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Abstract
Introduction: Alterations	in	narrow-	band	spectral	power	of	electroencephalography	
(EEG)	recordings	are	commonly	reported	in	patients	with	schizophrenia	(SZ).	It	is	well	
established	however	that	electrophysiological	signals	comprise	a	broadband	scale-	
free (or fractal) component generated by mechanisms different from those producing 
oscillatory	neural	activity.	Despite	 this	known	feature,	 it	has	not	yet	been	 investi-
gated	if	spectral	abnormalities	found	in	SZ	could	be	attributed	to	scale-	free	or	oscil-
latory brain function.
Methods: In	this	study,	we	analyzed	resting-	state	EEG	recordings	of	14	SZ	patients	
and	14	healthy	controls.	Scale-	free	and	oscillatory	components	of	the	power	spectral	
density	(PSD)	were	separated,	and	band-	limited	power	(BLP)	of	the	original	(mixed)	
PSD,	 as	well	 as	 its	 fractal	 and	 oscillatory	 components,	was	 estimated	 in	 five	 fre-
quency	bands.	The	scaling	property	of	the	fractal	component	was	characterized	by	
its	spectral	exponent	in	two	distinct	frequency	ranges	(1–	13	and	13–	30	Hz).
Results: Analysis	 of	 the	mixed	PSD	 revealed	 a	 decrease	of	BLP	 in	 the	delta	 band	
in	SZ	over	the	central	regions;	however,	this	difference	could	be	attributed	almost	
exclusively	to	a	shift	of	power	toward	higher	frequencies	in	the	fractal	component.	
Broadband	neural	activity	expressed	a	true	bimodal	nature	in	all	except	frontal	re-
gions.	Furthermore,	both	low-		and	high-	range	spectral	exponents	exhibited	a	charac-
teristic	topology	over	the	cortex	in	both	groups.
Conclusion: Our	results	imply	strong	functional	significance	of	scale-	free	neural	ac-
tivity	in	SZ	and	suggest	that	abnormalities	in	PSD	may	emerge	from	alterations	of	the	
fractal and not only the oscillatory components of neural activity.
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1  | INTRODUC TION

Despite	 many	 decades	 of	 intense	 research,	 the	 neural	 ori-
gins	 of	 schizophrenia	 (SZ)	 are	 still	 mostly	 unknown	 (Uhlhaas	 &	
Singer,	2010).	As	a	consequence,	no	objective	biomarkers	of	 the	
disease have been identified yet, which could be used for diag-
nosis, severity scoring or therapy and progression monitoring. 
One	of	the	more	potent	candidates	 is	the	amplitude—	or	as	more	
commonly	 captured,	 the	 band-	limited	 spectral	 power	 (BLP)—	of	
neuronal	 oscillations	 in	 specific	 narrow-	band	 frequency	 ranges	
(Boutros	 et	 al.,	 2008).	 By	 these	 means,	 identification	 of	 abnor-
malities in specific frequency bands (such as delta or alpha) could 
imply the involvement of particular neuronal circuit architectures 
(Buzsaki,	2006;	Javitt	et	al.,	2020),	thus	providing	not	only	mark-
ers of the disease but insights on its underlying pathomechanisms. 
Such	 approaches	 were	 able	 to	 reveal	 characteristic	 differences	
between	patients	with	SZ	and	healthy	controls	 (HC).	Most	stud-
ies	 report	 on	 increased	 amplitude	 of	 delta-	range	 fluctuations	 in	
SZ	when	compared	to	HC	(Harris	et	al.,	2006;	Knott	et	al.,	2001).	
Studies	investigating	normalized	instead	of	absolute	power	spec-
tra	yielded	similar	results	(Kirino,	2004;	Sponheim	et	al.,	1994),	in-
dicating that the distribution of power is shifted toward the lower 
frequencies	 in	 SZ.	 Although	 these	 findings	 are	 considered	 con-
sistent	by	most	reviews	and	meta-	analyses	(Boutros	et	al.,	2008;	
Moran	&	Hong,	2011;	Newson	&	Thiagarajan,	2019),	contradictory	
results	do	exist	indicating	that	increased	delta	BLP	is	not	a	univer-
sal	 trait	of	SZ.	 Indeed,	several	 reports	 (Begic	et	al.,	2000;	Harris	
et	al.,	2001;	John	et	al.,	2009)	demonstrated	that	various	disease	
phenotypes	 could	 be	 characterized	 with	 distinct	 EEG	 abnor-
malities in the resting state, such as decreased versus increased 
delta	BLP	in	“positive”	and	“negative”	schizophrenia,	respectively.	
Furthermore,	neuroleptic	treatment	(Knott	et	al.,	2001;	Matsuura	
et	 al.,	 1994;	 Tislerova	 et	 al.,	 2008)	 or	 disease	 chronicity	 (Harris	
et	al.,	2006;	Ranlund	et	al.,	2014)	was	also	reported	to	 influence	
electrophysiological	 findings	 in	 SZ,	 often	 resulting	 in	 decreased	
rather than increased delta activity. Finally, multiple studies identi-
fied	decreased	delta	BLP	in	SZ	during	sleep	(Keshavan	et	al.,	1998)	
or	associated	with	task	performance	(Bates	et	al.,	2009;	Donkers	
et al., 2013).

On	 the	 other	 hand,	 the	 limitations	 of	 treating	 frequency	
ranges independently instead of considering the power spectrum 
as	a	whole	have	also	been	stressed	earlier	(Moran	&	Hong,	2011).	
Specifically,	 it	 has	 been	 widely	 recognized	 that	 besides	 the	
narrow-	band	 oscillatory	 characteristics,	 neural	 fluctuations	 also	
express	 scale-	free	 (or	 fractal) behavior when investigated in a 
broadband	manner	(He	et	al.,	2010).	In	case	of	scale-	free	dynam-
ics, the power is inversely proportional to the frequency in the 
power spectrum of the process, and the relationship is established 
via	a	power-	law	function	with	scaling	exponent	β (Eke et al., 2002). 
This property is most apparent when plotting the power spectrum 
in	double	logarithmic	axes,	where	it	appears	as	a	straight	line	with	
a	slope	of	−	β.	In	case	of	neurophysiological	signals,	oscillatory	pro-
cesses with characteristic frequencies (such as alpha oscillations) 

are found superimposed on this broadband activity; thus, an ad-
ditive model considering neural activity as a composite of fractal 
and oscillatory components appears reasonable (He, 2014; Wen 
&	Liu,	2016).	Physiological	processes	other	than	neural	activity—	
for	example,	heart	rate	variability	(Yamamoto	&	Hughson,	1991)—	
were	 also	 shown	 to	 exhibit	 similar	 behavior.	 In	 many	 of	 these	
cases, the oscillatory components are in the focus of interest; 
however, the presence of broadband activity can distort the re-
sults	of	the	analysis	(Yamamoto	&	Hughson,	1991).	Data	process-
ing	methods	 such	 as	 pre-	whitening	 or	 pre-	coloring	 exist	 to	 deal	
with	such	issues	(Bullmore	et	al.,	2001;	Mitra	&	Pesaran,	1999),	al-
though in general, these disregard the information encoded in the 
broadband	component.	In	contrast,	the	physiological	relevance	of	
scale-	free	brain	activity	has	been	emphasized	in	numerous	works	
(e.g., He et al. (2010); Herman et al. (2011), for a review see He 
(2014)).	Accordingly,	based	on	the	seminal	works	of	Yamamoto	and	
Hughson	(1991,	1993),	an	improved	analysis	tool	termed	irregular-	
resampling	auto-	spectral	analysis	(IRASA)	was	developed	by	Wen	
and	Liu	(2016)	with	the	explicit	purpose	of	separating	the	fractal	
and oscillatory components in the power spectrum of neurophysi-
ological signals. Hence, BLP of oscillatory activity can be computed 
without the confounding effects of broadband activity, while at 
the	same	time,	the	fractal	signal	component	can	be	characterized	
by	 its	spectral	scaling	exponent	and/or	BLP,	whose	estimation	 is	
not affected by the presence of oscillatory peaks.

