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Abstract: Treatment with anti-PD-L1 antibodies has shown efficacy in basal-like breast cancer. In this
context, identification of pre-activated immune tumors is a main goal. Here we explore mutations in
PD1 and PD-L1 high-expressing tumors to identify genomic correlates associated with outcome. To do
so, RNA-seq and mutation data from 971 breast cancer patients from the TCGA dataset were used to
identify most prevalent mutations in patients with high levels of PD1 and PD-L1. Transcriptomic
signatures associated with the selected mutations were identified and analyzed in terms of outcome
and immune cell infiltration. We identified co-occurrent mutations in RYR2 and AHNAK in 8% and
5% of basal-like tumors respectively, which conferred good prognosis in patients with high expression
of PD1 and PD-L1 genes. The transcriptomic signature associated with these mutations, composed
of CXCL9, GBP5, C1QA, IL2RG, CSF2RB, IDO1 and LAG3 genes, also conferred good prognosis
and correlated with immune infiltrations within the tumors. The joint signature classified patients
with favorable relapse-free survival (HR: 0.28; CI: 0.2–0.38; p = 1.7 × 10−16) and overall survival
(HR: 0.18; CI: 0.09–0.34; p = 6.8 × 10−9), showing a stronger prediction capacity than previous reported
signatures. In conclusion, we describe two novel mutations and their transcriptomic signature,
both associated with a favorable outcome and immune infiltrates in PD1 and PD-L1 high-expressing
basal-like tumors.
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1. Introduction

Immunotherapy has become a new promising therapeutic option to treat many solid tumors [1].
Blocking inhibitory signals that reduce the activation of the immune response has gained momentum
with the development of checkpoint inhibitors such as antibodies against the programmed cell death
protein 1 and its ligand (PD1 and PD-L1) or cytotoxic T-lymphocyte antigen 4 (CTLA4) [1,2].
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Although relevant clinical activity has been observed with this family of compounds, not all
treated patients respond equally to checkpoint inhibitors [3]. Several mechanisms have been described
in relation to response to these agents. It is considered that, to get a clinical effect, the immune system
must be in a pre-activated state with immune populations, as effector T cells, present within tumoral
areas [4–6]. In this context, the presence of tumor-infiltrating lymphocytes (TIL) is associated with
a favorable clinical outcome independently of the therapy administered, in correlation with a high
number of effector immune cells [7,8]. In fact, protein expression levels of the PD-L1 receptor quantified
by immunohistochemistry (IHC) identify patients suitable for having a good clinical response [9–12].

In this regard, the identification of genomic alterations that are present in high-expressing PD1
and PD-L1 tumors could help to identify tumors whose immunologic state correlates with clinical
outcome identifying prognostic factors. This is the first step before evaluating their predictive role,
as has been the case for mutations at Janus Kinase 1 and 2 (JAK1 and 2), which correlate with lack of
activity of checkpoint inhibitors [13].

Advanced breast cancer is an incurable disease in that stage, making the identification of novel
druggable vulnerabilities a main issue [14]. Studies exploring the clinical activity of immune checkpoint
inhibitors in breast cancer have shown the most promising results for the triple negative (TNBC)
subtype [11–14]. This suggests that TNBC is the more immunologic pre-activated state subtype,
therefore limiting the potential of this family of agents in other subtypes [11–14]. However, expression
of PD-L1 alone does not guarantee clinical activity. Indeed, for TNBC tumors with high expression
of PD-L1, objective responses do not reach 60% and complete responses are limited to 10%,
making necessary to identify markers of efficacy within the PD-L1 population [13] in TNBC and basal
breast cancer tumors.

In this article, we explored mutations in breast tumors with high transcriptomic expression of
PD1 and PD-L1 as markers of the immune pre-activated status. We found that mutations in RYR2
and AHNAK predicted favorable prognosis in basal-like tumors with high expression of PD1 and
PD-L1. We further identified a transcriptomic signature associated with these two mutations that
predicted favorable outcome, even better than already described immunologic signatures, and that
was associated with a high infiltration of immune cell populations within the tumors. This prognostic
signature should further be explored as a predictive biomarker to identify patients more suitable for
receiving clinical benefits from immunotherapy within the high PD1 and PD-L1 expressing population.

