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Abstract
Introduction: Alterations in narrow-band spectral power of electroencephalography 
(EEG) recordings are commonly reported in patients with schizophrenia (SZ). It is well 
established however that electrophysiological signals comprise a broadband scale-
free (or fractal) component generated by mechanisms different from those producing 
oscillatory neural activity. Despite this known feature, it has not yet been investi-
gated if spectral abnormalities found in SZ could be attributed to scale-free or oscil-
latory brain function.
Methods: In this study, we analyzed resting-state EEG recordings of 14 SZ patients 
and 14 healthy controls. Scale-free and oscillatory components of the power spectral 
density (PSD) were separated, and band-limited power (BLP) of the original (mixed) 
PSD, as well as its fractal and oscillatory components, was estimated in five fre-
quency bands. The scaling property of the fractal component was characterized by 
its spectral exponent in two distinct frequency ranges (1–13 and 13–30 Hz).
Results: Analysis of the mixed PSD revealed a decrease of BLP in the delta band 
in SZ over the central regions; however, this difference could be attributed almost 
exclusively to a shift of power toward higher frequencies in the fractal component. 
Broadband neural activity expressed a true bimodal nature in all except frontal re-
gions. Furthermore, both low- and high-range spectral exponents exhibited a charac-
teristic topology over the cortex in both groups.
Conclusion: Our results imply strong functional significance of scale-free neural ac-
tivity in SZ and suggest that abnormalities in PSD may emerge from alterations of the 
fractal and not only the oscillatory components of neural activity.
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1  | INTRODUC TION

Despite many decades of intense research, the neural ori-
gins of schizophrenia (SZ) are still mostly unknown (Uhlhaas & 
Singer, 2010). As a consequence, no objective biomarkers of the 
disease have been identified yet, which could be used for diag-
nosis, severity scoring or therapy and progression monitoring. 
One of the more potent candidates is the amplitude—or as more 
commonly captured, the band-limited spectral power (BLP)—of 
neuronal oscillations in specific narrow-band frequency ranges 
(Boutros et  al.,  2008). By these means, identification of abnor-
malities in specific frequency bands (such as delta or alpha) could 
imply the involvement of particular neuronal circuit architectures 
(Buzsaki, 2006; Javitt et al., 2020), thus providing not only mark-
ers of the disease but insights on its underlying pathomechanisms. 
Such approaches were able to reveal characteristic differences 
between patients with SZ and healthy controls (HC). Most stud-
ies report on increased amplitude of delta-range fluctuations in 
SZ when compared to HC (Harris et al., 2006; Knott et al., 2001). 
Studies investigating normalized instead of absolute power spec-
tra yielded similar results (Kirino, 2004; Sponheim et al., 1994), in-
dicating that the distribution of power is shifted toward the lower 
frequencies in SZ. Although these findings are considered con-
sistent by most reviews and meta-analyses (Boutros et al., 2008; 
Moran & Hong, 2011; Newson & Thiagarajan, 2019), contradictory 
results do exist indicating that increased delta BLP is not a univer-
sal trait of SZ. Indeed, several reports (Begic et al., 2000; Harris 
et al., 2001; John et al., 2009) demonstrated that various disease 
phenotypes could be characterized with distinct EEG abnor-
malities in the resting state, such as decreased versus increased 
delta BLP in “positive” and “negative” schizophrenia, respectively. 
Furthermore, neuroleptic treatment (Knott et al., 2001; Matsuura 
et  al.,  1994; Tislerova et  al.,  2008) or disease chronicity (Harris 
et al., 2006; Ranlund et al., 2014) was also reported to influence 
electrophysiological findings in SZ, often resulting in decreased 
rather than increased delta activity. Finally, multiple studies identi-
fied decreased delta BLP in SZ during sleep (Keshavan et al., 1998) 
or associated with task performance (Bates et al., 2009; Donkers 
et al., 2013).

On the other hand, the limitations of treating frequency 
ranges independently instead of considering the power spectrum 
as a whole have also been stressed earlier (Moran & Hong, 2011). 
Specifically, it has been widely recognized that besides the 
narrow-band oscillatory characteristics, neural fluctuations also 
express scale-free (or fractal) behavior when investigated in a 
broadband manner (He et al., 2010). In case of scale-free dynam-
ics, the power is inversely proportional to the frequency in the 
power spectrum of the process, and the relationship is established 
via a power-law function with scaling exponent β (Eke et al., 2002). 
This property is most apparent when plotting the power spectrum 
in double logarithmic axes, where it appears as a straight line with 
a slope of − β. In case of neurophysiological signals, oscillatory pro-
cesses with characteristic frequencies (such as alpha oscillations) 

are found superimposed on this broadband activity; thus, an ad-
ditive model considering neural activity as a composite of fractal 
and oscillatory components appears reasonable (He,  2014; Wen 
& Liu, 2016). Physiological processes other than neural activity—
for example, heart rate variability (Yamamoto & Hughson, 1991)—
were also shown to exhibit similar behavior. In many of these 
cases, the oscillatory components are in the focus of interest; 
however, the presence of broadband activity can distort the re-
sults of the analysis (Yamamoto & Hughson, 1991). Data process-
ing methods such as pre-whitening or pre-coloring exist to deal 
with such issues (Bullmore et al., 2001; Mitra & Pesaran, 1999), al-
though in general, these disregard the information encoded in the 
broadband component. In contrast, the physiological relevance of 
scale-free brain activity has been emphasized in numerous works 
(e.g., He et  al.  (2010); Herman et  al.  (2011), for a review see He 
(2014)). Accordingly, based on the seminal works of Yamamoto and 
Hughson (1991, 1993), an improved analysis tool termed irregular-
resampling auto-spectral analysis (IRASA) was developed by Wen 
and Liu (2016) with the explicit purpose of separating the fractal 
and oscillatory components in the power spectrum of neurophysi-
ological signals. Hence, BLP of oscillatory activity can be computed 
without the confounding effects of broadband activity, while at 
the same time, the fractal signal component can be characterized 
by its spectral scaling exponent and/or BLP, whose estimation is 
not affected by the presence of oscillatory peaks.