In	scale-	free	processes	with	equal	variance	but	different	spec-
tral	 slope,	 results	similar	 to	 those	 found	between	HC	and	SZ	 in-
dividuals	 can	 be	 acquired.	 Namely,	 in	 the	 case	 of	 unit	 variance	
(hence unit total spectral power), a steeper spectral slope (i.e., 
higher	 scaling	 exponent)	 yields	 a	 distribution	 with	 an	 increased	
(decreased) fraction of power being associated with lower (higher) 
frequencies.	Therefore,	considering	the	established	scale-	free	na-
ture of neural activity, it is plausible that alterations of the fractal 
rather than the oscillatory components could be (at least in part) 
accountable	 for	 increased	 low-	range	 and	 decreased	 high-	range	
spectral	power	in	SZ.	In	this	case,	interpretation	of	such	findings	
could be put in a different perspective, focusing also on how and 
why	the	scale-	free	characteristics	of	neural	activity	are	affected	
in	SZ.

Until recently, only a limited number of studies investigated the 
scale-	free	properties	of	neural	activity	in	SZ	(Nikulin	et	al.,	2012;	
Sun	et	al.,	2014).	Furthermore,	 to	the	best	of	our	knowledge,	no	
previous	 study	 analyzed	 the	 fractal	 and	 oscillatory	 components	
of	 the	EEG	 spectra	 separately	 and	 thus	explored	 their	 contribu-
tions to BLP estimates. Therefore, the main goal of this present 
work was to reveal if differences in BLP found between HC and 
SZ	 individuals	could	be	attributed	to	alterations	of	the	fractal	or	
the	oscillatory	components	of	neural	activity.	IRASA	was	utilized	
to separate oscillatory and fractal components of the original 
(mixed)	 power	 spectral	 density	 (PSD)	 estimates	 acquired	 from	
normalized	EEG	signals,	and	BLP	was	calculated	in	four	frequency	
bands	 (delta,	 theta,	 alpha	 and	beta)	 for	 all	 three—	mixed,	 fractal,	
and	oscillatory—	spectra.	Additionally,	 spectral	 scaling	exponents	
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of the fractal components were also estimated in order to charac-
terize	the	scale-	free	aspect	of	neural	activity.

2  | MATERIAL S AND METHODS

2.1 | Participants and data acquisition

Electroencephalography	 recordings	 of	 14	 SZ	 patients	 (7	 females	
and	7	males	with	mean	age	28.3	± 4.1 and 27.9 ± 3.3 years, respec-
tively) and 14 HC subjects (7 females and 7 males with mean age 
28.7	±	3.4	and	26.8	±	2.9	years,	respectively)	were	analyzed	in	this	
study. The datasets were acquired from an online repository made 
publicly	available	by	Olejarczyk	and	 Jernajczyk	 (2017a).	All	 SZ	pa-
tients	met	 diagnostic	 criteria	 of	 the	 International	 Classification	 of	
Diseases	 ICD-	10	 for	 paranoid	 schizophrenia	 (category	 F20.0)	 and	
were	 hospitalized	 at	 the	 Institute	 of	 Psychiatry	 and	Neurology	 in	
Warsaw,	Poland.	Only	 individuals	with	an	 ICD-	10	diagnosis	of	cat-
egory	F20.0	were	included	in	the	SZ	group,	as	well	as	a	medication	
washout period of at least one week was administered for all pa-
tients	prior	 to	measurement.	Exclusion	criteria	 included	age	under	
18	 years,	 pregnancy,	 organic	 brain	 pathology,	 early-	stage	 (first	
onset)	 SZ,	 severe	 neurological	 diseases	 (e.g.,	 epilepsy,	 Alzheimer's	
disease,	Parkinson's	disease)	and	the	presence	of	any	general	medi-
cal condition. The original study was approved by the local ethics 
committee	 (Ethics	 Committee	 of	 the	 Institute	 of	 Psychiatry	 and	
Neurology	in	Warsaw)	and	all	individuals	provided	written	informed	
consent before participating.

EEG activity of 19 cortical regions according to the international 
10–	20	montage	(Fp1,	Fp2,	F3,	F4,	F7,	F8,	Fz,	C3,	C4,	Cz,	T3,	T4,	T5,	
T6,	P3,	P4,	Pz,	O1,	 and	O2)	was	 recorded	with	a	 sampling	 rate	of	
250	Hz.	The	reference	electrode	was	positioned	at	FCz.	The	origi-
nal measurements lasted fifteen minutes and were carried out at an 
eyes-	closed	resting-	state	condition.	Further	details	on	study	partic-
ipants and data acquisition are found in the original article support-
ing	the	dataset	(Olejarczyk	&	Jernajczyk,	2017b).	The	datasets	were	
downloaded	 from	 the	 repository	 at	 http://dx.doi.org/10.18150/	
repod.0107441.

2.2 | Data preprocessing

All data preprocessing steps and subsequent analyses were per-
formed	 using	 Matlab	 (MathWorks,	 Natick,	 MA),	 while	 statistical	
analysis	was	done	using	Matlab	and	TIBCO	Statistica	13.5	 (TIBCO	
Software	 Inc.,	 Palo	Alto,	CA).	Data	 preprocessing	was	 carried	 out	
using	 the	 EEGLAB	 toolbox	 (Delorme	&	Makeig,	 2004)	 along	with	
custom scripts. The preprocessing pipeline was designed with the 
intention of supporting automation at every possible step. First, 
all	 datasets	 were	 visually	 inspected	 and	 continuous	 artifact-	free	
segments	 of	 length	 at	 least	 65	 s	 were	 selected	 for	 further	 pro-
cessing.	 The	 data	 segments	were	 band-	pass	 filtered	 using	 a	 zero-	
phase	 Butterworth	 filter	 of	 order	 5	 with	 lower	 and	 upper	 cutoff	

frequencies	0.5	and	45	Hz,	respectively.	Subsequently,	artifacts	of	
extraneural	 origin	 (i.e.,	 eye	 movements,	 muscle	 contractions,	 and	
cardiac	activity)	were	removed	using	the	Multiple	Artifact	Rejection	
Algorithm	 (MARA),	 which	 is	 a	 machine	 learning-	based	 plug-	in	 of	
EEGLAB trained by professionals on thousands of EEG datasets 
(Winkler	et	al.,	2011,	2014).	MARA	utilizes	independent	component	
analysis	(ICA)	to	decompose	EEG	data	into	maximally	linearly	inde-
pendent components. From these components, those that can be 
associated with various types of artifacts are identified based on 
six	 features	 capturing	 temporal,	 spatial,	 and	 spectral	 information	
(detailed in Winkler et al. (2014)) and rejected before performing 
reverse	 ICA.	 After	 artifact	 rejection,	 data	 were	 again	 visually	 in-
spected without knowing group labels in order to avoid selection 
bias, and one clean, continuous segment of length 214 data points 
was	selected	from	each	subject	for	further	analysis	(exact	positions	
of the final data segments used in the analysis are provided for each 
subject	in	Table	S1).	The	data	were	then	transformed	into	reference-	
free	Current	Source	Density	(CSD)	estimates	using	a	spherical	spline	
algorithm	 (Perrin	et	al.,	1989).	CSD	transformation	has	 the	advan-
tage	over	other	re-	referencing	schemes	in	providing	estimates	free	
of the actual choice of reference electrode during recording, as well 
as	it	reduces	the	effects	of	volume	conduction	(Nunez	et	al.,	1997).	
CSD	transformation	was	carried	out	in	Matlab	using	the	CSDToolbox	
(Kayser	&	Tenke,	2006a,	2006b).	Finally,	data	from	all	channels	were	
standardized	in	order	to	have	zero	mean	and	unit	variance,	so	that	
their	PSD	estimates	(see	below)	would	yield	a	normalized	distribu-
tion of power over frequency with the theoretical integral of the 
power spectrum equaling 1 (He, 2011).

