control 

transient and returned to its initial value >10 second later (Figure 27K, L). Fitting a 

monoexponential to the normalized recovery of [Ca2+] transients yielded a time constant of 

3.95 s (Figure 27L). In contrast, when the same protocol was applied to cells which did not 

express GCaMP6f and in which [Ca2+] transients were recorded using Fluo5F, the unitary 

peak amplitude did not increase after burst (4s after burst: 0.84 ± 0.09, median = 0.87, IQR: 

0.77 - 0.92, n = 9; normalized to the unitary transient before the burst), indicating that the 

aforementioned phenomenon are likely due to the nonlinear nature of GCaMP6f and not the 

short-term facilitation of the Ca2+ flux. 

Because the supralinear enhancement of peak amplitudes of unitary [Ca2+] transients 

can be a potential source for the observed large cell-to-cell variance of the unitary [Ca2+] 

transients of GCaMP6f expressing cells, I subselected cells with traces where the single AP-

evoked transients were not preceded by higher frequency events by >10 s. The resulting mean 

unitary [Ca2+] transient displayed similarly large cell-to-cell variance (CV = 0.95, n = 35). 

The large variance (CV = 0.73) was also present among cells with low GCaMP6f expression 

levels (<180 AU, n = 15). 

5.2.5. Cell-to-cell variability of the peak amplitude of unitary [Ca2+] transients underlies 

spike inference error rate 

To infer APs from fluorescent [Ca2+] transients, we adopted the method (MLspike) 

of Deneux et al. (Deneux et al., 2016) with my collaborator Miklós Szoboszlay. We set the 

tolerance window of spike matching to 60 ms (i.e. an inferred spike should be within a 60 ms 

time window of an original to be registered as ‘correctly detected’), a value almost an order 

of magnitude smaller than that used by Deneux et al. (500 ms). MLspike estimates the most 

likely spike trains underlying the fluorescent transients by using a model that includes 

baseline drift (low frequency, large amplitude baseline fluctuations, see Figure 9), nonlinear 

feature of the Ca2+ sensor (pnonlin; saturation γ, Hill exponent n or polynomial coefficient), the 

peak amplitude and the decay of the unitary [Ca2+] transients. The accuracy of the fitting is 
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quantified in error rates (ERs) as the harmonic mean of sensitivity (% of missed spikes, i.e.: 

that were not detected within the 60 ms time window from the real spike) and precision (% 

of false detections). First, my collaborator, Miklós Szoboszlay constrained the baseline drift 

and pnonlin values by fitting unitary and 5 AP-evoked [Ca2+] transients recorded in individual 

PCs (n = 37 cells; Figure 28A-C). Next, he generated synthetic data with MLspike using 

experimentally measured peak amplitudes, decay times, SNR of unitary [Ca2+] transients, the 

corresponding baseline drift and pnonlin values with spike timings obtained from Poisson 

distributions at 0.1 Hz, 1 Hz, and 10 Hz (Figure 28D, F, H). I applied 4 different fitting 

scenarios to investigate the parameters that critically influence the error rate (ER): 1) fitting 

the transients with the amplitude, decay, baseline drift and pnonlin values used to generate the 

data; 2) mean decay value of the 37 cells with the cell’s own amplitude, baseline drift and 

pnonlin values; 3) mean amplitude value of the 37 cells, with the cell’s own decay, baseline 

drift and pnonlin values; 4) the mean amplitude, decay, baseline drift and pnonlin values of the 

37 cells. The first scenario resulted in virtually zero errors for all tested mean firing 

frequencies (red in Figure 28E,G,I). Similarly, low ERs were obtained when the mean decay 

time constant was used at frequencies <10 Hz (orange in Figure 28E,G). However, when the 

mean peak amplitude was used, the ER was substantially higher at all frequencies (0.1 Hz: 

ER = 25.3 ± 33.7%, median = 1.8%, IQR: 0 - 33.1%; 1 Hz: ER = 26.2 ± 30.8%, median = 

9.3%, IQR: 0.3 - 46.2%; 10 Hz: ER = 17.4 ± 20.2%, median = 8.9%, IQR: 0.3 - 29.5%; cyan 

in Figure 28E,G,I), similar to the scenario when all parameters used for fitting were the mean 

values of the 37 cells (0.1 Hz: ER = 22.9 ± 34.2%, median = 1.9%, IQR: 0 - 33.2%; 1 Hz: 

ER = 27.4 ± 32.9%, median = 9.5%, IQR: 0 - 51.9%; 10 Hz: ER = 26.5 ± 24.5, median = 

16%, IQR: 9.6 - 47.3%; blue in Figure 28E,G,I; Three-Way ANOVA: p < 0.01 for scenarios; 

p > 0.05 for frequency; p > 0.05 for scenarios*frequency interaction). 
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Figure 28. Cell-to-cell variability in the peak amplitude of unitary GCaMP6f [Ca2+] 

transients leads to inaccurate spike inference.  

(A) A single AP evoked [Ca2+] transient (black trace) and the best fit using MLspike with 

the following four scenarios: 1) own amplitude and own decay time constant (red, own A 

and own τ); scenario 2) own amplitude and mean decay time constant (orange, own A, τ̅); 

scenario 3) mean amplitude and own decay time constant (cyan, A̅, own τ); scenario 4) 

mean amplitude and mean decay time constant (blue, A̅ and τ̅). (B) The inference error rate 

(ER) of a [Ca2+] transient evoked by 5 APs at 50 Hz is plotted as a function of pnonlin and 

baseline drift parameters. (C) Fitting of a [Ca2+] transient evoked by 5 APs at 50 Hz using 

those maximal pnonlin and minimal baseline drift values that resulted in minimal ER. (D, F, 

H) Representative synthetic [Ca2+] traces and inference spike traces calculated with own 

peak amplitude and decay time constant (red) or with mean peak amplitude and mean 

decay time constant (blue) values. miss: missed APs; fd: false detection (60 ms tolerance 

window). Traces were generated with Poisson spike trains with 0.1 Hz (D), 1 Hz (F) and 

10 Hz (H). (E, G, I) ERs for the different inference scenarios. (J) Correlations of ERs and 

GCaMP6f intensity values (0.1 Hz: p < 0.01; 1 Hz: p < 0.01; 10 Hz: p = 0.014; n = 28; 

Spearman correlation). (K) ERs for low intensity cells (< 180 AU, n = 20) are significantly 

smaller compared to high intensity cells (> 180 AU, n = 8). Statistic for panels E, G, I, K: 

Three-Way ANOVA: p < 0.01 for intensity; p < 0.01 for scenarios; p > 0.05 for frequency; 

p < 0.01 for intensity*scenarios interaction; p > 0.05 for intensity*frequency interaction; 

p > 0.05 for scenarios*frequency interaction; p > 0.05 for intensity*scenarios*frequency 

interaction; * < 0.05 pairwise Bonferroni post hoc test. 

