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1 Introduction 

1.1 Cardiovascular diseases and comorbidities 

As both mortality and health care expenditures attributable to cardiovascular 

diseases and comorbidities far exceed the corresponding measures related to every other 

causes in the developed countries [1, 2], it is of paramount importance to facilitate the 

understanding of the underlying pathomechanism and the development of effective 

therapeutic approaches for these conditions. Particularly, the overwhelming majority of 

cardiovascular mortality is due to ischemic heart disease [3]. 

1.1.1 Ischemic heart disease and myocardial infarction 

The pathophysiology of ischemic heart diseases can be characterized by two main 

processes, namely the obstruction of the epicardial coronary arteries and coronary 

microvascular dysfunction [4]. With a varying proportion of contribution, these two 

mechanisms result in the disruption of the balance between the myocardial blood demand 

and supply [5]. This unbalance has a broad spectrum of clinical manifestations including 

silent ischemia, chronic stable angina [6], heart failure due to ischemic heart disease [7], 

sudden cardiac death [8] and acute coronary syndrome. This latter can be further 

subdivided into unstable angina and myocardial infarction with (STEMI) or without ST-

segment elevation (NSTEMI) on the electrocardiogram [9]. 

In-hospital lethality of acute coronary syndrome in most cases arises from those 

complications that compromise the pump function of the heart and eventually may result 

in cardiogenic shock [10]. The cause of cardiogenic shock in acute coronary syndrome is 

most often left ventricular failure and less frequently one of the mechanical consequences 

of myocardial necrosis like free wall, septal or papillary muscle rupture, which in turn 

lead to pericardial tamponade, left-right shunt or insufficiency of the mitral valve, 

respectively [11, 12]. Electrical complications including ventricular tachyarrhythmias 

with a lesser extent also contribute to the overall mortality of acute coronary syndrome, 

causing the death of 1.2-2.3% of the patients with myocardial infarction [13]. As a result 

of adequate revascularization therapy primarily by percutaneous coronary intervention or 

in some special cases by coronary artery bypass graft surgery the occurrence of the above 

acute complications and consequently the early mortality of acute coronary syndrome is 
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steadily decreasing [14–17]. Despite these positive trends in the early mortality, in 

patients surviving acute myocardial infarction the occurrence of post-myocardial 

infarction heart failure showed a more modest reduction over the past decades [18, 19]. 

With a prevalence varying still between 14-36%, post-myocardial infarction heart failure 

remained a common consequence of acute coronary syndrome [20] and studies indicate 

that it is one of the main determinants of mortality after myocardial infarction [21, 22]. 

1.1.2 Successes and failures in developing cardioprotective approaches 

A robust correlation between infarct size and risk of post-myocardial infarction 

heart failure is supported both by the results of well-established animal studies [23] and 

clinical evidences [24]. However, due to the phenomenon of reperfusion injury infarct 

size increases even after a timely restoration of the coronary blood flow [25]. Thus, 

besides the minimization of the time between the onset of the first symptoms of 

myocardial infarction and revascularization (including the so-called door-to-balloon 

time) [26], alleviation of the reperfusion injury holds the opportunity to greatly improve 

survival after myocardial infarction. 

In 1986 significant reduction in the infarct size was observed in dogs treated with 

intermittent occlusions of the affected coronary artery before the actual ischemic insult 

[27]. The existence of this cardioprotective phenomenon, called preconditioning was later 

confirmed also in patients with pre-infarction angina [28]. Since then based on animal 

studies both remote ischemic conditioning and postconditioning were proposed as 

cardioprotective maneuvers, with a possibility to be applied within clinical setting [29, 

30]. However, in case of the remote ischemic conditioning large clinical studies refuted 

its effectiveness [31, 32]. 

Although enormous efforts were invested to identify key molecular pathways 

responsible for the cardioprotective effect of ischemic pre- and postconditioning and to 

identify drugs targeting the involved mediators, after successes with animal models, 

clinical studies were concluded with disappointing results uniformly [33]. Promising 

results with animal models in case of therapeutic hypothermia, the mitochondrial 

permeability transition pore inhibitor Cyclosporin-A or the delta-protein kinase C 

inhibitor delcasertib had failed to be translated into the clinical practice, to only name a 

few of the unsuccessful clinical studies [34–36]. 
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Although the cause of the failure of these clinical studies are manifold, multiple 

recommendations were proposed to avoid them including two central ideas, namely the 

consideration of the modifying effect of comorbidities and comedications and the 

application of unbiased target identification [33, 37]. 