2.3 | Data analysis

2.3.1 | Separating	scale-	free	and	oscillatory	
components in the power spectrum

The	Matlab	 implementation	 of	 IRASA	 as	 published	 by	Wen	 and	
Liu	 (2016)	 was	 used	 to	 calculate	 the	 PSD	 estimates	 of	 the	 pre-
processed	EEG	signals	and	to	separate	 their	scale-	free	and	oscil-
latory components (for a short summary of the theoretical basis 
and	details	of	the	IRASA	algorithm	see	Appendix	1).	At	the	utilized	
segment length (~65	s),	it	is	important	to	consider	the	plausible	non-	
stationary nature of electrophysiological signals that might affect 
the	IRASA	analysis.	Therefore,	we	performed	Augmented	Dickey–	
Fuller	tests	to	check	for	signal	non-	stationarity,	which	was	rejected	
in all cases at the level � = . 05. The amri_sig_fractal function of the 
IRASA	 toolbox	was	 used	 for	 PSD	 estimation	with	 input	 settings	
srate =	250,	frange=[1, 30], detrend = 1, and hset = linspace(1.05,	
1.5,	20).	During	IRASA,	the	PSD	of	the	signal	was	estimated	using	
fast Fourier transform with Hanning window tapering. The fre-
quency resolution was set to be two times the smallest power of 2 
that was greater than the number in the resampled data segments. 
The resampling scheme was applied using resampling factor pairs 
h and 1/h with 20 values of h	 evenly	 distributed	 between	 1.05	

http://dx.doi.org/10.18150/repod.0107441
http://dx.doi.org/10.18150/repod.0107441
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and	1.5.	 The	maximum	value	 of	 the	 resampling	 factor	h was set 
to	1.5	so	that	resampling	would	not	introduce	a	filtering	effect	in	
the	range	1–	30	Hz	(for	more	details,	see	Supplementary	Material).	
Moreover,	 in	order	to	provide	more	reliable	estimates,	 IRASA	re-
turns	the	mean	PSD	obtained	from	15	overlapping	segments	of	the	
original	data,	each	with	size	90%	of	that	of	the	total	signal	length.	
The	outputs	of	IRASA,	namely	the	mixed	PSD,	and	the	fractal	and	
oscillatory	components	are	illustrated	in	Figure	1.	Note	that	IRASA	
estimates the power spectral density that is not strictly equiva-
lent	to	the	power	spectrum	(Miller	&	Childers,	2012);	however,	for	
the	 sake	 of	 simplicity,	 in	 the	 following	we	will	 refer	 to	 the	 PSD	
estimates	and	 their	 fractal	and	oscillatory	components	as	mixed,	
fractal, and oscillatory spectra.

2.3.2 | Band-	limited	power	and	spectral	slope	
calculation

We	investigated	band-	limited	power	(BLP)	of	the	mixed,	fractal,	and	
oscillatory components in four frequency bands traditionally used in 
EEG	analysis:	delta	(1–	4	Hz),	theta	(4–	8	Hz),	alpha	(8–	13	Hz),	and	beta	
(13–	30	Hz).	BLP	was	acquired	as	the	sum	of	power	(squared	absolute	
amplitude) within the given frequency range.

Spectral	exponent	(β) estimation of the fractal component for 
each channel was carried out using the amri_sig_plawfit function 
of	the	IRASA	toolbox.	In	that,	the	spectral	slope	is	acquired	by	fit-
ting	a	power-	law	function	on	the	fractal	power	spectrum.	This	 is	
achieved	by	 first	 log-	log	 transforming	 frequencies	 and	 their	 cor-
responding powers. However, this procedure results in an over-
representation of higher frequencies; therefore, frequencies are 
resampled to yield an even representation on the logarithmic scale. 
Then,	 least-	squares	 regression	 is	 used	 to	 obtain	 the	 best	 fitting	
linear	function,	whose	slope	gives	the	spectral	exponent	β of the 
power spectrum.

It	 has	 been	 shown	 previously	 that	 neurophysiological	 signals	
can	express	a	multimodal	nature	that	is,	they	have	multiple	distinct	
scaling ranges with different spectral slopes in their power spectra 
(He	et	 al.,	 2010;	Nagy	et	 al.,	 2017;	Wen	&	Liu,	2016).	 In	 that,	 the	
power spectrum can be divided into a slow component ranging ap-
proximately	 from	1	 to	10	Hz	with	a	 smaller,	 and	a	high-	frequency	
component with a steeper spectral slope. With sufficient temporal 
resolution	and	measurement	length,	further	ultraslow	(below	0.5	Hz)	
and	ultrahigh	(approximately	over	50	Hz)	regimes	can	be	separated	
(for	details	see	He	et	al.	(2010)	and	Wen	and	Liu	(2016),	respectively).	
The	 data	 analyzed	 in	 this	 study	 allowed	 for	 reliable	 spectral	 esti-
mates	in	the	0.5–	30	range,	thus	we	treated	neural	signals	as	bimodal,	
and	defined	the	slow	component	as	ranging	between	1	and	13	Hz	
and	the	fast	component	as	ranging	from	13	to	30	Hz.	Consequently,	
the spectral slope was calculated in these two frequency ranges 
separately, yielding estimates of βlo and βhi	characterizing	the	slope	
of	 the	 fractal	power	spectrum	 in	 the	1–	13	and	13–	30	Hz	regimes,	
respectively (see Figure 1). The boundary frequency was defined as 
13	Hz	in	order	to	provide	consistency	among	BLP	and	spectral	ex-
ponent analyses.

It	 is	 important	to	emphasize	that	we	worked	with	standardized	
time	 series	 in	 this	 study.	 Since	 the	 total	 integrated	 power	 of	 the	
power spectrum yields the variance of the signal (which in the stan-
dardized	case	 is	equal	 to	1),	 this	means	 that	BLP	estimates	 in	 this	
study reflect on the relative distribution of power among frequen-
cies	instead	of	absolute	power.	On	the	other	hand,	standardization	
has	no	effect	on	the	spectral	slope	itself.	Furthermore,	standardiza-
tion also yielded normally distributed BLP estimates in most cases. 
In	many	studies,	normality	of	the	data	is	ensured	by	log-	transforming	
the	 absolute	 (i.e.,	 non-	normalized)	 BLP	 estimates	 (see	 e.g.,	 Kam	
et	 al.,	 2013).	However,	 during	 IRASA,	 estimates	 of	 the	 oscillatory	
spectrum are acquired by subtracting the fractal spectrum from the 
mixed	spectrum	and	thus	this	procedure	can	yield	negative	values	
preventing	log-	transformation.

F I G U R E  1  Mixed,	fractal,	and	oscillatory	spectra.	Illustrative	examples	are	shown	from	regions	Fp2	(a)	and	O2	(b)	with	markedly	different	
spectral	characteristics.	On	both	panels,	the	original/mixed	PSD	is	marked	in	gray	and	the	separated	fractal	component	in	black.	The	two	
distinct	scaling	ranges	(low:	1–	13	Hz,	marked	in	blue;	high:	13–	30	Hz,	marked	in	red)	with	different	spectral	exponents	(slopes)	are	apparent,	
especially	in	case	of	O2.	The	inset	plots	show	the	spectra	of	the	corresponding	extracted	oscillatory	components,	which	are	obtained	by	
subtracting	the	fractal	component	from	the	original	(mixed)	spectrum.	Strong	alpha	activity	is	apparent	over	O2	and	relatively	absent	over	
F8
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2.4 | Statistical analysis