In summary, we report two novel mutations in basal-like tumors that express elevated levels of
PD1 and PD-L1, whose transcriptomic signatures are associated with a favorable outcome.

2. Results

2.1. Identification of Mutations in Tumors with High Expression of PD1 and PD-L1

Given the fact that the expression of PD-L1 is the only approved biomarker for anti-PD1/PD-L1
inhibitors, we aimed to explore the mutational landscape of basal-like tumors with high presence of
this biomarker.

We used the TCGA dataset to identify frequent mutations in breast cancer tumors with high
transcriptomic expression of PD1 or PD-L1. Figure 1a shows the flow chart used for the analysis.
A total of 971 mutation and transcriptomic profiles were built combining RNA-seq information
from 1079 tumors with 985 breast tumor mutational data. As described in Materials and Methods,
we evaluated the mutational status of 25228 genes. Using a minimum fold change of 1.5 and
a mutational frequency of at least 2%, we ranked the top 50 genes that were present in tumors
with high expression of PD1 (upper panel) and PD-L1 (lower panel) (Figure 1b). Gene ontology
analysis was performed and the biological processes of the mutated genes for PD1 and PD-L1 high
expression signature are described in Figure S1A,C, respectively. Some biological functions for PD1
genes included response to muscle stretch, cilium-dependent cell motility and regulation of mitotic
metaphase/anaphase transition, among others. For PD-L1 genes, functions involved low density
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lipoprotein receptor activity, lipoprotein transporter activity, lipoprotein particle receptor activity or
ATP-dependent microtubule motor activity, among others). Finally, molecular functions for PD1,
PD-L1 and the joint signature are described in Figure S1B,D,F, respectively.
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Next, we explored the prognostic role of each gene in the different breast cancer subtypes. As 
can be seen in Figure 2A, the contribution to favorable outcome was led by the presence of RYR2 and 
AHNAK in basal‐like tumors. RYR2 and AHNAK were the most frequently‐mutated genes in this 
subtype, reaching 8% and 5% respectively (Figure 2B). Interestingly, both mutations were co‐
occurrent within the same tumors, observing a strong statistical association (Figure 2C). The 

Figure 1. Common mutational signature for PD1-PD-L1 high-expressing breast cancer tumors. (a) Flow
chart of the process followed to identify mutational signatures for high expressing PD1 and PD-L1
tumors. (b) Mutational signature of PD1 high-expressing tumors ranked by mutation frequency.
(c) Mutational signature of PD-L1 high-expressing tumors, ranked by mutation frequency. (d) PD1
and PD-L1 high-expressing tumors joint mutational signature, composed of those genes common to
both individual signatures. Genes ranked by their mutation frequency in a joint meta-analysis of both
METABRIC and TCGA breast cancer patients. Highlighted in red are those genes with mutational
frequency over 3%.

Next, we selected the mutated genes that were common in high-expressing tumors for PD1 and
PD-L1. Once selected, we combined data from both datasets, TCGA and METABRIC, involving
6336 patients. In this manner we increased the sample size to mimic in a closer manner the patient
heterogeneity observed in the general population. We identified RYR2, AHNAK, UTRN, AKAP9 and
BIRC6 as genes altered in more than 3% of patients (Figure 1d).