In scale-free processes with equal variance but different spec-
tral slope, results similar to those found between HC and SZ in-
dividuals can be acquired. Namely, in the case of unit variance 
(hence unit total spectral power), a steeper spectral slope (i.e., 
higher scaling exponent) yields a distribution with an increased 
(decreased) fraction of power being associated with lower (higher) 
frequencies. Therefore, considering the established scale-free na-
ture of neural activity, it is plausible that alterations of the fractal 
rather than the oscillatory components could be (at least in part) 
accountable for increased low-range and decreased high-range 
spectral power in SZ. In this case, interpretation of such findings 
could be put in a different perspective, focusing also on how and 
why the scale-free characteristics of neural activity are affected 
in SZ.

Until recently, only a limited number of studies investigated the 
scale-free properties of neural activity in SZ (Nikulin et al., 2012; 
Sun et al., 2014). Furthermore, to the best of our knowledge, no 
previous study analyzed the fractal and oscillatory components 
of the EEG spectra separately and thus explored their contribu-
tions to BLP estimates. Therefore, the main goal of this present 
work was to reveal if differences in BLP found between HC and 
SZ individuals could be attributed to alterations of the fractal or 
the oscillatory components of neural activity. IRASA was utilized 
to separate oscillatory and fractal components of the original 
(mixed) power spectral density (PSD) estimates acquired from 
normalized EEG signals, and BLP was calculated in four frequency 
bands (delta, theta, alpha and beta) for all three—mixed, fractal, 
and oscillatory—spectra. Additionally, spectral scaling exponents 
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of the fractal components were also estimated in order to charac-
terize the scale-free aspect of neural activity.

2  | MATERIAL S AND METHODS

2.1 | Participants and data acquisition

Electroencephalography recordings of 14 SZ patients (7 females 
and 7 males with mean age 28.3 ± 4.1 and 27.9 ± 3.3 years, respec-
tively) and 14 HC subjects (7 females and 7 males with mean age 
28.7 ± 3.4 and 26.8 ± 2.9 years, respectively) were analyzed in this 
study. The datasets were acquired from an online repository made 
publicly available by Olejarczyk and Jernajczyk (2017a). All SZ pa-
tients met diagnostic criteria of the International Classification of 
Diseases ICD-10 for paranoid schizophrenia (category F20.0) and 
were hospitalized at the Institute of Psychiatry and Neurology in 
Warsaw, Poland. Only individuals with an ICD-10 diagnosis of cat-
egory F20.0 were included in the SZ group, as well as a medication 
washout period of at least one week was administered for all pa-
tients prior to measurement. Exclusion criteria included age under 
18  years, pregnancy, organic brain pathology, early-stage (first 
onset) SZ, severe neurological diseases (e.g., epilepsy, Alzheimer's 
disease, Parkinson's disease) and the presence of any general medi-
cal condition. The original study was approved by the local ethics 
committee (Ethics Committee of the Institute of Psychiatry and 
Neurology in Warsaw) and all individuals provided written informed 
consent before participating.

EEG activity of 19 cortical regions according to the international 
10–20 montage (Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5, 
T6, P3, P4, Pz, O1, and O2) was recorded with a sampling rate of 
250 Hz. The reference electrode was positioned at FCz. The origi-
nal measurements lasted fifteen minutes and were carried out at an 
eyes-closed resting-state condition. Further details on study partic-
ipants and data acquisition are found in the original article support-
ing the dataset (Olejarczyk & Jernajczyk, 2017b). The datasets were 
downloaded from the repository at http://dx.doi.org/10.18150/​
repod.0107441.

2.2 | Data preprocessing

All data preprocessing steps and subsequent analyses were per-
formed using Matlab (MathWorks, Natick, MA), while statistical 
analysis was done using Matlab and TIBCO Statistica 13.5 (TIBCO 
Software Inc., Palo Alto, CA). Data preprocessing was carried out 
using the EEGLAB toolbox (Delorme & Makeig,  2004) along with 
custom scripts. The preprocessing pipeline was designed with the 
intention of supporting automation at every possible step. First, 
all datasets were visually inspected and continuous artifact-free 
segments of length at least 65  s were selected for further pro-
cessing. The data segments were band-pass filtered using a zero-
phase Butterworth filter of order 5 with lower and upper cutoff 

frequencies 0.5 and 45 Hz, respectively. Subsequently, artifacts of 
extraneural origin (i.e., eye movements, muscle contractions, and 
cardiac activity) were removed using the Multiple Artifact Rejection 
Algorithm (MARA), which is a machine learning-based plug-in of 
EEGLAB trained by professionals on thousands of EEG datasets 
(Winkler et al., 2011, 2014). MARA utilizes independent component 
analysis (ICA) to decompose EEG data into maximally linearly inde-
pendent components. From these components, those that can be 
associated with various types of artifacts are identified based on 
six features capturing temporal, spatial, and spectral information 
(detailed in Winkler et  al.  (2014)) and rejected before performing 
reverse ICA. After artifact rejection, data were again visually in-
spected without knowing group labels in order to avoid selection 
bias, and one clean, continuous segment of length 214 data points 
was selected from each subject for further analysis (exact positions 
of the final data segments used in the analysis are provided for each 
subject in Table S1). The data were then transformed into reference-
free Current Source Density (CSD) estimates using a spherical spline 
algorithm (Perrin et al., 1989). CSD transformation has the advan-
tage over other re-referencing schemes in providing estimates free 
of the actual choice of reference electrode during recording, as well 
as it reduces the effects of volume conduction (Nunez et al., 1997). 
CSD transformation was carried out in Matlab using the CSDToolbox 
(Kayser & Tenke, 2006a, 2006b). Finally, data from all channels were 
standardized in order to have zero mean and unit variance, so that 
their PSD estimates (see below) would yield a normalized distribu-
tion of power over frequency with the theoretical integral of the 
power spectrum equaling 1 (He, 2011).