2.4.1 | Channel-	wise	analysis

Band-	limited	power	estimates	 in	 all	 four	 frequency	 ranges	 as	well	
as βlo and βhi	 values	were	compared	between	HC	and	SZ	subjects	
in	a	channel-	wise	manner.	In	that,	Lilliefors	tests	were	applied	first	
to	verify	normality	of	the	data.	If	either	group	failed	at	this	step,	a	
Mann–	Whitney	U	test	was	used	for	group	comparison.	Otherwise,	
F test was used to confirm equality of variances in the two groups, 
and	Welch-	corrected	t test was applied in case of unequal variances 
while	a	two-	sample	t test otherwise. Finally, the false discovery rate 
(FDR)	 method	 of	 Benjamini	 and	 Hochberg	 (1995)	 was	 applied	 to	
control for multiple comparisons with level � = . 05. For all signifi-
cant differences, we also computed the adjusted power (AP) and 
the	effect	size	(ES)	in	TIBCO	Statistica.	Also,	in	order	to	verify	that	
spectral	exponents	of	low-		and	high-	range	neural	activity	are	indeed	
different	 (i.e.,	 the	EEG	data	have	a	bimodal	PSD),	we	 tested	 if	 the	
differences between βlo and βhi acquired as Δ� = �hi − � lo are signifi-
cantly	different	from	zero	for	every	channel.	In	that,	we	used	one-	
sample t	tests	or	one-	sample	Wilcoxon	signed	rank	tests	(in	case	of	
non-	normal	distribution	of	Δ� as confirmed by Lilliefors test) sepa-
rately	for	HC	and	SZ	groups	and	applied	FDR	correction	with	level	
� = . 05 to control for multiple comparisons. Furthermore, in order 
to confirm that a bimodal model provided a better fit for the power 
spectra than a unimodal model (estimating a single β	utilizing	the	en-
tire	1–	30	Hz	range),	Goodness-	of	Fit	(GoF)	statistics	obtained	with	
the two approaches were compared using F tests (for details, see 
Supplementary	Material).

2.4.2 | Resting-	state	network	analysis

In	 order	 to	 reduce	 dimensionality	 of	 the	 results,	 we	 grouped	 the	
channels according to which intrinsic functional network of the brain 
they most likely represent. This procedure was carried out following 
the probability maps provided in Giacometti et al. (2014), similarly 
as	in	a	previous	study	(Racz	et	al.,	2019).	Brain	parcellation	was	per-
formed	so	that	channel	groups	represented	seven	intrinsic	resting-	
state	networks	(RSN)	of	the	brain,	as	identified	by	Yeo	et	al.	(2011).	
Note	 that	 here	 under	 the	 term	 “resting-	state	 network,”	 we	 refer	
to a collection of brain regions that were identified as functionally 
coupled based on functional magnetic resonance imaging studies. 
Therefore, grouping of the channels was carried out so that groups 
reflect	the	functional	organization	of	the	brain.	With	a	limited	spatial	
resolution of 19 channels, some regions could not be unequivocally 
assigned	 to	one	RSN.	Thus,	 in	 two	 cases	we	grouped	 channels	 to	
represent	 the	 joint	 activity	 of	 two	RSNs,	 resulting	 in	 a	 final	 num-
ber	of	five	groups.	These	included	the	visual	network	(VN,	channels	
O1,	O2,	T5,	and	T6),	 the	somatomotor	network	 (SM,	channels	C3,	
C4,	and	Cz),	the	dorsal	attention	network	(DA,	channels	P3,	P4,	and	
Pz),	the	combined	ventral	attention	and	limbic	networks	(VAL,	chan-
nels	F7,	F8,	T3,	and	T4),	and	a	joint	frontal	network	(FR)	comprising	

regions of the frontoparietal (channels F3 and F4) and the default 
mode	networks	(channels	Fp1,	Fp2,	and	Fz).	The	channel	groups	rep-
resenting	the	five	RSNs	are	shown	in	Figure	2.	Similarly	to	channel-	
wise	 analysis,	 BLP	 estimates	 of	 the	mixed,	 fractal,	 and	 oscillatory	
spectra	in	all	five	frequency	bands	along	with	low-		and	high-	range	
spectral	 exponents	 were	 investigated.	 For	 each	 case,	 the	 given	
index	for	a	particular	RSN	was	acquired	by	averaging	the	values	over	
the	channels	belonging	to	that	RSN.	During	the	RSN-	level	analysis,	
between-	group	differences	of	corresponding	networks	were	inves-
tigated	according	to	the	same	statistical	principles	as	in	channel-	wise	
analysis.

3  | RESULTS

3.1 | Low-  and high- range spectral exponents

A characteristic spatial distribution of βlo and βhi was observable 
over	the	cortex	in	both	groups	(Figure	3).	In	that,	βlo was higher over 
the frontal and central regions, while the opposite topology was re-
vealed in βhi with the highest values observed over the occipital cor-
tex.	Although	a	tendency	of	lower	βlo over the central regions could 
be	observed	in	SZ	subjects	(see	left	panels	of	Figure	3),	no	significant	
difference	was	found	between	HC	and	SZ	groups	following	FDR	ad-
justment Δ�	was	found	significantly	different	from	zero	(p <	 .05	in	
all	cases,	corrected)	over	16	out	of	the	19	investigated	cortical	re-
gions	 in	both	HC	and	SZ	groups	 (Figure	3,	 right).	Notably,	Δ� was 

F I G U R E  2  Electrode	layout	and	resting-	state	networks.	The	
parcellation	reflects	the	functional	organization	of	the	brain.	The	
five	RSNs	are	marked	in	different	colors.	RSN	=	resting-	state	
network;	VN	=	visual	network;	SM	=	somatomotor;	DA	= dorsal 
attention; VAL =	ventral	attention-		and	limbic;	FR	= frontal
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found smaller over the frontal when compared to occipital regions 
in both groups, as well as fractal spectra were found unimodal over 
the Fp1, F3, and F7 regions in the HC and over Fp1, Fp2, and F7 
regions	 in	 the	SZ	group.	Furthermore,	comparing	GoF	statistics	of	
uni-		and	bimodal	fits	also	indicated	that	the	latter	provided	a	better	
characterization	of	the	power	spectra	in	the	vast	majority	of	cases	
(see	Table	S3),	while	regions	where	the	power	spectrum	was	found	
rather unimodal corresponded well with those where no difference 
was found between βlo and βhi.	Nevertheless,	these	results	indicated	
a	truly	bimodal	nature	of	scale-	free	neural	activity.

It	is	important	to	note,	that	in	our	analysis,	we	utilized	segments	
of length ~	65	s,	which	is	considerably	longer	than	the	window	sizes	
(3–	10	s)	used	in	previous	IRASA-	based	studies	(Kolvoort	et	al.,	2020;	
Muthukumaraswamy	&	 Liley,	 2018;	Wen	&	 Liu,	 2016).	 Therefore,	
we	re-	analyzed	our	datasets	using	three	additional	(2.5,	5,	and	10	s)	
window	 sizes.	 In	 this	 analysis	 pipeline,	 for	 each	 window	 size	 we	
obtained spectral slopes from 100 consecutive, overlapping data 
segments	with	 a	displacement	of	0.5	 s,	 and	 statistically	 evaluated	
the likelihood that the spectral slopes acquired when using the en-
tire signal came from the same distribution as those obtained with 

F I G U R E  3   Topology of spectral slopes. 
Group-	averaged	spatial	maps	of	βlo (left) 
and βhi (middle) reveal characteristic 
topologies in both groups. Regions where 
the	difference	between	high-		and	low-	
range spectral slopes (right) was found 
significantly different from 0 following 
FDR	adjustment	with	level	� = . 05 are 
marked with crossed circles

F I G U R E  4  Topology	of	delta-	band	
BLP.	Group-	averaged	delta-	band	BLP	
maps	of	the	mixed	(left),	fractal	(middle),	
and oscillatory (right) spectra of HC 
and	SZ	groups	reveal	stronger	relative	
delta power over the frontal and central 
regions.	The	corresponding	group-	average	
spatial maps are on the same scale for 
better comparison demonstrating the 
higher values in HC, especially in case 
of	mixed	and	fractal	spectra.	Crossed	
circles	mark	between-	group	differences	
that were found significant following 
FDR	adjustment	with	level	� = . 05. 
HC =	healthy	control;	SZ	=	schizophrenia;	
BLP =	band-	limited	power;	FDR	= false 
discovery rate
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smaller	 sliding	windows	 (for	 results,	 see	 Supplementary	Material).	
Results	obtained	from	this	analysis	showed	that	for	all	window	sizes,	
the original spectral slopes were representative of the populations 
obtained	with	smaller	 time	windows	 in	almost	all	cases	 (Table	S2),	
indicating	that	window	size	did	not	have	a	substantial	effect	on	the	
results.