The ERs in the 4th scenario (all parameters were the mean of 37 cells) depended on 

the difference between the cell’s unitary peak amplitudes and the mean amplitude; the ER 

was negligible when the difference was small (Figure 29 A-C). This is explained by a larger 

fraction of missed APs for cells with lower unitary peak amplitudes (Figure 29 D-F) and by 

a larger fraction of incorrectly detected APs for cells with higher unitary peak amplitudes 

(Figure 29 G-I). These data support the key role of the variance in the amplitude of the 

unitary [Ca2+] transients in determining the precision of spike inference. 
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Figure 29. Correlation of spike inference error rates and peak amplitude of unitary 

[Ca2+] transients. 

(A- C) ER is low for cells with peak amplitudes similar to the mean unitary peak amplitude 

(indicated by the vertical dashed line) at each tested firing frequency. (D-F) The fraction 

of missed APs is higher for cells with small unitary peak amplitudes. (G-I) The fraction of 

falsely detected APs is higher for cells with large unitary peak amplitudes.  (A, D, G: 0.1 

Hz, B, E, H: 1 Hz, c, F, I: 10 Hz; n = 33 cells). The ER is the harmonic mean of the false 

detections and the fraction of missed spikes.   

My analysis also revealed that the ER (4th scenario) and GCaMP6f intensity show 

significant positive correlations at all frequencies (0.1 Hz: ρ = 0.5, p < 0.01; 1 Hz: ρ = 0.59, 

p < 0.01; 10 Hz: ρ = 0.46, p = 0.013; n = 28; Spearman correlation; Figure 28J). When the 

cells were grouped based on their native GCaMP6f intensities into low (<180 AU, n = 20) 

and high (>180 AU, n = 8) expressing groups, the ERs were found to be significantly smaller 
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for weakly expressing cells at 0.1 Hz and 1 Hz (Three-Way ANOVA: p < 0.01 for intensity; 

p < 0.01 for intensity*scenarios interaction; p > 0.05 for intensity*frequency interaction; p > 

0.05 for intensity*scenarios*frequency interaction; pairwise Bonferroni post hoc test: 0.1 Hz: 

p < 0.01, 1 Hz: p < 0.01, 10 Hz: p > 0.05; Figure 28K).  

These results demonstrate that the key parameter that critically determines the spike 

inference ER is the peak amplitude of the unitary [Ca2+] transients. Furthermore, my data 

also provides clear evidence that the ER for weakly GCaMP6f expressing cells is 

significantly lower than that for the strongly expressing ones.  

5.2.6. Reduction of spike inference error by fitting with the estimated peak amplitudes 

of unitary [Ca2+] transients 

In the final set of simulations, I generated [Ca2+] fluorescent traces using the 

amplitude and decay of unitary [Ca2+] transients recorded in 20 PCs that weakly expressed 

GCaMP6f (<180 AU), their respective baseline drift, pnonlin parameters, noise and the spike 

timings of randomly selected 20 CA1 PCs recorded from behaving animals using tetrodes 

(obtained from Grosmark, A.D., Long J. and Buzsáki, G; CRCNS.org; 

http://dx.doi.org/10.6080/K0862DC5, Grosmark and Buzsáki, 2016). The distribution of the 

mean firing rates of the PCs was positively skewed (n = 48 cells) and was very similar for 

the 20 subselected cells compared to the 48 cells of the dataset (p = 0.27, Two-Sample 

Kolmogorov-Smirnov test; Figure 30A).  

Because our previous simulations revealed that the amplitude of unitary [Ca2+] 

transients is the key parameter in determining the ER, I aimed at determining the amplitude 

of unitary [Ca2+] transients from the fluorescent traces with a model independent and a model 

dependent method. For this, first, I analysed the spike times of in vivo recorded CA1 PCs. 

Because the amplitude of a [Ca2+] transient increases substantially when it is preceded by a 

burst, I selected APs, which were preceeded by at least a 4 second silent period. I also aimed 

a short (1s) silent period after the spike to be able to reliably measure the amplitude of the 

[Ca2+] transients. In the analysed 20 in vivo recorded spike trains, 10.4 ± 5.5 % of the APs 

fulfilled these criteria. However, the slow kinetics of GCaMP6f [Ca2+] transients does not 

allow the unequivocal distinction between single AP-evoked and isolated high-frequency 
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(inter spike interval (ISI) < 20 ms) burst-evoked [Ca2+] transients; therefore, I also calculated 

the percentage of such bursts. I found that among such temporally separated events, 77.6 ± 

8.4 % were single APs with a minimum of 63.6%, and the remaining ones were bursts of 

APs. Thus, I argued that if I detect [Ca2+] transients that are separated by 4 and 1 seconds 

from other transients (15 ± 8 % of the total transients), the smallest two-third of them will be 

likely single AP-evoked ‘presumed unitary’ [Ca2+] transients. Then, I detected [Ca2+] 

transients in all 20 synthetic fluorescent traces, from which I selected such temporally 

segregated events and calculated the mean of the amplitudes of the smallest 2/3 of them. The 

ratio of the ‘presumed unitary’ and the real amplitude of the [Ca2+] transients was 1.01 ± 0.05 

(median = 1, IQR: 0.98 - 1.02), and even the largest error was only 16% (Figure 30B), 

indicating that this method provides an excellent estimate of the amplitude of unitary [Ca2+] 

transients. Due to spike sorting issues, especially in case of bursts of APs (Buzsáki, 2004), 

the calculations of the fraction of single AP-s and burst of APs from the isolated events can 

be erroneous. However, the burst-evoked [Ca2+] transients have much larger peak amplitudes 

compared to the single AP-evoked responses; therefore, it should be reflected by a larger, 

separate peak on the amplitude distributions. In such cases, the amplitude of the first peak of 

the distribution should be applied. In our data, the accuracy of such an estimation of 

‘presumed unitary’ [Ca2+] transients was almost identical (1.05 ± 0.05; largest error: 23%) to 

that described above. 