2.2. RYR2 and AHNAK Mutations Predict Favorable Putcome in Basal-Like Tumors

Next, we explored the prognostic role of each gene in the different breast cancer subtypes. As can
be seen in Figure 2a, the contribution to favorable outcome was led by the presence of RYR2 and
AHNAK in basal-like tumors. RYR2 and AHNAK were the most frequently-mutated genes in this
subtype, reaching 8% and 5% respectively (Figure 2b). Interestingly, both mutations were co-occurrent
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within the same tumors, observing a strong statistical association (Figure 2c). The transcriptional
signature of RYR2 and AHNAK mutations was calculated, as described in Materials and Methods,
and predicted good prognosis for overall survival (OS) (HR 2.3 CI 1.8–3.0; p = 5.5 × 10−11 and HR 1.6
CI 1.2–2.1; p = 0.00027, respectively) (Figure 2d,e). As a next step, we combined the two signatures
observing an association with OS (HR of 2.3 CI 1.8–3.0; p = 8.2 × 10−11) (Figure 2f). In summary,
we describe two co-occurrent mutations in basal-like tumors whose transcriptomic signature is linked
with favorable prognosis in patients with high expression of PD1 and PD-L1.
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Figure 2. Transcriptomic signature of the most frequently-mutated genes in PD1-PD-L1 high-expressing
breast tumors predicts good prognosis in breast cancer. (a) Histogram representing prognosis conferred
by the most mutated genes in every breast cancer subtype. Good prognosis highlighted in blue,
with their p-values shown inside each column. (b) Frequency of mutations as percentage for each
gene of the signature in basal breast cancer subtype. (c) Co-occurrence of mutations in the analyzed
population calculated by odds ratio method. Mutations for both genes are co-occurrent between
each other. (d) Prognosis in terms of OS (overall survival) of breast cancer patients conferred by the
expression signature associated with RYR2 mutations. For panels D, E and F, patients with mutations
are in red and non-mutated patients are in black for the genes analyzed in each panel. (e) Prognosis
of breast cancer patients conferred by the expression signature associated with AHNAK mutations.
(f) Prognosis of breast cancer patients conferred by the expression of the joint transcriptomic signature
of RYR2 and AHNAK mutations.

2.3. Evaluation of the Mutational Signatures of RYR2 and AHNAK

To confirm the prognostic role of these two mutations we evaluated the expression of the genes
included in each transcriptional signature. Figure 3a,e shows the top genes ranked by p-value for
RYR2 and AHNAK, respectively. Next, we combined the top 50 genes of each signature to explore
their association with outcome. For RYR2, the combined signature showed a favorable prognosis
for RFS (relapse-free survival) (HR 0.56 CI 0.48–0.66; p = 3.1 × 10−12) and OS (HR 0.51 CI 0.39–0.71;
p = 6.9 × 10−5) in the whole population of breast cancer patients (Figure 3b). This association was also
observed in the basal-like subtype for RFS (0.55 CI 0.39–0.77; p = 0.00047) (Figure 3c) but did not reach
a statistical significance for OS (Figure 3c). Palmitoyl-CoA hydrolase activity, MHC class II protein
binding, mechanically gated ion channel activity, prostaglandin E receptor activity and glutamate
receptor activity were among the most relevant biological functions identified in the selected genes
(Figure 3d).
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Figure 3. Transcriptomic signature associated with RYR2 and AHNAK mutations predicts good
prognosis in basal breast cancer patients. (a) Top RYR2 mutation-associated signature components,
sorted by p-value. (b) RFS (relapse-free survival; left panel) and overall survival (right panel)
Kaplan–Meier curves comparing prognosis for two groups of patients, those with high (in red) and low
(in black) expression levels of the RYR2 mutation-associated gene expression signature for all subtypes
of breast cancer. (c) RFS (left panel) and OS (right panel) Kaplan–Meier curves comparing prognosis,
as described in B, for basal subtype of breast cancer. (d) The main biological process regulated by the
RYR2 mutation-associated gene expression signature, ranked by combination score. (e) Top AHNAK
mutation-associated signature components, sorted by p-value. (f) RFS (left panel) and OS (right panel)
Kaplan–Meier curves comparing prognosis for two groups of patients, those with high (in red) and
low (in black) expression levels of the AHNAK mutation-associated gene expression signature for all
subtypes of breast cancer. (g) RFS (left panel) and OS (right panel) Kaplan–Meier curves comparing
prognosis, as described in F, for the breast cancer basal subtype. (h) Main biological process regulated
by the AHNAK mutation-associated gene expression signature, ranked by combination score.
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A similar approach was followed for AHNAK. Figure 3e shows the top 30 altered transcripts.
The combined analysis of the top 50 signatures showed a favorable RFS (HR0.51 CI 0.43–0.6
p = 1.1 × 10−16) and OS (HR 0.45 CI 0.33–0.62 p = 5.4 × 10−7) in the whole population of breast
cancer patients (Figure 3f), an effect that was clearly observed in the basal-like subtype for RFS (HR
0.44 CI 0.31–0.6; p = 2.8 × 10−7) and OS (HR 0.26; CI 0.14–0.5 p = 1 × 10−5) (Figure 3g). The biological
functions of the identified genes included interleukin-1 secretion, regulation of T cell apoptotic process
and interleukin-1 beta production, among others (Figure 3h).

