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1. Introduction 

1.1. Asthma and Allergy 

1.1.1. General Characteristics 

 

Asthma is a chronic inflammatory respiratory disease influenced by a wide range 

of environmental and genetic factors (Chen, Wong, and Li 2016). It is characterized by 

airflow obstruction due to smooth muscle constrictions and airway inflammation with 

symptoms such as coughing, wheezing, tightness in the chest, bronchoconstriction and 

airway hyperresponsiveness that may remit spontaneously or upon treatment. Further, 

long term inflammation leads to mostly irreversible structural and functional changes in 

the airway smooth muscles called airway remodelling that is characterized by bronchial 

wall thickening and increased vascularity, sub-mucosal gland hyperplasia and 

hypertrophy as well as extracellular matrix (ECM) deposition and angiogenesis (‘New 

NHLBI guidelines for the diagnosis and management of asthma. National Heart, Lung 

and Blood Institute’, 1997) (Figure 1). 

 

Figure 1. Schematic diagram of healthy and asthmatic airways. 

 

Asthma exacerbations may be caused by different environmental triggers. These 

factors, among others, may be grouped into indoor and outdoor stimuli, where indoor 

factors include allergens of dust mites, cockroaches, mice and pets, indoor burning of 

tobacco, wood and biomass, indoor endotoxins or products from Gram-positive bacteria. 

Outdoor factors include viral and microbial pathogens, airborne particles, ozone, diesel 

exhaust particles, pollens, outdoor moulds, tobacco smoke, cold air or humidity. 
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Environmental stimuli also include exercise, occupation or even diet (Ho 2010; Diette et 

al. 2008).  

 

1.1.2. Classification of Asthma and Allergy 

 

Based on which cause initiated asthma or the exacerbation, asthma phenotypes 

can be distinguished. These include allergic-, non-allergic asthma, viral-induced asthma, 

exercise-induced asthma. Within the limits of this thesis, we have included these four 

groups in our analyses and have created subgroups for these asthma phenotypes with the 

help of respiratory specialists (Figure 2). Other asthma types can also be characterized for 

example aspirin-exacerbated respiratory disease that is a combination of asthma, chronic 

rhinosinusitis with nasal polyps and a sensitivity to aspirin or other types of non-steroid 

anti-inflammatory drugs (NSAIDs), pre-asthma wheezing in infants where recurrent 

episodes of the abnormality is likely due to asthma (Martinez et al. 1995), but other 

reasons may exist such as allergies, infection or obstructive sleep apnea. Furthermore, 

there is exacerbation-prone asthma with more frequent visits to the hospital due to 

recurrent asthma attacks, and asthma associated with apparent irreversible airflow 

limitation, where irreversibility may only be defined based on longitudinal studies, a 

progressive development of airway obstruction and treatment irresponsiveness (Pascual 

and Peters 2009), as well as eosinophilic and neutrophilic asthma (Bruijnzeel, Uddin, and 

Koenderman 2015; Patterson, Borish, and Kennedy 2015; Pelaia et al. 2015).  

We have added subgroups to the pre-existing ones included in our analyses, for 

example asthma comorbidities of allergic rhinitis and allergic conjunctivitis, as these are 

the most frequent asthma associated allergic diseases which often occur together (Shaker 

and Salcone 2016; Rosario and Bielory 2011; Lee et al. 2013). Conjunctivitis is an 

inflammatory disease of the eye characterized by flushing, swelling, itching, and watering 

of the eyes whereas rhinitis is an inflammation of the nasal mucosal surface indicated by 

sneezing, a runny and/or stuffy nose, and post-nasal dripping. In different studies, 

between 50-65% of patients with rhinitis also had conjunctivitis, but conjunctivitis could 

also exist without rhinitis (Rosario and Bielory 2011). Our subgroups also include clinical 

parameters of asthma such as total IgE level and absolute eosinophil concentrations, 

which have been found to correlate with asthma severity. In children, the most frequent 

phenotype is the IgE mediated allergic asthma which can also have heterogeneous 

symptoms.  
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Figure 2. Subgroups of asthma phenotypes included in our analyses. Asthma 

phenotypes may overlap. 

 

1.1.3. Diagnostic Criteria 

 

It is well-known that asthma is not a single disease but rather a series of 

overlapping individual diseases or phenotypes, each defined by its unique interaction 

between genetic and environmental factors (Lötvall et al. 2011; Borish and Culp 

2008). Moreover, non-asthmatic disease symptoms may also overlap with asthma. 

Diagnosis of the disorder may therefore be difficult, but crucial in terms of the therapy 

applied, morbidity and mortality. There are guidelines, such as The Global Strategy for 

Asthma Management and Prevention 2015 report update or the National Institutes of 

Health Guidelines for the Diagnosis and Management of Asthma Expert Panel Report-3, 

for an easier diagnosis (Global Initiative for Asthma; National Asthma Education and 

Prevention Program 2007). The detailed history of symptoms and a physical exam aids 

diagnosis of asthma subtypes. Measurements of forced expiratory volume in 1s (FEV1) 

and forced vital capacity (FVC) and especially their ratio, FEV1/FVC are good indicators 

of airflow obstruction. Specialists also examine diffusing capacity or lung volumes and 

may apply Broncho provocation (Global Initiative for Asthma; National Asthma 

Education and Prevention Program 2007). 

Cause of asthmaAsthma

Clinical parameters

Comorbidities of asthma

Allergic asthma

Non-allergic asthma

Exercise-induced asthma

Viral-induced asthma

Outdoor allergy

Indoor allergy

Inhalative allergy

Allergic rhinitisAllergic Conjunctivitis

Total IgE concentrationAbsolute eosinophil number
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1.1.4. Pathogenesis 

 

It is important to understand the pathophysiology of asthma which has still not 

been fully elucidated. The description of the course of the disease goes beyond the scope 

of this paper, therefore, here I only summarize the main aspects of asthma pathogenesis. 

Asthma is a chronic inflammatory disorder, where many cells and elements of the 

immune response play a role in its pathogenesis. Once the body encounters an allergen, 

virus or a noxious agent the immune system will be activated and in genetically 

susceptible individuals will over-react. In allergic asthma, dendritic cells, that are antigen-

presenting cells, encounter the allergen and migrate to lymph nodes to present the peptide 

to naïve T lymphocytes that will be activated to mature into T helper 2 (Th2) cells with 

the aid of other regulatory cells (Kuipers and Lambrecht 2004). T lymphocyte 

subpopulations among others, include Th1 and Th2 cells with distinctive cytokine profiles 

that include interleukin-12 (IL-12), interferon- (IFN) and IL-4, -5, -9 and -13, 

respectively. There are several factors that determine the Th1/Th2 balance. According to 

the ‘hygiene hypothesis’ the Th1/Th2 balance may be skewed towards the cytokine 

profile of Th2 cells in newborns. This imbalance is usually lifted by infections, the 

presence of older siblings, rural environment or daycare attendance at an early age, that 

all entail a Th1 response. On the other hand, urban environment, the use of antibiotics or 

sensitization to diverse allergens do not involve Th1 cytokines, hence the early imbalance 

remains making the individual more susceptible to allergies, asthma or other chronic 

inflammatory diseases (Sears et al. 2003; Horwood, Fergusson, and Shannon 1985; Gern, 

Lemanske, and Busse 1999; Gern and Busse 2002; Eder, Ege, and von Mutius 2006). 

The release of Th2 cytokines activates a cascade of events that lead to airway 

inflammation and in the long run, airway remodelling. IL-4 aids the differentiation of Th2 

cells and along with IL-13 they play a role in the formation of IgE immunoglobulins 

through the induction of class-switching of B-lymphocytes, hence IgE receptors will be 

produced once they have become plasma cells. IgE receptors are important actors in 

hypersensitivity type I and diseases such as allergic asthma, atopic diseases or allergic 

conjunctivitis. IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) 

help the maturation of eosinophil granulocytes in the bone marrow and after infiltration 

to the inflamed airways their prolonged survival, respectively. Furthermore, tumour 

necrosis factor- (TNF-) further enhances the inflammatory processes in the lungs 

(Chung and Barnes 1999).  
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Beside eosinophil infiltration, other immune cells, such as neutrophils, 

macrophages or mast cells also transmigrate into the airways. Eosinophils have increased 

numbers in asthmatic airways. By releasing pro-inflammatory mediators and cytokines, 

they contribute to the inflammatory response. It has been shown that higher numbers of 

eosinophils correlate with asthma severity. Mast cells play a critical role in the 

pathogenesis of allergic diseases, as having many IgE receptors on their surface allows 

these immunoglobulins to be physically cross-linked by allergens, hence degranulation 

of the mast cells begin, which then empty bronchoconstrictors, such as histamine, 

leukotrienes or prostaglandins into the surrounding tissues (Boyce 2003; Robinson 2004). 

Histamine mediates oedema and mucus secretion as well via its histamine receptors 1 

(H1) and 2 (H2), respectively (White 1990). Leukotrienes not only influence airway 

smooth muscle, but also recruit neutrophils (Gelfand and Dakhama 2006). Among several 

types of prostaglandins, PGF2 causes direct constriction of airway smooth muscles. It 

has been shown that upon PGF2 treatment asthmatics had an 8000-fold increase in 

sensitivity to it compared to healthy subjects (Mathé et al. 1973). It has been suggested 

that airway hyperresponsiveness also has a relation to the increased numbers of mast cells 

found in the airway smooth muscle. Further, mast cells not only release cytokines upon 

allergen contact, but in exercise-induced asthma they may also be activated by osmotic 

changes (Brightling et al. 2002). Macrophages may be activated by IgE receptors as well, 

releasing more inflammatory mediators and other cytokines enhancing the inflammatory 

response (Peters-Golden 2004). The role of neutrophils remains unclear in the 

pathogenesis of allergic diseases, but elevated numbers have been found in the airways 

of more severe asthmatics (Fahy et al. 1995; Wenzel 2006; Wenzel et al. 1997).  

Epithelial cells of the airway also play a role in asthma. These cells lining the 

airways have a barrier function and they also maintain tissue homeostasis (Moheimani et 

al. 2016). By releasing more pro-inflammatory mediators during the inflammatory 

processes in asthma, epithelial cells may also suffer injury. Repair mechanisms in 

asthmatic patients are impaired, further worsening the controlled state of asthma. 

Oxidative stress also has an effect on the bronchial epithelium in asthma. 

Oxidative stress is the imbalance between the production of increased oxidative sources 

and the impaired mechanisms of detoxifying the reactive intermediates and repairing the 

caused damage (Holguin 2013). Reactive oxygen species (ROS) are produced either upon 

environmental exposure to air pollution of gases and particulate matter or the local 

inflammation will secondarily induce the production of ROS (Bowler 2004; Ghio, 
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Carraway, and Madden 2012). Oxidative stress is associated with inflammatory cell 

activation and hence the production of pro-inflammatory mediators (Paredi, Kharitonov, 

and Barnes 2002; Wood, Gibson, and Garg 2003). The increased amount of ROS results 

in oxidative lipid peroxidation and DNA damage, further aggravating inflammation and 

the severity of asthma.  

 

1.1.5. Medication 

 

To date there is no cure for asthma. It is a very complex disease with many factors, 

pathways, mechanisms that play a role in the pathophysiology of asthma. Which 

medication an asthmatic individual will take depends on age, what triggered their asthma, 

symptoms and whether the drug is effective. It is important for patients to have controlled 

asthma regardless of the severity of their disease. There are several types of long-term 

and short-term asthmatic medications. Long-term medications help to maintain a 

controlled asthmatic state on an everyday basis so that the incidence of an asthma attack 

is lower, while short-term drugs are a quick relief in case of such an attack.  

The most essential drug among long-term medications is inhaled corticosteroids 

(ICS), which are anti-inflammatory medicines (e.g. Budesonide (Pulmicort), Fluticasone 

(Flovent)). ICSs reduce airway inflammation by down-regulating pro-inflammatory 

proteins (Adcock, Ito, and Barnes 2004; De Bosscher, Vanden Berghe, and Haegeman 

2003), reversing components of airway remodelling, such as increased vascularity of the 

bronchial wall (Chanez et al. 2004), suppressing the production of chemotactic mediators 

and adhesion molecules that attract immune cells to the site of inflammation (eosinophils, 

dendritic cells, mast cells, lymphocytes) and also by inhibiting their survival (Schwiebert, 

Stellato, and Schleimer 1996). ICSs are better than orally taken corticosteroids, because 

they locally treat inflammation, rather than causing side-effects. Leukotriene modifiers 

are also effective oral anti-inflammatory drugs (e.g. Zafirlukast (Accolate), Montelukast 

(Singulair)), but in some cases, may cause side-effects of depression, aggression or 

agitation. Long-acting beta agonists (LABAs) (e.g. Salmeterol (Serevent), Formoterol 

(Foradil)) are inhaled drugs taken with ICSs enhancing their effects by suppressing 

inflammatory genes (Korn et al. 1998) and increasing the localization of glucocorticoid 

receptors in the nucleus for a better uptake of the medication (Eickelberg et al. 1999). On 

the other hand, taken alone, LABAs may increase the risk of severe asthma attacks. 

Theophylline, also a bronchodilator and anti-inflammatory drug is used in low doses next 
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to ICSs. Theophylline increases the activity of histone deacetylase (HDAC), which in 

turn reduces the number of eosinophils. Because ICSs activate HDAC through a different 

mechanism, it has been suggested that the low dose of theophylline enhances the anti-

inflammatory effect of ICSs both in asthma and chronic obstructive pulmonary disease 

(COPD) (Cosio et al. 2004; Hossny et al. 2016). 

Short-term asthma medications include short-acting beta agonists (SABAs) which 

offer ease of symptoms within minutes once inhaled through a nebulizer directly to the 

airways (e.g. Metaproterenol, Levalbuterol (Xopenex)). Orally or intravenously taken 

corticosteroids upon an asthma attack are also very effective in treating episodes of 

asthma attacks. In such case, the most used corticosteroids are prednisone, prednisolone 

or methylprednisolone, which should not be taken for long periods of time as may cause 

side-effects of weakness, weight gain, mood or behaviour changes, etc. 

There are of course many approaches to target different factors in asthma that lead 

to a decrease in the inflammation in the airways. For instance, omalizumab is a humanized 

antibody (IgG1k) against IgE antibodies, one of the key players in asthma pathogenesis. 

It has been approved in the 2000s in the United States by the Food and Drug 

Administration (FDA), as well as in the European Union to treat patients 12 years-of-age 

or older (Allergic Asthma and CIU Treatment | XOLAIR® (Omalizumab)). It is used in 

cases of corticosteroid resistance, but due to its higher price and only a few long-term 

trial studies, it is not yet frequently used nor it is administered for longer time-periods 

(Chang et al. 2007; Humbert et al. 2014; Normansell et al. 2014; Schulman 2001). 

Furthermore, several drugs have been developed to target cytokines IL-5, IL-4 or IL-13 

with antibody therapy. All of these medications are only effective in eosinophilic asthma 

phenotypes, but unfortunately minute non-eosinophilic asthma biomarkers are available 

to use in the search for potent therapies (Guilleminault et al. 2017). 

 

1.2. Epidemiology of Asthma 

 

 It is well known that there is an increasing number of persons with asthma and/or 

allergies. The higher numbers of patients burden the countries both financially and 

socially. Many factors must be included in order to gain a complete knowledge of the 

burden of the disease. These include the number of adult and child patients in a country, 

the number of hospital visits, the cost of their treatment, morbidity (e.g. number of days 

missed from school or place of work/year) or mortality.  
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According to the Global Asthma Report 2014 that is based on the Global Burden 

of Disease Study (GBD) between 2008 and 2010 it has been estimated that around 334 

million people suffer from asthma world-wide. Furthermore, there was an increase in the 

number of asthmatics according to the 2011 report based on 2000-2002 population data, 

where 235 million people had asthma globally (The Global Asthma Report 2014). This 

increase may perhaps be due to better and more precise diagnosis of asthma phenotypes 

(Carr and Bleecker 2016). Moreover, it is estimated that due to incomplete data, these 

numbers may be higher. The International Study of Asthma and Allergies in Childhood 

(ISAAC) estimated that around 14% of all the children in the world have asthma each 

year (Lai et al. 2009). The GBD study found that asthma is the fourteenth in number of 

years lost to asthma-associated morbidity and mortality world-wide (Walter et al. 2015). 

