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Abstract: Nonrodent animal models have recently become more valuable in preclinical studies.
The limitation of nonrodent animal models is that they must demonstrate relatively reliable and
predictable responses in addition to representing complex etiologies of a genetically diverse patient
population. In our study, we applied CRISPR/Cas9 technology to produce transgenic rabbits.
This approach can be useful for creating genetically divergent and homogeneous populations for
studies in translational medicine. NADPH oxidase 4 (NOX4) is a promising therapeutic target,
as it is linked to several pathologies including stroke, atherosclerosis, and lung and kidney fibrosis.
NOX4 knockout (KO) rabbit lines were created in order to study the in vivo effects resulting from a lack
of NOX4 protein and loss of gene function. One of the knockout founders was a germline multiallelic
knockout male. Its offspring segregated into three distinct NOX4 knockout and a wild-type lines.
Mosaicism is a relatively frequent phenomenon in rabbit transgenesis. Our results point to the
possible application of mosaicism in preclinical studies. However, careful planning and evaluation of
results are necessary. The predicted off-target sites were studied as well, and no signs of off-target
events were detected.

Keywords: NADPH oxidase 4, NOX4; CRISPR/Cas9; transgenic rabbit; rabbit gene knockout;
germline multiallelic knockout; mosaicism; translational medicine

1. Introduction

Since the creation of the first genetic knockout rabbits with the CRISPR/Cas9 method in 2014 [1],
the number of publications on CRISPR/Cas9-modified rabbits has increased, touching on a wide
array of topics such as improving meat quality [2], altering fur color [3], studying the metabolic
features [4,5], modeling human diseases [6], producing recombinant proteins [7], and improving
the methodology [8-10]. Compared to rodents, rabbits are phylogenetically more closely related
to humans, and many physiological processes, such as lipid and carbohydrate metabolism [11,12],
disease progression in the case of atherosclerosis [13,14], cardiac diseases [15], and obesity [16,17],
are more similar to those in humans. In addition, because of their similar anatomy and bigger size,

Appl. Sci. 2020, 10, 8508; doi:10.3390/app10238508 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1773-4129
https://orcid.org/0000-0002-9406-1482
https://orcid.org/0000-0002-1023-0112
https://orcid.org/0000-0003-4696-9282
http://dx.doi.org/10.3390/app10238508
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/23/8508?type=check_update&version=2

Appl. Sci. 2020, 10, 8508 20f 14

experimentation is more achievable with rabbits, and they are hence considered to be a better subject
for studies in translational medicine [18].

CRISPR/Cas9 technology in animal transgenesis has undergone great improvements in recent
years. Prior to the employment of this technique, it was a big challenge to knockout a gene in rabbits
because of the lack of suitable embryonic stem cells [19-21] and the low efficiency and difficulties
associated with rabbit somatic cell nuclear transfer [22]. Now, with the almost completely sequenced
rabbit genome and expertise available, CRISPR/Cas9 is a relatively robust technology that can be
used to knockout almost any gene in rabbits. Knocking out a gene with CRISPR/Cas9 is based on
targeted cutting of double-stranded DNA and the cells’ own mechanism of DNA damage repair by
nonhomologous end joining (NHE]), resulting in indels at the target site that usually result an early
stop codon that leads to fast degradation of mRNA [23,24].

In order to reduce the number of experimental animals and test mutations rapidly, embryo
culturing and testing for mutations at the blastocyst stage are suitable alternatives. In mice,
in vitro cultured preimplantation stage blastocysts have been appropriate for testing the fidelity
of CRISPR/Cas9-mediated genome editing [25].

Concerns remain about the unwanted off-target effects of CRISPR/Cas9 technology. However,
modified Cas9 enzymes with higher specificity and improved algorithms that allow researchers
to choose the most suitable guide RNA (gRNA) provide a stable background to overcome this
challenge [26,27].