2.4. Association of Highly Expressed Genes with Outcome and Immune Activation

With the aim to develop a signature from these two mutations that could be easily detectable and
clinically relevant in patients, we selected only those genes that were overexpressed at high levels in
the tumor and associated with favorable outcome for both OS and RFS with a low false discovery rate
(FDR < 1%), as described in Materials and Methods.

For RYR2, CXCL9 and LAG3 met these criteria. Expression of CXCL9 was associated with
favorable RFS (HR 0.39 CI 0.3–0.5; p = 2.4 × 10−14) and OS (0.3 CI 0.18–0.49; p = 3.5 × 10−7) (Figure 4a).
When exploring its association with immune infiltration, we observed that tumors expressing CXCL9
had a low purity (high presence of immune cells within the tumor tissue, as described in the material
and methods section) in the whole population of breast cancers and in the basal subtype (Figure 4b,
upper and lower rows, respectively), suggesting a high infiltration of immune cells in tumor tissues
(Figure 4b, first column for tumor purity). When exploring the immune populations, we identified
a positive association with some of them, especially dendritic cells (part. Cor. 0.58 p = 1.35 × 10−88

and part. cor. 0.55 p = 1.36 × 10−10) (Figure 4b, upper and lower panels, last column) and B cells
(part. Cor. 0.508 p = 4.21 × 10−65 and part. cor. 0.514 p = 1.05 × 10−9) in the all subtype groups and in
the basal-like subtype, respectively.

For the AHNAK mutational signature, six genes met these criteria, as can be seen for GBP5, C1QA,
IL2RG, CSF2RB, IDO1 and LAG3 in Figure 4c,e,g,i,k and M, respectively. For these genes, a strong
prediction for favorable RFS and OS was observed for each of them. In a similar manner as with
CXCL9, we observed that tumor purity was low for all these genes (Figure 4d,f,h,j,l and n respectively,
first column). On the other hand, when evaluating immune populations, a positive correlation was
observed, especially for the presence of dendritic cells and the expression of GBP5, IL2RG and IDO1
(Figure 4d,h and j, respectively). The highest association was observed for CSF2RB and presence of
dendritic cells (part. cor. 0.77 p = 2.65 × 10−193 and part. cor. 0.75 p = 2.36 × 10−22, for the whole
breast group and for basal-like, respectively) and neutrophils (Figure 4l, last column, upper and lower,
respectively).

LAG3 came to our attention as it was the only gene that was upregulated in both transcriptional
signatures. We observed that patients with high expression of LAG3 had favorable prognosis, for RFS
and OS (HR 0.4 CI 0.31–0.51; p = 2.7 × 10−13 and HR 0.33 CI 0.2–0.55; p = 1 × 10−5, Figure 4m).
When evaluating the different populations in tumors with high expression of LAG3, we observed a
positive correlation with the presence of neutrophils in the entire breast cancer subgroup and in the
basal-like subtype (part. cor. 0.436, p = 1.74 × 10−45 and part. cor. 0.522, p = 5.07 × 10−9, respectively)
(Figure 4n, second last column, upper and lower panel, respectively). A similar correlation was
observed for the presence of dendritic cells (part. cor. 0.465, p = 3.91 × 10−52 and part. cor. 0.51,
p = 4.89 × 10−9, breast cancer subgroup and in the basal-like subtype, respectively) (Figure 4n last
column, breast cancer subgroup and in the basal-like subtype, upper and lower panel, respectively).