 In the USA in 2013 it was predicted that 16.5 million adults (8.3% of population) 

and 6.1 million children (7% of population) have asthma. The disease is more prevalent 

in women compared to men, also more common in children, than in adults, furthermore, 

it is more frequent in boys compared to girls. Asthma was the leading cause of 

absenteeism in children, where 50% of children missed school for at least 1 day every 

year, in 2013 this meant 13.8 million missed school days. Asthma morbidity is similar in 

adults, as 14 million days of work is missed each year. Although in 2014 3651 people 

died from asthma in the USA, death rates have decreased by 26% since 1999 

(https://www.cdc.gov/asthma/pdfs/asthma_facts_program_grantees.pdf, 

https://www.cdc.gov/asthma/most_recent_data.htm).  

The cost of asthma in the USA is $56 billion/year, which means a $3259 per 

person. The yearly cost of the disease in Europe is €19.3 billion 

(https://www.cdc.gov/asthma/impacts_nation/), whereas in Asia-Pacific the cost varies 

between $184 and $1189 per person (www.globalasthmareport.org/burden/burden.php). 

 The Bulletin of the Hungarian Korányi Pulmonology Institute summarized the 

epidemiology of several pulmonology related diseases including asthma. According to 

the study, in which information of registered asthma patients were collected from all 

Hungarian dispensaries, in 2013, 282 754 people were affected by asthma, which means 

a 2.8% prevalence in Hungary (Csoma et al. 2016). The yearly increase in number of 

asthmatic adults is 16 000 - 19 000 (Figure 3). 
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Figure 3. Diagram showing morbidity rates of asthma patients collected from all 

Hungarian dispensaries. (Csoma et al. 2016) 

 

1.3. Genetic Background 

1.3.1. Genetic Methods and Results in the Research of Asthma and Allergy 

 

 Asthma is a multifactorial disorder, considering that apart from several small 

effect genes and variations that may also be inherited in an additive fashion, 

environmental factors also play a key role in the development of such diseases. With the 

rapid advances in genetics and genetic technologies, the amount of research of complex 

disorders have become substantial, however, our understanding of the mechanisms of 

their inheritance is very limited. 

 The heritability of asthma is estimated by the comparisons of correlations and 

concordance rates of monozygotic (MZ) and dizygotic (DZ) twins. According to twin 

studies, 36-77% of asthma is heritable (Duffy et al. 1990; Harris et al. 1997; Koppelman, 

Los, and Postma 1999; Nieminen, Kaprio, and Koskenvuo 1991), where the concordance 

of MZ twins is 0.74 and 0.35 of DZ twins, presenting a significant difference (Liu, Spahn, 

and Leung 2011). Furthermore, when neither of the parents have asthma, the likelihood 

of the children having the disease is 11-13%, but when both parents have asthma, this rate 

is 50-70% (Barnes and Marsh 1998), also showing the importance of the genetic 

component of asthma. 
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 Essentially, there are three different types of genetic studies to elucidate the 

genetic background of complex diseases. These include candidate gene association 

studies, genome-wide association studies (GWASs) and whole genome sequencing 

(WGS). 

 Candidate gene association studies analyse the relationship of a prespecified gene 

or genetic region and a given disease or phenotype by comparing variation frequencies 

between cases and controls. The previously determined genes are chosen based on the 

protein’s function or role in the disease. There are more than 1000 candidate gene 

association studies of asthma, from which 120 genes have been identified to have a 

relationship with the disorder (March, Sleiman, and Hakonarson 2011). There are 54 

genes found to be associated with asthma that were reproduced in 2-5 independent 

studies. Fifteen genes were found to be associated with the disease in 6-10 independent 

studies, whereas only 10 were found in more than 10 independent investigations. These 

ten, most likely to indeed have a functional role in asthma, include IL-4, IL-13, 2 

adrenergic receptor (ADRB2), major histocompatibility complex, class II, DQ  1 (HLA-

DQB1), TNF, lymphotoxin  (LTA), high affinity IgE receptor (FCERIA), IL-4 receptor 

(IL4R), CD14, and a disintegrin and metalloproteinase domain-containing protein 33 

(ADAM33) (Basehore et al. 2004; Haller et al. 2009; Howard et al. 2002; Kabesch et al. 

2006; Liggett 1995; Munthe-Kaas et al. 2008; Potaczek, Okumura, and Nishiyama 2009; 

Potter et al. 1993; Pykäläinen et al. 2005; Randolph et al. 2004; Suttner et al. 2009; Van 

Eerdewegh et al. 2002; Vladich et al. 2005; Wu et al. 2010; Zhou et al. 2009). 

 Unfortunately, candidate gene association studies cannot give a full picture of the 

complex genetic background of diseases such as asthma, because multifactorial diseases 

develop through many inherited genetic variations that also influence each other, while 

environmental factors also contribute to the formation of the disorder. This problem was 

partially solved by WGS, which is a hypothesis-free research tool examining hundreds of 

microsatellite markers in affected siblings. Thus, many 10-20 million base pair regions  

have been identified to contain candidate genes for asthma and atopy. These regions need 

to be restricted to find the disease susceptibility genes or variations, which is done by 

positional cloning. This technique begins with taking a linked marker in a region and 

depicting the area in its proximity by several levels of recombination. This task was 

daunting until the results of the Human Genome Project were available to search on a 

computer, for a much easier identification of variations in a given region on the DNA 
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(Jorde, Carey, and Bamshad 2010). WGS and positional cloning have identified the 

following among others. ADAM33, dipeptidyl peptidase 10 (DPP10), G-protein coupled 

receptor for asthma susceptibility (GPRA), human leukocyte antigen G (HLA-G), 

cytoplasmic FMR1 interacting protein 2 (CYFIP2) or orosomucoid-like 3 (ORMDL3) 

(Allen et al. 2003; Laitinen et al. 2004; Moffatt et al. 2007; Nicolae et al. 2005; Noguchi 

et al. 2005; Van Eerdewegh et al. 2002). 

 Technical advances in genetics, such as microarrays or next-generation 

sequencing (NGS) have led to the evolution of GWASs. These case-control studies allow 

millions of markers (single nucleotide polymorphisms (SNPs), or copy number 

variations, (CNVs)) to be investigated in large populations with a given phenotype (Jorde, 

Carey, and Bamshad 2010). Many genes and regions have been identified with high-

throughput GWASs (Table 1). On the other hand, GWASs also faced a problem of 

’missing heritability’. Researchers expected previously identified susceptibility genes 

with a strong cumulative effect to be replicated during the association study, however the 

results could not be reproduced. In this regard, the analysis of GWAS results is essential, 

as well as the development of new techniques for the identification of genetics regions, 

candidate genes and variations. 
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Table 1. Asthma or asthma-associated phenotype susceptibility genes and regions. 

Adapted from Gu and Zhao, 2011 (Gu and Zhao. 2011). 

Chromo-

some 
Locus Candidate genes 

1 1p36,1qter,1q23 FCER1A, OPN3, CHML, IL10 

2 2q14,2q32,2q33,2p DPP10, IL18R1, CTLA4, CD28 

3 3q21-q22,3q21.3,3p TLR9 

5 5q31-q33,5q31,5p13,5p15,5q23.3 IL4, IL9, ZFR3, LIFR, PTGER4, 

ADAMTS12, IL7R 

6 6p21,6q24-q25,6q25.3 HLAG, ESR1, TNF 

7 7p14-p15,7q GPR154 

8 8p23.3-23.2 NAT2 

9 9p1,9p21,9p22 TLE4, IFNA 

11 11q13,11q21,11q,11p14 MS4A2, GSTP1 

12 12q13.12-q23.3,12q13-

12q24,12q21,12q24.31,12q24.33 

SFRS8, CD45, IFNG, IRAK3, 

VDR 

13 13q14,13q PHF11, CYSLTR2 

14 14q11.2,14q13-q23,14q24,14q23 TCR, ACT 

17 17q21 ORMDL3 

19 19q13,19q13.3 FCER2 

20 20q13,20p12 ADAM33, JAG1, ANKRD5 

21 21p21 - 

x Xp, Xq - 

 

 

1.3.2. Apoptosis in Asthma 

 

It is well-known, that apoptosis is a key feature in the pathomechanism of asthma 

(Vignola et al. 1999). The most reviewed process is eosinophil-clearance, which is 

impaired in asthmatic patients, hence the high numbers of eosinophils accumulated in the 

bronchial tissues will neither go through apoptosis, nor be cleared by phagocytosis of 

macrophages (Kankaanranta et al. 2000; Walsh 2000; Woolley et al. 1996). Additionally, 

it has been shown that the lack of eosinophil apoptosis in asthmatics correlates with 

disease severity (Duncan et al. 2003). 

The balance between cell apoptosis and survival depends on the control and 

maintenance of different regulatory elements and pathways. For instance, the members 

of the inhibitor of apoptosis protein (IAP) family not only inhibit apoptotic pathways in 

a caspase-dependent manner, they also play a role in the regulation of cell cycle and cell 

division, proving that such regulatory elements have a much more complex function than 
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initially thought. Furthermore, the aberrant expression of the members of this protein 

family results in pathologic cell functioning and uncontrolled cell division (Altieri 2010).  

Baculoviral IAP repeat containing 5 (BIRC5), also called survivin is an important 

anti-apoptotic member of the IAP family. BIRC5 has been previously thought to be only 

expressed in foetal tissues during growth. Moreover, it is abnormally expressed in 

cancerous tissues, hence being a featured target of therapeutic research (Altieri 2010). 

Recently, it has been shown that BIRC5 has additional roles in inflammatory mechanisms 

and disorders, such as asthma (Altznauer et al. 2004; Valentin et al. 2009; Vassina et al. 

2006). Furthermore, our research group has found several important aspects of BIRC5 in 

asthma. Namely, that the mRNA level of Birc5 in ovalbumin (OVA) induced asthmatic 

mouse model was significantly increased compared to normal mice (fold-change of 5.94, 

p=0.001) (Tölgyesi et al. 2009). This result was replicated by Tumes et al, who also found 

that in mice, the mRNA and protein expression of Birc5 found in the bronchoalveolar 

fluid correlated with the number of eosinophils (Tumes, Connolly, and Dent 2009). Our 

research group has further shown, that the gene expression level of BIRC5 was 

significantly higher in asthmatic patients compared to healthy controls, and both the gene 

expression level and one of the studied variations, rs9904341, were significantly 

correlated with the eosinophil ratio found in the induced sputum of asthmatics (Ungvári 

et al. 2012a). 

Furthermore, our group’s previous results have shown that the gene expression of 

FERM-domain containing 6 (FRMD6) is significantly decreased in both the OVA-

induced mouse model, as well as asthmatic patients compared to controls. Additionally, 

a gene polymorphism has been shown to be associated with asthma verified by both 

frequentist and Bayesian statistical approaches (Ungvári et al. 2012b). FRMD6 is the 

upstream activator of the Hippo signalling pathway, which also regulates the expression 

of several proteins, such as BIRC5 (Ungvári et al. 2012a; Ungvári et al. 2012b).  

The Hippo pathway is highly conserved from Drosophila melanogaster to 

mammals and regulates organ size via promoting apoptosis and inhibiting cell 

proliferation in the embryonic stages of development (Huang et al. 2016; Yu, Zhao, and 

Guan 2015). Its name originates from the Drosophila Hippo protein kinase (Hpo), which 

produces tissue overgrowth or „hippopotamus-like” phenotype upon mutations in its 

coding gene. It is still not exactly known whether the pathway is regulated by 

determinants of cell polarity and cell-cell junctions, mechanical cues of the cell, soluble 

factors regulating Hippo members or metabolic status, like cellular energy and oxygen 
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stress (Yu, Zhao, and Guan 2015) (Figure 4). However, it has been proposed that FRMD6 

(also known as Willin) influences the activity of the Hippo pathway by turning on its 

central kinase cascade (Angus et al. 2012). The members of this signalling cascade, 

mammalian STE20-like protein kinase 1 and 2 (MST1/2) and large tumour suppressor 

kinase 1 and 2 (LATS1/2) with scaffold proteins salvador family WW domain containing 

protein 1 (SAV1) and MOB kinase activator 1 (MOB1), respectively, phosphorylate one 

another to inhibit yes-associated protein 1 and tafazzin (YAP1/TAZ), the main effectors 

of the pathway (Harvey and Tapon 2007; Harvey, Pfleger, and Hariharan 2003; Huang et 

al. 2005; Jia et al. 2003; Justice et al. 1995; Lai et al. 2005; Lange et al. 2015; Pan 2007; 

Wu et al. 2003; Xu et al. 1995). YAP1/TAZ, upon phosphorylation on several serine sites 

by its upstream regulators, are sequestered in the cytoplasm by 14-3-3 proteins, unable to 

enter the nucleus, then, they may also be degraded by proteasomes (Piccolo, Dupont, and 

Cordenonsi 2014). YAP1 and TAZ are transcriptional coactivators that bind to 

transcription factors when active, such as TEA domain containing proteins (TEAD), 

SMAD family members (SMAD) or tumour protein P73 (TP73), to regulate the 

expression of anti-apoptotic, (e.g. BIRC5) or apoptotic genes that play a role in cell 

differentiation, survival and migration (Alarcón et al. 2009; Strano et al. 2001; Vassilev 

et al. 2001).  

Figure 4. Examples of signals and pathways regulating YAP1 activity, including the 

Hippo signalling pathway. 
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The gene, YAP1, that codes for the main effector of the Hippo pathway, is located 

on the long arm of chromosome 11. It is a 123 kb gene comprising 10 exons and 9 introns 

that will be a 54 kDa protein after translation. YAP1 contains a transcriptional enhancer 

factor-binding domain (TB), a 14-3-3 binding site, two WW domains that aid the binding 

and interaction with LATS kinases, as well as playing a role in the regulation of 

transcription, cell transformation and tissue growth (Sudol and Harvey 2010; Zhang et al. 

2010). Furthermore, YAP1 has an SRC homology 3 domain (SH3) binding motif, a 

transcriptional activation domain (TAD), a PDZ binding domain and several serine 

phosphorylation sites throughout its sequence (Iglesias-Bexiga et al. 2015) (Figure 5).  

 

Figure 5. Simplified schematic diagram of YAP1 protein structure. N: N-terminus, C: C 

terminus 

 

YAP1 behaves as an oncogene, that has been investigated and applied as a therapeutic 

target in different types of cancers, such as liver, prostate, thyroid, gastric, or lung cancer. 

Besides embryonic tissues, where YAP1 plays an important role in, for example, lung 

maturation and postnatal airway homeostasis, it is widely expressed in respiratory 

epithelial cells of the embryonic and mature lung, where the Hippo/YAP1 signalling 

regulates epithelial cell proliferation and differentiation (Mahoney et al. 2014). 

Furthermore, in mice it has been demonstrated that YAP is dynamically regulated during 

regeneration of the airway epithelium following lung injury suggesting a possible role of 

Hippo/YAP1 signalling in the pathogenesis of acute and chronic lung diseases (Lange et 

al. 2015). 

  

1.3.3. Angiogenesis in Asthma 

 

Processes such as cytokine production, inflammatory cell infiltration to the lungs, 

injury to epithelial cells or apoptosis all play an important role in the development and 

severity of asthma. Structural changes in the airway walls due to both neovascularization 
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and angiogenesis are also key aspects of asthma (Bischof et al. 2009). Increased 

vascularity and angiogenesis in asthmatic patients may cause an increase in airway wall 

thickness, and hence, airway occlusion (Makinde and Agrawal 2011). Moreover, Salvato 

has found that the number of vessels as well as vascularity have a positive correlation 

with asthma severity (Salvato 2001). 

Angiogenesis is the process where new blood vessels form from pre-existing ones 

(Madeddu 2005). It takes place in embryonic development, as well as adults, where 

angiogenesis is an important feature of both many physiological and pathological 

processes. Physiological processes include hair growth, the female reproductive cycle, 

wound healing, or bone repair (Carmeliet 2005). On the other hand, uncontrolled 

angiogenesis is present in cancer, rheumatoid arthritis, diabetes or psoriasis, but poor 

angiogenesis results in myocardial or brain ischemia or non-healing ulcers (Bellou et al. 