Genetic mosaicism of founder animals is a known phenomenon in CRISPR/Cas9-mediated gene
editing, as summarized in the review of Mehravar et al. [28]. CRISPR/Cas9 is directly injected into the
cytoplasm or pronuclei of fertilized oocytes. As zygotes develop, cells continuously divide, and the
CRISPR-directed Cas9 enzyme is able to cut the targeted locus at further stages of development. As a
consequence, somatic and/or germline mosaicism develops in the founder animals [28]. Mosaicism
was investigated in mice, for example, as described by the authors of [29,30], following the injection
of CRISPR/Cas9 components targeting the tyrosinase gene locus, revealing the occurrence of diverse
allelic modifications of the tyrosinase gene and also affecting the germline of the founder animals.
However, in most cases, the germline cells of the founder animal carry only one type of modified
allele. Interestingly, mosaicism in founder transgenic rabbits appears more frequently than in mice.
Early rabbit embryos undergo a rapid series of cell divisions and can reach the four-cell stage within
half a day [31]. In humans, rodents, and livestock animals, this takes 30—40 h after fertilization.
The early timing of differentiation can explain the high mosaicism rates during rabbit transgenesis [32].
Despite the high rate of mosaicism in transgenic rabbits, to our best knowledge, a germline multiallelic
knockout rabbit has not previously been described.

NADPH oxidase 4 (NOX4) is an important and widely expressed member of the NADPH
oxidase family that is responsible for the production of reactive oxygen species (ROS). NOX4 is an
important regulatory protein for many cellular processes, including cell division and differentiation [33],
apoptosis [34], host defense [35], and oxygen sensing [36], in addition to contributing to gene regulatory
pathways [37,38]. In mammals, including rabbits, humans, and rodents, its main expression site is the
kidney [39], and it is also expressed in many other tissues, such as lung, liver, and brain. NOX4 plays
an important role in many pathologies, including in stroke [40] and lung [41] and kidney fibrosis [42].
It also regulates the development of atherosclerosis [43,44]. The rabbit is a classical model animal in
atherosclerosis research [13,14,45], making rabbit knockouts an ideal subject to study the lack of NOX4
gene function in the course of atherosclerosis.

Animal models in translational medicine usually share similar molecular targets, pathways,
or phenotypes with humans. They can be very useful for predicting human responses, although
ethical controversies regarding the use of experimental animals have arisen in the last century [46].
Besides rodents, most preclinical animal studies typically require one additional nonrodent species [47].
The use of nonrodents would increase the sensitivity of different tests for human applications [48].
An important disadvantage of nonrodent models is their genetic diversity, which can lead to differences
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in physiology and metabolism, as in the case of dog models [49]. Thus, inbred animals (and even
nuclear-cloned animals) are the most controlled model systems, and their use can bypass several
challenges associated with human studies [50]. On the other hand, biology is characterized by diversity
as well as unity [51]. To avoid the questionable validity of an animal model system, genetic diversity
should be assured. The dual problem of genetic diversity in animal model systems can be solved
using mosaicism in transgenic founders of nonrodent species. In this paper, we show that a transgenic
rabbit founder animal can produce multiallelic germline knockout strains that can be maintained as a
closely related animal population and with high genetic diversity. Both are necessary for successful
translational medical studies.

2. Materials and Methods

2.1. Ethics Statement

The rabbits used in this study were New Zealand white rabbits (Innovo Ltd., Isaszeg, Hungary).
All animal studies were conducted in strict accordance with the recommendations and rules in the
Hungarian Code of Practice for the Care and Use of Animals for Scientific Purposes, approved by
the Animal Welfare and Research Ethics Committee at Agricultural Biotechnology Institute, National
Agricultural Research and Innovation Centre (NARIC-ABC) and registered under permission number
AK-ENG (PE/EA/58-2-2018) from Pest County’s governmental office. All efforts were made to minimize
the suffering of animals.