To confirm the relationship between the expression of these genes and the immune pre-activated
state, we explored the correlation between the genes included in the signature and PD-L1 expression
in tumors at a transcriptomic level in the METABRIC dataset. As displayed in Figure 5a–g, a positive
correlation was observed between the expression of each of the genes CXCL9, GBP5, C1QA, IL2RG,
CSF2RB, IDO1 and LAG3 with PD-L1 (Figure 5a–g, respectively for the described genes; left panel for
all subtypes, right panel basal-like subtype). Of note, the lowest correlation was observed for CSF2RB.
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Figure 4. Analysis of the main components of both gene signatures. After analyzing the genes from
both gene signatures, seven of them were characterized as putative main responsible for the predictive
role of the signature. For those genes we analyzed prognosis in terms of both RFS (left panel) and
OS (right panel) by Kaplan–Meier curves (in red, high expressing patients, in black, low expressing
patients, as shown in A,C,E,G,I,K and M) and the correlation between tumor infiltrates (in terms of
purity and several immune lineages) and each gene expression levels (log2 SEM) in all (upper row)
and only basal-like breast cancer subtype as can be seen in B,D,F,H,J,L and N panels. (a) Prognosis for
CXCL9 (from the RYR2 mutation-associated gene expression signature) in basal-likebreast cancer patients.
(b) Correlation between tumor infiltrates and CXCL9 expression levels (log2 SEM). (c) Prognosis for GBP5
(from the AHNAK mutation-associated gene expression signature) in basal-like breast cancer patients.
(d) Correlation between tumor infiltrates and GBP5 expression levels. (e) Prognosis for C1QA (from the
AHNAK mutation-associated gene expression signature) in basal-like breast cancer patients. (f) Correlation
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between tumor infiltrates and C1QA expression levels. (g) Prognosis for IL2RG (from the AHNAK
mutation-associated gene expression signature) in basal-like breast cancer patients. (h) Correlation
between tumor infiltrates and IL2RG expression levels. (i) Prognosis for IDO1 (from the AHNAK
mutation-associated gene expression signature) in basal-like breast cancer patients. (j) Correlation
between tumor infiltrates and IDO1 expression levels. (k) Prognosis for CSF2RB (from the AHNAK
mutation-associated gene expression signature) in basal-like breast cancer patients. (l) Correlation
between tumor infiltrates and CSF2RB expression. (m) Prognosis for LAG3 (from RYR2 and AHNAK
mutation-associated gene expression signatures) in basal-like breast cancer patients. (n). Correlation
between tumor infiltrates and LAG3 expression.
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Figure 5. New gene signature predicts better prognosis for basal breast cancer patients. (a–g) Correlation
between each gene from the proposed signature with PD-L1 expression in all subtypes (left panels) and
basal-like breast cancer subtypes (right panels) analyzed in METABRIC datasets. (h) Prognosis in terms
of RFS (left panel) and OS (right panel) conferred by the complete gene signature by Kaplan–Meier
curves, high expressing patients (in red), low expressing patients (in black), in basal breast cancer
patients. (i) Forest plot comparing the prognosis associated with PD1/PD-L1 signature with the one
associated with previously proposed immune response signatures in terms of RFS (left panel) and OS
(right panel).
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The joint signature of the seven genes (CXCL9, GBP5, C1QA, IL2RG, CSF2RB, IDO1 and LAG3)
confirmed their association with favorable prognosis in the basal-like subtype for RFS (HR 0.28 CI 0.2–0.38;
p = 1.7 × 10−16) and OS (HR 0.18 CI 0.09–0.34; p = 6.8 × 10−9) (Figure 5h). Finally, we confirmed that
this signature (named as PD1/PD-L1) showed better prognosis than previously published signatures
including immune, DNA damage immune response (DDIR), interferon gamma (INF) and the cytotoxic T
lymphocyte (CTL) signatures [15–17] as can be seen in Figure 5i and Supplementary Figure S2.

3. Discussion

In the present article we describe common mutations in tumors with high transcriptomic expression
of PD1 and PD-L1. The main goal of this work was to identify genomic alterations that were linked
with prognosis and therefore could be explored in the future as a prediction factor of response to
stratify patients for clinical trials and treatment with immune checkpoint inhibitors.