2.3 | Data analysis

2.3.1 | Separating scale-free and oscillatory 
components in the power spectrum

The Matlab implementation of IRASA as published by Wen and 
Liu (2016) was used to calculate the PSD estimates of the pre-
processed EEG signals and to separate their scale-free and oscil-
latory components (for a short summary of the theoretical basis 
and details of the IRASA algorithm see Appendix 1). At the utilized 
segment length (~65 s), it is important to consider the plausible non-
stationary nature of electrophysiological signals that might affect 
the IRASA analysis. Therefore, we performed Augmented Dickey–
Fuller tests to check for signal non-stationarity, which was rejected 
in all cases at the level � = . 05. The amri_sig_fractal function of the 
IRASA toolbox was used for PSD estimation with input settings 
srate = 250, frange=[1, 30], detrend = 1, and hset =  linspace(1.05, 
1.5, 20). During IRASA, the PSD of the signal was estimated using 
fast Fourier transform with Hanning window tapering. The fre-
quency resolution was set to be two times the smallest power of 2 
that was greater than the number in the resampled data segments. 
The resampling scheme was applied using resampling factor pairs 
h and 1/h with 20 values of h evenly distributed between 1.05 

http://dx.doi.org/10.18150/repod.0107441
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and 1.5. The maximum value of the resampling factor h was set 
to 1.5 so that resampling would not introduce a filtering effect in 
the range 1–30 Hz (for more details, see Supplementary Material). 
Moreover, in order to provide more reliable estimates, IRASA re-
turns the mean PSD obtained from 15 overlapping segments of the 
original data, each with size 90% of that of the total signal length. 
The outputs of IRASA, namely the mixed PSD, and the fractal and 
oscillatory components are illustrated in Figure 1. Note that IRASA 
estimates the power spectral density that is not strictly equiva-
lent to the power spectrum (Miller & Childers, 2012); however, for 
the sake of simplicity, in the following we will refer to the PSD 
estimates and their fractal and oscillatory components as mixed, 
fractal, and oscillatory spectra.

2.3.2 | Band-limited power and spectral slope 
calculation

We investigated band-limited power (BLP) of the mixed, fractal, and 
oscillatory components in four frequency bands traditionally used in 
EEG analysis: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta 
(13–30 Hz). BLP was acquired as the sum of power (squared absolute 
amplitude) within the given frequency range.

Spectral exponent (β) estimation of the fractal component for 
each channel was carried out using the amri_sig_plawfit function 
of the IRASA toolbox. In that, the spectral slope is acquired by fit-
ting a power-law function on the fractal power spectrum. This is 
achieved by first log-log transforming frequencies and their cor-
responding powers. However, this procedure results in an over-
representation of higher frequencies; therefore, frequencies are 
resampled to yield an even representation on the logarithmic scale. 
Then, least-squares regression is used to obtain the best fitting 
linear function, whose slope gives the spectral exponent β of the 
power spectrum.

It has been shown previously that neurophysiological signals 
can express a multimodal nature that is, they have multiple distinct 
scaling ranges with different spectral slopes in their power spectra 
(He et  al.,  2010; Nagy et  al.,  2017; Wen & Liu, 2016). In that, the 
power spectrum can be divided into a slow component ranging ap-
proximately from 1 to 10 Hz with a smaller, and a high-frequency 
component with a steeper spectral slope. With sufficient temporal 
resolution and measurement length, further ultraslow (below 0.5 Hz) 
and ultrahigh (approximately over 50 Hz) regimes can be separated 
(for details see He et al. (2010) and Wen and Liu (2016), respectively). 
The data analyzed in this study allowed for reliable spectral esti-
mates in the 0.5–30 range, thus we treated neural signals as bimodal, 
and defined the slow component as ranging between 1 and 13 Hz 
and the fast component as ranging from 13 to 30 Hz. Consequently, 
the spectral slope was calculated in these two frequency ranges 
separately, yielding estimates of βlo and βhi characterizing the slope 
of the fractal power spectrum in the 1–13 and 13–30 Hz regimes, 
respectively (see Figure 1). The boundary frequency was defined as 
13 Hz in order to provide consistency among BLP and spectral ex-
ponent analyses.

It is important to emphasize that we worked with standardized 
time series in this study. Since the total integrated power of the 
power spectrum yields the variance of the signal (which in the stan-
dardized case is equal to 1), this means that BLP estimates in this 
study reflect on the relative distribution of power among frequen-
cies instead of absolute power. On the other hand, standardization 
has no effect on the spectral slope itself. Furthermore, standardiza-
tion also yielded normally distributed BLP estimates in most cases. 
In many studies, normality of the data is ensured by log-transforming 
the absolute (i.e., non-normalized) BLP estimates (see e.g., Kam 
et  al.,  2013). However, during IRASA, estimates of the oscillatory 
spectrum are acquired by subtracting the fractal spectrum from the 
mixed spectrum and thus this procedure can yield negative values 
preventing log-transformation.

F I G U R E  1  Mixed, fractal, and oscillatory spectra. Illustrative examples are shown from regions Fp2 (a) and O2 (b) with markedly different 
spectral characteristics. On both panels, the original/mixed PSD is marked in gray and the separated fractal component in black. The two 
distinct scaling ranges (low: 1–13 Hz, marked in blue; high: 13–30 Hz, marked in red) with different spectral exponents (slopes) are apparent, 
especially in case of O2. The inset plots show the spectra of the corresponding extracted oscillatory components, which are obtained by 
subtracting the fractal component from the original (mixed) spectrum. Strong alpha activity is apparent over O2 and relatively absent over 
F8
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2.4 | Statistical analysis

2.4.1 | Channel-wise analysis

Band-limited power estimates in all four frequency ranges as well 
as βlo and βhi values were compared between HC and SZ subjects 
in a channel-wise manner. In that, Lilliefors tests were applied first 
to verify normality of the data. If either group failed at this step, a 
Mann–Whitney U test was used for group comparison. Otherwise, 
F test was used to confirm equality of variances in the two groups, 
and Welch-corrected t test was applied in case of unequal variances 
while a two-sample t test otherwise. Finally, the false discovery rate 
(FDR) method of Benjamini and Hochberg (1995) was applied to 
control for multiple comparisons with level � = . 05. For all signifi-
cant differences, we also computed the adjusted power (AP) and 
the effect size (ES) in TIBCO Statistica. Also, in order to verify that 
spectral exponents of low- and high-range neural activity are indeed 
different (i.e., the EEG data have a bimodal PSD), we tested if the 
differences between βlo and βhi acquired as Δ� = �hi − � lo are signifi-
cantly different from zero for every channel. In that, we used one-
sample t tests or one-sample Wilcoxon signed rank tests (in case of 
non-normal distribution of Δ� as confirmed by Lilliefors test) sepa-
rately for HC and SZ groups and applied FDR correction with level 
� = . 05 to control for multiple comparisons. Furthermore, in order 
to confirm that a bimodal model provided a better fit for the power 
spectra than a unimodal model (estimating a single β utilizing the en-
tire 1–30 Hz range), Goodness-of Fit (GoF) statistics obtained with 
the two approaches were compared using F tests (for details, see 
Supplementary Material).