In a second method, I selected those [Ca2+] transients that were inferred by MLspike 

as single AP-evoked ones in a scenario where mean amplitude (0.248 ΔF/F), decay time 

constant (388 ms), pnonlin (0.56) and baseline drift (0.011) parameters of the 20 PCs (only 

weakly GCaMP6f expressing cells) were used for fitting (blue in Figure 30D). I only 

included such detected unitary events in our analysis if they were temporally segregated from 

other events (>4s before and >1s after). The accuracy of this estimation method was slightly 

lower than that of my first method; the ratio of ‘detected unitary’ and real peak amplitude 

was 1.08 ± 0.17 (median = 1, IQR: 0.97 - 1.16, max = 1.51). The main inaccuracies occurred 

for cells with small unitary peak amplitudes resulting in a significant negative correlation 

between the real peak amplitude and the ratio of ‘detected unitary’/real amplitudes (ρ = -

0.78, p < 0.01; Spearman correlation, Figure 30C). 
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Next, I hypothesised that by using the reasonably accurately estimated peak amplitude 

(‘presumed unitary’ and ‘detected unitary’) of each cell, the mean decay time constant (388 

ms), pnonlin (0.56) and baseline drift (0.011), inference error should be smaller compared to 

the scenario when all parameters were the means of the 20 PCs. Indeed, the ERs was 

significantly reduced (p = 0.01, Friedman ANOVA test; Figure 30G) from 15.0 ± 15.2 % to 

6.3 ± 4.9 % when the ‘presumed unitary’ amplitude (green in Figure 30G; Paired Sample 

Wilcoxon Signed Rank post hoc test: p < 0.01) and to 6.4 ± 4.8 % when the ‘detected unitary’ 

amplitude was used for fitting (purple in Figure 30G; Paired Sample Wilcoxon Signed Rank 

post hoc test: p < 0.01). The ER did not show significant correlation with the estimated 

unitary peak amplitudes in either of the scenarios (Figure 30E,F). These results further 

support the key role in the variability of peak amplitudes in spike inference accuracy, whereas 

the decay time constant, pnonlin and baseline drift contribute to only a minor part of the ER 

(~6%). Indeed, the ER was reduced to virtually zero when in addition to the estimated 

amplitudes, the original decay time constant, pnonlin and baseline drift values were used 

(‘presumed unitary’: ER = 0.05 ± 0.13 %, median = 0%, IQR: 0 - 0%; ‘detected unitary’: ER 

= 0.09 ± 2.35%, median = 0%, IQR: 0 - 0.05%). 
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Figure 30. The error rate (ER) in spike inference can be reduced by using estimated 

unitary peak amplitudes.  

(A) The distribution of mean firing rates of CA1 PCs obtained from Grosmark, Long and 

Buzsaki (CRCNS.org, http://dx.doi.org/10.6080/K0862DC5; Grosmark and Buzsáki, 

2016; n = 48 cells), and that of the subselected cells (n = 20) used for generation of 

synthetic [Ca2+] traces here (p = 0.27, Two-Sample Kolmogorov Smirnov test). (B) 

Original peak amplitudes, used for generation of synthetic data, are estimated correctly 

from the peak amplitudes of isolated ‘presumed unitary’ [Ca2+] transients for the whole 

range of amplitudes (n = 20 cells; p > 0.05, Spearman correlation). (C) Accuracy of 

estimating peak amplitudes from [Ca2+] transients detected by MLspike as single AP-

evoked (‘detected unitary’) correlates negatively with the real peak amplitudes (n = 20 

cells; p < 0.01, Spearman correlation). Synthetic data generated with unitary [Ca2+] 

amplitudes > 0.2 ΔF/F allows the accurate detection of the original unitary [Ca2+] 

amplitude. (D) Synthetic [Ca2+] traces generated with an in vivo recorded spike timing 

(black, [Ca2+] trace; blue, green, and purple [Ca2+] fits; dotted dashed blue, green, and 

purple, baseline drift). Inferring spikes using MLspike with the mean unitary [Ca2+] 

transient amplitude and decay (blue) and with the ‘presumed unitary’ (green) or ‘detected 

unitary’ (purple) [Ca2+] transient amplitude and mean decay (green, respectively purple). 

(E, F) Peak amplitude of ‘presumed unitary’ (E) or ‘detected unitary’ (F) [Ca2+] transients 

does not correlate with the ER (n = 20). (F) (G) Summary plot showing significant 

reduction in ER (n = 20; p = 0.01, Friedman ANOVA test) when spike inference is 

performed using peak amplitude of ‘presumed unitary’ [Ca2+] transients (green; Paired 

Sample Wilcoxon Signed Rank post hoc test: p < 0.01) or using the amplitude of ‘detected 

unitary’ [Ca2+] transients (purple; Paired Sample Wilcoxon Signed Rank post hoc test: p 

< 0.01). puA: ‘presumed unitary’ amplitude; duA: ‘detected unitary’ amplitude. 
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6. DISCUSSION 

In my dissertation I first investigated the mechanism of an intriguing form of 

molecular regulation of synaptic properties, the target cell-type dependent release 

probability. Distinct molecular compositions underlie the capability of neuronal networks to 

form diverse synaptic connections with distinct efficacy of information transfer. 

Investigating the role of this synaptic diversity in a behavioral context dependent manner is 

hampered by the limitations of currently available large-scale recording techniques. 

Therefore, in the second part of my dissertation I aimed to elucidate the sources of these 

limitations in case of the most widely used Ca2+ imaging technique using GCaMP6f; based 

on which, I aimed to improve the reliability of spike inference from the underlying Ca2+ 

traces. 