2.2. Animals

Laboratory rabbits were maintained in the Animal Care Facility at NARIC-ABC. Animals were
housed in individual cages with free access to food and water. Animals were kept under a standard
light—dark cycle (06.00-18.00 h) at 19 °C.

2.3. Microinjection and Embryo Transfer

The protocol for superovulation of embryo donor does, embryo collection, microinjection of
pronuclear-stage embryos, and transfer to recipient females has been described in our previous
paper [52].

In summary, sexually mature does received an intramuscular injection of pregnant mare serum
gonadotropin (PMSG) (ProSpec, Rehovot Israel), followed by an intravenous injection of human
choriogonadotropin (hCG) (Choragon, Ferring GmbH, Kiel, Germany) 72 h later in order to induce
superovulation. Donor rabbits were mated after the hCG injection. The oviducts were flushed with
PBS-20%FCS (vol/vol) medium for collection of pronuclear-stage embryos. Zygotes were incubated in
a Nuaire thermostat (38.5 °C, 5% CO;, 80% humidity) in the same embryo culture medium. A mixture
of synthetic gRNA and transactivating RNA (Sigma-Merck, Budapest, Hungary) was added to capped
Cas9 RNA (150 ng/uL) (Trilink, San Diego, CA, USA) to a final concentration of 5 ng/uL in an embryo
microinjection buffer (1 mM Tris, pH 7.5, 0.1 mM EDTA). Cas9 mRNA is a highly purified capped
form by CleanCap® technology preventing 5" degradation and with increased half-life of mRNA.
An aliquot of each batch used for microinjection was checked for degradation. Each batch was kept
at 37 °C for 4 h previous to microinjection followed by agarose electrophoresis. Without any visible
sign of degradation, RNA solution was ready for microinjection and the solution was injected into
the cytoplasm of pronuclear-stage embryos. The injected embryos were incubated in embryo culture
medium for 2-3 h, followed by the transfer of approximately 3040 injected embryos into the oviducts
of each recipient mother via laparoscopic surgery [52].

Guide RNA was designed using the publicly available E-CRISP program (http://www.e-crisp.org/
E-CRISP/designcrispr.html) according to the second and fourth exon of the NOX4 gene (chromosome 1:
127,338,844-127,541,489, ENSOCUG00000016685.4). Guide RNAs are shown in Figure 1.
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1st exon 2nd exon 3rd exon 4th exon 18th exon
GAGTACCATTACCTCCACCA TATAACTTGTGGTGTCACTA
CTCATGGTAATGGAGGTGGT ATATTGAACACCACAGTGAT
Target sequence Target sequence
UGGUGGAGGUAAUGGUACUC UAGUGACACCACAAGUUAUA
ZRNA gRNA

Figure 1. These guide RNAs targeting the second and fourth exons of the rabbit
NADPH oxidase 4 gene for the CRISPR/Cas9 system. The second exon gRNA with PAM
sequence is UGGUGGAGGUAAUGGUACUC-TGG. The fourth exon gRNA with PAM sequence
is UAGAGCACCACAAGUUAUA-TGG.

2.4. DNA Isolation from Blastocysts and Newborn Pups

Injected zygotes were individually collected at the blastocyst stage with a minimal amount of
culture media in a 200 pL standard PCR microtube (Merck, Budapest, Hungary) and air-dried. Then,
5 uL of water was added and incubated at 95 °C for 5 min, followed by a 10 min incubation at -70 °C.
This process was repeated twice. Embryos were then incubated in a 200 uL final volume of lysis
buffer (10 mM Tris pH 8.0, 100 mM NaCl, 10 mM EDTA pH 8.0, 0.5% SDS, 0.4 mg/mL proteinase K)
at 37 °C for 2 h. DNA was isolated using the phenol-chloroform method. Equal volumes of phenol
and chloroform were added to the mixture, shaken thoroughly, and centrifuged at 13,000 rpm for
10 min. The supernatant was mixed with a double volume of isopropanol, kept at =70 °C overnight,
and centrifuged for 30 min at 4 °C. The resulting invisible pellet was then washed twice with 70%
ethanol, air-dried, and dissolved in 10 pL water. Genomic DNA from tissue samples was isolated
using the conventional phenol-chloroform method [53].