2.4.2 | Resting-state network analysis

In order to reduce dimensionality of the results, we grouped the 
channels according to which intrinsic functional network of the brain 
they most likely represent. This procedure was carried out following 
the probability maps provided in Giacometti et al.  (2014), similarly 
as in a previous study (Racz et al., 2019). Brain parcellation was per-
formed so that channel groups represented seven intrinsic resting-
state networks (RSN) of the brain, as identified by Yeo et al. (2011). 
Note that here under the term “resting-state network,” we refer 
to a collection of brain regions that were identified as functionally 
coupled based on functional magnetic resonance imaging studies. 
Therefore, grouping of the channels was carried out so that groups 
reflect the functional organization of the brain. With a limited spatial 
resolution of 19 channels, some regions could not be unequivocally 
assigned to one RSN. Thus, in two cases we grouped channels to 
represent the joint activity of two RSNs, resulting in a final num-
ber of five groups. These included the visual network (VN, channels 
O1, O2, T5, and T6), the somatomotor network (SM, channels C3, 
C4, and Cz), the dorsal attention network (DA, channels P3, P4, and 
Pz), the combined ventral attention and limbic networks (VAL, chan-
nels F7, F8, T3, and T4), and a joint frontal network (FR) comprising 

regions of the frontoparietal (channels F3 and F4) and the default 
mode networks (channels Fp1, Fp2, and Fz). The channel groups rep-
resenting the five RSNs are shown in Figure 2. Similarly to channel-
wise analysis, BLP estimates of the mixed, fractal, and oscillatory 
spectra in all five frequency bands along with low- and high-range 
spectral exponents were investigated. For each case, the given 
index for a particular RSN was acquired by averaging the values over 
the channels belonging to that RSN. During the RSN-level analysis, 
between-group differences of corresponding networks were inves-
tigated according to the same statistical principles as in channel-wise 
analysis.

3  | RESULTS

3.1 | Low- and high-range spectral exponents

A characteristic spatial distribution of βlo and βhi was observable 
over the cortex in both groups (Figure 3). In that, βlo was higher over 
the frontal and central regions, while the opposite topology was re-
vealed in βhi with the highest values observed over the occipital cor-
tex. Although a tendency of lower βlo over the central regions could 
be observed in SZ subjects (see left panels of Figure 3), no significant 
difference was found between HC and SZ groups following FDR ad-
justment Δ� was found significantly different from zero (p <  .05 in 
all cases, corrected) over 16 out of the 19 investigated cortical re-
gions in both HC and SZ groups (Figure 3, right). Notably, Δ� was 

F I G U R E  2  Electrode layout and resting-state networks. The 
parcellation reflects the functional organization of the brain. The 
five RSNs are marked in different colors. RSN = resting-state 
network; VN = visual network; SM = somatomotor; DA = dorsal 
attention; VAL = ventral attention- and limbic; FR = frontal
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found smaller over the frontal when compared to occipital regions 
in both groups, as well as fractal spectra were found unimodal over 
the Fp1, F3, and F7 regions in the HC and over Fp1, Fp2, and F7 
regions in the SZ group. Furthermore, comparing GoF statistics of 
uni- and bimodal fits also indicated that the latter provided a better 
characterization of the power spectra in the vast majority of cases 
(see Table S3), while regions where the power spectrum was found 
rather unimodal corresponded well with those where no difference 
was found between βlo and βhi. Nevertheless, these results indicated 
a truly bimodal nature of scale-free neural activity.

It is important to note, that in our analysis, we utilized segments 
of length ~ 65 s, which is considerably longer than the window sizes 
(3–10 s) used in previous IRASA-based studies (Kolvoort et al., 2020; 
Muthukumaraswamy & Liley,  2018; Wen & Liu,  2016). Therefore, 
we re-analyzed our datasets using three additional (2.5, 5, and 10 s) 
window sizes. In this analysis pipeline, for each window size we 
obtained spectral slopes from 100 consecutive, overlapping data 
segments with a displacement of 0.5  s, and statistically evaluated 
the likelihood that the spectral slopes acquired when using the en-
tire signal came from the same distribution as those obtained with 

F I G U R E  3   Topology of spectral slopes. 
Group-averaged spatial maps of βlo (left) 
and βhi (middle) reveal characteristic 
topologies in both groups. Regions where 
the difference between high- and low-
range spectral slopes (right) was found 
significantly different from 0 following 
FDR adjustment with level � = . 05 are 
marked with crossed circles

F I G U R E  4  Topology of delta-band 
BLP. Group-averaged delta-band BLP 
maps of the mixed (left), fractal (middle), 
and oscillatory (right) spectra of HC 
and SZ groups reveal stronger relative 
delta power over the frontal and central 
regions. The corresponding group-average 
spatial maps are on the same scale for 
better comparison demonstrating the 
higher values in HC, especially in case 
of mixed and fractal spectra. Crossed 
circles mark between-group differences 
that were found significant following 
FDR adjustment with level � = . 05. 
HC = healthy control; SZ = schizophrenia; 
BLP = band-limited power; FDR = false 
discovery rate
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smaller sliding windows (for results, see Supplementary Material). 
Results obtained from this analysis showed that for all window sizes, 
the original spectral slopes were representative of the populations 
obtained with smaller time windows in almost all cases (Table S2), 
indicating that window size did not have a substantial effect on the 
results.