3.2 | Channel- wise results of mixed, fractal, and 
oscillatory BLP

Significant	 between-	group	 differences	 were	 found	 only	 in	 the	
delta	 band	 (Figure	 4).	 In	 that,	HC	 subjects	 expressed	 significantly	
higher	delta	BLP	in	the	mixed	spectrum	over	the	C3	(p = .0371, cor-
rected, AP =	0.3620,	ES	= 1.0994). The same difference was found 
when investigating the fractal component of the power spectrum 
(p = .0433, corrected, AP =	 0.3415,	 ES	=	 1.0764).	 On	 the	 other	
hand,	no	significant	between-	group	difference	was	 found	 in	oscil-
latory	delta	BLP	 following	FDR	adjustment.	Furthermore,	 in	order	
to	verify	that	the	difference	observed	in	mixed	BLP	could	at	least	in	
part attributed to differences in fractal BLP, we performed analysis 
of	covariance	(ANCOVA)	in	which	the	effect	of	group	(HC	vs.	SZ)	was	
investigated	on	mixed	BLP	with	fractal	BLP	included	as	a	covariate.	
The inclusion of fractal BLP in the model rendered the main effect 
of	group	 in	mixed	BLP	non-	significant	 (p =	 .3354),	confirming	that	
the significantly lower delta BLP over C3 in HC was at least in part a 
consequence of altered fractal BLP.

3.3 | RSN- level results of mixed, fractal, and 
oscillatory BLP

The characteristic differences could be captured more robustly 
when	channels	were	 collapsed	onto	RSNs	 to	better	 represent	 the	
functional	 organization	of	 the	 brain	 (Figure	5).	Accordingly,	mixed	
and	 fractal	 delta-	band	 BLP	were	 found	 significantly	 higher	 in	HC	
subjects	over	the	SM	network	(p =	.0035,	AP	=	0.6384,	ES	=	1.1832	
and p = .0079, AP =	 0.5761,	 ES	 =	 1.1174	 for	 mixed	 and	 fractal	
BLP, respectively, corrected), while no differences were found in 

oscillatory	BLP	between	the	two	groups.	ANCOVA	analysis	showed	
that including fractal BLP as a covariate renders the observed dif-
ference	in	mixed	BLP	non-	significant	(p =	.1761),	indicating	that	the	
lower	delta	BLP	over	the	SM	network	in	SZ	was	at	least	in	part	due	
to	lower	fractal	BLP.	Similarly	to	channel-	wise	results,	no	differences	
were found in the theta, alpha, or beta bands.

3.4 | Validation of the results

Due	 to	 the	 frequency	 range	 (0.5–	45	Hz)	 of	 the	 preprocessed	 sig-
nals,	we	were	restrained	to	utilize	a	smaller	set	of	resampling	factors	
extending	 from	1.05	to	1.5.	Although	these	settings	allowed	for	a	
broader effective frequency range in estimating the fractal compo-
nent	 of	 the	 spectrum	 and	 a	well-	defined	 breakpoint	 between	 the	
low-		and	high-	range	regimes,	they	came	at	the	expense	of	occasion-
ally imperfect elimination of large oscillatory components such as a 
broad	alpha	peak	(Wen	&	Liu,	2016).	Therefore,	it	was	crucial	to	ver-
ify the observed differences using a broader set of resampling fac-
tors, where spectral slope and fractal/oscillatory BLP estimation are 
less	likely	to	be	biased.	For	this	purpose,	we	re-	analyzed	all	datasets	
with h	 ranging	 from	1.05	 to	2.0	 (25	evenly	distributed	values).	As	
h =	2	limits	the	effective	frequency	range	to	1–	22.5	Hz,	in	this	analy-
sis we only considered βlo and BLP values from the delta, theta, and 
alpha bands. Results obtained from this analysis pipeline were found 
well in line with those obtained with h	ranging	from	1.05	to	1.5,	with	
the	exception	that	the	difference	in	fractal	BLP	between	HC	and	SZ	
over C3 was found only marginally significant (p =	.0663,	corrected,	
AP =	0.3158,	ES	=	1.0469).	Further	details	of	this	approach	and	the	
acquired	results	are	provided	in	the	Supplementary	Material.

4  | DISCUSSION

In	this	study,	we	applied	a	novel	tool	for	the	analysis	of	resting-	state	
EEG	 acquired	 from	 schizophrenic	 patients	 and	 healthy	 controls,	
namely	separating	the	scale-	free	and	oscillatory	components	of	their	
neurophysiological	recordings	using	IRASA	(Wen	&	Liu,	2016).	Our	
analysis	revealed	decreased	delta	BLP	in	patients	with	SZ;	however,	

F I G U R E  5  Between-	group	differences	in	corresponding	RSNs	in	delta-	band	BLP.	Asterisk	symbols	mark	differences	that	were	found	
significant	following	FDR	correction	with	level	α = . 05.	RSN	=	resting-	state	network;	BLP	=	band-	limited	power;	FDR	= false discovery rate; 
VN	=	visual	network;	SM	=	somatomotor;	DA	= dorsal attention; VAL =	ventral	attention-		and	limbic;	FR	= frontal
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the	differences	found	in	the	original	(mixed)	spectra	could	be	attrib-
uted to alterations in the fractal rather than the oscillatory compo-
nent. Electrophysiological activity in both groups was confirmed to 
have	a	bimodal	PSD	over	most	cortical	regions	 in	accordance	with	
previous	studies	(He	et	al.,	2010;	Nagy	et	al.,	2017).	Additionally,	we	
found	marked	spatial	variability	of	scaling	exponents	in	both	groups,	
further highlighting the importance of the proposed approach.

Surprisingly,	our	results	indicated	a	shift	toward	higher	frequen-
cies	 in	the	distribution	of	spectral	power	in	SZ	patients,	 leading	to	
a decrease of delta BLP over the central regions. This is in contrast 
with consistent findings of increased delta activity frequently re-
ported	 in	schizophrenic	patients	 (for	a	 recent	 review,	 see	Newson	
and Thiagarajan (2019)). There are numerous factors that could lead 
to these seemingly contradictory results. Probably, the most general 
cause	is	the	fundamentally	heterogeneous	nature	of	schizophrenia	
in terms of widely varying symptomatology, affected psychocogni-
tive	 functions	 and	disease	 severity	 (Moran	&	Hong,	 2011;	 Seaton	
et al., 2001). Accordingly, several studies specifically attempted to 
resolve the inconsistencies regarding quantitative EEG analysis in 
SZ.	Begic	et	al.	(2000)	investigated	the	effects	of	disease	phenotype	
(i.e., positive or negative), diagnostic criteria and medication on EEG 
findings	 in	SZ.	They	found	a	sharp	contrast	between	negative	and	
positive	phenotypes,	with	the	former	characterized	by	an	increase	in	
delta, theta, and beta, and a decrease in alpha activity, while the lat-
ter with both decrease and increase in delta activity. Their results are 
in	accordance	with	those	of	Saletu	et	al.	(1990),	who	also	reported	
increased	 and	 decreased	 delta	 activity	 in	 SZ	 patients	with	mainly	
negative and positive symptoms, respectively. Furthermore, the 
shift toward higher frequencies, as captured in increased beta ac-
tivity,	was	more	pronounced	in	the	positive	than	in	the	negative	SZ	
group	(Saletu	et	al.,	1990).	John	et	al.	(2009)	reported	higher	alpha	
BLP	 in	 SZ	 patients	 with	 positive	 symptoms,	 while	 also	 suggested	
that an increase in delta activity is linked to negative symptomatol-
ogy spanning from hypometabolism of the frontal cortical regions. 
Harris	et	al.	 (2001)	 sorted	SZ	patients	 into	 three	groups	based	on	
their psychopathological symptoms and reported that while the 
“disorganization	 syndrome”	 and	 “psychomotor	 poverty	 syndrome”	
subtypes	could	be	characterized	with	higher	delta,	theta	and	lower	
alpha	activity,	the	“reality	distortion”	group	was	characterized	with	
increased	alpha	activity.	On	a	different	note,	 it	 is	well	 established	
that	 the	 acute	 psychotic	 phase	 of	 SZ	 is	 predominantly	 character-
ized	by	positive	symptoms	 (i.e.,	attention	deficit,	 reality	distortion,	
agitation,	 anxiety)	 and	hyperdopaminergia;	while	 in	chronic,	medi-
cated	 SZ	 negative	 symptoms	 (cognitive	 deficit,	 decreased	motiva-
tion, blunted affect, social withdrawal) are more common (Laruelle 
et	al.,	1999;	Sponheim	et	al.,	2010;	Wang	et	al.,	2013).	Accordingly,	
electrophysiological	differences	between	the	various	phases	of	SZ	
might	 be	 expected.	 Indeed,	 several	 studies	 have	 found	 that	 aug-
mented delta and theta activity could only be observed in chronic 
but	not	first-	episode	or	early-	stage	SZ	(Harris	et	al.,	2006;	Ranlund	
et al., 2014). These results, however, are also challenged by stud-
ies	 reporting	 no	 difference	 between	 first-	episode	 and	 chronic	 SZ	
(Sponheim	et	al.,	1994)	or	finding	elevated	delta	and	theta	activity	