2.5. Detection of Mutations in Embryos and Pups by PCR and Sequencing

The PCR primers used for mutation detection and Sanger sequencing are listed in Table 1.
PCR reactions were set up with RedTaq Ready mix (Sigma, Budapest, Hungary) with standard
PCR conditions (96 °C for 5 min; 33 cycles of 95 °C for 15 s, 58 °C for 15 s, 72 °C for 20 s; and a
final step of 72 °C for 5 min followed by holding at 4 °C) in a ProFlex PCR system thermal cycler
(Applied Biosystems, Budapest, Hungary).

Table 1. PCR primers used for mutation detection and sequencing.

Primer Sequence Product Size (Base Pairs)
2. exon-forward TTGCTTGGATTTCACCCTGC 312
2. exon-reverse AGTCTGGTGGCTAAGTCTGC
4. exon-forward ACATCTCACCAACGTTTGA 386
4. exon-reverse TAGACAATCATATTTAAAC
2nd exon seq. primer-forward CAACTAACAAAACTTGACGCC 1059
2nd exon seq. primer-reverse AAGCCACTGAAAAACACCC

PCR products were gel purified with NucleoSpin Gel and PCR Clean up Columns for gel extraction
and a PCR cleanup kit (Macherey Nagel, Dueren, Germany) and cloned into pGEM-T vector (pGEM-T
Easy Vector System I, Bioscience, Budapest, Hungary). Then, 4-5 PCR-positive plasmid clones were
sequenced. Chromas software (Technelysium Pty Ltd., South Brisbane, Australia) was used for
sequence analysis.

2.6. T7 Endonuclease I Assay

A T7 endonuclease I assay was performed to detect mutations in the target sequence [54]. After the
extraction of genomic DNA from blastocysts and pups, the genomic region of NOX4 was PCR amplified
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(primers are shown in Table 1). The PCR product was denatured and reannealed under the following
conditions: 95 °C for 5 min, 95-85 °C at -2 °C/s, 85-25 °C at —0.1 °C/s, holding at 4 °C. The reannealed
fragments were digested with T7EI (NEB, Ipswich, MA, USA), separated, and visualized on an ethidium
bromide-stained 2% agarose gel.

2.7. Off-Target Assay

Potential off-target sites of the sgRNAs were predicted using the CRISPR online design tool
CRISPR/Cas-OFFinder RGEN (http://www.rgenome.net/cas-offinder/). The eight most promising
off-target sites for NOX4 second exon sgRNAs were chosen for PCR and sequencing using REDTaq®
ReadyMix (Sigma Aldrich, Budapest, Hungary) with the corresponding primers (Table 2). PCR products
were analyzed on a 2% agarose gel, then purified and directly Sanger sequenced (Eurofins Genomics,
Ebersberg, Germany). Chromas software and online blast tool (https://www.ensembl.org/Oryctolagus_
cuniculus/Tools/Blast) was used for sequence analysis and evaluation of results.

Table 2. The eight most potent off-target sites in the rabbit genome predicted by the
CRISPR/Cas-OFFinder RGEN tool. Lowercase letters indicate the sites of mismatches compared
to the target sequence.