2013; Costa and Soares 2013; Zachary and Morgan 2011). Angiogenesis is regulated by 

several molecules, such as vascular endothelial growth factor (VEGF), which is the most 

distinct growth factor for the vascular endothelium (Breier et al. 1992; Ferrara 2002; 

Shweiki et al. 1993). There are several growth factors in this family that either primarily 

regulate the growth of blood vessels or lymphangiogenesis, furthermore, placental growth 

factor (PGF) is expressed in the placenta or certain types of tumours (De Falco, Gigante, 

and Persico 2002; Ferrara 2002; Maglione et al. 1991). The VEFG family function 

through VEGF receptors (VEGFR), VEGFR-1, -2 and -3 (Ferrara 2002), that also have 

coreceptors, Neurophilin-1 and -2 (NRP1 and -2) that increase VEGF affinity for VEGFR 

(Becker et al. 2005; Gluzman-Poltorak et al. 2000; Soker et al. 1998) (Figure 6). Other 

regulators of angiogenesis are angiopoietins, like Ang1 and Ang2 in humans. These are 

glycoproteins that have both been characterized by acting as ligands for tyrosine-protein 

kinase receptor, Tie2 (Saharinen et al. 2008; Yuan et al. 2009). Ang1 and Ang2 have a 

similar affinity for binding to Tie2. Ang1 stimulates kinase activity by binding to Tie2; 

on the other hand, Ang2 may act as an agonist or an antagonist for Tie2 in a tissue- and 

cell-dependent manner (Augustin et al. 2009). Ang1 provides an anti-inflammatory effect 

on blood vessels during angiogenesis, whereas Ang2 and vascular endothelial growth 

factor (Vegf) contribute to a pro-inflammatory effect. (Gamble et al. 2000; Makinde and 

Agrawal 2011) 
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Figure 6. Schematic diagram of VEGFs, VEGF receptors and their primary functions. 

Adapted from Detoraki et al, 2010. (Detoraki et al. 2010) 

 

 Tie2 is encoded by the TEK gene in humans and is found on the short arm of 

chromosome 9. It plays a role in angiogenesis, endothelial cell survival, proliferation, 

migration, adhesion and cell spreading, as well as the reorganization of the actin 

cytoskeleton or the maintenance of vascular quiescence (Audero et al. 2004; Cascone et 

al. 2003; Fukuhara et al. 2008; Martin et al. 2008; Saharinen et al. 2008; Yuan et al. 2009; 

Lee et al. 2004). Tie2 also has an anti-inflammatory effect by averting the leakage of pro-

inflammatory elements from the blood vessels into the surrounding tissues. It has been 

found that Tie2 receptor mRNA and protein are abundantly expressed in the lungs 

(Kanazawa 2007). In a recent genome wide association study in European American 

populations the strongest signals were identified at the 9p21.2 locus consisting of four 

SNPs in weak LD with each other and spanning three genes (EQTN (Equatorin), MOB3B 

(MOB kinase activator 3B), TEK) (Almoguera et al. 2016). It was hypothesized that, 

based on its function, variations in the TEK gene were responsible for the association. In 

another study, three non-linked expression quantitative trait locus (eQTL) SNPs were 

identified in the introns of the TEK gene, which all associated with lower TEK gene 

expression in a HapMap3 cohort and increased risk for developing acute respiratory 

distress syndrome (Ghosh et al. 2016).  

The Tie2 pathway also has an important role in the development and function of 

the eye and the TEK gene is highly expressed in the Schlemm’s canal endothelium in the 

eye (Souma et al. 2016). Mutation in the TEK gene is associated with primary congenital 
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glaucoma and Tie2 is a highly-investigated target in different eye diseases like subretinal 

and choroidal neovascularization, macular oedema or diabetic retinopathy (Campochiaro 

and Peters 2016; Campochiaro 2015; Tan et al. 2016).  

 

1.4. Previous Results of Ovalbumin-Induced Mouse Model of Asthma 

 

 Our research group has previously developed an ovalbumin-induced mouse model 

of asthma and have carried out a whole genome gene expression microarray analysis on 

different healthy and asthmatic mouse groups. Using a high-throughput microarray 

technology may lead to greater insights into new genes and pathways regulating the 

development of asthma. This study has been carried out by Tölgyesi et al and the details 

can be found in the GEO database with the record number GSE11911. Therefore, here, I 

only summarize the experimental setup and findings that are relevant for our following 

analyses.  

 Six- to eight-week-old, female, pathogen-free BALB/c mice were used in the 

experiment that were kept on an OVA-free diet in order to senzitize them to the 

compound. All together, 4 groups of mice have been created, where one of them received 

placebo (PBS) during the allergen challenge which comprised the control group. The 

other asthmatic groups received OVA during the allergen challenge, where groups 1 and 

2 comprised the mice from which BALF and lung tissue was collected 4 hours after the 

first and third allergen challenge on days 28 and 30, respectively. From group 3 mice, we 

have collected BALF and lung tissue 24 hours after the third allergen challenge on day 

31. From lung tissues, RNA was isolated for the whole genome gene expression analysis 

and mRNA levels have been compared between control and asthmatic mice. As a result, 

533, 1554 and 1134 genes showed a larger than 2-fold expression change that were 

statistically significant in groups 1, 2 and 3 compared to the control group, respectively. 

Furthermore, 861 transcripts showed a statistically significant, larger than 2-fold 

difference in gene expression between the asthmatic groups (Tölgyesi et al. 2009). These 

data have been used for further analysis in order to find orthologous genes in humans that 

may influence the development of asthma by being differentially regulated on an mRNA 

or DNA level. 

 We have chosen 60 genes based on the results of this study. Our main reasons 

for considering a gene cover several aspects. Firstly, a gene having a larger than 2-fold 
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expression change between asthmatic and control groups. Secondly, a gene (protein) 

having a potential role in the pathogenesis of asthma. Thirdly, finding previous 

scientific results for a given gene. And last, having scientific novelty (Temesi et al. 

2014). These criteria led to the selection of a variety of genes that may be found in 

Table S2. 

 

1.5. Current Shortcomings in the Research of Asthma and Allergy 

 

 Based on the above, it is clear that asthma is a prevalent, often severe, complex 

disorder that is yet impossible to cure. Understanding the mechanisms and pathways of 

the disease, its pathogenesis, its genetic background will bring solutions to asthma one 

step closer. 

 Our research is the very first to identify and hypothesize the Hippo pathway to 

play a role in a phenotype of asthma, as well as a variation of the TEK gene to act in 

allergic conjunctivitis. Although research of apoptosis and angiogenesis in asthma is a 

small piece in a bigger picture, nonetheless, such scientific contributions may advance 

further research in this field. 
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2. Objectives 

 

 Our goal was to study the genetic and genomic background and the pathogenesis 

of childhood asthma and its associated phenotypes. The main objectives can be 

summarised as follows. 

 

1. Investigation of the role of the Hippo signalling pathway in asthma 

• Evaluating the differences in gene expressions of seven Hippo 

pathway genes between asthmatics and healthy subjects based on 

previous results of Ungvári et al. (Ungvári et al. 2012a; Ungvári et al. 

2012b) 

• Assess relationship of polymorphisms (tagSNPs) spanning the whole 

of YAP1 gene (based on above results) and asthma and its phenotypes 

by estimation of allele frequencies between asthma patients and 

healthy controls. Moreover, gaining further associations through the 

haplotype analysis of our data and a more extensive Bayesian 

statistical analysis. 

• Comparing FRMD6, BIRC5 and YAP1 protein levels in induced 

sputum samples from asthmatics and controls in order to evaluate role 

of Hippo signalling pathway in asthma through protein expression. 

• Investigating HeLa cells in vitro upon BIRC5 antagonist, YM155 

treatment in order to find functional roles for Hippo signalling pathway 

components, BIRC5, YAP1 and FRMD6. 

 

2. Investigation of the role of angiopoietin receptor Tie-2 in asthma and its 

phenotypes 

• Assessing the incidence of different comorbidities of asthma within 

our study population. 

• Evaluating tagSNPs of Tie2, encoded by the TEK gene, in asthmatic 

and control subjects to find biomarkers for asthma susceptibility. 

 

 

 

DOI:10.14753/SE.2020.2225



 28 

3. Investigation of associations between 60 previously identified genes and 

asthma 

• Sixty genes have been previously identified by gene expression 

microarray on an ovalbumin-induced mouse model of asthma by our 

research group (Tölgyesi et al. 2009). Following variation selection, 

identification of associations by estimation of allele frequencies 

between asthma patients and healthy controls.  
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3. Methods 

3.1. Subjects 

3.1.1. Characteristics of Participants of Sputum Induction and Gene Expression 

Measurements 

 

The gene expression analysis was done using the induced sputum of 18 asthmatic 

patients and 10 healthy controls. All subjects completed a detailed, pre-edited 

questionnaire based on the ISAAC Phase Three Questionnaire. The recent Global 

Initiative for Asthma guidelines (www.ginasthma.org) were used to diagnose asthma by 

a respiratory medicine specialist. The evaluation of asthma severity was done at the time 

of acquisition of induced sputum samples from the patients based on patient history, 

including number of exacerbations per year, lung function test results, medical treatment 

applied and response to medication. Asthmatics were divided into four severity groups, 

but due to low number of patients GINA 1,2 (mild) and GINA 3,4 (moderate-severe) were 

aggregated. GINA groups of severity from 1-4 are summarised as follows. GINA 1 is 

‘intermittent’ asthma, with symptoms less than once a week and brief exacerbations. 

Nocturnal symptoms do not occur more than twice a month. FEV1 is more than 80%, 

where their variability is less than 20%. GINA 2 is ‘mild persistent’ with symptoms more 

than once a week but less than once a day and exacerbations may affect the patient’s 

activity and sleep. Nocturnal symptoms occur more than twice a month. FEV1 is more 

than 80% with variability of less than 20-30%. GINA 3 is ‘moderate persistent’ with daily 

symptoms and exacerbations affecting activity and sleep. Nocturnal symptoms occur 

more than once a week and there is a need for daily use of inhaled short-acting beta-

agonist. FEV1 is between 60-80% with a variability of more than 30%. GINA 4 is ‘severe 

persistent’ with daily symptoms and frequent exacerbations. There are also frequent 

nocturnal symptoms of asthma. The patients suffer from the limitation of physical 

activites. FEV1 is less than 60% with a variability of more than 30%. Out of the 18 

asthmatic patients, 14 regularly used inhaled corticosteroids (ICS): <500 μg/day 

beclomethasone dipropionate (BDP) or equivalent (n = 5), 500–1000 μg/day BDP or 

equivalent (n = 7) and >1000 μg/day BDP or equivalent (n = 2); while four were 

considered steroid naive. Healthy volunteers with no previous history of asthma or any 

airway conditions comprised the control group. Everyone participated in a lung function 

test (PDD-301/S, Piston Inc., Budapest, Hungary) and were assessed for fractional 

exhaled nitric oxide (FENO) levels (NIOX MINO, Aerocrine, Solna, Sweden). All 
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healthy subjects had a normal lung function and had no respiratory tract infection four 

weeks prior to the analysis. A skin prick test was also performed for common allergens 

to test the presence of atopy, which is a genetic predisposal for developing allergic 

rhinitis, atopic dermatitis and/or asthma. The participants’ sex, age, smoking habits and 

allergic statuses were compared between cases and controls and between severity groups, 

but no statistical significance was found (Ungvári et al. 2012a). Table 1 shows a summary 

of this study population. 

 

Table 1. Detailed characteristics of subjects participating in sputum and gene 

expression analysis. 

Clinical and biological 

characteristics 

Asthmatic 

patients, 

n=18 

Control 

subjects, 

n=10 

Statistical 

difference (p-

value) 

Age ± SD 43.7 ± 16.7 29.3 ± 4.6 0.01 

Sex (Male/Female) 10/8 5/4 1 

Asthma severity:    

Mild (GINA 1,2) 11 - - 

Moderate-to-severe (GINA 3,4) 7 - - 

Sputum eosinophil % 13.1 ± 12.4 0 ± 0 0.001 

Sputum neutrophil % 20.3 ± 17.9 18.1 ± 9.3 0.8 

Sputum macrophage % 59.8 ± 21.0 74.8 ± 8.2 0.2 

Sputum bronchial epithelial cell % 1.2 ± 1.6 7.1 ± 5.7 0.0007 

ICS dose (g) ± SD 594.4 ± 527.4 - - 

FENO level (ppb)± SD 22.6 ± 12.5 NA - 

FEV1 level (L) ± SD 2.3 ± 0.7 - - 

GINA: Global Initiative for Asthma; ICS: Inhaled corticosteroid in g; FENO: 

Fractional exhaled nitric oxide in parts per billion; FEV1: Forced expiratory volume in 

1 second in litres. 

 

3.1.2. Characteristics of Participants of Genotyping Analysis 

 

The genotyping analysis of YAP1 SNPs included 1233 unrelated individuals, out 

of which 522 were asthmatic children (mean age±SD: 10.20±5.31 years; 328 males and 

194 females) and 711 healthy controls (mean age±SD: 14.0±11.2; 429 males and 282 
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females). Further, the genotyping analysis of TEK SNPs included 1189 unrelated 

individuals, out of which 435 were asthmatic children (mean age±SD: 10.3 ± 4.4 years; 

269 males and 166 females) and 754 healthy controls (mean age±SD: 13.8±11.8 years; 

453 males and 297 females). Moreover, the genotyping analysis of 60 previously 

identified genes (list of genes found in Temesi et al. 2014) included 671 individuals, out 

of which 311 were asthmatic children (mean age±SD: 10.6 ± 4.8 years; 203 males and 18 

females) and 360 healthy controls (mean age±SD: 21.7 ± 13.9 years;181 males and 179 

females). The patients were all Hungarian (Caucasian), from which about 5% were of 

Gypsy origin based on state population data. Asthma was diagnosed based on GINA 

guidelines, as before (Ungvári et al. 2012a). Atopy was identified by a positive skin prick 

test and/or positive total or specified serum IgE levels. The total and specified serum IgE 

levels were evaluated with the 3gAllergy blood tests in the Immulite 2000 Immunoassay 

system (Tarrytown, NY, USA). The resulting serum IgE levels were either normal or high 

based on age-specific ranges (kU/litre). 

Different types of asthma were defined in patients. A number of participants were 

excluded from the analysis, where insufficient information was available on asthma 

phenotypes, hence altogether, 391 and 320 asthmatic children were involved in the 

phenotype analysis of YAP1 and TEK genes, respectively. Asthma was divided into 

allergic and non-allergic asthma subtypes. If asthma was not provoked by allergens, but 

allergy was also present, allergy types were, nonetheless, marked. In allergic patients 

depending on the types and quantities of allergens, subgroups of indoor, outdoor, or 

inhalative allergic phenotypes have been designated. Asthma was categorized as exercise-

induced asthma when the asthma exacerbation was provoked by exercise in the medical 

history of the patients. If the onset of asthma or the asthma exacerbations have been 

associated with an infection related acute respiratory illness the asthma was classified as 

viral-induced asthma. Non-atopic patients with viral-induced asthma phenotype 

composed the non-allergic asthma subgroup (Wenzel 2006) (Figure 2). Indoor allergens 

included dust mites, mould, pet dander and cockroaches, whereas outdoor allergens 

consisted of different types of pollen. Eosinophil cell counts from blood were measured 

with the Coulter AXM analyser, where the normal relative range was between 1-6%, and 

the normal range of absolute eosinophil count was between 50-200/μl. None of the 

patients had a change of therapy before the blood samples were taken. Neither had they 

exacerbations or respiratory infections for at least four weeks prior to the blood test. Table 
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2 shows the detailed characteristics of the asthmatic patients participating in the gene 

association study. 

The samples from the control children were collected at the Orthopaedic 

Department in the Budai Children’s Hospital or at the Urological Department in the Heim 

Pál Hospital, both in Budapest. None of the controls had any symptoms of asthma or 

airway conditions, nor any need for medication.  

A written informed consent was signed by all patients or by their parent/guardian. 

The study was carried out according to the Declaration of Helsinki and was approved by 

the Ethics Committee of the Hungarian Medical Research Council.  
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Table 2. Detailed characteristics of asthmatic patients participating in SNP analysis of 

YAP1 and TEK genes. 