in	 first-	episode	patients	 (Clementz	et	 al.,	 1994;	 John	et	 al.,	 2009).	
Pharmaceutical treatment is also frequently reported to introduce 
alterations in the EEG spectra, usually resulting in a slowing of corti-
cal	rhythms	(Harris	et	al.,	2006;	Itoh	et	al.,	2011;	Knott	et	al.,	2001;	
Tislerova	et	al.,	2008).	Nevertheless,	medication	effects	are	unlikely	
to influence the results presented here, as subjects went through a 
medication washout period prior to measurement. Finally, another 
reason behind the controversies could be that some studies worked 
with	non-	normalized,	while	others	with	normalized	power	 spectra	
(Newson	&	Thiagarajan,	2019),	although	this	seems	unlikely	as	gen-
erally similar results can be acquired when applying both methods 
(John	et	al.,	1994).	Without	clinical	data	regarding	symptomatology,	
medication	history	and	disease	duration	of	SZ	subjects	on	hand,	the	
findings of decreased delta BLP reported in our study cannot be 
fully	explained	or	linked	to	symptoms	of	schizophrenia	and	require	
further research. With the above considerations in mind, the most 
plausible	explanation	for	our	results	is	that	the	patient	cohort	con-
sisted	of	young	subjects	characterized	with	positive	symptomatol-
ogy	and	free	of	drug-	related	effects	due	to	the	medication	washout	
period prior to measurement, although in absence of medical data, 
this	explanation	remains	speculative.	Nevertheless,	our	data	analysis	
pipeline	was	designed	to	be	maximally	data	driven	and	thus	readily	
reproducible	with	the	exact	same	settings	on	different	datasets	with	
the necessary clinical information supplied, thus hopefully facilitat-
ing further research aiming at resolving this issue.

Many	 previous	 studies	 reporting	 on	 EEG	 abnormalities	 implic-
itly	considered	narrow-	band	neural	activity	emerging	from	neuronal	
circuit	mechanisms	characteristic	of	various	cortical	areas	(Buzsaki	
&	Draguhn,	2004;	Javitt	et	al.,	2020).	Consequently,	findings	were	
mostly implemented as reflecting the involvement of specific brain 
regions	 responsible	 for	 generating	 such	 rhythmic	 activity.	 In	 that,	
elevated delta activity was often seen as resulting from the aber-
rant function of thalamocortical projections (Hunt et al., 2017; Llinas 
et al., 1999). Aberrations in alpha BLP are also frequently associated 
with the dysfunction of the thalamus and its role in cortical synchro-
nization	(Goldstein	et	al.,	2015;	Kirino,	2004).	In	addition,	both	delta	
and	alpha	activity	have	been	associated	with	a	generalized	decline	in	
the	function	and	metabolism	of	the	frontal	cortex,	that	is,	hypofron-
tality	(Gattaz	et	al.,	1992;	Knott	et	al.,	2001;	Knyazeva	et	al.,	2008).	
Many	of	these	conclusions	are	well	in	line	with	results	acquired	by	
utilizing	 source	 reconstruction	 approaches	 allowing	 for	 identifica-
tion	of	affected	brain	regions	(Kim	et	al.,	2015;	Mientus	et	al.,	2002;	
Pascual-	Marqui	et	al.,	1999).	Furthermore,	they	are	also	supported	
by evidence from studies using different imaging techniques with 
exact	 spatial	 localization,	 such	 as	 positron	 emission	 tomography	
or functional magnetic resonance imaging (Andreasen et al., 1997; 
Damaraju	et	al.,	2014;	Wolkin	et	al.,	1992).	On	the	other	hand,	the	
findings reported here indicate that EEG differences between HC 
and	SZ	subjects	could	not	be	attributed	solely	to	alterations	of	the	
rhythmic (oscillatory), but necessarily to the arrhythmic (broadband) 
component of neural activity, too. This hypothesis is supported by 
the fact that when we separated the oscillatory and fractal compo-
nents	of	neural	activity,	BLP	differences	found	in	the	mixed	spectra	
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were present only in the fractal but not in the oscillatory compo-
nents. Furthermore, when we included fractal BLP as a covariate 
into	the	analysis	of	mixed	BLP,	it	rendered	the	previously	observed	
differences	 non-	significant,	 further	 indicating	 that	 reduction	 of	
mixed	BLP	 in	SZ	can	be	attributed	 (at	 least	 in	part)	 to	a	 reduction	
in	fractal	BLP.	In	addition,	both	fractal	BLP	and	spectral	slopes	re-
vealed	significant	spatial	variability	over	the	cortex,	 indicating	that	
scale-	free	brain	 activity	 indeed	has	 functional	 significance	 (as	dis-
cussed below) instead of merely being noise (He et al., 2010). These 
findings raise the possibility that involvement of different functions 
and	mechanisms,	namely	those	generating	the	scale-	free	component	
of neural activity, may also play an important role in the neural basis 
and	pathomechanism	of	SZ.