Off-Target Sequence Compared Number of

Off-Targets to Target DNA Chromosome Location Mismatches Primers
engéfgi?‘:i o TGGTGGAGGTAATGGTACTCNGG  chrl 127339745 0
Off-target-1  TGITGGtGGTAATGGTACTIGGG chrl 135497670 3 iz‘r]‘(:’raszdg?gégﬁg:ggﬁgﬁgéi%%%G
Off-target-2  TGGTGGAGGTAATGGTgaTCGGG ~ chrl0 31875932 2 i‘;‘r]‘g’rzredAAGIZi(%ﬁi?égggﬁai%%%éi .
Offtarget-3  TGGaGGAGGTAATGaTeCTCTGG  chrll 37138594 3 igx’;szAGTT%%FTGC;ﬁ:;?GGéCGGGGC:éfG
Off-target-4  TGGTGGAGGTGATGGTgCTCAGG  chrl4 81541288 2 igi‘grideTCGTiiiCCTcTéé\&P&G}\TCCéZéTCCCC
Off-target-5  TGaTGGAGGTAATGGTAITIGGG chrl5 45312042 3 i‘;f]‘g’raszdcf}%%ééﬁéé?ggé%?&i%ﬁm
Off-target-6  TGGTGGIGGTggTGGTACTCTGG ~ chr2 99798645 3 iZiVZriichﬁgGGﬁ?ﬁS222225?}222
Offtarget7 ~ TGGTGGAGaTAATGGgAtTCTGG chr8 79971373 3 i‘e’ivgrzdf;iiééégg CGGCTCCz:GnggéTT
Offtarget8  TGGTGtAGGAATGGTACTCCGG  chr9 111235794 2 i‘;‘g’rasred CGA(%TGGCTCACACT §§é§8}“§&f§”
3. Results

3.1. Testing of Guides and Production of Founder Knockout Animals

The mutation efficiency of guide RNAs was tested in cultured blastocysts. Both guides were
effective in inducing mutations in the rabbit NOX4 gene. However, the guide RNA targeting the
second exon of NOX4 had slightly higher mutation efficiency. Table 3 shows the ratio of total injected
zygotes that developed to blastocyst stage to mutant blastocysts for the two guides designed for the
second and fourth exons (18% and 16%, respectively).

Table 3. Results of microinjection of Cas9 and targeting gRNAs into rabbit zygotes. The second and
fourth exons were targeted, and both guides were successful in inducing targeting events with almost
equal efficiency.

Targeted Exon of NOX4 Total/Mutant Blastocysts Ratio

2nd exon 11/2 18%
4th exon 18/3 16%
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In addition, it is beneficial to introduce an early stop codon in the second exon in order to avoid
the presence of a functional truncated peptide. Hence, we chose the RNA guide targeting the second
exon of the NOX4 gene to produce live animals.

Based on the results of embryo testing, a total of five knockout founder animals were produced,
two males and three females, as summarized in Table 4. All mutations were heterozygous 7 bp
and 8 bp deletions directly upstream of the PAM site with a couple of base differences: Animals #2,
#3 and #4 acquired identical mutations (Figure 2), while animal #5 carried three different mutated
alleles. We established heterozygous and homozygous genome-edited rabbit sublines by consecutive
brother—sister mating from founder animal #5.

Table 4. Summary of mutations in NOX4 KO founder rabbits. One male (#1) and three female (#2—4)
rabbits had 7-8 bp deletions. Male #5 carried three distinct alleles with alternative mutations.