Clinical and biological 

characteristics of asthmatic 

patients 

Analysis of YAP1 

SNPs 

Analysis of TEK 

SNPs 

Number of patients n=522 n=435 

Age ± SD 10.2 ± 5.3 10.3 ± 4.4 

Sex (Male/Female) 328/194 269/166 

Asthma phenotypes/sensitization 

status of subjects: 
n=486 n=320 

     Exercise-induced, yes/noᵃ 155/233 111/209 

     Viral-induced, yes/noᵃ 181/208 134/186 

     Allergic asthma, yes/noᵃ  56/82 47/60 

     Inhalative allergy, yes/noᵃ 298/99 244/75 

     Outdoor allergy, yes/noᵃ 240/149 202/117 

     Indoor allergy, yes/noᵃ 225/164 190/129 

     Comorbidity Rhinitis, yes/noᵃ 217/173 178/142 

     Comorbidity Conjunctivitis, 

     yes/noᵃ 
120/270 100/220 

GINA statusᵃ:   

     Number of patients in GINA 1 97 84 

     Number of patients in GINA 2 241 206 

     Number of patients in GINA 3 48 28 

     Number of patients in GINA 4 96 0 

Absolute eosinophil count ± SD 

(number/μl) 
300 ± 300 300 ± 300 

Number of patients with normal or 

high absolute eosinophil count 

(normal/high) 

107/154 72/127 

IgE ± SD (kU/l) 468 ± 1828 487 ± 2066 

Number of patients with normal or 

high IgE level (normal/high) 
88/182 66/143 

ᵃData are available on a limited data set only. Normal absolute eosinophil count is  

200 /μl and high absolute eosinophil count is  200 /μl. Normal IgE level is  200 kU/l, 

high IgE level is  200 kU/l. 

 

3.2. Sputum Induction 

 

Induced sputum was used for gene expression assays and Western blot analysis. 

Participants were first treated with 400μg of inhaled salbutamol, then, they inhaled 4.5% 
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saline solution generated by a De Vilbiss Nebulizer (Ultra-NebTm 2000 model 200 HI, 

Somerset, PA, USA) for 5 minutes. This procedure was repeated two more times, where 

after each sputum induction, the subjects’ pulmonary function was assessed. All samples 

were examined for salivary contamination and only those were used in the study, which 

were macroscopically free of such contamination. These samples were, then, diluted with 

phosphate buffered saline (PBS) that contained 0.1% dithiothreitol from Sigma (St Louis, 

MO, USA). The samples were thoroughly mixed with a vortex and placed on a bench 

rocker for 30 minutes at room temperature. Then, the samples were filtered with a 40μm 

Falcon cell strainer and centrifuged at 1500rpm for 10 minutes at room temperature. The 

cell pellet was resuspended in 1ml PBS. The Trypan Blue Exclusion test was used to 

determine cell viability in a Burker chamber. After differential cell count by a specialist, 

cells were stored on lysis buffer at -80°C until use (Ungvári et al. 2012a). 

 

3.3. DNA Isolation 

 

Genomic DNA was isolated from whole blood samples of 1233 individuals using 

the QIAamp blood DNA midi kit (Qiagen, Maryland, USA) or the iPrep PureLink gDNA 

Blood Kit on iPrep Purification Instrument (Invitrogen, Carslbad, CA, USA) starting out 

from 1 ml whole blood. The average DNA concentration of samples was between 30-

60ng/l measured by Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE). 

 

3.4. RNA Isolation and cDNA transcription 

 

RNA was isolated successfully from the induced sputum samples of 18 patients 

and 10 control subjects with the Qiagen Mini RNeasy Kit according to the manufacturer’s 

instruction (Qiagen, Maryland, USA). The total RNA quantity was measured by 

Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). The 

cDNA used in the gene expression analysis, was produced with a High Capacity cDNA 

Reverse Transcription Kit from Thermo Fisher Scientific (Thermo Fisher Scientific, 

Waltham, MA USA).  
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3.5. Gene Expression with TaqMan 

 

Real-time quantitative PCR was performed on LATS1, LATS2, MST1, MST2, 

SAV1, YAP1, TAZ and β-actin genes using 7900HT Fast Real-Time PCR System (Thermo 

Fisher Scientific, Waltham, MA USA) according to the manufacturer’s instructions with 

1.5 μl cDNA/well and final volume of 25μl. β-Actin was used as an endogenous control 

and all results were normalized to it using the delta delta Ct method. 

 

3.6. SNP Selection and Genotyping with Competitive Allele-Specific PCR 

 

SNPs were selected from YAP1 gene using UCSC Genome browser. Preferably, 

promoter, missense or UTR SNPs were chosen where MAF in the Caucasian population 

was higher than 0.1, which was confirmed by HapMap. We also checked for linkage 

between SNPs and have chosen tagSNPs with Haploview 4.2 program (Broad Institute of 

MIT, Cambridge, MA, USA). TEK gene SNPs were chosen based on the paper of Ghosh 

et al. (Ghosh et al. 2016). 

KBioscience Competitive Allele-Specific PCR (KASP) version 4.0 genotyping 

assays were used (LGC Genomics, Berlin, Germany) to genotype fourteen SNPs on the 

YAP1 gene and three SNPs on the TEK gene (Table 3) according to the manufacturer’s 

instructions. PCR reactions were carried out using a 7900HT Fast Real-Time PCR System 

(Thermo Fisher Scientific, Waltham, MA USA). 
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Table 3. Description of selected SNPs on YAP1 and TEK and results of the genotyping. 

Gene SNP 

Position 

according to the 

NCBI Genome 

Build 38 

Function 

Alleles 

on the 

forward 

strand 

MAF in 

cases 

MAF in 

controls 

HWE in 

controls 

(p-value) 

YAP1 

rs1820453 chr11:102109604 promoter A/C 0.45 0.47 1.00 

rs7106388 chr11: 102110546 5'UTR C/T 0.45 0.48 0.82 

rs10895257 chr11:102115913 intron A/G 0.22 0.24 0.75 

rs1426398 chr11:102117330 intron C/T 0.45 0.46 1.00 

rs11225138 chr11:102123167 intron C/G 0.10 0.09 0.15 

rs1426394 chr11:102149503 intron A/G 0.29 0.31 0.05 

rs948737 chr11:102158098 intron C/T 0.33 0.36 0.08 

rs1942683 chr11:102173916 intron A/G 0.40 0.42 0.69 

rs11225161 chr11: 102199763 intron C/T 0.12 0.11 0.35 

rs1894116 chr11:102199908 intron C/T 0.12 0.12 1.00 

rs11225166 chr11:102219736 intron C/G 0.11 0.12 0.71 

rs8504 chr11:102232869 3'UTR A/G 0.42 0.44 0.49 

rs2846836 chr11:102234942 downstream C/T 0.44 0.46 1.00 

rs7115540 chr11:102267059 downstream A/G 0.36 0.35 0.32 
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MAF: minor allele frequency; HWE: Hardy-Weinberg Equilibrium 

 

 

Gene SNP 

Position 

according to the 

NCBI Genome 

Build 38 

Function 

Alleles 

on the 

forward 

strand 

MAF in 

cases 

MAF in 

controls 

HWE in 

controls 

(p-value) 

TEK 

rs581724 chr9:27187424 intron T/G 0.39 0.39 0.99 

rs3780315 chr9:27196292 intron G/A 0.47 0.44 0.000062 

rs7876024 chr9:27202665 intron A/G 0.24 0.24 0.02 
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3.7. SNP Selection and Genotyping with Sequenom iPLEX Gold MassARRAY of 

Previous Mouse Model Based Asthma Investigation, and Statistical Analyses 

 

 SNP selection was done based on a previous study of our group on OVA induced 

mice (Tölgyesi et al. 2009). Briefly, Tölgyesi et al. have used 6-8 weeks old BALB/c 

female pathogen-free mice, which have been made ovalbumin sensitive and were either 

treated with OVA or a placebo 1-3 times. On the 28-31st days, 4-24 hours after the first 

or third treatments mouse lungs were extracted and RNA was isolated from them. Gene 

expression analysis was done by Agilent Whole Mouse Genome Oligo Microarray 4 x 44 

K chip (GSE11911). Based on the microarray results our group has chosen 60 genes with 

a statistically significant change and a possible role in human asthma and allergy 

(Tölgyesi et al. 2009). From these genes 90 SNPs have been chosen by using UCSC 

Genome Browser, where the preferential SNPs were either promoter, missense or UTR 

region variations. Full list of genes and polymorphisms may be found in Temesi et al. 

2014, Supplementary Material 1. To genotype the selected SNPs the Sequenom iPLEX 

MassARRAY technology was used at the McGill University and Genome Quebec 

Innovation Centre, in Montreal, Canada (Temesi et al. 2014).  

 After calculating allele frequencies and deviation from Hardy-Weinberg 

Equilibrium (HWE) with DeFinetti software (Helmholtz Zentrum München, Institut für 

Humangenetik, https://ihg.gsf.de/cgi-bin/hw/hwa1.pl), statistical analysis of results was 

done by Armitage’s trend test by DeFinetti software (Temesi et al. 2014). 

 

3.8. Cell Culturing 

 

 HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% foetal bovine serum (FBS), 1% glutamine, 1% antibiotics, 1% 

nonessential amino acids and 1% pyruvate (all from Thermo Fisher Scientific, Waltham, 

MA, USA) on 37C and 5% CO2 concentration. Culture medium was replaced every 48h 

incubation time. Cells were harvested and lysed in RIPA lysis and extraction buffer 

(Thermo Fisher Scientific, Waltham, MA USA) for use as positive control during 

Western blot analysis. 

 HeLa cells were cultured on six-well plates to be treated with BIRC5 inhibitor, 

Sepantronium Bromide (YM155) (Selleck Chemicals, Munich, Germany). Powdered 

YM155 was dissolved in DMSO according to the manufacturer’s instructions. 105 cells 
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were seeded/well. Cells were treated with 1000nM, 100nM, 10nM, 1nM, 0nM YM155 or 

1% dimethyl sulfoxide (DMSO) (Sigma Aldrich, St. Louis, MO, USA) as DMSO control. 

After 48h incubation cells were harvested. 50% of cells/well were treated with RIPA lysis 

and extraction buffer (Thermo Fisher Scientific, Waltham, MA USA) for further use as 

protein and 50% of cells were treated with RLT RNeasy Lysis Buffer (Qiagen, Maryland, 

USA) for gene expression analysis. All lysed samples were stored at -80C until further 

extraction of protein or RNA. 

 

3.9. Western Blot Analysis 

 

Western blot analysis was carried out on human induced sputum samples. After 

sample preparation, cells were lysed in RIPA lysis and extraction buffer (Thermo Fisher 

Scientific, Waltham, MA USA)) supplied with Halt protease inhibitor (Thermo Fisher 

Scientific, Waltham, MA USA)) at 1X final concentration and centrifuged at 14,000 x g 

at 4°C for 15 min. Total protein content was determined by the Pierce BCA protein assay 

kit (Thermo Fisher Scientific, Waltham, MA USA) according to the manufacturer’s 

instructions. Samples were loaded on 4-20% Tris-glycine precast gels (Thermo Fisher 

Scientific, Waltham, MA USA)) then blotted onto Immun-Blot PVDF membrane (Bio-

Rad Laboratories, Hercules, CA, USA). After blocking the following antibodies were 

used. The primary antibodies were anti-FRMD6, anti-YAP1 and anti-GAPDH (Abcam, 

Cambridge, UK), respectively. The secondary antibodies were polyclonal donkey anti-

rabbit IgG HRP (Abcam, Cambridge, UK) and polyclonal goat anti-mouse 

immunoglobulins HRP (Dako, Glostrup, Denmark). The membrane was treated with 

Pierce ECL plus substrate (Thermo Fisher Scientific, Waltham, MA USA) according to 

the manufacturer’s instructions and bands were visualized on standard x-ray film (Kodak, 

Rochester, NY, USA). 

 

3.10. Bioinformatics 

3.10.1. Frequentist Statistical Analysis 

 

For sputum analysis, normalized gene-expression levels of LATS1, LATS2, MST1, 

MST2, SAV1, YAP1, TAZ and β-actin genes were compared by Mann–Whitney U test or 

Kruskal–Wallis test, when appropriate. Contingency tables were analysed by Fisher’s 
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exact test. Correlation studies were performed by Spearman non-parametric test. 

Differences were considered to be significant when p < 0.05.  

YAP1 SNP allele frequencies were estimated by allele counting and tested for 

deviation from HWE by the software program DeFinetti between cases and control 

subjects. For the significant deviation threshold, we used p < 0.05 value. 

SNP data were analysed using SPSS version 22 (SPSS Inc., Chicago, IL, USA) 

software. Logistic regression analyses adjusted for age and gender were used to evaluate 

the association between YAP1 genotypes and asthma, its intermediate phenotypes, the 

discretized (normal/high) serum IgE and discretized (normal/high) eosinophil levels (see 

at Subjects) and the different phenotypes. Additionally, multinomial logistic regression 

adjusted for age and gender was used for the analysis of YAP1 SNPs and GINA statuses. 

Confidence intervals (CIs) were calculated at the 95% level. Additive, dominant and 

recessive statistical models were used, which are summarized as follows. The additive 

model compares all three genotype groups, both homozygous ones and the heterozygous 

with eachother. In the recessive or dominant models, either the recessive homozygous or 

the wild type homozygous groups are compared to the heterozygous and the remaining 

homozygous groups taken together, respectively. Multiple comparisons were corrected 

for using the Benjamini-Hochberg correction, and a new significance level of p=0.004 

with the FDR < 6.5% was estimated. Haplotype analysis was carried out with the 

Haploview 4.2 program (Broad Institute of MIT, Cambridge, MA, USA). Odds ratios 

(ORs) for haplotypes were counted by VassarStats software 

(http://vassarstats.net/index.html).  

HWE was tested for TEK SNPs using the chi-square goodness-of-fit test 

implemented in the online DeFinetti HWE application, as before. The significance level 

was set to 0.01. SNP data were analysed using SPSS version 19 (SPSS Inc., Chicago, IL, 

USA) software. Logistic regression analyses adjusted for age and gender were used to 

evaluate the association between TEK genotypes and asthma, its intermediate phenotypes, 

the discretized (normal/high) serum IgE and eosinophil levels (see at Subjects) and the 

different asthma phenotypes. Multiple comparisons were corrected for using the 

Benjamini-Hochberg correction, and a new significance level of P=0.008 with the FDR 

< 4.5% was estimated. Figures were made by using Microsoft Excel 2013 (Microsoft 

Corporation, Redmond, WA, USA).  

 

3.10.2. Bayesian Statistical Analysis 
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Bayesian statistical analysis was carried out by the research group of dr. Péter 

Antal at the Budapest University of Technology and Economics in the Department of 

Measurement and Information Systems. Earlier, our research groups have together 

developed an alternative, systems biological statistical method, named Bayesian network 

based Bayesian multilevel analysis of relevance (BN-BMLA). Bayesian networks offer a 

rich language for genetic association studies, because they exhaustively and exactly 

represent the strongly relevant variables and their interactions through the Markov 

Blanket Set and Markov Blanket Graph features and they are able to evaluate multiple 

targets. Furthermore, this Bayesian global relevance analysis method provides posteriors, 

which are direct statements about hypotheses, thus it can also be used to construct 

probabilistic data analytic knowledge bases in genetic association studies to support 

complex querying, off-line meta-analysis, and fusion with background knowledge (Antal 

et al. 2009; Antal et al. 2014; Antal et al. 2008; Hullám et al. 2010).  

Previously the BN-BMLA method was described in detail (Gézsi et al. 2015; 

Lautner-Csorba et al. 2013; Lautner-Csorba et al. 2012; Ungvári et al. 2012b, Ungvári, 

2013; Lautner-Csorba, 2013; Gézsi, 2016), thus the following only briefly summarizes 

this approach. 

A Bayesian Network is a directed acyclic graph (DAG) that aids the discovery of 

various dependency relations between random variables by representing their joint 

probability distribution. A node in the network represents a variable and edges connecting 

two nodes represent direct dependency between those variables. To find the dependence 

relations of the variables, a DAG that best describes the dataset must be found. In most 

cases, there are many DAGs with non-negligible posteriors, but certain structural features 

may be extracted accurately. Such feature is based on the concept of strong relevance of 

a single variable or a set of variables. Bayesian learning allows the evaluation of the 

strength of the data indicating the presence of a certain feature by evaluating its a 

posteriori probability. 

The a posteriori probability can be calculated for strongly relevant variable sets 

with regard to a target variable. The strongly relevant variables have direct impact on the 

target. The a posteriori probability of the strong relevance is between 0 and 1, where 1 

means that the target (e.g. phenotypes of asthma) most certainly has a dependency 

relationship with a predictor (e.g. SNP), on the other hand 0 means there is no such 
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relationship.  Posterior probabilities of strong relevance greater than or equal to 0.5 are 

regarded as relevant, above 0.75 as convincing. 