By using data from TCGA datasets we identified 16104 mutated genes in patients with high
expression of PD1 or PD-L1. This elevated number of genes was reduced, selecting only those with a
mutational frequency higher than 2% and with a 1.5-fold change increase of PD1 and PD-L1 levels.
With these criteria, the number of identified genes was significatively reduced, and only the first 50
candidates with higher mutational frequency were selected. The main functions for those with high PD1
expression included response to muscle stretch, cilium-dependent cell motility and regulation of mitotic
metaphase/anaphase transition, among others, and for PD-L1, lysosomal protein catalytic process,
ion transportation within the membrane, or histone methylation. These functions are heterogeneous
and not directly related to the immune response, leading us to analyze the components of the gene list
one by one in order to find the most relevant in the immunotherapy area. Interestingly, we found a set
of common mutations that led us to compose a joint signature.

As a result, we developed a combined analysis of that joint signature using METABRIC and TCGA
datasets, with the idea to amplify the cohort and capture the heterogeneity observed in patients. In this
way, we selected those genes more frequently altered in the general population of patients. We aimed
to identify molecular alterations that could be easily observed in patients so they could be relevant
in the clinical setting. We identified RYR2, AHNAK, BIRC6, UTRN and AKAP9 as present in more
than 3% of the patients. These genes have a high mutational frequency in breast cancer, ensuring the
relevance of our findings for a wide spectrum of cases. Those mutations were frequently observed
in tumors susceptible to generating an immune response, as correlated to the high PD1 and PDL1
transcriptomic expression.

When exploring the association of those mutations with outcome, we identified that only RYR2
and AHNAK predicted favorable prognosis in basal-like tumors. Of note, the presence of these
mutations was observed in 8% and 5% of patients in this subtype, for RYR2 and AHNAK respectively.
That favorable outcome and prevalence made us explore the role of both genes in the immune response
against basal-like tumors more deeply.

The ryanodine receptor 2 (RYR2) gene codes for a protein component of the calcium channel
that is involved in the release of calcium for muscle contraction [18]. It has been described in
antigen-presenting dendritic cells as involved in the expression of the major histocompatibility complex
II [19]. Calcium signaling through this receptor augments the maturation of dendritic cells [20].
Indeed, in animal model mutations, RYR2 augmented the activity of dendritic cells being more efficient
at stimulating T cell proliferation [21]. In our study, when exploring the immune populations, the RYR2
mutational signature correlated with the presence of dendritic cells among others, confirming data
described in animal models [21]. In addition, our findings in basal-like tumors corroborate for the first
time its association with a favorable outcome, speculating that the activation of dendritic cells and
other immune cells could be the potential explanation to the better prognosis found in patients.

On the other hand, the AHNAK gene codes for a protein that play a role in cell migration,
cell structure, and cardiac calcium channel regulation [22,23]. In addition, it is associated with
metastasis formation [22]. The function of AHNAK has been associated with the modulation of the
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calcium entry into CD8 T cells increasing its biological functions [24,25]. Indeed, it has been described
that AHNAK is associated with activation of CD8 T cells [26]. However, mutations of AHNAK have
not been studied in the context of the immune response in cancer, and our report describes for the first
time an association with outcome and immune cell recruitment in the immune response setting against
basal-like tumors. Interestingly, both RYR2 and AHNAK mutations were co-occurrent in the studied
population, suggesting that both mechanisms of action could complement each other.

When exploring transcriptomic signatures of these mutations we identified a high expression of
CXCL9 in tumors with RYR2 mutations. CXCL9 is a cytokine of the chemokine family that promotes
the migration and activation of T cells [27]. GBP5, C1QA, IL2RG, LAG3 and CSF2RB were also the
most upregulated genes in tumors with mutations in AHNAK. GBP5 belongs to the TRAFAC GTPase
superfamily and acts as an activator of the NLRP3 inflammasome [28]. C1QA codes for a polypeptide
of the subcomponent C1Q that is the first component of the complement system [29,30]. IL2RG codes
for the gamma chain of many interleukins including IL1, IL4, IL7 and IL21, 35 and CSF2RB codes for a
common beta chain of the receptor for IL3, IL5 and CSF [31,32].