Code of Founder Animal Sex Mutation Consequence

#1 d 7 bp deletion (GGTACTC) early stop codon

#2 Q 8 bp deletion (TGGTACTC) early stop codon

#3 ? 8 bp deletion (TGGTACTC) early stop codon

#4 Q 8 bp deletion (TGGTACTC) early stop codon

#5 Jd allele A: 8 bp deletion (ACTCTGGC) early stop codon

allele B: 128 bp deletion early stop codon

allele C: 104 bp deletion in total early stop codon

gRNA

UGGUGGAGGUAAUGGUACUC-

wild type  TTCTACTTACGCCTAACATCTGGTGGAGGTAATGGTACTC CCCTTGGTTATACAGCAGGAAGGTTTICCAGAAAAGCAGACCTTCAGGGAAAGCCA

#1 TTCTACTTACGCCTAACATCTGGTGGAGGTAAT - —oa e TGGCCCTTGGTTATACAGCAGGAAGGTTTTCCAGAAAAGCAGACCTTCAGGGAAAGCCA
#2 TTCTACTTACGCCTAACATCTGGTGGAGGTAA—---- ----———TGGCCCTTGGTTATACAGCAGGAAGGTTTTCCAGAAAAGCAGACCTTCAGGGAAAGCCA
#3 TTCTACTTACGCCTAACATCTGGTGGAGGTAA-- -—-TGGCCCTTGGTTATACAGCAGGAAGGTTTTCCAGAAAAGCAGACCTTCAGGGAAAGCCA

14 TTCTACTTACGCCTAACATCTGGTGGAGGTAA - TGGCCCTTGGTTATACAGCAGGAAGGTTTTCCAGAAAAGCAGACCTTCAGGGAAAGCCA

Figure 2. Comparison of mutations in NOX4 knockout rabbit founders. The gRNA and the target in
the gene followed by the PAM sequence are highlighted in red. The yellow spaces indicate the sites of
mutation. The second exon is underlined with a black line. Animal #1 had a 7 bp deletion; #2—4 had
identical 8 bp deletions. All four deletions were directly followed by the PAM sequence.

Animal #5 passed on four different alleles to the F1 generation (Figures 3 and 4). The most frequent
allele was an 8 bp deletion (A8). The other allele contained a 128 bp deletion (A128), including an
intronic region. The third allele type was the most irregular, with deletions and insertions adding up
to a 104 bp deletion in total (A104) upstream of the PAM sequence. A wild-type allele also appeared in
the F1 generation, demonstrating the presence of a fourth allele. We analyzed the expression level of
NOX4 in different tissues of a selected homozygous individual from line A8 by RT-qPCR. Expression
pattern matched to an expected -/- phenotype (data not shown).
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gRNA
UGGUGGAGGUAAUGGUACUC-PAM

wild type GGTAACCCAAGTTCTACTTACGCCTAACATCTGGTGGAGGTAATGGTACTCTGGCCCTTGGTTATACAGCAGGAAGGTTTTCCAGAAAAGCAGACCATTCAG

Al28 GGTAACCCAAGTTCTACTTACGCCTAACATCTGGTGGAGGT-
Al04 GGTAACCCAAGTTCTACTTACGCCTAACATCTGGTGGAGGTAA ——————— TGGCCCTTGGTTATACAGCANGAAGGTTTTCCAGAA AAGCAACCATTCAN
A8 GGTAACCCAAGTTCTACTTACGCCTAACATCTGGTGGGGGTAATGGT oo e oo - CCTTGGTTATACAGCAGGAAGGTTTTCCAGAAAAGCAGACCATTCAG

wild type GGAAAGCCAGATGAGCTAAACCAATCAAAGGGAGAGAGAAAAAATTAAAAATAAACATTACCTATGAATGAAGACCACAAGTGTATTCCTTAGAGAACTTT
Al28 ATGAAGACCACAAGTGTATTCCTTAGAGAACTTT

Al04 GGAAAGCCAGATGTAAT
A8 GGAAAGCCAGATGAGCTAAACCAATCAAAGGGAGAGAGAAAAAATTAAAAATAAACATTACCTATGAATGAAGACCACAAGTGTATTCCTTAGAGAACTTT

wild type AAATGGGGCCTCAACTAGTAATTACAGAAAACATATGCAATGG
Al28  AAATGGGGCCTCAACTAGTAATTACAGAAAACATATGCAATGG
ALO4  ceeeceeeeemee e TAGTAATTACABA AAACATATGCAATGG
A8 AAATGGGGCCTCAACTAGTAATTACAGAAAACATATGCAATGG

Figure 3. Comparison of mutations originating from the #5 founder male. The gRNA and the target in
the gene followed by the PAM sequence are highlighted in red. The yellow spaces show the sites of
deletions. The second exon is underlined with a black line. The A8 mutation is a small deletion of eight
base pairs, indicated in yellow. In A104, a TAAT insertion is present, highlighted in blue, and a couple
of single base pair changes appeared in the sequence of A104 and A8, which, in the case of the A104
mutated allele, was probably the consequence of imperfect NHE] repair. However, in the A8 mutated
allele, it might be a small nucleotide polymorphism not related to NHE].