In the first part of my thesis, the short-term synaptic plasticity measurements of CA3 

PC inputs onto PV+ or mGluR1α+ INs that I have performed, indicate a different initial 

release probability at these synapses. Moreover, I show that the [Ca2+] influx upon a single 

AP is significantly larger in case of high Pr synapses. These results, together with the parallel 

experiments of my colleague (Noemi Holderith: measurement of AZ area and bouton volume 

ratios) allowed the determination of the functional Ca2+ channel density. We found an almost 

twofold higher density in the AZs innervating PV+ dendrites compared to those innervating 

mGluR1α+ INs. This is the consequence of a larger presynaptic [Ca2+] transient, a smaller 

AZ area, and a similar volume of boutons innervating PV+ INs (Éltes et al., 2017). In parallel 

another colleague, Tekla Kirizs determined the densities of immunogold particles labeling 

the Cav2.1 and Cav2.2 Ca2+ channel subunits using sodium dodecylsulphate- digested freeze-

fracture replica labeling (SDS-FRL) and she found that PV+ dendrite-innervating terminals 

exhibited only a 1.15 times higher Ca2+ channel subunit density (Éltes et al., 2017). My 

further experiments aimed to test potential explanations for this discrepancy. My results 

excluded a difference in the contribution of VGCC to the [Ca2+] transients and in buffer 

capacity, permitting us to draw the conclusion that a target cell-type dependent modulation 

of [Ca2+] function or different subunit composition is the most likely underlying cause of the 

differing Pr at these synapses. 
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My Ca2+ imaging experiments are consistent with the results of Koester and Johnston 

(Koester and Johnston, 2005), who performed simultaneous paired whole-cell recordings and 

imaged [Ca2+] transients in presynaptic boutons mediating either facilitating or depressing 

EPSPs in the neocortex. They also observed a larger presynaptic [Ca2+] transient in 

depressing PC to multipolar cell synapses compared with those mediating facilitating EPSPs 

in bitufted cells. However, the difference in the recorded cortical boutons was more robust 

than that found in my present study in CA3 PCs. Koester and Johnston (2005) did not provide 

ultrastructural information regarding the bouton volume or AZ size, so the basis for the 

difference in [Ca2+] between the depressing and facilitating synapses could not be 

determined. My data (pooled with that of Noemi Holderith’s) thus extends the current 

knowledge by demonstrating that the larger [Ca2+] in high Pr, FS PV+ IN-innervating boutons 

is not the consequence of a smaller bouton volume, but rather is caused by a larger amount 

of Ca2+ entering the bouton upon an AP. Noemi Holderith, additionally, determined the size 

of the AZs (where Ca2+ channels are concentrated), therefore in our study we could predict 

the [Ca2+] in the vicinity of the release sites. Assuming similar Ca2+ channel properties in 

different Pr boutons, our data predict a 1.7–1.9 times higher density of Ca2+ channels in high 

Pr AZs (Éltes et al., 2017). However, results of Tekla Kirizs, who performed quantitative 

evaluation of several hundreds of AZs with SDS-FRL for both Cav2.1 (P/Q) and Cav2.2 (N-

type) Ca2+ channel subunits in AZs attached to Kv3.1b+ (which co-localizes with PV+) or 

mGluR1α+ somatodendritic membranes revealed only a ~15% higher [Ca2+] channel density 

in the Kv3.1b+ dendrite-innervating AZs (Éltes et al., 2017). A potential explanation for the 

discrepancy between our functional channel density and her SDS-FRL Cav subunit density 

estimates is a preferential enrichment of Cav2.3 (R-type)/Cav1 (L-type)/Cav3 (T-type) 

subunits in PV+ dendrite-innervating boutons (Parajuli et al., 2012; Carbone et al., 2014). 

However, my experiments with 1 μM ω-CTX MVIIC revealed an almost identical block of 

[Ca2+] transients in boutons targeting these distinct IN types, arguing against differential 

contribution of R-, T-, and L-type Ca2+ channels to the [Ca2+] transients. Another possible 

explanation for this discrepancy is a differential fixed Ca2+ buffer concentration in these two 

bouton populations. However, the similar decay of the [Ca2+] transients (recorded with either 

300 or 100 μM Fluo5F) in these bouton populations argues against this possibility. My results 
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in concert with those of Noemi Holderith’s and Tekla Kirizs’ provide evidence that 

differential target cell type-dependent regulation of Ca2+ channel function is the most likely 

mechanism underlying the differences in release probability. 

There are a number of ways to regulate Ca2+ channel function. Association with 

different β subunits promotes different voltage-dependent activation and inactivation (for 

review, see Buraei and Yang, 2010 (Buraei and Yang, 2010). Interactions with SNARE 

proteins such as syntaxin and SNAP25 at the so-called “synprint” motif reduce the channel 

open probability, whereas additional coexpression of synaptotagmin reverses this effect 

(Zhong et al., 1999). This suggests a regulatory switch by which presynaptic Ca2+ channels 

bound to Ca2+ sensors are functionally enabled, whereas Ca2+ channels decoupled from Ca2+ 

sensors are disabled (Eggermann et al., 2011). The AZ protein Munc13, which is involved in 

vesicle priming processes, has also been found to alter Ca2+ inflow by modulating the kinetic 

properties of Ca2+ channels without changing their density (Calloway et al., 2015). Probably 

the most widely studied modulation of Ca2+ channel function is its regulation by presynaptic 

G-protein-coupled receptors (e.g., mGluRs, A1 adenosine- α2 noradrenergic, GABAB, or 

endocannabinoid receptors (Bean, 1989; Dittman and Regehr, 1996; Takahashi et al., 1996; 

Leão and Von Gersdorff, 2002; Brown et al., 2004; Szabó et al., 2014; Kupferschmidt and 

Lovinger, 2015). P/Q- and N-type Ca2+ channel function is reduced via direct binding of G-

protein β/γ -subunits to Ca2+ channel β subunits. In a recent study, Anderson et al. (2015) 

demonstrated that presynaptic β neurexins can reduce tonic endocannabinoid production 

transsynaptically and increase the Pr of CA1 PC axons by alleviating presynaptic [Ca2+] from 

CB1-mediated inhibition (Anderson et al., 2015). Another way of modulating Ca2+ channel 

function is phosphorylation: CDK5 (kinase)/calcineurin (phosphatase) equilibrium has been 

shown to set the phosphorylation state of the α1 subunit of N-type Ca2+ channels, which 

influences the voltage dependence of the open probability of the channel (Su et al., 2012; 

Kim and Ryan, 2013). Whatever the mechanisms are, they must be able to modulate the 

function of presynaptic Ca2+ channels in a postsynaptic target cell type-dependent manner. 