In this study 29 SNPs all in the YAP1, FRMD6 and BIRC5 genes (previously 

genotyped by others with the same methods and on the same populations (Ungvári et al. 

2012a; Ungvári et al. 2012b) were involved in the BN-BMLA analysis. Table 4 shows all 

SNPs included and the characteristics of the patients are detailed in Table 2.  
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Table 4. Summary of all SNPs included in the BN-BMLA statistical analysis.  

Gene SNP 

Position 

according to the 

NCBI Genome 

Build 38 

Function 

Alleles 

on the 

forwar

d 

strand 

MAF 

in 

cases 

MAF in 

control

s 

HWE in 

controls 

(p-value) 

Significant associations 

Influenced trait 
p-

value 
OR 95% CI 

YAP1 rs1820453 chr11:102109604 promoter A/C 0.455 0.466 0.975 none >0.05 - - 

YAP1 rs7106388 chr11: 102110546 5'UTR C/T 0.455 0.476 0.804 none >0.05 - - 

YAP1 
rs1089525

7 
chr11:102115913 intron A/G 0.222 0.237 0.708 none >0.05 - - 

YAP1 rs1426398 chr11:102117330 intron C/T 0.448 0.463 0.944 none >0.05 - - 

YAP1 
rs1122513

8 
chr11:102123167 intron C/G 0.103 0.087 0.128 none >0.05 - - 

YAP1 rs1426394 chr11:102149503 intron A/G 0.294 0.313 0.055 none >0.05 - - 

YAP1 rs948737 chr11:102158098 intron C/T 0.326 0.356 0.081 none >0.05 - - 

YAP1 rs1942683 chr11:102173916 intron A/G 0.395 0.416 0.685 none >0.05 - - 

YAP1 
rs1122516

1 
chr11: 102199763 intron C/T 0.117 0.114 0.275 none >0.05 - - 

YAP1 rs1894116 chr11:102199908 intron C/T 0.120 0.120 0.788 none >0.05 - - 

YAP1 
rs1122516

6 
chr11:102219736 intron C/G 0.110 0.117 0.581 none >0.05 - - 

YAP1 rs8504 chr11:102232869 3'UTR A/G 0.319 0.338 0.477 none >0.05 - - 

YAP1 rs2846836 chr11:102234942 downstream C/T 0.439 0.459 0.979 none >0.05 - - 

YAP1 rs7115540 chr11:102267059 downstream A/G 0.360 0.354 0.306 none >0.05 - - 

FRMD6 rs3751464 chr14:51651174 promoter C/T 0.259 0.226 0.270 asthma 0.0003 1.43 1.18–1.75 

FRMD6 
rs1766665

3 
chr14:51655759 intron C/T 0.215 0.162 0.397 none >0.05 - - 

FRMD6 
rs1766668

9 
chr14:51655901 intron C/T 0.159 0.141 0.491 none >0.05 - - 
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Gene SNP 

Position 

according to the 

NCBI Genome 

Build 38 

Function 

Alleles 

on the 

forwar

d 

strand 

MAF 

in 

cases 

MAF in 

control

s 

HWE in 

controls 

(p-value) 

Significant associations 

Influenced trait 
p-

value 
OR 95% CI 

FRMD6 rs9671722 chr14:51660341 intron G/A 0.185 0.168 0.207 none >0.05 - - 

FRMD6 
rs1014100

1 
chr14:51665483 intron G/A 0.145 0.120 0.800 none >0.05 - - 

FRMD6 rs2277495 chr14:51720248 
synonymou

s codon 
C/T 0.305 0.299 0.547 none >0.05 - - 

FRMD6 rs2277494 chr14:51720254 
synonymou

s codon 
T/C 0.251 0.258 0.201 none >0.05 - - 

FRMD6 rs7150275 chr14:51728572 3'UTR A/G 0.251 0.251 0.088 none >0.05 - - 

FRMD6 rs7149810 chr14:51728602 3'UTR A/G 0.254 0.251 0.095 none >0.05 - - 

BIRC5 rs3764384 chr17:78211647 5'UTR C/T 0.386 0.464 0.019 none >0.05 - - 

BIRC5 rs3764383 chr17:78212770 3'UTR A/G 0.280 0.300 0.031 none >0.05 - - 

BIRC5 rs8073903 chr17:78213673 5'UTR T/C 0.377 0.354 0.078 

asthma 0.004 1.46 1.13-1.89 

asthma in 

females 
0.003 1.87 1.23-2.84 

non-allergic 

asthma in 

females 

0.005 2.81 1.37-5.75 

BIRC5 
rs1787846

7 
chr17:78214076 5'UTR C/T 0.114 0.090 0.894 none >0.05 - - 

BIRC5 rs9904341 chr17:78214286 5'UTR G/C 0.343 0.333 0.549 

absolute 

eosinophil 

count 

0.004 0.92 
−0.145 to 

−0.026 

relative 

eosinophil level 
0.002 0.27 

−2.132 to 

−0.468 

BIRC5 rs1508147 chr17:78226507 3'UTR G/A 0.369 0.482 0.011 

non-allergic 

asthma in 

females 

0.003 3.06 1.45–6.47 
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MAF: Minor allele frequency; HWE: Hardy-Weinberg Equilibrium. Previous results of our research group are also shown for BIRC5 and FRMD6 genes 

(Ungvári et al. 2012a; Ungvári et al. 2012b). 
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4. Results 

4.1. Results of the Investigation of the Role of the Hippo Signalling Pathway in 

Asthma 

4.1.1. Results of Gene Expression Analysis of the Hippo Signalling Pathway 

 

In the induced sputum samples of 18 asthmatics and 10 control subjects we 

measured mRNA expression of 7 members of the Hippo/YAP1 pathway. The expression 

of all genes could be detected in both cases and controls. The mean gene expression level 

of YAP1 was slightly lower in asthmatic than in control patients (p=0.032; Figure 7A). 

There were no other deviations in this respect. We investigated whether within the asthma 

group there were differences in gene expression between subgroups of patients defined 

by their GINA status, but no significant differences were found. 

During the correlation studies, we found a significant and positive correlation 

between YAP1 mRNA level and the sputum bronchial epithelial cells (r=0.575, p=0.003, 

Figure 7B). There was a significant and negative correlation between TAZ mRNA and 

sputum neutrophils (r = ˗0.509, p=0.009) and MST1 showed a significant and positive 

correlation with sputum eosinophils (r=0.425, p=0.034). There was no significant 

correlation between YAP1, TAZ, LATS1, LATS2, SAV1, MST2 or MST1 gene expression 

and other cellular components, asthma severity, age, gender, airway inflammation or 

inhaled corticosteroid dose.  
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Figure 7. A. YAP1 mRNA level in the induced sputum of asthmatic patients and 

controls. B.  Relationship between YAP1 mRNA and bronchial epithelial cell levels. 

mRNA levels were normalized and expressed according to the delta delta Ct method. 

Mann-Whitney U test (A) and Spearmann’s non-parametric correlation (B) were used. 

 

4.1.2. Results of Genotyping Analysis of YAP1 Gene 

 

We examined whether any of the SNPs in the YAP1 gene influence the 

susceptibility of asthma or its associated phenotypes. The statistically significant 

genotyping results are summarized in Table 5. There was no significant association with 

any of the SNPs and asthma susceptibility, allergic status, inhalative, outdoor, indoor 

allergies, allergic and non-allergic asthma, comorbidities of rhinitis and conjunctivitis or 

A 

B 

r=0.575 
p=0.003 

p=0.032 
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serum IgE and eosinophil levels. However, SNP rs2846836 was significantly associated 

with exercise-induced asthma (OR=2.1 [1.3-3.4], p=0.004, power=0.83; Table 5; Figure 

8A). Additionally, distribution of genotypes of SNP rs11225138 showed a significant 

difference between GINA 1-2 and GINA 3-4 statuses in a dominant model (OR=2.8 [1.4-

5.6], p=0.003, power=0.83, Table 5; Figure 8B).  
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Table 5. Significant results of the association analysis of YAP1 SNPs with asthma phenotypes. 

 

 

 

 

 

 

 

 

 

In case of rs2846836 genotypes 11, 12 and 22 indicate TT, CT and CC, respectively. In case of rs11225138 genotypes 11, 12 and 22 indicate 

GG, GC and CC, respectively. ADD: additive model; DOM: dominant model 

Phenotype SNP Model 
Alleles 

(1/2) 
Phenotype 

Genotypes 

n 
p-

value 

OR (95% 

CI) 11 

(%) 

12 

(%) 

22 

(%) 

Exercise-

induced 

asthma 

rs2846836 ADD C/T 

present 
37 

(27) 

77 

(57) 

22 

(16) 
136 

0.004 2.1 (1.3-3.4) 

absent 
80 

(38) 

80 

(38) 

51 

(24) 
211 

GINA 1,2 

vs. 3,4 
rs11225138 DOM G/C 

GINA 1 

and 2 

261 

(83) 

53 

(17) 
 314 

0.003 2.8 (1.4-5.6) 
GINA 3 

and 4 

87 

(70) 

37 

(30) 
 124 
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Figure 8. A. Pie chart of SNP rs2846836 in the non-exercise- and exercise-induced 

asthma groups, p-value=0.004, OR=2.01 (1.26-3.43). B. Pie chart of SNP rs11225138 

in the mild and moderate-to-severe asthma groups. p-value=0.003, OR=2.80 (1.40-

5.57). Percentages were calculated from case numbers. 

 

4.1.3. Bayesian Results of Genotyping Analysis of YAP1 Gene 

 

Based on the results after genotyping 29 SNPs in YAP1, FRMD6 and BIRC5 

genes, the laboratory data and the characteristics of the asthmatic participants detailed in 

Table 2, the a posteriori probabilities of relevance between the variables with respect to 

target variables were calculated by BN-BMLA.  

Table 6 shows the most relevant variables with high posteriori probabilities 

according to the BN-BMLA analysis. As expected, e.g. eosinophil levels and allergic 

conjunctivitis are highly relevant to allergic rhinitis. In the case of genetic variations, no 

direct SNP-SNP or gene-gene interactions were found. The most relevant association was 

 

	

70%

30%

GINA 3 and 4

GG CG+CC

83%

17%

GINA 1 and 2

GG CG+CC

27%

57%

16%

Exercise-induced asthma

CC CT TT

38%

38%

24%

Non-exercise-induced asthma

CC CT TT

A 

B 
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between rs9671722 in the FRMD6 gene and exercise-induced asthma with a posterior 

probability of strong relevance of 0.99. Figure 9 shows the most likely subgraph of the 

dependence structure of the variables. This structure suggests a direct relevance of 

rs9671722 to exercise-induced asthma, while another SNP (rs3751464) of the FRMD6 

gene was found to be directly relevant to allergic rhinitis and transitively associated 

through allergic rhinitis with exercise-induced asthma.  

 

Table 6. The most relevant results of the BN-BMLA statistical method. Numbers show 

the a posteriori probability of the strong relevance of a given variable with respect to 

the target variable 

 
a posteriori 

probability 

Target variable 
Exercise-induced 

asthma 

V
a
ri

a
b

le
 

Non-allergic asthma 0.90 

Allergic conjunctivitis 0.78 

Allergic rhinitis 0.99 

rs9671722 (FRMD6) 0.99 

   

Target variable 
Non-allergic 

asthma 

V
a
ri

a
b

le
 

IgE level 0.75 

Inhalative allergy 1.00 

   

Target variable Allergic rhinitis 

V
a
ri

a
b

le
 Inhalative allergy 0.88 

Allergic conjunctivitis 1.00 

Eosinophil number 1.00 
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Figure 9. Directed acyclic graph of the most likely relations of variants and targets. 

The directed edges represent only probabilistic relationships between the variables 

which are not necessary causal. SNPs rs3751464 and rs9671722 are FRMD6 

polymorphisms. 

 

The relationship was confirmed by logistic regression which showed that patients 

with GG genotypes of the rs9671722 SNP had the highest likelihood of having both 

allergic rhinitis and exercise-induced asthma (OR=18.0 (5.9-54.9); p=3.7E-7); Table 7). 

The interaction term in the logistic regression model was significant (p = 0.01).  

In Figure 10, another type of graph is presented which shows a dendrogram of the subsets 

of strongly relevant variables with respect to allergic rhinitis.  

 

Table 7. Verification of Bayesian results by logistic regression regarding exercise-

induced asthma and rs9671722 (FRMD6) as variables and allergic rhinitis as a target 

variable 

Exercise-

induced 

asthma 

rs9671722 OR (95%CI) p-value 

Not present GG 1  

Present GG 18.0 (5.9-54.9) 3.7E-07 

Not present GA or AA 1.6 (0.8-3.1) 0.17 

Present GA or AA 3.0 (0.8-11.4) 0.11 
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Figure 10. Dendrogram of the subsets of strongly relevant variables with respect to 

allergic rhinitis. The nodes in the dendrogram represent strongly relevant subsets of all 

variables, and the arrows denote the broadening of the subsets. The numbers in the 

nodes show the a posteriori probability that all variables in a given subset are strongly 

relevant. SNPs rs3751464 and rs9671722 are FRMD6 polymorphisms. 

 

4.1.4 Haplotype Analysis of YAP1 SNPs 

 

In order to find more evidence for the associations, we also conducted haplotype 

analyses. There is a significant difference between patients of GINA 2 and GINA 3 when 

we compared the frequencies of a haplotype formed by the rare alleles of SNPs rs1426398 

and rs11225138, where the frequency of TC haplotype was more prevalent in GINA 3 

than in GINA 2 (28% vs. 8%; p=10-7). Furthermore, the CA haplotype from SNPs 

rs11225138 and rs1426394, also showed a significant difference when patients in the two 

GINA statuses were compared (26% vs. 7%, p=10-7). When more than two SNPs were 

included in the analysis, additional associations were found. Corresponding results can 

be found in the Table S1 in the supporting information’s section and Figure 11.  
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Figure 11. Diagram showing significant difference in the largest haplotype found 

among the examined SNPs. The haplotype of ACGTCAC of YAP1 SNPs rs1820453, 

rs7106388, rs10895257, rs1426398, rs11225138, rs1426394, rs948737 between mild 

(GINA 2) and moderate (GINA 3) asthma severity groups (p=0.000002; OR=4.257, 

95% CI=2.393-7.573). 

 

4.1.5. Results of Western Blot Analysis 

 

Western blots were carried out on proteins of the Hippo/YAP1 pathway that 

showed significant associations with asthma or phenotypes when their genetic variations 

were examined. Earlier our research group found a strong significant association between 

a genetic variation in the FRMD6 gene and asthma (p < 0.001; Table 4 (Ungvári et al. 

2012b), as well as between several genetic variations in the BIRC5 gene and asthma (for 

all, p < 0.005; Table 4 (Ungvári et al. 2012a). Furthermore, we found that genetic 

variations and haplotypes in the YAP1 gene are associated with different phenotypes of 

asthma.  

The signal for the FRMD6 protein could be detected in all sputum samples from 

both asthmatic and control patients.  Unfortunately, the BIRC5 protein could not be 

detected in any of the healthy or asthmatic samples. Interestingly, however, the YAP1 

protein could not be detected in the sputum samples of the healthy controls, it was well-
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seen in the sputum samples of the mild asthmatics (GINA 1,2) and was also absent from 

the sputum of severe (GINA 3,4) asthmatics (Figure 12). 

 

 

Figure 12. Western blot analysis of YAP1 and GAPDH proteins. HeLa: HeLa cell 

extract 

 

4.1.6. Results of HeLa Cell Treatment with YM155 

 

 After 48h incubation time, YM155 treatment seemed successful. As a result, in a 

Nikon light microscope we found that the higher the concentration of YM155 was, the 

less cells were found in a given well. DMSO and negative controls were similar in number 

of cells, therefore DMSO had no visible effect on the cells. After protein expression 

analysis with Western blot, none of the investigated proteins, BIRC5, FRMD6 or YAP1 

could be detected. 
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4.2. Results of Investigation of the Role of Angiopoietin Receptor Tie-2 in Asthma 

and its Phenotypes 

4.2.1. Results of Genotyping Analysis of TEK Gene 

4.2.1.1. Prevalence of Co-morbidities Among the Asthmatic Patients 

 

The clinical characteristics of the asthmatic patients are presented in Table 2.  