3.2 | Channel-wise results of mixed, fractal, and 
oscillatory BLP

Significant between-group differences were found only in the 
delta band (Figure  4). In that, HC subjects expressed significantly 
higher delta BLP in the mixed spectrum over the C3 (p = .0371, cor-
rected, AP = 0.3620, ES = 1.0994). The same difference was found 
when investigating the fractal component of the power spectrum 
(p  =  .0433, corrected, AP  =  0.3415, ES =  1.0764). On the other 
hand, no significant between-group difference was found in oscil-
latory delta BLP following FDR adjustment. Furthermore, in order 
to verify that the difference observed in mixed BLP could at least in 
part attributed to differences in fractal BLP, we performed analysis 
of covariance (ANCOVA) in which the effect of group (HC vs. SZ) was 
investigated on mixed BLP with fractal BLP included as a covariate. 
The inclusion of fractal BLP in the model rendered the main effect 
of group in mixed BLP non-significant (p =  .3354), confirming that 
the significantly lower delta BLP over C3 in HC was at least in part a 
consequence of altered fractal BLP.

3.3 | RSN-level results of mixed, fractal, and 
oscillatory BLP

The characteristic differences could be captured more robustly 
when channels were collapsed onto RSNs to better represent the 
functional organization of the brain (Figure 5). Accordingly, mixed 
and fractal delta-band BLP were found significantly higher in HC 
subjects over the SM network (p = .0035, AP = 0.6384, ES = 1.1832 
and p  =  .0079, AP  =  0.5761, ES  =  1.1174 for mixed and fractal 
BLP, respectively, corrected), while no differences were found in 

oscillatory BLP between the two groups. ANCOVA analysis showed 
that including fractal BLP as a covariate renders the observed dif-
ference in mixed BLP non-significant (p = .1761), indicating that the 
lower delta BLP over the SM network in SZ was at least in part due 
to lower fractal BLP. Similarly to channel-wise results, no differences 
were found in the theta, alpha, or beta bands.

3.4 | Validation of the results

Due to the frequency range (0.5–45 Hz) of the preprocessed sig-
nals, we were restrained to utilize a smaller set of resampling factors 
extending from 1.05 to 1.5. Although these settings allowed for a 
broader effective frequency range in estimating the fractal compo-
nent of the spectrum and a well-defined breakpoint between the 
low- and high-range regimes, they came at the expense of occasion-
ally imperfect elimination of large oscillatory components such as a 
broad alpha peak (Wen & Liu, 2016). Therefore, it was crucial to ver-
ify the observed differences using a broader set of resampling fac-
tors, where spectral slope and fractal/oscillatory BLP estimation are 
less likely to be biased. For this purpose, we re-analyzed all datasets 
with h ranging from 1.05 to 2.0 (25 evenly distributed values). As 
h = 2 limits the effective frequency range to 1–22.5 Hz, in this analy-
sis we only considered βlo and BLP values from the delta, theta, and 
alpha bands. Results obtained from this analysis pipeline were found 
well in line with those obtained with h ranging from 1.05 to 1.5, with 
the exception that the difference in fractal BLP between HC and SZ 
over C3 was found only marginally significant (p = .0663, corrected, 
AP = 0.3158, ES = 1.0469). Further details of this approach and the 
acquired results are provided in the Supplementary Material.

4  | DISCUSSION

In this study, we applied a novel tool for the analysis of resting-state 
EEG acquired from schizophrenic patients and healthy controls, 
namely separating the scale-free and oscillatory components of their 
neurophysiological recordings using IRASA (Wen & Liu, 2016). Our 
analysis revealed decreased delta BLP in patients with SZ; however, 

F I G U R E  5  Between-group differences in corresponding RSNs in delta-band BLP. Asterisk symbols mark differences that were found 
significant following FDR correction with level α = . 05. RSN = resting-state network; BLP = band-limited power; FDR = false discovery rate; 
VN = visual network; SM = somatomotor; DA = dorsal attention; VAL = ventral attention- and limbic; FR = frontal



8 of 15  |     RACZ et al.

the differences found in the original (mixed) spectra could be attrib-
uted to alterations in the fractal rather than the oscillatory compo-
nent. Electrophysiological activity in both groups was confirmed to 
have a bimodal PSD over most cortical regions in accordance with 
previous studies (He et al., 2010; Nagy et al., 2017). Additionally, we 
found marked spatial variability of scaling exponents in both groups, 
further highlighting the importance of the proposed approach.

Surprisingly, our results indicated a shift toward higher frequen-
cies in the distribution of spectral power in SZ patients, leading to 
a decrease of delta BLP over the central regions. This is in contrast 
with consistent findings of increased delta activity frequently re-
ported in schizophrenic patients (for a recent review, see Newson 
and Thiagarajan (2019)). There are numerous factors that could lead 
to these seemingly contradictory results. Probably, the most general 
cause is the fundamentally heterogeneous nature of schizophrenia 
in terms of widely varying symptomatology, affected psychocogni-
tive functions and disease severity (Moran & Hong,  2011; Seaton 
et al., 2001). Accordingly, several studies specifically attempted to 
resolve the inconsistencies regarding quantitative EEG analysis in 
SZ. Begic et al. (2000) investigated the effects of disease phenotype 
(i.e., positive or negative), diagnostic criteria and medication on EEG 
findings in SZ. They found a sharp contrast between negative and 
positive phenotypes, with the former characterized by an increase in 
delta, theta, and beta, and a decrease in alpha activity, while the lat-
ter with both decrease and increase in delta activity. Their results are 
in accordance with those of Saletu et al. (1990), who also reported 
increased and decreased delta activity in SZ patients with mainly 
negative and positive symptoms, respectively. Furthermore, the 
shift toward higher frequencies, as captured in increased beta ac-
tivity, was more pronounced in the positive than in the negative SZ 
group (Saletu et al., 1990). John et al. (2009) reported higher alpha 
BLP in SZ patients with positive symptoms, while also suggested 
that an increase in delta activity is linked to negative symptomatol-
ogy spanning from hypometabolism of the frontal cortical regions. 
Harris et al.  (2001) sorted SZ patients into three groups based on 
their psychopathological symptoms and reported that while the 
“disorganization syndrome” and “psychomotor poverty syndrome” 
subtypes could be characterized with higher delta, theta and lower 
alpha activity, the “reality distortion” group was characterized with 
increased alpha activity. On a different note, it is well established 
that the acute psychotic phase of SZ is predominantly character-
ized by positive symptoms (i.e., attention deficit, reality distortion, 
agitation, anxiety) and hyperdopaminergia; while in chronic, medi-
cated SZ negative symptoms (cognitive deficit, decreased motiva-
tion, blunted affect, social withdrawal) are more common (Laruelle 
et al., 1999; Sponheim et al., 2010; Wang et al., 2013). Accordingly, 
electrophysiological differences between the various phases of SZ 
might be expected. Indeed, several studies have found that aug-
mented delta and theta activity could only be observed in chronic 
but not first-episode or early-stage SZ (Harris et al., 2006; Ranlund 
et  al.,  2014). These results, however, are also challenged by stud-
ies reporting no difference between first-episode and chronic SZ 
(Sponheim et al., 1994) or finding elevated delta and theta activity 