LAG3 was the only gene included in both signatures and, given the fact that it is a druggable
target with agents under clinical development, we decided to explore its putative prognostic role [33].
We observed a positive association with favorable prognosis and a correlation with the presence of
neutrophils and dendritic cells. This finding is relevant as combinations of anti-PD1 and PD-L1 with
anti-LAG3 therapies are currently in clinical development, [33] and mutations in RYR2 and AHNAK
in these studies have not been evaluated yet.

In sum, we found that the components of our signature are strongly related with the immune
system activation. High expression of these genes is associated with the presence of different immune
cell infiltrates, mainly dendritic cells and neutrophils. Lymphocytes present a good correlation too,
but their parameters were weaker in the basal-like subtype in spite of showing a similar tendency than
in general breast cancer, probably due to the lower number of patients analyzed. As a result, patients
with the alterations of our signature present both the immune infiltrates and the signaling elements
that put them in an immune pre-activated stage. However, direct evaluation of tumors from patients
by IHC must be performed to confirm this in silico approximation.

In addition, we found a positive association of all these genes with the expression of PD-L1,
validating our approach to use transcriptomic signatures associated with the identified mutations to
reveal genes implicated in the antitumoral immune response modulation. Importantly, the expression
of each individual gene and their combination was associated with a favorable outcome for RFS and OS,
outperforming the prediction capability of previously known immunologic signatures and supporting
the relevance of this study.

The identification of transcriptomic signatures that could predict outcome is a main objective for
the scientific community nowadays, especially for pathologies with limited therapeutic options such
as basal-like breast cancer. In this context, several immunologic signatures have been described and
linked with patient survival [15–17]. However, our signature, despite being composed for just seven
genes, outperformed when compared with other signatures, especially in terms of RFS, as shown in
the forest plot (Figure 5i). Of note, this signature is associated with the presence of only two specific
mutations. This reduced size makes it suitable for its future implementation in the clinical setting.

Our data suggests that in these patients, due to the molecular alterations and gene expression
levels of their tumors, there are important fractions of immune, pre-activated infiltrates within the
tumors. The treatment with immune checkpoint inhibitors could lead to a "lift the foot off the brake"
effect, taking an important profit from immunotherapy. These findings require more experimental
validation, particularly the evaluation of their predictive role in patients treated with anti PD1/PD-L1
and the assessment of the transcriptomic signature by IHC.



Cancers 2020, 12, 2243 11 of 15

4. Materials and Methods

4.1. Data Collection and Processing

Publicly available RNA-seq (1079) and mutation (985) data from TCGA breast cancer patients
were collected and compared, obtaining 971 profiles of patients with both RNA-seq and mutation
data. For these patients, PD1 and PD-L1 expression and mutations in a panel of 25228 genes were
analyzed, classifying the patients in two cohorts (mutant and wild type) for each gene. RNA-seq data
for expression were annotated using AnnotationDbi R Bioconductor package and normalized using
DESeq R Bioconductor package. In terms of the somatic mutations data, they were analyzed using the
MAFTools R Bioconductor package. Mutated (at least 1 mutation present) and wild type samples were
compared by Mann–Whitney test across all genes of the panel to compute differences in the mutational
status for high and low PD1 and PD-L1 expression, and fold change (FC) values were calculated for
each gene. Next, the combined signature was ranked in terms of the mutation frequency (Figure 1e)
considering a wider pool of patients from both METABRIC and TCGA publicly available datasets in
cBioPortal (6336 patients) [34,35], in order to increase the number and heterogeneity of cases analyzed.

4.2. Definition of Gene Signatures

In order to find PD1 and PD-L1 signatures, statistically significant (p < 0.05) genes in the
Mann–Whitney test were ranked according to their frequency in the mutation data analyzed, considering
only those with a FC > 1.5. Following these criteria, a list with the top 50 most representative genes
was considered as gene signature. In order to obtain a joint PD1-PD-L1 signature, common genes
included in both lists were selected, obtaining a 27-gene list.