Altogether, 435 asthmatic children and 754 healthy controls participated in the 

genotyping study. Among the fully phenotyped 320 asthmatic patients 178 (55.6%) had 

allergic rhinitis and 100 (31.3%) had conjunctivitis. Among the rhinitis patients 98 

(55.1%) also had conjunctivitis. And two patients had conjunctivitis without rhinitis. 

 

4.2.1.2. Comparison of Gene Expressions in a Mouse Model of Asthma 

 

Our research group has previously carried out measurements of gene expression 

levels in the lungs of mice with allergic airway inflammation as well as control mice by 

Agilent Whole Mouse Genome Oligo Microarray 4x44K chips (GSE11911 record 

number in GEO database) (Tölgyesi et al. 2009). We compared the expression level of 

the genes in the lungs of mice with OVA-induced allergic airway inflammation and 

control mice. We looked at Tek, Angpt2 and Vegf genes from the Tie2 pathway, but none 

of them showed a significant difference, however the expression of Ang1 (Angpt1) was 

significantly lower in the lungs of mice with allergic airway inflammation (on average 

with 2.3-fold; corrected p = 0.001). 

 

4.2.1.3. SNP Association Study 

 

To investigate whether SNPs in the TEK gene influence the susceptibility to 

asthma or any associated phenotypes, three SNPs have been genotyped. The distribution 

of the genotypes has been checked for deviation from the Hardy-Weinberg Equilibrium 

(HWE). Unfortunately, one of the three SNPs, rs3780315, showed a significant deviation 

from the HWE in the control population (p=1.3E-5), therefore it was excluded from our 

analysis. 

We found no association between either of the two SNPs, rs581724 or rs7876024, 

and asthma (Table 8). However, SNP rs581724 was significantly associated with allergic 

conjunctivitis in a recessive way (p=0.007; OR=2.4 (1.3-4.4) (Table 8). More specifically 
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the homozygote carriers of the rare allele (AA genotype) had a significantly increased 

risk of developing allergic conjunctivitis (Figure 13) within the asthmatic population.  

The risk remained significant when the whole population without conjunctivitis was 

involved in the calculation (p = 0.003; OR = 2.1 (1.3-3.6)).  

No other phenotypes (GINA status, viral- or exercise-induced asthma, allergic 

asthma, indoor, outdoor, inhalative allergies, IgE and absolute eosinophil levels, allergic 

rhinitis) were associated with either of the two SNPs in the statistical analysis. 
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Table 8. Results of association of TEK SNPs rs581724 and rs7870624 with asthma and allergic conjunctivitis. 

aIn case of rs581724 genotypes 11, 12 and 22 correspond to CC, AC and AA genotypes, respectively. In case of rs7876024 genotypes 11, 

12 and 22 correspond to AA, AG and GG genotypes, respectively. MAF: Minor Allele Frequency

Phenotype SNP Phenotype MAF  

Genotypea 11 Genotypea 12 Genotypea 22 Difference between 

allelic frequencies 

Recessive model 

n (%) n (%) n (%) (11+12 vs. 22) 

      P OR(95%CI) P OR(95%CI) 

Asthma 

rs581724 
Present 0.4 138 (35) 188 (48) 66 (17) 

0.3 1.1 (0.9-1.3) 0.4 1 (0.8-1.3) 
Absent 0.39 246 (38) 311 (47) 98 (15) 

rs7876024 
Present 0.24 208 (58) 126 (35) 26 (7) 

0.7 1 (0.8-1.3) 0.9 1 (0.6-1.7) 
Absent 0.25 386 (59) 216 (33) 48 (8) 

           

Allergic 

conjunctivitis 

rs581724 
Present 0.4 31 (35) 34 (38) 24 (27) 

0.2 1.3 (0.9-1.8) 0.007 2.4 (1.3-4.4) 
Absent 0.46 68 (33) 107 (53) 28 (14) 

rs7876024 
Present 0.25 51 (62) 21 (26) 10 (12) 

1 1 (0.7-1.5) 0.045 2.6 (1-6.5) 
Absent 0.25 104 (55) 74 (39) 10 (6) 
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Figure 13. Pie chart of SNP rs581724 in the subject groups with and without allergic 

conjunctivitis, p-value=0.007, OR=2.4 (1.3-4.4). 

 

4.3. Results of SNP Association Study Based on Previous Results from Mouse Model 

of Asthma 

4.3.1. Genotyping Results of 90 SNPs 

 

 Due to missing ratios or significant deviation from HWE, 6 SNPs were excluded 

from the analysis. Besides identifying 4 SNPs on two genes to differ significantly between 

cases and controls after frequentist statistical analysis which also included correction for 

multiple testing, which are rs2240572, rs2240571 and rs3735222 on SCIN and rs32588 

on PPARGC1B (Temesi et al. 2014), we have identified two other polymorphisms that 

may be of interest in the elucidation of asthmatic mechanisms. Table 9 shows the 

characteristics of the two SNPs.  

 

Table 9.  Characteristics of SNPs rs9862203 and rs1508147 

Gene SNP Position Function Alleles 

KLF15 rs9862203 Chr3:126058362 intronic A/G 

BIRC5 rs1508147 Chr17:76222588 near-gene-3 A/G 

The table has been adapted from Temesi et al. 2014. Supplementary material 1. 

 

Table 10 shows the HWE results of SNP rs9862203 of KLF15 (Kruppel Like 

Factor 15) and rs1508147 of BIRC5. Both SNPs show a significant deviation between 

cases and controls on the Armitage’s trend test, as well as in the difference of allele 
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frequencies (rs9862203: p=0.04984, OR=1.293 for allele G; p=0.04359, respectively; 

rs1508147: p=0.04928, OR=1.26 for allele A; p=0.04148, respectively). These SNPs 

showed significance previous to the multiple testing correction, but have lost significance 

after it. Nonetheless, these polymorphisms may be an important finding due to their roles 

in the pathogenesis of asthma (Temesi et al. 2014). 
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Table 10. Detail of results of statistical analysis of 90 SNPs 

The table has been adapted from Temesi et al. 2014. Supplementary material 2

Phenotype SNP Phenotype MAF  

Genotypea 11 Genotypea 12 Genotypea 22 Difference between 

allelic frequencies 

Armitage’s trend test 

n (%) n (%) n (%)  

      P OR(95%CI) P OR(95%CI) 

Asthma 

rs9862203 
Present 0.4 149 110 27 

0.04 1.3 (1.0-1.7) 0.049 1.3 
Absent 0.39 176 101 19 

rs1508147 
Present 0.24 116 135 45 

0.04 0.8 (0.6-0.9) 0.049 0.8 
Absent 0.25 114 146 72 

           

DOI:10.14753/SE.2020.2225



 

 62 

5. Discussion 

 

During our studies, we aimed to study the role of the Hippo/YAP1 signalling 

pathway in asthma or its associated phenotypes. We aimed to examine the ever-growing 

population of our asthmatic biobank in terms of genetic variations, gene expression and 

protein expression levels of the Hippo/YAP1 pathway. We also investigated 

polymorphisms of the angiopoietin receptor gene, TEK, in the pathogenesis of asthma. 

Recently, it has been shown that inflammation caused by tissue damage or 

microbial invasion has an important role in host defence mechanisms, as well as inducing 

regeneration and repairs. Furthermore, Chan et al showed that house dust mite-induced 

asthma leads to a significant increase in reactive oxygen species (ROS) production and 

DNA damage in lung tissues, especially in the bronchial epithelium (Chan et al. 2016). 

However, the mechanisms by which inflammation, ROS and DNA damage trigger 

regenerative responses, remain unclear. 

Initially, it was thought that the Hippo/YAP1 pathway played an important role in 

the regulation of organ size, on the other hand, recently it has been indicated that YAP1 

protein could also be detected in peripheral respiratory epithelial cells of the adult mouse 

lung (Lange et al. 2015). Further, it was shown, that the distribution and intensity of YAP1 

staining were increased after the depletion of club cells in the lungs. After 10 days, when 

the regeneration of the bronchiolar epithelium was complete, the YAP1 level and 

distribution was similar to that in the uninjured airway (Lange et al. 2015). Additionally, 

several indications link the Hippo pathway with oxidative stress or ROS-initiated 

signalling pathways and various pathological processes. ROS triggered signalling is also 

mediated by YAP1, the major Hippo downstream target (Mao et al. 2015). These findings 

in mice suggest that the Hippo/YAP1 pathway can also be a player in the regeneration 

processes in human asthma. 

Earlier our research group identified the FRMD6 gene through a partial genome 

screening in paediatric asthma as well as showing that it was most consistently associated 

with asthma susceptibility and its function in the asthmatic processes was also confirmed 

in an OVA-induced mouse model (Ungvári et al. 2012b). In an independent study our 

group found the genetic variations of BIRC5 to influence asthma susceptibility, 

additionally the gene expression of BIRC5 changed significantly during asthma both in 

animal and human studies (Ungvári et al. 2012a). Since it has been speculated that 

FRMD6 is a possible upstream mediator of the Hippo pathway and BIRC5 is a 
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downstream target gene of YAP1, these findings also indicated that the Hippo/YAP1 

pathway might have a role in asthma. 

In the present study as well as in earlier studies we found all important members 

of the FRMD6/Hippo/YAP1 pathway to be expressed in the human induced sputum in 

both asthmatics and healthy persons. The gene expression levels of the various 

components of the Hippo pathway showed correlations with diverse cell types. This may 

be suggestive of the main sources of these mRNA in the sputum samples. It may also be 

proposed that the regulation of these mRNA expressions may be different in the implied 

cells and/or the genes have additional, diverse functions in these cells. 

  The gene expression level of YAP1 was found to be correlated with sputum 

bronchial epithelial cell number suggesting its possible origin. There was no correlation 

found between YAP1 mRNA level and the severity of asthma or other asthma phenotype. 

Interestingly, YAP1 protein could only be detected in mild asthmatics and could not be 

seen in controls or in severe asthmatics on Western blot.  

Initially, it has been suggested that YAP1 is regulated by the Hippo pathway, a 

kinase cascade that eventually phosphorylates and hence inhibits the protein. Recently, 

several studies have suggested that Hippo-mediated YAP1 phosphorylation is an essential 

input for YAP1 regulation but it is not the only one. YAP1 phosphorylation and activity 

can be regulated by inflammation, DNA damage, ROS or mechanical signals that 

represent separate signals with partly independent pathways (Figure 4) (Chan et al. 2016; 

Mao et al. 2015; Moleirinho et al. 2013; Piccolo, Dupont, and Cordenonsi 2014; Yin and 

Zhang 2015). 

The mechanisms of YAP1 inhibition by phosphorylation are nuclear exclusion, 

sequestration in the cytoplasm or proteasomal degradation. We detected YAP1 mRNA in 

all samples, but YAP1 protein could be detected only in mild asthmatics. Although the 

detection level of the RT-PCR is lower than that of the Western blot, this finding is in 

agreement with the previous notion that YAP1 activity is also and perhaps mainly 

regulated on the protein level. Of course, due to the low number of patients and the type 

of detection method used this can only be regarded as a preliminary finding. On the other 

hand, based on the above described observations, the appearance of YAP1 in the mild 

asthmatics can be explained by the asthma-associated tissue damage induced regeneration 

where the Hippo/YAP1 pathway can have an important role (Beasley et al. 1989; Jeffery 

et al. 1989; Laitinen et al. 1985). Inflammation, DNA damage and elevated ROS in the 

airway epithelium were all found to be associated with increased level of YAP1 protein 
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(Mao et al. 2015). Presently, it cannot be explained why the YAP1 protein could not be 

detected in the sputum samples of the severe asthmatics. However, it can be hypothesized 

that by an unknown mechanism YAP1 is not (or less) activated in the lung of severe 

asthmatics which can result in an impaired regeneration process in the airways which can 

contribute to the irreversible organ damage and the severity of airway remodelling in 

these patients. 

Here, we have to mention some limitations to our study.  Firstly, although Western 

blot can determine the molecular weight of the protein and in this way, has a higher 

specificity comparing to e.g. ELISA, it is less sensitive and less capable of quantitative 

measurement. Secondly, in this study we did not differentiate between dephosphorylated 

and phosphorylated YAP1. Furthermore, because we have no available data on the exact 

time points inhaled corticosteroid (ICS) were administered, we cannot exclude the 

possibility that the different time intervals between ICS administration and sputum 

induction may influence our results. 

Finding a genetic variation in the YAP1 gene to be associated with exercise-

induced asthma as well as finding a significant difference in the distributions of certain 

haplotypes and different asthma GINA statuses further supports the possible role of the 

Hippo/YAP1 pathway in asthma. The latter observation, in line with the lack of YAP1 

protein in the induced sputum of severe asthmatics, also supports the finding that 

haplotypes in the YAP1 gene associate with the severity of the disease. It must be 

mentioned, however, that there may be differences in childhood and adult asthma and 

thus the genetic associations must be confirmed in a well characterized adult population. 

Based on our genotyping results and the characteristics of the asthmatic patients, 

we searched for the most probable interaction networks with respect to different target 

variables. We also wanted to know whether there were interactions between the three 

genes (FRMD6, YAP1 and BIRC5) whose genetic variations associated with asthma or 

asthma phenotypes in this population. Using the BN-BMLA method there was no 

interaction between these genes implying that the genetic variations in the three genes 

influenced the disease susceptibility independently from each other or the studied 

population was too small to detect such interactions.  

Two genetic variations in the FRMD6 gene proved to be the most relevant to 

exercise-induced asthma and allergic rhinitis within the asthma group. The two SNPs are 

in epistatic interaction with each other through allergic rhinitis and exercise-induced 

asthma. The term exercise-induced asthma describes the transient narrowing of the 
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airways after exercise. Presently, the exact mechanism of exercise-induced asthma is not 

known but as breathing through the mouth is common during exercise, there is an 

increased penetration of pollutants, cold air and allergens into the airways which can lead 

to epithelial damage, inflammation, and remodelling (Boulet and O’Byrne 2015; Weiler 

et al. 2010). Based on the literature and of our findings it is not possible to explain the 

connection between the variations in the FRMD6 gene, rhinitis and exercise-induced 

asthma, but a possible hypothesis may be that the variations in the gene can weaken the 

regeneration capacity of the Hippo pathway which can lead to persistent epithelial 

damage and asthmatic symptoms in genetically susceptible individuals.  

In our next study, we investigated whether eQTL SNPs in the TEK gene 

influenced the risk for asthma or associated phenotypes. We did not find any associations 

between these SNPs and asthma in our population, however, one of the variations showed 

a rather strong association with allergic conjunctivitis. To the best of our knowledge this 

is the first study to show that a genetic variation associates only with allergic 

conjunctivitis and not with other atopic diseases like allergic rhinitis or asthma. Figure 14 

shows the possible role of Tie2 signalling in allergic conjunctivitis. 

 

Figure 14. Possible role of Ang1-Tie2 signalling pathway in allergic conjunctivitis. 

 

However, a number of evidence indicates, that the Tie2 pathway may have a role 

in asthma. The gene expression of the main ligand of the Tie2, angiopoietin 1 was 

significantly reduced in our OVA-induced mouse model of asthma and our results were 
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also supported by Simoes et al (Simoes et al. 2008). As Ang1 has an anti-inflammatory 

role in the lung by inhibiting leukocyte transendothelial migration, cytokine production 

and vascular permeability, its reduced expression may contribute to the development of 

the asthmatic airway inflammation (Simoes et al. 2008).  

Furthermore, in a recent large genome wide association study four low frequency 

SNPs on chromosome 9p21.2 were found to be significantly associated with asthma. 

Although the detected SNPs were closest to the EQTN gene, they were in LD with a 

missense variant in the TEK gene however being physically quite far from it. Because of 

this linkage and the known function of the Tie2, the TEK gene was suggested as a 

candidate gene. However, fine mapping the region showed no eQTL effects in any of the 

tissues relevant to asthma (Almoguera et al. 2016). In our study, we tested three eQTL 

SNPs within the TEK gene with known respiratory disease association, whether they 

influenced the risk for asthma or any associated phenotypes. We found no association 

with asthma, but a quite strong association with allergic conjunctivitis.  

Possibly, allergic conjunctivitis is the least well studied atopic disease. Because it 

occurs together with rhinitis in most cases, they are often studied together as 

rhinoconjunctivitis and most studies report only on either the proportion of rhinitis 

patients suffering from ocular symptoms or the associated burden (Klossek et al. 2012). 