in first-episode patients (Clementz et  al.,  1994; John et  al.,  2009). 
Pharmaceutical treatment is also frequently reported to introduce 
alterations in the EEG spectra, usually resulting in a slowing of corti-
cal rhythms (Harris et al., 2006; Itoh et al., 2011; Knott et al., 2001; 
Tislerova et al., 2008). Nevertheless, medication effects are unlikely 
to influence the results presented here, as subjects went through a 
medication washout period prior to measurement. Finally, another 
reason behind the controversies could be that some studies worked 
with non-normalized, while others with normalized power spectra 
(Newson & Thiagarajan, 2019), although this seems unlikely as gen-
erally similar results can be acquired when applying both methods 
(John et al., 1994). Without clinical data regarding symptomatology, 
medication history and disease duration of SZ subjects on hand, the 
findings of decreased delta BLP reported in our study cannot be 
fully explained or linked to symptoms of schizophrenia and require 
further research. With the above considerations in mind, the most 
plausible explanation for our results is that the patient cohort con-
sisted of young subjects characterized with positive symptomatol-
ogy and free of drug-related effects due to the medication washout 
period prior to measurement, although in absence of medical data, 
this explanation remains speculative. Nevertheless, our data analysis 
pipeline was designed to be maximally data driven and thus readily 
reproducible with the exact same settings on different datasets with 
the necessary clinical information supplied, thus hopefully facilitat-
ing further research aiming at resolving this issue.

Many previous studies reporting on EEG abnormalities implic-
itly considered narrow-band neural activity emerging from neuronal 
circuit mechanisms characteristic of various cortical areas (Buzsaki 
& Draguhn, 2004; Javitt et al., 2020). Consequently, findings were 
mostly implemented as reflecting the involvement of specific brain 
regions responsible for generating such rhythmic activity. In that, 
elevated delta activity was often seen as resulting from the aber-
rant function of thalamocortical projections (Hunt et al., 2017; Llinas 
et al., 1999). Aberrations in alpha BLP are also frequently associated 
with the dysfunction of the thalamus and its role in cortical synchro-
nization (Goldstein et al., 2015; Kirino, 2004). In addition, both delta 
and alpha activity have been associated with a generalized decline in 
the function and metabolism of the frontal cortex, that is, hypofron-
tality (Gattaz et al., 1992; Knott et al., 2001; Knyazeva et al., 2008). 
Many of these conclusions are well in line with results acquired by 
utilizing source reconstruction approaches allowing for identifica-
tion of affected brain regions (Kim et al., 2015; Mientus et al., 2002; 
Pascual-Marqui et al., 1999). Furthermore, they are also supported 
by evidence from studies using different imaging techniques with 
exact spatial localization, such as positron emission tomography 
or functional magnetic resonance imaging (Andreasen et al., 1997; 
Damaraju et al., 2014; Wolkin et al., 1992). On the other hand, the 
findings reported here indicate that EEG differences between HC 
and SZ subjects could not be attributed solely to alterations of the 
rhythmic (oscillatory), but necessarily to the arrhythmic (broadband) 
component of neural activity, too. This hypothesis is supported by 
the fact that when we separated the oscillatory and fractal compo-
nents of neural activity, BLP differences found in the mixed spectra 
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were present only in the fractal but not in the oscillatory compo-
nents. Furthermore, when we included fractal BLP as a covariate 
into the analysis of mixed BLP, it rendered the previously observed 
differences non-significant, further indicating that reduction of 
mixed BLP in SZ can be attributed (at least in part) to a reduction 
in fractal BLP. In addition, both fractal BLP and spectral slopes re-
vealed significant spatial variability over the cortex, indicating that 
scale-free brain activity indeed has functional significance (as dis-
cussed below) instead of merely being noise (He et al., 2010). These 
findings raise the possibility that involvement of different functions 
and mechanisms, namely those generating the scale-free component 
of neural activity, may also play an important role in the neural basis 
and pathomechanism of SZ.

There has been a considerable debate on the role and functional 
significance of scale-free brain activity. In fact, since scale-free dy-
namics are ubiquitously present in a plethora of natural processes 
(Per Bak, 1996; Brown et al., 2002; Gisiger, 2001; Mandelbrot, 1983), 
in many cases, the fractal component of neural activity is discarded 
from analysis and referred to as “1/f noise” (Mitra & Pesaran, 1999; 
Zarahn et al., 1997). On the other hand, there has been growing ev-
idence lately pointing to the direction that scale-free brain activity 
carries substantial functional significance and contains fine temporal 
structuring that differentiates it from other natural phenomena ex-
pressing fractal dynamics (He et al., 2010). It has been shown that 
the scaling exponent of global neuronal synchronization in alpha and 
beta activity decreases when transitioning from eyes-open to eyes-
closed states (Racz et al., 2018; Stam & de Bruin, 2004). The spec-
tral slope was also reported to reduce during increased cognitive 
performance (Ciuciu et al., 2012; He, 2011; He et al., 2010; Zilber 
et  al.,  2012). As a higher (lower) spectral slope indicates stronger 
(weaker) autocorrelation, this change may reflect a required switch 
of the brain to more efficient online information processing during 
task solving (He,  2011). This is in line with reports of lower spec-
tral slope in adults with trait anxiety (Tolkunov et  al.,  2010) indi-
cating a constantly active state. As anxiety is often a core feature 
of schizophrenia (Muller et al., 2004), a lower spectral exponent of 
brain activity could be expected in patients. Indeed, lower spectral 
slope (Radulescu et al., 2012) and reduced fractal dimension and au-
tocorrelation (Bullmore et al., 1994) were observed in SZ subjects, in 
accordance with our results indicating a tendency of lower β in SZ. 
It has to be noted however that the data analyzed in this study were 
obtained in a resting state; therefore, further research is required in 
order to draw conclusions on the interrelatedness of scale-free brain 
activity, cognitive performance, and schizophrenia. Since power-
law scaling is a characteristic feature of critical systems operating 
near a phase transition (Stanley,  1971), scale-free neural—even in 
the resting state—activity is also often considered as an indicator of 
an underlying self-organized critical state (Bak et al., 1987) of brain 
function (Bullmore et al., 2009; Chialvo, 2004; Linkenkaer-Hansen 
et al., 2001; Racz et al., 2018). According to this theory, criticality 
would provide an optimal state for the brain to quickly perform large-
scale reorganizations in response to stimuli and thus efficiently adapt 
to changes in the external and/or internal environment (Bullmore 