The amount of Ca2+ entering through presynaptic voltage-gated Ca2+ channels is very 

sensitive to the shape/waveform of the AP (Geiger and Jonas, 2000) so a postsynaptic target 

cell type-dependent difference in the AP waveform could also explain our results. It remains 
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to be seen whether the AP waveform in boutons (Rowan et al., 2014) that are segregated by 

only a few micrometers along the same axon could be sufficiently different to account for 

the ~30% difference in the [Ca2+] transient observed in our experiments. The larger amount 

of Ca2+, together with a higher docked vesicle density in high Pr boutons, indicates a higher 

[Ca2+] at the Ca2+ sensors. Rozov et al. (Rozov et al., 2001) tested the transmission between 

cortical PCs and two distinct IN types (multipolar and bitufted) with fast and slow Ca2+ 

buffers. The more robust effect of EGTA (slow buffer) on neurotransmitter release from PC 

to bitufted compared with multipolar cells predicted a larger physical distance between the 

Ca2+ channels and Ca2+ sensors (larger coupling distance) in the low Pr synapse. Our 

functional Ca2+ channel density estimate is consistent with this prediction and supports the 

hypothesis that the mechanisms underlying the low initial Pr and the subsequent short-term 

facilitation is a large Ca2+ channel to Ca2+ sensor distance (Neher, 1998; Atwood and 

Karunanithi, 2002; Eggermann et al., 2011). Another level of complexity might arise from 

the potential target cell type-dependent differences in the sub-AZ distribution of Ca2+ 

channels (Holderith et al., 2012; Nakamura et al., 2015).  

So far, the only known protein with a dramatic difference in its density between low- 

and high-Pr synapses of a single PC axon is mGluR7 (Shigemoto et al., 1996), making it an 

ideal candidate through which a low initial Pr and a consequent short-term facilitation could 

be achieved. The pharmacological blockade of group III mGluRs (including mGluR7) 

increases the amplitude of evoked EPSCs, but does not change the facilitating phenotype of 

EPSCs recorded from CA1 mGluR1α+ INs (Losonczy et al., 2003), suggesting a tonic, 

mGluR-mediated reduction of transmitter release from these axon terminals. Similarly, 

knocking down Elfn1 from SOM+ INs also led to an increase in the amplitude of the first 

EPSC of a train and a reduction in the degree of short-term facilitation, consistent with the 

results of pharmacological block of mGluR7. Indeed, it has been shown recently that the 

postsynaptically located Elfn1 has a key role in the selective recruitment of mGluR7 to the 

presynaptic AZs of PC axons that contact SOM/ mGluR1α+ INs (Tomioka et al., 2014). 

However, the short-term plasticity of the mGluR1α+ dendrite-targeting boutons in mGluR7 

antagonist or after Elfn1 knock-down is still facilitating, very different from that observed in 

PV+ IN-targeting boutons, suggesting that other mechanisms must be involved. These might 
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include the regulation of Ca2+ channel function mentioned above or the selective presence of 

molecules that might impose facilitation on synapses (e.g., NMDA receptors, (Buchanan et 

al., 2012); kainate receptors, (Sylwestrak and Ghosh, 2012); or synaptotagmin-7, (Jackman 

et al., 2016). Additional factors could contribute to differences in initial Pr by changing the 

sensitivity of the release machinery to [Ca2+]. Proteins such as Rab3A-D and Munc13-3 

increase Pr (Schlüter et al., 2004, 2006; Ishiyama et al., 2014), whereas others such as mover 

decrease Pr (Körber et al., 2015) without affecting the readily releasable pool. Unc13 

isoforms have been implicated in the preferential targeting of vesicles to docking sites that 

are formed at varying distances from the Ca2+ channels (Böhme et al., 2016). Any of these 

mechanisms may also contribute to the differences in initial Pr in addition to the above 

described differences in [Ca2+]. 

The hypothesis that distinct molecular mechanism can underlie the different efficacy 

of the information transfer of short-term depressing and facilitating synapses, at low and high 

frequency activity respectively, is at present generally accepted. The molecular and 

functional heterogeneity in concert with the complex organization of efferents and afferents 

could support the emergence of biased excitatory-inhibitory microcircuits in the 

hippocampus that could dynamically regulate routing of information (Soltesz and Losonczy, 

2018). 

Current methods for the in-depth investigation of the extent to which these diverse 

synaptic properties shape the transformation of the activities of individual neurons into 

complex behaviors are limited (Broussard et al., 2014; Jercog et al., 2016; Lin and Schnitzer, 

2016). Currently, in vivo two-photon Ca2+ imaging using GCaMP6f, genetically encoded 

Ca2+ indicator, is one of the most widespread tecniques applied to answer this question. 

However, the current models/ algorithms/ software used to decipher the neuronal activity 

underlying the GCaMP6f fluorescence traces are inaccurate. Understanding the sources of 

these limitations and devising new, more accurate procedures are necessary. In the second 

part of my thesis I demonstrated that the variability of peak amplitudes of GCaMP6f [Ca2+] 

transients recorded in vivo in a population of cells is not only the consequence of the mixture 

of single APs and high-frequency bursts, but also due to a substantial cell-to-cell variability 

in the peak amplitude of unitary [Ca2+] transients and the variable degree of supralinearity of 
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GCaMP6f. I also show that the expression level of GCaMP6f is highly variable among CA1 

PCs, partially underlying the variability in the amplitude, decay and summation of unitary 

[Ca2+] transients. However, to my surprise, substantial variability is still observed in the peak 

amplitude and supralinearity when PCs with similarly low GCaMP6f expression were 

subselected. Our modelling with MLspike revealed that the main source of spike inference 

error is the variability in the peak amplitude, and not in the decay or supralinearity (Éltes et 

al., 2019, modelling performed together with Miklos Szoboszlay). I developed two 

procedures to estimate the peak amplitudes of unitary [Ca2+] transients in CA1 PCs and show 

that spike inference performed with MLspike using these unitary amplitude estimates in 

weakly GCaMP6f expressing cells results in error rates of ~6%. 