However, not all rhinitis patients develop conjunctivitis and conjunctivitis can exist 

without rhinitis indicating a partially different genetic background. In contrast, there is 

hardly any published genetic study in allergic conjunctivitis and there are no genetic 

variants which associate only or mainly with allergic conjunctivitis. Although several 

studies illustrate that ocular symptoms could have greater negative impact on the quality 

of life of the patients than nasal problems, they are underappreciated and often under-

treated (Pitt et al. 2004; Smith et al. 2005). The presence of ocular symptoms has been 

shown to be correlated with sleep impairment, limitations in daily activities and emotional 

distress (Stull et al. 2009). 

In our study population, the prevalence of allergic conjunctivitis among the 

patients with rhinitis (55.1%) was within the range of the results of other studies (50-

65%) (Rosario and Bielory 2011). The gene for the Tie2 receptor is a plausible candidate 

gene in allergic conjunctivitis. It is highly expressed in the eye; its mutations can cause 

congenital glaucoma and it is a potential drug target in different eye diseases (Souma et 

al. 2016). The associated SNP is located in an intron near the transcription start site and 

annotated as an endothelial cell specific enhancer region, associated with heavily 
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acetylated histones and/or endothelial cell specific euchromatin. The rare allele of the 

rs581724 SNP which is associated with the increased risk to conjunctivitis is also 

associated with reduced Tie2 expression in HapMap3 population. 

Presently it cannot be explained how exactly this SNP increases the risk to 

conjunctivitis, but it has been shown that Tie2 participates in the regulation of the barrier 

function of the endothelial cells (David et al. 2013; Rübig et al. 2016). It can be 

hypothesized that the rs581724 SNP, which is associated with a lower Tie2 expression, 

can weaken this barrier function of the endothelial cells. Moreover, it is well known that 

the inflammatory response to allergens causes nearby blood vessels to dilate and become 

more permeable. It can be speculated that this second hit to the microvascular barriers 

already weakened by reduced Tie2 expression may increase the risk of the activated 

inflammatory cells leaking out of the blood vessels into the surrounding tissues in the eye 

causing the characteristic symptoms of the allergic conjunctivitis. 

Although there are different types of ophthalmic anti-allergic medications 

available for the treatment of the patients with allergic conjunctivitis, it is generally 

accepted that the patients are under-treated. E.g. in a large French study it was shown that 

despite having received treatment for ocular symptoms, in more than 20% of the patients 

the symptoms persisted indicating that the treatments were not effective (Klossek et al. 

2012). Based on our results, the Tie2 pathway can play a role in the pathomechanism of 

the disease and it is a potential novel therapeutic target in allergic conjunctivitis. In the 

last decade, several different agents that can activate the Tie2 pathway have been 

investigated in diseases where leaky blood vessels and/or downregulated Tie2 receptor 

contributed to their development. These diseases include sepsis, acute kidney injury, 

influenza, stroke and eye diseases, and it was shown that these drugs could provide 

additional benefit to the prevailing therapy (Bourdeau et al. 2016; Cui et al. 2013; David 

et al. 2013; Rübig et al. 2016; Sugiyama et al. 2015). It was also shown that compensatory 

changes in Ang1 expression might help preserve basal Tie2 signalling when Tie2 gene 

expression is low. Our results suggest that these or similar drugs might also be potential 

candidates in allergic conjunctivitis. 

In our following study, we have used a previous investigation of asthma based on 

an OVA-induced mouse model by Tölgyesi et al. This study is discussed in another 

Doctoral Thesis by Temesi, therefore I only focus and discuss my own scientific findings 

here. After gene choice, we genotyped 90 SNPs on our human biobank of asthmatics and 

controls (Temesi et al. 2014). We have identified two SNPs, one of them, rs9862203 is 
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an intronic SNP on the KLF15 gene and the other, rs1508147 is a near-gene SNP on the 

3’ end of the BIRC5 gene. Both of them showed a significant deviation between 

asthmatics and controls, but the significance was lost after multiple testing correction. 

Nonetheless, both SNPs and genes may have a role in the pathogenesis of asthma, hence 

I find it important to elaborate these findings. 

Identifying a difference between asthmatics and healthy controls in a regulatory 

region of BIRC5 provides further evidence for its role in asthma. Tölgyesi et al have 

previously shown that Birc5 gene expression increases in OVA-induced mice in the Th2-

type inflammation model (Tölgyesi et al. 2009). The group’s results were confirmed in a 

mouse model of asthma, where the mRNA level of Birc5 significantly correlated with the 

eosinophil level found in the mice’s bronchoalveolar lavage (Tumes, Connolly, and Dent 

2009). Furthermore, Ungvári et al has shown that BIRC5 gene expression increase in 

asthma also remains in humans, as found in the induced sputum samples of asthmatics 

and controls, as well as identifying a polymorphism that may play a role in the asthmatic 

mechanisms (Ungvári et al. 2012a). Ungvári et al has also identified the same SNP, 

rs1508147 to be slightly associated with asthma in females (OR=1.683, CI=1.096-2.585, 

p=0.017) (Ungvári et al. 2012a). This polymorphism has been found to have the highest 

impact on BIRC5 expression (Dixon et al. 2007). Ungvári et al hypothesize, that due to 

its position near the 3’end of the gene, rs1508147 may also disrupt or create miRNA 

binding sites, although they could not confirm this assumption because of the available 

miRNA predicting tool (Ungvári et al. 2012a). 

KLF15, Kruppel Like Factor 15, a transcription factor has been implicated to play 

a role in the regulation of vascular smooth and cardiac muscle functions. Recently, it has 

been shown by expression profiling that during the identification of target genes of 

glucocorticoids - that play a major role in the treatment of asthma symptoms - in human 

airway smooth muscle cells, KLF15 has a differential gene expression in the presence of 

the drug (Masuno et al. 2011) They have also confirmed the result on other airway smooth 

muscle cell lines by qPCR. Masuno et al have shown, that the difference in vitro has an 

in vivo function, as they have treated wild type and Klf15-/- mice after OVA induction 

with a synthetic glucocorticoid, and have found that the Klf15 deficient mice had a 

reduced AHR associated with the OVA challenge. They hypothesize that Klf15 in mice 

play a role in the contractility of the airways by regulating apoptosis and proliferation 

(Masuno et al. 2011). Their findings have been confirmed by Himes et al, who have used 

RNA-seq to identify airway smooth muscle transcriptome in response to glucocorticoids. 
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KLF15 was one of the differentially expressed genes they found, providing further 

evidence for its role in asthma pathogenesis (Himes et al. 2014). In addition to these 

findings, Tölgyesi et al have created an allergic airway inflammatory mouse model of 

asthma, with 3 groups of mice with a differential OVA-challenge protocol (Tölgyesi et 

al. 2009). In group 1, they have seen a quick increase in neutrophil cell count (neutrophil 

infiltration) in the inflammatory cell composition from isolated BALF, however in groups 

2 and 3, eosinophilic infiltration was seen, as the Th2-type eosinophilic airway 

inflammation and eventually airway hyperresponsiveness has developed towards the end 

of their protocol in group 3 (Tölgyesi et al. 2009). After the microarray gene expression 

experiment a significant decrease in Klf15 mRNA was seen in group 2 and a slight 

increase but nonetheless significant reduction in group 3 compared to control mice 

without OVA-challenge, but this was not seen in group 1 (Group 2 vs Control group: 

corrected p-value=0,0043, normalized log2 ratio=-1,39; Group 3 vs Control group: 

corrected p-value=0,0073, normalized log2 ratio=-1,51) (Tölgyesi et al. 2009). Therefore, 

in mice, Klf15 gene expression was reduced significantly in a systemic allergic status, but 

in comparison in the allergic airway inflammatory disease, Klf15 expression has slightly 

increased. These results further support the role of KLF15 in asthma.  

Both genes may play a role in asthma, but their functional studies are needed to 

better understand asthma processes and to find new potential therapeutic targets. 
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6. Conclusions 

 

Our study provides additional evidences that the FRMD6/Hippo/YAP1 pathways 

might have a role in asthma and its different subtypes.  

We showed that all investigated Hippo signalling pathway members were 

detectable in the induced sputum of both asthmatics and controls. 

We showed that YAP1 mRNA expression is significantly lower in asthmatics 

compared to controls and found also that the main source of YAP1 in asthmatics may be 

the bronchial epithelial cells. Additionally, more correlations have been revealed between 

Hippo member gene expressions and various cell types, suggesting their source of origin. 

We found genetic variations on the YAP1 gene to be associated with exercise-

induced asthma, and asthma severity. The latter result was also confirmed by the 

haplotype analysis. Of course, the genetic associations must be confirmed in independent 

populations. 

The BN-BMLA revealed a direct relevance of SNP rs9671722 on the FRMD6 

gene to exercise-induced asthma, while another SNP, rs3751464 from the same gene was 

found to be directly relevant to allergic rhinitis and transitively associated through allergic 

rhinitis with exercise-induced asthma, suggesting an increased importance of the 

FRMD6/Hippo/YAP1 pathway in the pathogenesis of asthma and its associated 

phenotypes. 

We found that YAP1 protein was only expressed in mild asthmatics, but neither 

in controls nor in severe asthmatics. It would be also interesting to reveal how exactly the 

activity of YAP1 protein is regulated in the airways of the asthmatic patients. If additional 

studies can confirm that the YAP1 associated pathways have a role in the regeneration 

processes in airway inflammations, these pathways can be potential novel therapeutic 

targets in asthma and other inflammatory airway diseases.  

Although several lines of evidences indicate that the Tie2 pathway might have a 

role in asthma, the investigated variations in the TEK gene, which are associated with 

lower Tie2 expression, did not influence the susceptibility to the disease.  

We found however, that the homozygote carriers of the rs581724 SNP had 

significantly increased risk to allergic conjunctivitis. If additional studies can confirm the 

role of the Tie2 pathway in allergic conjunctivitis, this can be a potential novel therapeutic 

target in the disease. 
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We investigated 90 SNPs on 60 genes chosen based on a previous study on OVA-

induced mice. We have identified two SNPs, one of them, rs9862203 is an intronic SNP 

on the KLF15 gene and the other, rs1508147 is a near-gene SNP on the 3’ end of the 

BIRC5 gene. Both of them showed a significant deviation between asthmatics and 

controls, but the significance was lost after multiple testing correction. Nonetheless, both 

SNPs and genes may have a role in the pathogenesis of asthma due to their functions. 

Both genes may play a role in asthma but their functional studies are needed to better 

understand asthma processes and to find new potential therapeutic targets.  
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7. Summary 

Asthma is a chronic inflammatory respiratory disease influenced by a wide range 

of environmental and genetic factors. We investigated the possible roles of the 

Hippo/YAP1 associated pathway, variations in the TEK gene and 90 SNPs based on the 

results of an OVA-induced mouse model of asthma in paediatric asthma and/or associated 

phenotypes. Several lines of evidences indicate that the Hippo/YAP1 pathways might 

play a role in asthma. We compared the level of gene and protein expression of several 

members of the Hippo/YAP1 pathway. The mRNA of all the members of the 

Hippo/YAP1 pathway could be detected in the induced sputum of both controls and cases. 

The YAP1 protein could not be detected in the sputum samples of the healthy controls 

and severe asthmatics but it was detectable in mild asthmatics. Fourteen SNPs in the YAP1 

gene were genotyped on our study population. The rs2846836 of the YAP1 gene was 

significantly associated with exercise-induced asthma (OR=2.1 [1.3-3.4], p=0.004). The 

association was confirmed by haplotype analysis. With Bayesian network based Bayesian 

multilevel analysis of relevance (BN-BMLA) two genetic variations in the FRMD6 gene 

proved to be the most relevant to exercise-induced asthma and allergic rhinitis. 

The Tie2 receptor is an important player in angiogenesis. The Tie2 mRNA and 

protein are abundantly expressed in the lungs and the associated pathway also has an 

important role in the development and function of the eye. Recently, variations in the TEK 

gene, encoding Tie2, have been found associated with asthma. Three SNPs in the TEK 

gene were genotyped on our study population. The genotyped SNPs showed no 

association with asthma. However, SNP rs581724 was significantly associated with 

allergic conjunctivitis in a recessive way (p=0.007; OR=2.3 (1.3-4.4)) within the 

asthmatic population. The risk remained significant when the whole population without 

conjunctivitis was involved in the calculation (p = 0.003; OR = 2.1 (1.3-3.6)). The rare 

allele of the rs581724 SNP which is associated with the increased risk to conjunctivitis is 

also associated with reduced Tie2 expression. If additional studies can confirm the role 

of the Tie2 pathway in allergic conjunctivitis, it can be a potential novel therapeutic target 

in the disease. 

The association analysis of asthma and 90 SNPs based on a previous study of 

OVA-induced mouse model of asthma resulted in two nominally significant associations 

within the BIRC5 gene providing further evidence for the role of the 

FRMD6/Hippo/YAP1 pathway in asthma, and KLF15 gene which may play a role in the 

contractility of airway smooth muscle by regulating apoptosis and cell proliferation.  
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8. Összefoglaló 

Az asztma krónikus gyulladásos légúti megbetegedés, amit különféle környezeti 

és genetikai tényezők is befolyásolnak. Azért, hogy jobban megértsük a betegség 

kialakulását, megvizsgáltuk a Hippo/YAP1 szignál útvonal, a TEK gén genetikai 

variációinak és egy korábbi ovalbumin indukált asztmás egér modell vizsgálat 

eredményei alapján 90 SNP lehetséges szerepét az asztmában és a hozzá kapcsolódó 

fenotípusokban. Számos bizonyíték jelzi, hogy a Hippo/YAP1 útvonal szerepet játszhat 

az asztmában. Összehasonlítottuk a Hippo útvonal több tagjának gén illetve fehérje 

expresszióját. A Hippo/YAP1 útvonal tagjainak indukált köpet mRNS szintjét 

egészségesekben is és asztmásokban is detektáltuk. A YAP1 fehérjét nem tudtuk 

kimutatni sem egészségesek sem pedig súlyos asztmások indukált köpet mintájában, 

viszont az enyhe asztmásokban találtunk a fehérjéből. Tizennégy SNP-t genotipizáltunk 

a beteg populáción. A YAP1 gén rs2846836 SNP-je szignifikánsan asszociált terheléses 

asztmával (OR=2,1 [1,3-3,4], p=0,004). Az asszociációt haplotípus elemzés is 

megerősítette. A Bayesi (BN-BMLA) elemzés során az FRMD6 gén két genetikai 

variációja bizonyult a legrelevánsabbnak terheléses asztmában és allergiás rhinitisben. 

A Tie2 receptor az angiogenezis egy fontos szereplője. A Tie2 mRNS-e és 

fehérjéje széles körben fejeződik ki a tüdőben, és a hozzá kapcsolódó útvonal fontos 

szerepet tölt be a szem fejlődésében és működésében. Nemrég a TEK (Tie2 kódoló gén) 

variációit hozták kapcsolatba az asztmával. Három TEK SNP-t genotipizáltunk beteg 

populáción. A genotipizált SNP-k nem asszociáltak az asztmával. Azonban, az rs581724 

szignifikáns asszociációt mutatott az allergiás conjunctivitis-szel (p=0,007; OR=2,3 (1,3-

4,4)) az asztmás populációban. A kockázat akkor is megmaradt, amikor az egész 

populációt belevettük a számításba (p = 0,003; OR = 2,1 (1,3-3,6)). Az rs581724 ritka 

allélja, ami kapcsolatban van a conjunctivitis megemelkedett kockázatával, szintén 

csökkent Tie2 expresszióval asszociál. Amennyiben további tanulmányok igazolják a 

Tie2 szerepét az allergiás conjunctivitis-ben, potenciális új terápiás célponttá válhat. 

Az asszociációs vizsgálat során az asztmát és 90 SNP-t vizsgáltunk egy korábbi 

OVA indukált asztmás egér tanulmány eredményei alapján. Két, nominálisan 

szignifikáns asszociációt találtunk, az egyik SNP-t a BIRC5 génen, tovább biztonyítva az 

FRMD6/Hippo/YAP1 útvonal szerepét az asztmában, és a másikat a KLF15 génen, amely 

a légúti sima izom kontraktilitásban játszik szerepet a sejtek apoptózisának és 

proliferációjának szabályozásával. 
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Table S1. Summary of all YAP1 SNPs included in haplotype analysis and corresponding results. 