There has been a considerable debate on the role and functional 
significance	of	scale-	free	brain	activity.	In	fact,	since	scale-	free	dy-
namics are ubiquitously present in a plethora of natural processes 
(Per	Bak,	1996;	Brown	et	al.,	2002;	Gisiger,	2001;	Mandelbrot,	1983),	
in many cases, the fractal component of neural activity is discarded 
from analysis and referred to as “1/f	noise”	(Mitra	&	Pesaran,	1999;	
Zarahn	et	al.,	1997).	On	the	other	hand,	there	has	been	growing	ev-
idence	lately	pointing	to	the	direction	that	scale-	free	brain	activity	
carries substantial functional significance and contains fine temporal 
structuring	that	differentiates	it	from	other	natural	phenomena	ex-
pressing	fractal	dynamics	(He	et	al.,	2010).	 It	has	been	shown	that	
the	scaling	exponent	of	global	neuronal	synchronization	in	alpha	and	
beta	activity	decreases	when	transitioning	from	eyes-	open	to	eyes-	
closed	states	(Racz	et	al.,	2018;	Stam	&	de	Bruin,	2004).	The	spec-
tral slope was also reported to reduce during increased cognitive 
performance	 (Ciuciu	et	al.,	2012;	He,	2011;	He	et	al.,	2010;	Zilber	
et al., 2012). As a higher (lower) spectral slope indicates stronger 
(weaker) autocorrelation, this change may reflect a required switch 
of the brain to more efficient online information processing during 
task solving (He, 2011). This is in line with reports of lower spec-
tral	 slope	 in	 adults	with	 trait	 anxiety	 (Tolkunov	 et	 al.,	 2010)	 indi-
cating	a	constantly	active	state.	As	anxiety	 is	often	a	core	feature	
of	schizophrenia	(Muller	et	al.,	2004),	a	lower	spectral	exponent	of	
brain	activity	could	be	expected	in	patients.	Indeed,	lower	spectral	
slope (Radulescu et al., 2012) and reduced fractal dimension and au-
tocorrelation	(Bullmore	et	al.,	1994)	were	observed	in	SZ	subjects,	in	
accordance with our results indicating a tendency of lower β	in	SZ.	
It	has	to	be	noted	however	that	the	data	analyzed	in	this	study	were	
obtained in a resting state; therefore, further research is required in 
order	to	draw	conclusions	on	the	interrelatedness	of	scale-	free	brain	
activity,	 cognitive	 performance,	 and	 schizophrenia.	 Since	 power-	
law scaling is a characteristic feature of critical systems operating 
near	 a	 phase	 transition	 (Stanley,	 1971),	 scale-	free	 neural—	even	 in	
the	resting	state—	activity	is	also	often	considered	as	an	indicator	of	
an	underlying	self-	organized	critical	state	(Bak	et	al.,	1987)	of	brain	
function	 (Bullmore	et	al.,	2009;	Chialvo,	2004;	Linkenkaer-	Hansen	
et	al.,	2001;	Racz	et	al.,	2018).	According	 to	 this	 theory,	criticality	
would	provide	an	optimal	state	for	the	brain	to	quickly	perform	large-	
scale	reorganizations	in	response	to	stimuli	and	thus	efficiently	adapt	
to	 changes	 in	 the	 external	 and/or	 internal	 environment	 (Bullmore	

et	al.,	2009;	Kitzbichler	et	al.,	2009).	In	this	framework,	alterations	
of	 scale-	free	 neural	 activity	may	 reflect	 inadequate	 processing	 of	
incoming sensory stimuli, a hypothesis in line with those suggest-
ing	dysfunctional	information	processing	in	SZ	(Barrett	et	al.,	1986;	
Callaway	&	Naghdi,	1982;	Carr	&	Wale,	1986).	Scale-	free	properties	
of	brain	 activity	 and	neuronal	 synchronization	were	 also	 reported	
to vary significantly over different cortical regions (He, 2011; He 
et	al.,	2010;	Racz	et	al.,	2019;	Wink	et	al.,	2008).	Concordantly,	we	
found relatively lower βlo and higher βhi over the visual and dorsal 
attention	networks	when	compared	to	other	RSNs	in	both	groups.	
The	spectral	exponent	of	neural	activity	was	also	found	associated	
with	 self-	consciousness	 (Huang	et	al.,	2016;	Kolvoort	et	al.,	2020)	
and	contextual	prediction	(Dave	et	al.,	2018),	two	higher	order	brain	
functions	 related	 to	 top-	down	 cognitive	 processing	 and	 often	 af-
fected	in	SZ.	Spectral	slope	was	also	found	reduced	in	elderly	when	
compared	to	young	subjects	(Mukli	et	al.,	2018;	Voytek	et	al.,	2015).	
A	hypothesis	that	could	partially	explain	these	results	suggests	that	
broadband	 scale-	free	 neural	 activity	 emerges	 regionally	 from	 the	
spatial integration of asynchronous spiking of neuronal populations 
(Miller,	2010;	Miller	et	al.,	2014)	and	thus	a	reduction	 in	β reflects 
further functional decoupling (He et al., 2010). This correspondence 
of	neuronal	synchrony	and	scale-	free	neurodynamics	also	extends	
to macroanatomical brain networks, as the regional variability of 
scale-	free	neural	dynamics	was	shown	to	positively	correlate	with	
the	 large-	scale	 functional	 connectivity	 of	 brain	 regions	 (Anderson	
et	 al.,	 2014;	 Baria	 et	 al.,	 2013;	 Ciuciu	 et	 al.,	 2014;	 Radulescu	 &	
Mujica-	Parodi,	2014).	Furthermore,	simulations	with	self-	organized	
critical systems indicate that the fractal scaling property might also 
be	 related	 to	 the	 size	 of	 coupled	 neuronal	 assemblies	 producing	
scale-	free	dynamics,	that	is,	the	scaling	exponent	of	local	neuronal	
fluctuations may reflect incoming signaling (local connectivity) to 
the	investigated	brain	region	(Mukli	et	al.,	2018).	Since	alterations	of	
functional	connectivity	are	evident	in	schizophrenia	(van	den	Heuvel	
&	Fornito,	2014),	a	better	understanding	of	 the	scale-	free	compo-
nent of neural activity may also provide further insights on how and 
why	brain	networks	are	affected	in	SZ.	With	these	considerations	in	
mind, although our findings obtained here are in contrast with those 
most commonly reported in the literature, we tentatively propose 
that alterations of a different nature (i.e., enhanced delta activity) 
could	also	be	partially	explained	by	dysfunction	in	scale-	free	brain	
activity and its corresponding cognitive functions as discussed 
above.	It	has	to	be	stressed	once	again,	however,	that	unfolding	the	
plausible	relationship	between	scale-	free	neural	activity	and	cogni-
tive	functions/information	processing	in	SZ	requires	more	elaborate	
research paradigms. Therefore, the approach introduced here might 
provide a useful tool to further the understanding and implementa-
tion	of	EEG	spectral	findings	in	SZ.

Finally, we have to address the limitations of this study along-
side	 its	 future	perspectives.	Foremost,	we	could	not	explore	the	
plausible correlations between our findings and clinical features 
of	SZ	due	to	the	lack	of	supporting	clinical	data.	Thus,	some	of	the	
conclusions drawn in this study remain elusive until further vali-
dation on a patient cohort with available clinical details regarding 
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symptom scores, disease duration and medication history. This 
is	 also	 required	 for	 exploring	 the	 potentials	 in	 fractal	 measures	
of	brain	electrical	activity	as	future	biomarkers	of	schizophrenia.	
Note	however	that	our	main	goal	here	was	to	explore	if	the	scale-	
free component of neural activity carries functional significance 
in	SZ,	which	could	be	achieved	despite	 this	 limitation.	The	small	
sample	size	also	poses	a	drawback	by	limiting	the	statistical	power	
of	the	results;	therefore,	a	re-	evaluation	of	this	pipeline	operating	
on a larger group of subjects is desirable. This latter statement is 
indeed	 relevant	 considering	 that	multiple	 between-	group	 differ-
ences (such as lower βlo or higher fractal theta) were found ini-
tially	 significant	 but	were	 then	 rendered	non-	significant	 by	FDR	
adjustment.	The	samples	analyzed	in	this	study	were	recorded	in	
a	 resting-	state,	 eyes-	closed	 condition.	Although	 this	 experimen-
tal setup has several advantages such as measurements are less 
corrupted by artifacts originating from blinking, eye or muscle 
movement, and that the protocol requires minimal cooperation 
from the subject, it also has some drawbacks in that mental pro-
cesses	and	self-	referential	activities	are	unconstrained	in	resting-	
state,	which	can	introduce	a	substantial	bias	to	the	results	 (Miall	
&	Robertson,	2006;	Weinberger	&	Berman,	1996).	This	can	be	of	
particular	importance	in	the	case	of	schizophrenia,	where	not	only	
these processes are generally distorted, but also show a great vari-
ability	between	disease	phenotypes	(Sass	&	Parnas,	2003).	On	the	
other	hand,	scale-	free	brain	activity	was	known	to	be	modulated	
by cognitive task performance (Ciuciu et al., 2012; He, 2011; He 
et	al.,	2010;	Zilber	et	al.,	2012);	therefore,	an	experimental	design	
including a cognitive stimulation paradigm that would allow for in-
vestigating	if	this	modulation	is	affected	in	SZ	seems	promising.	In	
this	study,	we	analyzed	continuous	EEG	recordings	of	length	~65	s.	
This epoch length is considerably longer than what is used in most 
studies,	usually	ranging	between	2	and	30	s	(Boutros	et	al.,	2008).	
Moreover,	only	one	segment	per	subject	was	analyzed;	however,	it	
is recommended to derive estimates based on an ensemble of ep-
ochs	(Boutros	et	al.,	2008).	This	latter	issue	was	partially	resolved,	
as	 IRASA	 per	 se	 calculates	 the	 PSD	 estimates	 from	 15	 overlap-
ping	data	segments	to	provide	robust	statistics	(Wen	&	Liu,	2016).	
We also chose to work with longer segments in order to have 
sufficient	representation	of	low-	frequency	components.	It	is	also	
known that even in the resting state, fractal properties (such as 
β)	of	neural	activity	may	change	over	time	 (Wen	&	Liu,	2016).	 In	
other words, the scaling property itself becomes a local instead of 
a global feature, in which case the process is referred to as multi-
fractal (instead of monofractal) whose scaling can only be prop-
erly	 characterized	 using	 a	 set	 of	 exponents	 (Kantelhardt,	 2009).	
Alterations in the multifractal properties of neural activity were 
reported in many physiological and pathological conditions such 
as	healthy	aging	(Mukli	et	al.,	2018),	epilepsy	(Dutta	et	al.,	2014),	
Alzheimer's	disease	(Ni	et	al.,	2016),	and	also	schizophrenia	(Racz	
et	al.,	2020;	Slezin	et	al.,	2007).	In	the	current	work,	we	implicitly	
treated neurophysiological signals as monofractals and thus only 
analyzed	their	global	scale-	free	properties,	as	our	aim	was	to	com-
pare the contribution of the fractal and oscillatory components 