I determined for the first time the expression level of GCaMP6f in functionally 

characterized nerve cells, allowing me to correlate the amplitude, kinetics and supralinearity 

of unitary fluorescent [Ca2+] transients with the amount of genetically encoded Ca2+ 

indicators. I estimated the expression level of GCaMP6f 1) by measuring its native 

fluorescence in aldehyde fixed tissue, arguing that this measure should not reflect differences 

in [Ca2+]; and 2) with anti-GFP immunohistochemistry. My collaborator’s, Katalin Szigeti’s 

experiments revealed a very tight correlation between the intrinsic GCaMP6f fluorescence 

and anti-GFP immunoreactivity providing a strong support for the notion that the intrinsic 

fluorescence of GCaMP6f in fixed tissue is an excellent measure of the protein level (Éltes 

et al., 2019). Determining the expression level of GCaMP6f in every imaged cell after dense 

population recordings is laborious, therefore I also analysed the relationship between the 

intrinsic GCaMP6f fluorescent intensities as measured in acute slices with two-photon 

microscopy and those measured after fixation. The weak correlation, with very low predictive 

power at low intensities, indicates that the resting fluorescence of GCaMP6f in living tissue 

is not a reliable indicator of the amount of GCaMP6f protein irrespective whether 810 nm or 

925 nm excitation laser was used. Therefore, I conclude that reliable measurement of the 

expression level of GCaMP6f requires analysis of fluorescent intensities after chemical 

fixation.  I also suggest that applying a cut off value of ~5% intensity of the most intensely 

labelled cells or ~30% intensity value of the mean intensity of the population should be 

applied to subselect cells in which the unitary [Ca2+] transients should have large amplitudes 
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with favourable SNR. Such intensity-subselection resulted in the exclusion of approximately 

one third of the cells. 

I simultaneously measured electrically the APs and optically GCaMP6f [Ca2+] 

transients in acute hippocampal slices and not in situ in the brain, but I argue that my approach 

of using cell-attached recordings with antidromic stimulation, has the advantage of 

permitting the post hoc identification of the unlabeled cells and of performing such 

experiments in hundreds of PCs. The size of my data is substantially larger than that of in 

vivo recordings and my data is not confined to monitoring naturally occurring spike trains, 

but I was able to perform the same, standardized protocols (e.g. single AP, bursts with 

different frequencies and spike number, recovery protocol) for all recorded cells. My results 

demonstrate large variance in the peak amplitude of single AP-evoked unitary GCaMP6f 

[Ca2+] transients in hippocampal CA1 PCs (CV= 0.96 for all recorded cells; CV = 0.95 for 

temporally isolated unitary events in 35 cells; CV = 0.73 for temporally isolated unitary 

events in cells with low GCaMP6f expression, n = 15). The cell-to-cell variability in [Ca2+] 

transients in visual cortical in vivo recorded cells using GCaMP6f  or GCaMP6s  (Greenberg 

et al., 2018) was somewhat smaller (CV = 0.5 and 0.6, respectively), which might be the 

consequence of differences between hippocampal and visual cortical PCs or differences 

between in vitro and in vivo conditions, including the temperature (room vs. body 

temperature). Indeed, the peak amplitude of single AP-evoked [Ca2+] transients and its 

variance is known to depend on the preparations (hippocampal slice cultures, acute cortical 

slices, in vivo) and recording conditions (Mao et al., 2008; Tian et al., 2009; Akerboom et 

al., 2012; Ohkura et al., 2012; Chen et al., 2013). Biological variation in the behavior of 

GCaMP6f among distinct nerve cell types is also plausible, because the ionic strength and 

the composition of the intracellular milieu has been shown to affect the affinity, 

cooperativity, and dynamic range of GCaMPs (Hires et al., 2008). However, the parameters 

responsible for the variability among cell types and among individual cells of the same types 

are unknown. 

Biophysical and biochemical mechanisms can potentially account for such 

complexities. Greenberg and colleagues developed a kinetic model and proposed that the 
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cooperativity across the four Ca2+ binding sites of GCaMP, the slow and multiphasic kinetics 

of the indicator, and the total GCaMP concentration can account for variability and 

nonlinearity of GCaMP-reported fluorescent transients (Greenberg et al., 2018). Moreover, 

GCaMP molecules display two states with different fluorescent properties. The dimeric form, 

though less prevalent, contributes to background fluorescence of the GCaMP expressing 

cells, however it is [Ca2+] insensitive (Akerboom et al., 2009) and can complicate the 

interpretation of fluorescent transients. Some mutations have been shown to result in 

photoisomerization  (Akerboom et al., 2009), or in the accumulation of non-responsive 

proteins in lysosomes (jRGECO1a, Dana et al., 2016). It has also been shown that GCaMP-

associated calmodulin disrupt Ca2+ influx and dynamics, and gene expression by affecting 

the gating of L-type Ca2+ channels in an expression-dependent manner (Yang et al., 2018). 

I also demonstrated that peak amplitude of unitary [Ca2+] transients is not only 

different among cell types and among cells of the same type, but also varies according to the 

cell’s firing history. The use-dependent nonlinearity of ΔF/F has been reported previously 

(Mao et al., 2008; Tian et al., 2009; Akerboom et al., 2012; Ohkura et al., 2012; Chen et al., 

2013) and is probably a result of the cooperativity of calcium binding by calmodulin. We 

provide a first evidence for a >2 fold increase of the unitary peak amplitude after a high 

frequency burst (10 AP at 50 Hz), and for the extremely slow recovery time course (~4 s) 

from this process.  The mechanism underlying this long time-constant of the burst-evoked 

potentiation of unitary responses is probably different from that which underlies the 

supralinearity of the GCaMP6f responses within bursts (e.g. [Ca2+]-dependent association 

constants (Nakai et al., 2001) or different Ca2+ binding sites with different on and off rates). 

I also provide first evidence for variable degrees of supralinearity of GCaMP6f among CA1 

PCs and its weak dependcy on the expression level of the sensor.  