 

 

 

 

 

 

Haplotype GINA	2	status	in	asthma GINA	3	status	in	asthma p-value OR 95%CI

rs1820453 rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 ACGTCAC 7% 25% 0.000002 4.257 2,393-7,573

rs1820453 rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 ACATGGT 21% 14% 0.121 0.591 0,316-1,103

rs1820453 rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 CTGCGAC 56% 50% 0.313 0.792 0,511-1,228

rs1820453 rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 ACGTGGT 5% 7% 0.454 1.501 0,628-3,590

rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 CGTCAC 7% 25% 0.000002 4.257 2,393-7,573

rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 CATGGT 21% 14% 0.122 0.606 0,324-1,132

rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 TGCGAC 56% 50% 0.313 0.792 0,511-1,228

rs7106388 rs10895257 rs1426398 rs11225138 rs1426394 rs948737 CGTGGT 6% 7% 0.634 1.325 0,560-3,138

rs10895257 rs1426398 rs11225138 rs1426394 rs948737 GTCAC 8% 23% 0.000039 3.576 1,998-6,400

rs10895257 rs1426398 rs11225138 rs1426394 rs948737 ATGGT 20% 14% 0.155 0.614 0,328-1,147

rs10895257 rs1426398 rs11225138 rs1426394 rs948737 GCGAC 56% 52% 0.500 0.846 0,546-1,313

rs10895257 rs1426398 rs11225138 rs1426394 rs948737 GTGGT 6% 6% 0.810 1.124 0,451-2,800

rs10895257 rs1426398 rs11225138 rs1426394 GTCA 8% 25% 0.000005 4.009 2,265-7,095

rs10895257 rs1426398 rs11225138 rs1426394 ATGG 20% 14% 0.155 0.622 0,333-1,162

rs10895257 rs1426398 rs11225138 rs1426394 GCGA 57% 55% 0.652 0.890 0,573-1,381

rs10895257 rs1426398 rs11225138 rs1426394 GTGG 5% 5% 1.000 0.964 0,361-2,576

rs1426398 rs11225138 rs1426394 rs948737 TCAC 8% 23% 0.000039 3.576 1,998-6,400

rs1426398 rs11225138 rs1426394 rs948737 TGGT 26% 20% 0.245 0.712 0,414-1,225

rs1426398 rs11225138 rs1426394 rs948737 CGAC 56% 52% 0.500 0.846 0,546-1,313

rs1426398 rs11225138 rs1426394 TCA 8% 25% 0.000007 3.895 2,206-6,877

rs1426398 rs11225138 rs1426394 TGG 26% 18% 0.118 0.621 0,354-1,090

rs1426398 rs11225138 rs1426394 CGA 57% 55% 0.653 0.897 0,578-1,393

rs1820453 rs7106388 AC 42% 50% 0.142 1.410 0,909-2,188

rs1820453 rs7106388 CT 57% 50% 0.216 0.746 0,481-1,158

rs7106388 rs10895257 CG 21% 36% 0.001024 2.220 1,386-3,554

rs7106388 rs10895257 CA 21% 14% 0.094 0.584 0,313-1,089

rs7106388 rs10895257 TG 58% 50% 0.176 0.721 0,465-1,119

rs10895257 rs1426398 GT 21% 32% 0.017 1.799 1,112-2,910

rs10895257 rs1426398 AT 21% 14% 0.094 0.584 0,313-1,089

rs10895257 rs1426398 GC 58% 55% 0.572 0.860 0,554-1,336

SNPs	involved	in	the	haplotype	analysis

DOI:10.14753/SE.2020.2225



 

 

 
9
4
 

 

 

 

 

 

 

 

 

 

 

Haplotype GINA	2	status	in	asthmaGINA	3	status	in	asthmap-value OR 95%CI

rs1426398 rs11225138 TC 8% 28% 0.000001 4.324 2,494-7,496

rs1426398 rs11225138 TG 34% 18% 0.002349 0.425 0,244-0,742

rs1426398 rs11225138 CG 58% 55% 0.572 0.860 0,554-1,336

rs11225138 rs1426394 CA 7% 26% 0.000001 4.497 2,540-7,960

rs11225138 rs1426394 GA 66% 55% 0.063 0.648 0,415-1,009

rs11225138 rs1426394 GG 26% 19% 0.155 0.659 0,380-1,144

rs1426394 rs948737 AC 68% 74% 0.332 1.308 0,798-2,145

rs1426394 rs948737 GT 27% 23% 0.448 0.797 0,475-1,335

rs1426394 rs948737 AT 4% 3% 0.782 0.745 0,217-2,559

rs948737 rs1942683 CG 14% 23% 0.030 1.842 1,072-3,164

rs948737 rs1942683 TA 7% 3% 0.176 0.412 0,124-1,368

rs948737 rs1942683 CA 55% 51% 0.575 0.861 0,555-1,335

rs948737 rs1942683 TG 24% 23% 0.896 0.938 0,558-1,577

rs1942683 rs11225161 AC 62% 51% 0.068 0.649 0,418-1,009

rs1942683 rs11225161 GT 9% 12% 0.349 1.387 0,704-2,734

rs1942683 rs11225161 GC 29% 33% 0.391 1.246 0,781-1,990

rs11225161 rs1894116 CT 90% 78% 0.001122 0.377 0,213-0,667

rs11225161 rs1894116 TC 10% 22% 0.001122 2.654 1,499-4,699

rs1894116 rs11225166 CC 10% 22% 0.001122 2.654 1,499-4,699

rs1894116 rs11225166 TG 90% 78% 0.002252 0.404 0,229-0,713

rs11225166 rs8504 CG 9% 23% 0.000130 3.198 1,802-5,675

rs11225166 rs8504 GG 58% 48% 0.071 0.658 0,424-1,021

rs11225166 rs8504 GA 32% 30% 0.632 0.877 0,543-1,417

rs8504 rs2846836 GT 10% 28% 0.000009 3.538 2,071-6,045

rs8504 rs2846836 GC 58% 40% 0.001576 0.481 0,307-0,752

rs8504 rs2846836 AT 32% 32% 1.000 0.997 0,624-1,592

rs2846836 rs7115540 CA 52% 34% 0.001695 0.482 0,305-0,762

rs2846836 rs7115540 TA 14% 23% 0.029 1.874 1,090-3,223

rs2846836 rs7115540 TG 29% 39% 0.068 1.563 0,991-2,466

rs2846836 rs7115540 CG 6% 4% 0.632 0.705 0,242-2,058

SNPs	involved	in	the	haplotype	analysis
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Table S2. Summary of 90 SNPs included in the genetic association study. Adapted from Temesi et al. 2014. 

Gene SNP Position Functional 

Category 

Alleles Contorl MAF Case MAF 

ACSBG1 rs3813577 15:78527253 near-gene-5(GVS) C/T 37,94% 33,39% 

AGR2 rs706072 7:16844663 utr-variant-5-

prime(dbSNP) 

T/C 18,75% 19,84% 

AGR2 rs1459564 7:16846146 near-gene-5(GVS) A/G 33,28% 30,16% 

AGR2 rs706075 7:16846354 near-gene-5(GVS) G/T 25,22% 24,09% 

AGR2 rs10261011 7:16856487 intergenic(GVS) G/A 51,02% 49,02% 

AIF1 rs2857600 6:31582287 near-gene-5(GVS) T/C 10,66% 3,26% 

ATP6V0A4 rs10258719 7:138455988 missense(dbSNP) A/G 28,34% 29,84% 

BIRC5 rs1508147 17:76222588 near-gene-3(GVS) A/G 43,67% 38,01% 

C1QC rs6690827 1:22967496 near-gene-3(GVS) A/G 29,76% 35,32% 

C1QC rs294179 1:22974928 downstream-variant-

500B(dbSNP) 

T/C 42,65% 48,67% 

CCL2 rs2530797 17:32586094 near-gene-3(GVS) C/T 33,53% 37,03% 

CCL8 rs1821142 17:32649988 near-gene-3(GVS) T/C 3,60% 4,58% 

CCNE1 rs7257330 19:30301823 near-gene-5(GVS) A/G 39,49% 38,62% 

CD6 rs1050922 11:60785352 synonymous-

codon(dbSNP) 

G/A 31,54% 33,39% 

CD84 rs1055880 1:160517692 utr-variant-3-

prime(dbSNP) 

T/C 34,24% 33,50% 

CHIA rs17027410 1:111861822 synonymous-

codon(dbSNP) 

A/G 11,64% 11,26% 

CLEC4E rs7299659 12:8696661 intergenic(GVS) A/G 19,05% 18,61% 

COL6A2 rs2839110 21:47538960 missense(dbSNP) G/A 22,92% 24,17% 
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Gene SNP Position Functional 

Category 

Alleles Contorl MAF Case MAF 

CREB3L4 rs11264743 1:153941514 missense(dbSNP) T/C 31,12% 30,03% 

CXCL1 rs3117604 4:74734668 near-gene-5(GVS) T/C 29,30% 31,25% 

CXCL5 rs352045 4:74864687 near-gene-5(GVS) T/G 11,77% 13,11% 

CSF2 rs27438 5:131413255 near-gene-3(GVS) A/G 22,73% 22,50% 

E2F7 rs310830 12:77419593 synonymous-

codon(dbSNP) 

G/A 10,06% 13,87% 

FABP3 rs16834408 1:31837942 near-gene-3(GVS) A/G 15,92% 22,02% 

FABP3 rs10914367 1:31846206 near-gene-5(GVS) A/G 24,09% 22,20% 

FXYD4 rs4245604 10:43866528 near-gene-5(GVS) A/C 32,41% 31,64% 

GPR160 rs4955711 3:169753570 intergenic(GVS) G/A 27,96% 28,14% 

ICOS rs3923093 2:204798020 intergenic(GVS) T/C 24,15% 25,17% 

IL17RB rs2289205 3:53878616 intron-

variant(dbSNP) 

T/C 29,94% 31,38% 

IL1A rs1878320 2:113544467 upstream-variant-

2kb(dbSNP) 

C/T 30,15% 28,31% 

IL1A rs3783520 2:113544339 upstream-variant-

2kb(dbSNP) 

T/C 29,41% 27,93% 

IL1B rs16944 2:113594867 upstream-variant-

2kb(dbSNP) 

G/A 39,02% 33,50% 

IL1RL1 rs12905 2:102960007 utr-variant-3-

prime(dbSNP) 

A/G 25,00% 26,99% 

IL6 rs2069827 7:22765456 utr-variant-3-

prime(dbSNP) 

T/G 11,05% 10,98% 

IL6 rs2069832 7:22767433 intron-

variant(dbSNP) 

A/G 38,52% 41,45% 
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ITGAX rs11150614 16:31366016 upstream-variant-

2kb(dbSNP) 

A/G 29,31% 28,95% 

ITLN1 rs4656958 1:160856964 intergenic(GVS) A/G 32,56% 25,90% 

ITLN1 rs2274910 1:160852046 intron-

variant(dbSNP) 

T/C 33,43% 27,30% 

KLF15 rs1358087 3:126078890 intergenic(GVS) C/T 36,36% 35,88% 

KLF15 rs9862203 3:126058362 intergenic(GVS) A/G 23,48% 28,67% 

LAPTM5 rs3762296 1:31231386 near-gene-5(GVS) G/A 48,02% 45,07% 

LGALS3 rs7160110 14:55594635 upstream-variant-

2kb(dbSNP) 

G/A 40,54% 37,16% 

LGMN rs9791 14:93170993 synonymous-

codon(dbSNP) 

T/C 42,21% 35,22% 

LY86 rs760894 6:6656198 near-gene-3(GVS) G/A 32,48% 30,62% 

LY9 rs509749 1:160793560 missense(dbSNP) A/G 50,94% 47,05% 

LY9 rs474131 1:160793442 synonymous-

codon(dbSNP) 

A/G 46,44% 39,29% 

MAFB rs6102095 20:39320751 intergenic(GVS) A/G 17,25% 15,24% 

MAP3K6 rs11247639 1:27679692 intron-

variant(dbSNP) 

G/A 32,65% 30,54% 

MARCO rs6748401 2:119698057 near-gene-5(GVS) G/A 50,45% 44,43% 

MAT1A rs3827869 10:82031278 downstream-variant-

500B(dbSNP) 

T/C 21,00% 16,44% 

MAT1A rs10887711 10:82034842 synonymous-

codon(dbSNP) 

A/G 31,53% 39,53% 

MAT1A rs10887708 10:82027988 intergenic(GVS) A/G 28,40% 30,51% 
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MAT1A rs10749550 10:82031197 downstream-variant-

500B(dbSNP) 

A/G 35,99% 37,54% 

MKI67 rs11016071 10:129901393 missense(dbSNP) C/T 14,88% 16,83% 

MKI67 rs10082432 10:129901722 synonymous-

codon(dbSNP) 

A/G 17,70% 18,12% 

MKI67 rs8473 10:129899578 missense(dbSNP) C/T 45,22% 45,73% 

MKI67 rs2152143 10:129906980 missense(dbSNP) A/G 30,78% 28,85% 

MS4A7 rs10750936 11:60144180 near-gene-5(GVS) G/A 36,76% 34,75% 

OSGIN1 rs2432561 16:83982670 intergenic(GVS) A/G 16,74% 10,82% 

PPARGC1B rs32588 5:149200043 synonymous-

codon(dbSNP) 

C/T 23,46% 14,73% 

PTPN7 rs4359077 1:202129112 utr-variant-5-

prime(dbSNP) 

A/G 10,59% 10,70% 

RETNLB rs3811687 3:108476519 near-gene-5(GVS) T/C 29,97% 29,61% 

RETNLB rs10933959 3:108476205 near-gene-5(GVS) G/A 23,11% 19,18% 

RETNLB rs9870145 3:108477874 near-gene-5(GVS) T/A 14,93% 16,45% 

RETNLB rs11708527 3:108475974 missense(dbSNP) A/G 29,94% 29,67% 

SAA1 rs4638289 11:18285774 intergenic(GVS) A/T 38,37% 41,48% 

SAA1 rs11603089 11:18282051 intergenic(GVS) G/A 16,13% 15,08% 

SAA2 rs7130337 11:18270605 near-gene-5(GVS) A/G 24,42% 26,66% 

SCIN rs3173628 7:12627245 intron-

variant(dbSNP) 

A/G 41,28% 49,83% 

SCIN rs2240572 7:12610594 missense(dbSNP) G/A 48,69% 37,66% 

SCIN rs2240571 7:12609988 near-gene-5(GVS) C/G 39,80% 50,00% 

SCIN rs3735222 7:12609679 near-gene-5(GVS) A/G 48,69% 37,87% 
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SIGLEC1 rs625372 20:3684729 missense(dbSNP) T/C 32,04% 31,94% 

SLAMF9 rs16831153 1:159920719 near-gene-3(GVS) A/G 17,85% 18,90% 

SLC26A4 rs2248465 7:107303628 intron-

variant(dbSNP) 

C/T 26,33% 29,17% 

SLC26A4 rs2701684 7:107299527 near-gene-5(GVS) A/G 32,36% 34,65% 

SLC26A4 rs2701685 7:107299584 near-gene-5(GVS) A/G 23,51% 25,99% 

SLC26A4 rs2712228 7:107300340 near-gene-5(GVS) C/A 30,15% 30,53% 

TBXAS1 rs12532701 7:139521534 intron-

variant(dbSNP) 

G/A 43,07% 46,73% 

TFF1 rs184432 21:43787562 near-gene-5(GVS) A/G 31,83% 28,29% 

TFF1 rs225359 21:43787436 near-gene-5(GVS) A/G 33,28% 30,96% 

TFF2 rs225340 21:43772947 near-gene-5(GVS) T/C 44,77% 41,86% 

TFF2 rs3814896 21:43771711 near-gene-5(GVS) G/A 33,92% 30,84% 

TFF2 rs225333 21:43764496 near-gene-3(GVS) A/G 28,14% 27,21% 

TIMP3 rs137487 22:33259104 intron-

variant(dbSNP) 

A/G 47,28% 45,86% 

TK1 rs1065769 17:76170735 utr-variant-3-

prime(dbSNP) 

T/C 32,44% 31,17% 

TSLP rs3806932 5:110405675 near-gene-5(GVS) G/A 38,89% 40,58% 

UBE2T rs14451 1:202304868 synonymous-

codon(dbSNP) 

C/T 44,31% 47,56% 

ULBP1 rs1853665 6:150298842 intergenic(GVS) T/C 19,58% 17,07% 

ULBP1 rs4425606 6:150284435 near-gene-5(GVS) G/A 18,39% 17,83% 
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