4.3. Gene Ontology

Biological functions related to each gene signature were obtained using the 2018 Biological_process
(GO:0008150) and 2018 Molecular_function (GO:0003674) Gene Ontology Terms through the publicly
available Enrichr online platform. For their graphical representation, top ten biological processes or
molecular functions were ranked in terms of their combination score and were represented as a radar
chart using Visual Paradigm software (V16.1).

4.4. Co-occurrence

Co-occurrence analysis for gene mutations was evaluated using the cBioPortal online platform [34,35].
This tool calculates an odds ratio (OR) for each pair of query genes, indicating the likelihood that the
alterations for the two genes are co-occurrent in the selected cases, by the application of a Fisher’s exact
test (statistical significance p < 0.05).

4.5. Outcome Analyses

To evaluate the relationship between the gene expression and patient clinical prognosis for both
relapse-free survival (RFS) or overall survival (OS), the publicly available Kaplan–Meier Plotter Online
platform (http://www.kmplot.com) was used, as described previously [36]. Briefly, patients in the
database were separated according to gene expression median values. Patients above the threshold
were labelled as “high” expressing ones while patients below the threshold were labelled as “low”
expressing. Both groups were compared using Cox survival analysis.

To analyze the correlation between mutations and patient clinical outcome, the publicly available
Genotype-2-Outcome online platform (http://www.g-2-o.com) was used, as described in previous
studies [37]. Briefly, the database allows the association with prognosis of a specific transcriptomic
signature linked with a mutation, classifying patients according to the mean expression of the
top 100 genes which correlated to its mutation status. Gene expression is compared between the
mutational-carrying and the wild type population and those genes reaching significance are defined as

http://www.kmplot.com
http://www.g-2-o.com
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the mutation signature. The median expression values for different transcripts are used as a cut-off to
discriminate “high” and “low” expression cohorts, which are compared using a Cox survival analysis.

For both tools, patients were stratified by their breast cancer subtype using the PAM50 criteria.

4.6. Correlation Between Gene Expression and Tumor Infiltrating Immune Cells

The association between the abundance of tumor immune infiltrates (B-cells, CD4+ T-cells,
CD8+ T-cells, dendritic cells, macrophages, and neutrophils) was analyzed using the TIMER online
platform (http://cistrome.shinyapps.io/timer/), a web service which contains 10897 samples from
different cancer types included in the TCGA dataset. Briefly, this platform uses a computational
method to estimate the abundance of different immune cells present in 23 types of tumors using
public data from TCGA, and their correlation with several factor as gene expression levels, mutations
or prognosis. This prediction is validated by IHC in different tumor types, including breast cancer.
The correlation graphics show the purity-corrected partial Spearman’s correlation and its statistical
significance, defining purity as the percentage of malignant cells in a tumor tissue.

4.7. Gene Expression Correlation

Gene expression correlation analysis represented as plotted charts using the Cancertool software
(http://web.bioinformatics.cicbiogune.es-/CANCERTOOL/). Briefly, each point corresponds to the
log2-normalized gene expression values for the two genes analyzed in the X and Y axis for each patient
in the METABRIC dataset. The black line represents linear regression, the grey area indicates the
limits of the confidence intervals and R and p indicate Pearson correlation coefficient and statistical
significance, respectively.

4.8. Signatures Comparison

Comparison of previous signatures with our proposed signature was developed by analyzing the
joint prognosis conferred by the component genes via the Kaplan–Meier Plotter Online platform and
represented as a heatmap using GraphPad Prism software (V7) in terms of their Hazard Ratio (HR)
value for both RFS and OS.

5. Conclusions

In summary, we described two novel mutations and a short transcriptomic signature associated
with favorable outcomes in basal-like tumors expressing PD1 and PD-L1. Future studies including
pathological assessment should explore the predictive capability of this signature in response to
checkpoint inhibitors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2243/s1,
Figure S1: Molecular functions of the identified gene signatures. Figure S2: The PD1-PD-L1 signature predicts
better prognosis than previously proposed signatures.
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