et al., 2009; Kitzbichler et al., 2009). In this framework, alterations 
of scale-free neural activity may reflect inadequate processing of 
incoming sensory stimuli, a hypothesis in line with those suggest-
ing dysfunctional information processing in SZ (Barrett et al., 1986; 
Callaway & Naghdi, 1982; Carr & Wale, 1986). Scale-free properties 
of brain activity and neuronal synchronization were also reported 
to vary significantly over different cortical regions (He,  2011; He 
et al., 2010; Racz et al., 2019; Wink et al., 2008). Concordantly, we 
found relatively lower βlo and higher βhi over the visual and dorsal 
attention networks when compared to other RSNs in both groups. 
The spectral exponent of neural activity was also found associated 
with self-consciousness (Huang et al., 2016; Kolvoort et al., 2020) 
and contextual prediction (Dave et al., 2018), two higher order brain 
functions related to top-down cognitive processing and often af-
fected in SZ. Spectral slope was also found reduced in elderly when 
compared to young subjects (Mukli et al., 2018; Voytek et al., 2015). 
A hypothesis that could partially explain these results suggests that 
broadband scale-free neural activity emerges regionally from the 
spatial integration of asynchronous spiking of neuronal populations 
(Miller, 2010; Miller et al., 2014) and thus a reduction in β reflects 
further functional decoupling (He et al., 2010). This correspondence 
of neuronal synchrony and scale-free neurodynamics also extends 
to macroanatomical brain networks, as the regional variability of 
scale-free neural dynamics was shown to positively correlate with 
the large-scale functional connectivity of brain regions (Anderson 
et  al.,  2014; Baria et  al.,  2013; Ciuciu et  al.,  2014; Radulescu & 
Mujica-Parodi, 2014). Furthermore, simulations with self-organized 
critical systems indicate that the fractal scaling property might also 
be related to the size of coupled neuronal assemblies producing 
scale-free dynamics, that is, the scaling exponent of local neuronal 
fluctuations may reflect incoming signaling (local connectivity) to 
the investigated brain region (Mukli et al., 2018). Since alterations of 
functional connectivity are evident in schizophrenia (van den Heuvel 
& Fornito, 2014), a better understanding of the scale-free compo-
nent of neural activity may also provide further insights on how and 
why brain networks are affected in SZ. With these considerations in 
mind, although our findings obtained here are in contrast with those 
most commonly reported in the literature, we tentatively propose 
that alterations of a different nature (i.e., enhanced delta activity) 
could also be partially explained by dysfunction in scale-free brain 
activity and its corresponding cognitive functions as discussed 
above. It has to be stressed once again, however, that unfolding the 
plausible relationship between scale-free neural activity and cogni-
tive functions/information processing in SZ requires more elaborate 
research paradigms. Therefore, the approach introduced here might 
provide a useful tool to further the understanding and implementa-
tion of EEG spectral findings in SZ.

Finally, we have to address the limitations of this study along-
side its future perspectives. Foremost, we could not explore the 
plausible correlations between our findings and clinical features 
of SZ due to the lack of supporting clinical data. Thus, some of the 
conclusions drawn in this study remain elusive until further vali-
dation on a patient cohort with available clinical details regarding 
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symptom scores, disease duration and medication history. This 
is also required for exploring the potentials in fractal measures 
of brain electrical activity as future biomarkers of schizophrenia. 
Note however that our main goal here was to explore if the scale-
free component of neural activity carries functional significance 
in SZ, which could be achieved despite this limitation. The small 
sample size also poses a drawback by limiting the statistical power 
of the results; therefore, a re-evaluation of this pipeline operating 
on a larger group of subjects is desirable. This latter statement is 
indeed relevant considering that multiple between-group differ-
ences (such as lower βlo or higher fractal theta) were found ini-
tially significant but were then rendered non-significant by FDR 
adjustment. The samples analyzed in this study were recorded in 
a resting-state, eyes-closed condition. Although this experimen-
tal setup has several advantages such as measurements are less 
corrupted by artifacts originating from blinking, eye or muscle 
movement, and that the protocol requires minimal cooperation 
from the subject, it also has some drawbacks in that mental pro-
cesses and self-referential activities are unconstrained in resting-
state, which can introduce a substantial bias to the results (Miall 
& Robertson, 2006; Weinberger & Berman, 1996). This can be of 
particular importance in the case of schizophrenia, where not only 
these processes are generally distorted, but also show a great vari-
ability between disease phenotypes (Sass & Parnas, 2003). On the 
other hand, scale-free brain activity was known to be modulated 
by cognitive task performance (Ciuciu et al., 2012; He, 2011; He 
et al., 2010; Zilber et al., 2012); therefore, an experimental design 
including a cognitive stimulation paradigm that would allow for in-
vestigating if this modulation is affected in SZ seems promising. In 
this study, we analyzed continuous EEG recordings of length ~65 s. 
This epoch length is considerably longer than what is used in most 
studies, usually ranging between 2 and 30 s (Boutros et al., 2008). 
Moreover, only one segment per subject was analyzed; however, it 
is recommended to derive estimates based on an ensemble of ep-
ochs (Boutros et al., 2008). This latter issue was partially resolved, 
as IRASA per se calculates the PSD estimates from 15 overlap-
ping data segments to provide robust statistics (Wen & Liu, 2016). 
We also chose to work with longer segments in order to have 
sufficient representation of low-frequency components. It is also 
known that even in the resting state, fractal properties (such as 
β) of neural activity may change over time (Wen & Liu, 2016). In 
other words, the scaling property itself becomes a local instead of 
a global feature, in which case the process is referred to as multi-
fractal (instead of monofractal) whose scaling can only be prop-
erly characterized using a set of exponents (Kantelhardt,  2009). 
Alterations in the multifractal properties of neural activity were 
reported in many physiological and pathological conditions such 
as healthy aging (Mukli et al., 2018), epilepsy (Dutta et al., 2014), 
Alzheimer's disease (Ni et al., 2016), and also schizophrenia (Racz 
et al., 2020; Slezin et al., 2007). In the current work, we implicitly 
treated neurophysiological signals as monofractals and thus only 
analyzed their global scale-free properties, as our aim was to com-
pare the contribution of the fractal and oscillatory components 