MW 1 2 3 4 5 6 7
500bp —
400bp é

300bp o --- e, —
200bp - - —_—

50bp

—

Figure 4. Detection of mutation is performed with PCR and/or T7 digestion. MW = molecular weight
marker. (1-2) T7 assay and PCR of F1 heterozygous offspring of A8 line, respectively; (3—4) PCR of
heterozygous offspring of A104 and A128 line, respectively; (5) PCR of founder male #5; (6-7) PCR of
wild-type animal and no template control.

3.2. Off-Target Analysis

The selected potential off-target sites were amplified by PCR using genomic DNA from both the
wild-type animal and founder rabbit #5 and evaluated by DNA sequencing. Eight candidate off-target
sites were analyzed. In all these cases, no difference was observed (see Figure 5), so no off-target event
was detected at any of the genomic locations.



Appl. Sci. 2020, 10, 8508 8 of 14

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5. Sequence analysis of the eight candidate off-target sites predicted for NOX4 second
exon sgRNA.

3.3. Heritability of Deletions

Founder animal #5 was used as a sperm donor in four different artificial inseminations. Female
partner animals originated from two different available sub-breeds of New Zealand White rabbits to
represent different genotypes. Later, the same females were used in two more consecutive matings
to represent animal populations with close relationships (both parents were the same). Animal #5,
the founder male, had a total of four litters with an average litter size of 3-10 pups/litter. The three
mutants and the wild-type allele appeared with varying frequencies among the pups in the F1
generation. The most frequent allele was A8 with 50%, followed by A128 and A104 with 36% and
10%, respectively. The wild-type allele appeared in only one female (4%). There was an alteration
from Mendelian inheritance according to the sex of the animals. Two-thirds of the population was
female, so male offspring was underrepresented by 14% compared to the total number of animals.
This difference might be due to the small sample size (28 pups in total). The female/male ratio showed
the same pattern among all three mutated genotypes (70:30, 64:36, and 67:33 in A128, A8, and A104,
respectively). The data are shown in Table 5. In the F2 generation, when a heterozygous male and
female were bred, homozygous NOX4 KO mutants of both sexes were born. We initialized the analyses
of phenotype, such as litter size and preweaning lethality, and have not found any difference compared
to wild-type litters. We have proof of homozygous animal survival and of the fertility of both sexes.
More data with a higher sample size are needed to confirm or disprove the differences in sex ratio in
NOX4 knockout rabbits. The establishment of homozygous knockout population is in progress.

Table 5. Results of breeding of #5 founder male.

Rabbit Subline A128 A8 A104 Wild-Type Animals Born
sex Q J Q d Q d Q d
number of animals 7 3 9 5 2 1 1 0 28
ratio to total (%) 25% 11% 32% 18% 7% 3.50% 3.50% 0
ratio of genotype to total (%) 36% 50% 10% 4%
sex ratio within genotype (%) 70% 30% 64% 36% 67% 33%  100% 0%
sex ratio (%) Q 19 68%
J 9 32%

4. Discussion

The results of our study show the successful generation of several NADPH oxidase 4 knockout
rabbit lines. The NOX4 gene plays an important role in biological processes, and reactive oxygen
species have a modulatory effect on the physiological functions of diverse mammal organs. NOX4
knockout mouse models have recently been demonstrated to be useful models to study the regulation
of insulin secretion [55]. Other research has shown the role of NOX4 in liver fibrosis in connection with
gut microbiota [56]. In addition, the protective effect of NOX4 knockdown has also been demonstrated
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in sepsis-induced lung injury in mice [57]. The broad spectrum of NOX4 function creates the need for
better animal models to make the best mammalian system for the purposes of translational medicine.