The expression level of the [Ca2+] indicator is thought to play a key role in defining 

[Ca2+] transients. Lower concentration of Ca2+ indicators should report the same [Ca2+] with 

higher peak amplitude, faster kinetics and lower SNR (Hires et al., 2008; Broussard et al., 

2014; Dana et al., 2014). Unexpectedly, my results show, that even though there is a 

significant negative correlation between the peak amplitude and GCaMP6f expression, in 

case of cells with similarly low intensities the variance remains substantial (CV = 0.56 - 
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0.75); therefore, homogenisation of the expression level by using transgenic mice (e.g. Dana 

et al., 2014) might not provide a sufficient solution for the problem.  One explanation of these 

results is a cell-to-cell variability in Ca2+ influx upon single APs, resulting in a different 

intracellular [Ca2+] that will be reported as a highly differing fluorescence change upon the 

same stimulation. However, the lack of correlation of the unitary [Ca2+] transients with the 

AP width or with the surface to volume ratio, and the lack of differences between peak 

amplitudes and decay time constants in cells with potentially different endogenous buffers, 

provide evidence that the substantial variability in unitary GCaMP6f [Ca2+] transients and its 

summation are likely due to differences in the aforementioned intrinsic properties of 

GCaMP6f instead of a different [Ca2+]. This hypothesis is supported by the results of 

recordings with a synthetic dye (Fluo5F) in CA1 PCs not expressing GCaMP6f, showing 

much more uniform unitary [Ca2+] transients among CA1 PCs. However, a plausible 

explanation is that the nonlinear reporting characteristic of GCaMP6f enhances the smaller 

variation in the Ca2+ influx. 

I demonstrate that cell-to-cell variability of the peak amplitude of unitary [Ca2+] 

transients is a key source of spike inference ER on simulated data (with experimentally 

derived parameters, performed together with my colleague Miklos Szoboszlay, Éltes et al., 

2019) using the MLspike algorithm (Deneux et al., 2016). Fitting with mean peak amplitude, 

but own decay time constants, pnonlin and baseline drift parameters results in a similarly high 

ER compared to fitting with the mean of all parameters. Our ER with the mean parameters is 

similar to that obtained by (Deneux et al., 2016) and also by a recent study using simple non-

negative deconvolution (Pachitariu et al., 2018). During in vivo optical recordings, the unitary 

peak amplitude of the several hundreds of recorded cells is not available; nonetheless, our 

results indicate that a decrease in spike inference ER may already be achieved by subselecting 

cells based on their GCaMP6f expression level. In the weakly expressing cell population, I 

was able to accurately estimate the unitary peak amplitude with a model-independent 

(‘presumed unitary’) and a model-dependent (‘detected unitary’) procedure. Providing either 

of these estimated peak amplitudes to MLspike resulted in a significant reduction of the spike 

inference ER. Even though I do not provide a direct comparison of the performance of several 

softwares on the same dataset, based on the literature (Deneux et al., 2016; Theis et al., 2016; 
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Pachitariu et al., 2018) there is no other spike inference algorithm or model that can estimate 

spiking activity with such low ERs (~5%). Importantly, this low ER is achieved in our 

simulations with a detection window (60 ms) that is an order of magnitude briefer than that 

used by others. The use of spiking statistics for the estimation of unitary [Ca2+] transient 

amplitudes should be a generalizable method provided the firing properties of the cells of 

interest are known from in vivo silicon probe or tetrode recordings, based on which one can 

calculate the ratio of temporally isolated single APs and bursts of APs. The key issue with 

both of our methods is to achieve a SNR in the in vivo recordings, which permits detection 

of single AP-evoked fluorescence transients. One solution might be to reduce the number 

simultaneously recorded nerve cells, resulting in a better SNR. My results support the 

necessity to obtain in vivo the full range of the critical parameters and to consider the 

variability of these when developing spike inferring algorithms. 
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7. CONCLUSION 

In my dissertation I investigated the mechanism underlying distinct target cell-type 

dependent Pr and short-term plasticity. First, I determined the short-term plasticity of CA3 

PC synapses contacting PV+ and mGluR1α+ INs. My measurements of EPSCs, evoked by 

extracellular stimulation of CA3 PC axon collaterals demonstrated different (CA3 PC-to PV 

IN: depressing, CA3 PC-to mGlur1α IN: facilitating) short-term synaptic properties at these 

synapses, indicating a different initial release probability. I also found that the coexpression 

of Elfn1 in mGlur1α+ INs will likely impose facilitating short-term plasticity of CA3 PC-to- 

mGlur1α+ IN synapses. My results provided me the use of these molecules (PV and mGlur1α) 

in this brain region to label postsynaptic compartments of high, respectively low Pr synapses. 

Next, my [Ca2+] imaging experiments of CA3 PC local axon terminals showed that 

the [Ca2+] influx upon a single AP is significantly larger in case of high Pr synapses. With 

the use of ω-CTX MVIIC, a selective N- and P/Q- type Ca2+ channel blocker I also provide 

evidence for a similar contribution of P/Q, N type Ca2+ channels to the [Ca2+] influx in these 

two populations of synapses. Finally by repeating my [Ca2+] imaging experiments with a 

lower concentration of the Ca2+ sensitive dye, I managed to demonstrate the lack of difference 

between decay time constants in the high, respectively low Pr bouton populations, indicating 

similar [Ca2+] buffering in these two bouton populations. 

These results, in concert with the parallel experiments of my colleagues showing a ~ 

twofold higher functional Ca2+ channel density in the AZs innervating PV+ INs compared 

with those innervating mGluR1α+ ones, but only ~15% difference in the Ca2+ channel subunit 

density; provided evidence that a target cell-type different modulation of [Ca2+] function or 

different subunit composition are the underlying causes of the different Pr at these synapses. 

Distinct physiological properties and molecular compositions underlie the capability 

of the neuronal network to form diverse synaptic connections with distinct efficacy of 

information transfer. Investigating the role of the synaptic diversity in a behavioral context-

dependent manner is hampered by the limitations of currently available large-scale recording 

techniques. Therefore, in the second part of my dissertation, I searched for the potential 

causes of these limitations in case of the most widespread, large-scale optical recording 

technique, Ca2+ imaging using GCaMP6f. 
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I demonstrate that the variability of peak amplitudes of GCaMP6f [Ca2+] transients 

recorded in vivo is not only the consequence of variable activity, but is also due to a 

substantial cell-to-cell variability in the peak amplitude of unitary [Ca2+] transients. Next, I 

offer evidence that the expression level of GCaMP6f is highly variable among CA1 PCs, and 

only partially underlies the variability in the amplitude of single AP-evoked Ca2+ transients 

recorded in vitro. Furthermore, I describe the phenomena of unitary Ca2+ transients 

amplitudes’ dependence on the preceding firing history of the cell. I also show that GCaMP6f 

Ca2+ transients sum supralinearly and the supralinearity is frequency dependent and varies 

substantially form cell-to-cell. My parallel control experiments with a synthetic Ca2+ dye, 

that is known to report physiologically relevant [Ca2+] linearly indicate that the observed 

variability and supralinearity are due to the intrinsic characteristics of GCaMP6f. 