to BLP estimates. However, it appears as a promising research 
direction to investigate the plausible time-varying fractal nature 
of brain activity in SZ, estimated purely from its scale-free com-
ponent thus avoiding the confounding effects of its oscillatory 
components.

5  | CONCLUSIONS

In this study, we report on decreased delta BLP over central regions in 
SZ when compared to HC subjects. Separate analysis of the fractal and 
oscillatory components of PSD estimates indicated however that most 
of these differences could be attributed to alterations in broadband, 
scale-free rather than oscillatory brain activity. This was also em-
phasized by a tendency of lower scaling exponents of both low- and 
high-range neural activity in SZ. We found a characteristic topology 
of spectral exponents over the cortex, further highlighting the func-
tional significance of scale-free neural activity and its plausible role 
in schizophrenia. Our findings imply that neural mechanisms different 
from those producing oscillatory brain activity may also contribute to 
the pathophysiology of schizophrenia. Our results are hoped to facili-
tate further research focusing on the scale-free/fractal aspect of brain 
activity in SZ along with other neuropsychiatric disorders.
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APPENDIX 1

Separating the scale-free component of composite signals
Scale-free (or fractal) time series express self-affinity, meaning that 
their statistical distribution remains unchanged when resampled at 
different time-scales (Mandelbrot & Van Ness, 1968). This relation-
ship for a scale-free time series f (t) can be expressed as

where fh (t)is the resampled fractal time series, h > 0 is the resam-
pling factor, and H is called the Hurst exponent (Eke et  al.,  2000; 
Mandelbrot & Van Ness, 1968). This equation implies that if the frac-
tal time series f (t) is resampled by factor h yielding fh (t), then fh (t) 
has the same statistical distribution as f (t) scaled by the factor hH. 
When applying the Fourier transformation, this self-affine property 
will manifest as the frequency scaling property expressed as

where F (�) and Fh (�) are the amplitudes at angular frequencies � for 
f (t) and fh (t), respectively. Similarly, (2) implies that the amplitude of 
the resampled power spectrum is equal to that of the original power 
spectrum rescaled by hH. It is important to highlight that this property 
only holds for scale-free processes where the spectral power follows 
a power-law distribution, that is, the squared amplitude is inversely 
proportional to the frequency according to a power-law function with 
scaling exponent � (Eke et al., 2000). This can be expressed as

where c is a constant (Eke et al., 2000). The power spectrum of such 
time series follows a straight line with slope −β when visualized on dou-
ble logarithmic axes.

Electrophysiological neural signals such as EEG are composed 
of both fractal and oscillatory components (He et al., 2010; Wen & 
Liu, 2016) that can be modeled by a simple additive model (without 
considering noise) as

where y (t) is the neurophysiological signal and f (t) and x (t) mark the 
fractal and oscillatory components, respectively (Wen & Liu, 2016). 
Since x (t) by definition is periodic and narrow-banded, its power 
spectrum is non-zero only at its characteristic frequencies; however, 
in rescaled versions of x (t) , the power is redistributed away from 
the original characteristic frequencies by an offset that depends on 
the rescaling factor (Wen & Liu, 2016). On the other hand, based 
on (2) and (3) the distribution of the spectral power of fractal time 
series (or the fractal component of a composite time series) is unaf-
fected by resampling and yields the same distribution rescaled by 
h
H. Furthermore, by resampling the original fractal time series with 
pairwise factors comprising of a non-negative scaling factor h and 
its reciprocal 1/h, the geometric mean of their auto-power spectra 
returns the original power distribution (Wen & Liu, 2016; Yamamoto 
& Hughson, 1991, 1993). Conversely, in the case of a periodic signal 
this procedure will yield a power spectrum that is zero for all fre-
quencies. The exceptions are those cases where the characteristic 
frequency is a common multiple of the rescaling factor h and its re-
ciprocal 1∕h; however, this case can be avoided with high probability 
by the use of multiple non-integer rescaling factor pairs and then 
taking the median of power over all h for each frequency. Based 
on these principles, the fractal power spectrum of a mixed signal 
can be separated from the original (mixed) power spectrum, while 
a reasonable estimation of the power spectrum of the oscillatory 
component can be acquired by subtracting the fractal power spec-
trum from the mixed power spectrum (Wen & Liu, 2016; Yamamoto 
& Hughson,  1991). The above-described procedure is termed 
Irregular-Resampling Auto-Spectral Analysis (IRASA, Wen and Liu 
(2016)) that is an improved version of the Coarse Graining Spectral 
Analysis (CGSA) method (Yamamoto & Hughson, 1991) of the same 
purpose, that is, separating scale-free and oscillatory components 
of composite signals. Further mathematical details of IRASA and 
its advantages over CGSA are found in the original article (Wen & 
Liu, 2016).

(1)fh ( t ) ≜ h
H
f ( t )

(2)Fh (�) = hHF (�)

(3)|F (�)|
2
∝ c × �− �

(4)y (t) = f (t) + x (t)