The efficiency of CRISPR/Cas9 to induce site specific mutations in rabbits is a complex issue.
Chromatin structure of the targeted genomic region affects the availability of the site to CRIPSR/Cas9
complexes. An open chromatin structure predicts greater efficiency. The concentration of gRNA is
also a crucial element. The encountered 16-18% efficiency of mutated blastocysts is within the normal
range. However, the efficiency of targeting varies greatly between 10-100% according to scientific
data [1].

Five founder animals were generated in total, of which three acquired identical 8 bp deletions.
This phenomenon seems striking, but robust analysis of CRISPR-mediated genome editing in cell
culture systems has shown that DNA editing varies considerably between sites, with some targets
shown to have a highly preferred indel while others display a wide range of infrequent indels [58].
Presumably, the pattern is dependent on both DNA sequence and chromatin structure.

Interestingly, one of the NOX4 KO founder males turned out to be a genetic mosaic animal with
germline transmission of three distinct knockout alleles besides the wild-type allele to its offspring.
The A8 subline of founder animal #5 carried a short 8 bp deletion directly upstream of the PAM site,
which is a common type of modification induced by the CRISPR/Cas9 method according to our own
observations and the literature [59]. The other two modified alleles carried longer deletions, a 128 bp
deletion in the case of the A128 subline, and a more exciting deletion-insertion-rearrangement type
of modification in the case of the A104 rabbit subline. Complex targeting events in genome-edited
animals have previously been detected [60]. Both modifications—A104 and A128—make the detection
of the knockout allele a simple one-step procedure, with allele-specific PCR sparing us the burden of
T7 assays in our future experiments.

We found a deviation of the male/female ratio from the expected Mendelian pattern of inheritance:
14% fewer males were born in the F1 litters of the #5 founder male. These data must be closely
examined in our future studies and while evaluating F2-generation data.

Mosaic events during genome editing are generally unwanted events. There are known strategies
to reduce the genetic mosaicism produced by CRISPR/Cas9 system [61]. Mosaic events can be
found during rabbit genome editing using CRISPR/Cas9 methods after allele screening [2,8,62-66].
Our opinion is that mosaic events can be useful in animal models of human diseases. To profit from
the fact that mosaic animals represent different edited alleles, we developed a new breeding strategy
(Figure 6).

The mosaic animal is mated consecutively with its counterpart, resulting in litters whose newborns
are closely related but represent different transgenic lines with different targeting events. We suppose
that analyzing these lines would result in predictable and equal phenotypic differences, ensuring the
observations are the outcome of genome editing but not off-target events. On the other hand, mosaic
founders are mated with different genetic background partners, which will result in a population
of newborns with a diverse genetic heritage. In this case, small differences during phenotyping
are tolerated and can presumably be explained. Most of human diseases are multifactorial and
multigenic. Even single inheritance disorders can show diverse appearance depending on genetic
background. To create the best animal model of the analyzed disorder, it is necessary to keep
genetic divergence within the model population. On the other hand, genetic diversity can cause
uninterpretable deviations sometimes. This is one important reason why most studies use inbred mice
as model animals. Inbred strains usually react in a predictable way. Our breeding strategy involved
combining the advantages of inbred and diverse genetic populations. Although this strategy uses
more animals and the phenotypic examination is more complex, the resulted biological answer closely
resembles the progression of human diseases. Using our new mating system, genetically divergent
and homogeneous genome-edited populations can be produced in parallel, which is beneficial in
translational medicine studies.
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translational medicine. Colored dots represent different mosaic alleles of a gene of interest, while colored
rods represent inherited alleles in the F1 generation. The different gray background of rabbits highlights
the variation in the genetic background.
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