Our modelling study, performed with the help of my colleague, Miklós Szoboszlay, 

revealed that the main source of spike inference error is the variability in the peak amplitude, 

and not in the decay or supralinearity. Finally, I developed a model dependent and an 

independent procedure to estimate the peak amplitudes of unitary [Ca2+] transients and I 

demonstrate reliable (mean ER ~5%) spike inference with MLspike using these unitary 

amplitude estimates in weakly GCaMP6f expressing. 

  

DOI:10.14753/SE.2019.2319



94 

 

8. SUMMARY 

Target cell type-dependent differences in presynaptic release probability (Pr) are 

intriguing features of cortical microcircuits that increase the computational power of 

neuronal networks. The experiments of Rozov et al. (2001) indicated that differences in Ca2+ 

channel densities might be the underlying mechanism. My experiments indicate that the 

initial Pr of CA3 pyramidal cell synapses onto PV+ or mGluR1α+ INs is different; moreover 

the facilitating short-term properties of mGluR1α-dendrite targeting synapses is likely 

imposed by the co-expression of Elfn1 protein. My [Ca2+] imaging experiments of CA3 PC 

local axon terminals revealed that the [Ca2+] influx upon a single AP is significantly larger 

in case of high Pr synapses. This difference is not due to a differing contribution of P/Q, N 

type Ca2+ channels to the [Ca2+] influx or to differnces in [Ca2+] buffering. These results, in 

concert with those of Noémi Holderith, revealed a ~2 times higher functional Ca2+ channel 

density in high Pr synapses. However, the results of Tekla Kirizs demonstrated only 1.15 

times larger Cav2.1 and Cav2.2 subunit densities using an independent anatomical method. 

This discrepancy indicates a target cell type-specific modulation of voltage-gated Ca2+ 

channel function or different subunit composition being the mechanisms underlying the 

functional differences (Éltes et al., 2017). 

Investigating the role of such diversity of synaptic properties on network activity and 

behavior is hampered by inaccuracies of spike inference from fluorescent traces. Here I 

explored how the expression level of the most widely used genetically encoded Ca2+ 

indicator, GCaMP6f affects the amplitude, kinetics and temporal summation of [Ca2+] 

transients in mouse hippocampal CA1 PCs. The amplitude of unitary [Ca2+] transients 

negatively correlates with GCaMP6f expression, but displays large variability among PCs 

with similarly low expression levels. The summation of fluorescent signals is frequency 

dependent, supralinear and also shows remarkable cell-to-cell variability. Additionally, 

simulations performed with my colleague Miklós Szoboszlay, demonstrate that spike 

inference error rates (using MLspike; Deneux et al., 2016) strongly depend on unitary peak 

amplitudes and GCaMP6f expression levels. Finally, I provide an effective spike inference 

strategy that relies on the analysis of only weakly GCaMP6f expressing cells and on the 

estimation of the unitary [Ca2+] transients in individual PCs (Éltes et al., 2019). 
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9. ÖSSZEFOLGALÓ 

A transzmitter felszabadulási valószínűség (Fv) célsejt-specifikus különbségei az 

agykérgi hálózatok érdekes jellemzői. Rozov és mtsai. kisérletei arra utalnak, hogy ennek 

hátterében a Ca2+ csatornák sűrűségében lévő különbség állhat (Rozov et al., 2001). 

Tézisemben bizonyítékot szolgáltatok arra, hogy a kezdeti Fv a CA3 piramissejtek (PS) és 

PV+ vagy mGluR1α+ interneuronok közötti szinapszisokban eltérő. A CA3 PS 

axonvégződéseiben végzett [Ca2+] méréseimből kiderült, hogy nagyobb mennyiségű [Ca2+] 

áramlik be egyetlen akciós potenciál során a nagyobb Fv terminálisokba. Ez a különbség nem 

a P/Q, illetve N típusú Ca2+ csatornák, a [Ca2+] beáramlásához való eltérő hozzájárulásából, 

illetve nem a különböző [Ca2+] pufferelésből származik. Ezen eredményeim és Holderith 

Noémi axonterminális térfogat és aktív zóna terület mérései alapján kiszámoltuk a 

funkcionális Ca2+ csatorna sűrűséget, mely ~2x nagyobb a magas Fv szinapszisokban. Kirizs 

Tekla anatómiai kísérletei viszont jelentősen kisebb különbséget mutattak ki (~1,15). Az 

anatómiai és funkcionális denzitás közötti eltérés alapján a Ca2+ csatornák célsejt-specifikus 

funkcionális modulációja vagy különböző alegység-összetétele állhat a célsejt-specifikus Fv 

hátterében (Éltes et al., 2017). 

A szinaptikus tulajdonságok sokféleségének a különböző viselkedési mintázatok 

kialakulására kifejtett hatásának feltárását az in vivo mért fluoreszcens jelek tüzelési 

mintázattá való visszafejtésének pontatlansága gátolja. Tézisem második felében ezen 

limitációk okát vizsgáltam a széleskörben használt genetikailag kódolt Ca2+ indikátor, a 

GCaMP6f esetén. Kísérleteim kimutatták, hogy az egységnyi [Ca2+] tranziensek amplitúdója 

negatívan korrelál a GCaMP6f expresszió szintjével, de hasonlóan alacsony expressziós 

szintű PS-ek esetén nagy eltérést mutat. A fluoreszcens jelek összegzése frekvenciafüggő, 

szupralineáris, és jelentős sejtenkénti változékonyságot mutat. Szoboszlay Miklós 

kolegámmal végzett szimulációk alapján megállapítottuk, hogy a tüzelési mintázat 

visszafejtési hibarátája nagymértékben függ az egységnyi tranziens amplitudójában lévő 

változékonyságtól és a GCaMP6f expressziós szintjétől. Végezetül, egy olyan, eddigieknél 

hatékonyabb visszafejtési stratégiát mutattam be, amely a gyenge GCaMP6f expressziós 

szintű sejtek analízisén és az egységnyi [Ca2+] tranziensek amplitudójának becslésén alapszik 

(Éltes et al., 2019).  
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