to BLP estimates. However, it appears as a promising research 
direction	 to	 investigate	 the	plausible	 time-	varying	 fractal	nature	
of	brain	activity	 in	SZ,	estimated	purely	from	its	scale-	free	com-
ponent thus avoiding the confounding effects of its oscillatory 
components.

5  | CONCLUSIONS

In	this	study,	we	report	on	decreased	delta	BLP	over	central	regions	in	
SZ	when	compared	to	HC	subjects.	Separate	analysis	of	the	fractal	and	
oscillatory	components	of	PSD	estimates	indicated	however	that	most	
of these differences could be attributed to alterations in broadband, 
scale-	free	 rather	 than	 oscillatory	 brain	 activity.	 This	 was	 also	 em-
phasized	by	a	tendency	of	lower	scaling	exponents	of	both	low-		and	
high-	range	neural	activity	in	SZ.	We	found	a	characteristic	topology	
of	spectral	exponents	over	the	cortex,	further	highlighting	the	func-
tional	 significance	of	 scale-	free	neural	activity	and	 its	plausible	 role	
in	schizophrenia.	Our	findings	imply	that	neural	mechanisms	different	
from those producing oscillatory brain activity may also contribute to 
the	pathophysiology	of	schizophrenia.	Our	results	are	hoped	to	facili-
tate	further	research	focusing	on	the	scale-	free/fractal	aspect	of	brain	
activity	in	SZ	along	with	other	neuropsychiatric	disorders.
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APPENDIX 1

Separating the scale- free component of composite signals
Scale-	free	(or	fractal)	time	series	express	self-	affinity,	meaning	that	
their statistical distribution remains unchanged when resampled at 
different	time-	scales	(Mandelbrot	&	Van	Ness,	1968).	This	relation-
ship	for	a	scale-	free	time	series	f (t)	can	be	expressed	as

where fh (t)is the resampled fractal time series, h > 0 is the resam-
pling factor, and H	 is	 called	 the	Hurst	 exponent	 (Eke	et	 al.,	 2000;	
Mandelbrot	&	Van	Ness,	1968).	This	equation	implies	that	if	the	frac-
tal time series f (t) is resampled by factor h yielding fh (t), then fh (t) 
has the same statistical distribution as f (t) scaled by the factor hH. 
When	applying	the	Fourier	transformation,	this	self-	affine	property	
will	manifest	as	the	frequency	scaling	property	expressed	as

where F (�) and Fh (�) are the amplitudes at angular frequencies � for 
f (t) and fh (t),	 respectively.	Similarly,	 (2)	 implies	that	the	amplitude	of	
the resampled power spectrum is equal to that of the original power 
spectrum rescaled by hH.	It	is	important	to	highlight	that	this	property	
only	holds	for	scale-	free	processes	where	the	spectral	power	follows	
a	 power-	law	distribution,	 that	 is,	 the	 squared	 amplitude	 is	 inversely	
proportional	to	the	frequency	according	to	a	power-	law	function	with	
scaling	exponent	�	(Eke	et	al.,	2000).	This	can	be	expressed	as

where c is a constant (Eke et al., 2000). The power spectrum of such 
time	series	follows	a	straight	line	with	slope	−β	when	visualized	on	dou-
ble	logarithmic	axes.

Electrophysiological neural signals such as EEG are composed 
of	both	fractal	and	oscillatory	components	(He	et	al.,	2010;	Wen	&	
Liu,	2016)	that	can	be	modeled	by	a	simple	additive	model	(without	
considering noise) as

where y (t) is the neurophysiological signal and f (t) and x (t) mark the 
fractal	and	oscillatory	components,	respectively	(Wen	&	Liu,	2016).	
Since	 x (t)	 by	 definition	 is	 periodic	 and	 narrow-	banded,	 its	 power	
spectrum	is	non-	zero	only	at	its	characteristic	frequencies;	however,	
in rescaled versions of x (t) , the power is redistributed away from 
the original characteristic frequencies by an offset that depends on 
the	 rescaling	 factor	 (Wen	&	Liu,	2016).	On	 the	other	hand,	based	
on (2) and (3) the distribution of the spectral power of fractal time 
series (or the fractal component of a composite time series) is unaf-
fected by resampling and yields the same distribution rescaled by 
h
H. Furthermore, by resampling the original fractal time series with 
pairwise	factors	comprising	of	a	non-	negative	scaling	factor	h and 
its reciprocal 1/h,	the	geometric	mean	of	their	auto-	power	spectra	
returns	the	original	power	distribution	(Wen	&	Liu,	2016;	Yamamoto	
&	Hughson,	1991,	1993).	Conversely,	in	the	case	of	a	periodic	signal	
this	procedure	will	yield	a	power	spectrum	that	 is	zero	for	all	 fre-
quencies.	The	exceptions	are	those	cases	where	the	characteristic	
frequency is a common multiple of the rescaling factor h and its re-
ciprocal 1∕h; however, this case can be avoided with high probability 
by	 the	use	of	multiple	non-	integer	 rescaling	 factor	pairs	and	 then	
taking the median of power over all h for each frequency. Based 
on	 these	principles,	 the	 fractal	 power	 spectrum	of	 a	mixed	 signal	
can	be	separated	from	the	original	 (mixed)	power	spectrum,	while	
a reasonable estimation of the power spectrum of the oscillatory 
component can be acquired by subtracting the fractal power spec-
trum	from	the	mixed	power	spectrum	(Wen	&	Liu,	2016;	Yamamoto	
&	 Hughson,	 1991).	 The	 above-	described	 procedure	 is	 termed	
Irregular-	Resampling	Auto-	Spectral	Analysis	 (IRASA,	Wen	 and	 Liu	
(2016))	that	is	an	improved	version	of	the	Coarse	Graining	Spectral	
Analysis	(CGSA)	method	(Yamamoto	&	Hughson,	1991)	of	the	same	
purpose,	 that	 is,	 separating	scale-	free	and	oscillatory	components	
of	 composite	 signals.	 Further	 mathematical	 details	 of	 IRASA	 and	
its	advantages	over	CGSA	are	found	in	the	original	article	(Wen	&	
Liu,	2016).

(1)fh ( t ) ≜ h
H
f ( t )

(2)Fh (�) = hHF (�)

(3)|F (�)|
2
∝ c × �− �

(4)y (t) = f (t) + x (t)