1.1.3 Role of comorbidities and comedications 

In the vast majority of the cases, acute myocardial infarction develops in patients 

also affected by at least one of the modifiable cardiovascular risk factors, such as 

hypertension, smoking, heart failure and metabolic disorders including diabetes mellitus, 

dyslipidemia, obesity and uremia [38–40]. The sustained presence of these comorbid risk 

factors leads to a remodeling process in both the vasculature and the myocardium, which 

could eventually impede the protective effect of the applied therapeutic interventions 

[41]. Several studies provided evidence for the interference between the above comorbid 

risk factors and the cardioprotective conditioning maneuvers [42, 43]. Furthermore, 

pharmaceutical agents administered to treat the concomitant risk factors and other 

comorbidities could also contribute to the failure of cardioprotection through the 

mechanism called hidden cardiotoxicity [43, 44]. The exact prevalence and combinations 

of the comorbid risk factors and comedications are not reflected by the experimental 

design of the preclinical studies of cardioprotection, which could serve as one of the 

possible explanations to the observed differences between the results of the preclinical 

and clinical studies [45]. Therefore, it is unavoidable to explore the effects of 

comorbidities and comedications on the cardiovascular system and to decipher molecular 

mechanisms responsible for these effects [33]. 

1.2 Unbiased, network theoretic target identification based on omics datasets 

In addition to neglecting the interaction of comorbidities and comedications with 

cardioprotection, biased, hypothesis-driven target identification could have also 

contributed to the failure of clinical translation of candidate cardioprotective agents [46]. 

Essential players in the pathomechanism could be overlooked because of the widespread 

practice of focusing on pathways that are already well-studied. To not miss such 

important mediators, an unbiased workflow was recommended to be applied, which 

consists of high-throughput molecular biological measurements, bioinformatics 
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evaluation of the resulting datasets, network theoretical target prediction and 

experimental validation of the selected targets [37]. 

1.2.1 Omics techniques 

High-throughput molecular biological methodologies make it possible to gain a 

global and detailed picture of the genotype (genomics), epigenetic modifications 

(epigenomics), gene expression at the RNA and protein levels (transcriptomics and 

proteomics) and the metabolite composition (metabolomics) of an organism. These 

methods together are called omics techniques and serve as fundamental pillars of network 

medicine [47, 48]. 

In case of rare, monogenic disorders rapid advancements in genomic methodologies 

made it possible to identify the pathogenic mutation which provides a good starting point 

to decipher the underlying molecular patomechanism [49]. An interesting example for 

these improvements is the discovery of the mutations in fibrillin-1 gene (FBN1) as a cause 

of Marfan syndrome, an autosomal dominant connective tissue disorder with serious 

aortic involvement [50]. It was later demonstrated that protein product of FBN1 in 

addition to being a structural protein of the extracellular matrix, can also sequester the 

isoforms of transforming growth factor beta (TGF-β) [51]. Consequently, the 

identification of pathogenic FBN1 mutations not just facilitated the elucidation of the 

TGF-β-mediated pathogenesis of Marfan syndrome, but also contributed to a more fine-

grained classification of overlapping phenotypes by the recognition of the disease causing 

role of genetic variants in genes related to the TGF-β signaling pathway [52]. This way 

patients having mutation in one of the genes encoding for TGF-β receptor 1 or 2 

(TGFBR1, TGFBR2), SMAD family member 3 (SMAD3) downstream mediator, TGF-β 

isoform 2 or 3 (TGFB2, TGFB3) are now diagnosed with Loeys-Dietz syndrome type 1-

5, respectively, instead of Marfan syndrome type II, which distinction also fosters a better 

risk stratification [53]. 

Whilst the ability to determine the nucleotide sequence of the entire human genome 

greatly increased the chance to unbiasedly explore the origin of monogenic disorders, in 

case of complex, multifactorial diseases it is much more cumbersome to find the link 

between the set of genetic variants and the phenotype [54]. To overcome this issue in 
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addition to static genomic data other omics techniques should be utilized to assess at least 

snapshots of the dynamical processes in the affected cells and tissues [46]. 

Although epigenomics measurements could provide us with truly valuable data on 

the functional state of the investigated cells, the unknown role of the possible histone 

modifications, technological problems with the detection of RNA-modifications and high 

cost are just a few examples of the great variety of difficulties that could limit the utility 

of epigenomics [55]. Similarly, in spite of significant improvements in the last decades, 

proteomics techniques still face with suboptimal reproducibility and coverage, and due to 

the lack of robust, standardized workflows the measurements are still recommended to be 

performed by highly specialized facilities after very careful preparation of the samples 

[56–58]. Among other challenges standardization of both the measurement techniques 

and the bioinformatics evaluation of the resulting raw data is also an issue in case of 

metabolomics [59, 60]. 

In contrast to the immature omics techniques discussed so far, well-established, 

highly standardized and relatively cheap technologies like DNA microarray, NanoString 

nCounter and RNA sequencing (RNA-seq) are available for the global profiling of the 

transcriptome [61]. DNA microarray technique, which is based on the hybridization of 

fluorescently labeled target sequences to the oligonucleotide probes attached to a solid 

surface, is a cost-effective and widely used methodology for differential expression 

analysis of various RNA species [62]. While DNA microarray technique requires reverse 

transcription and an optional amplification step, in case of NanoString nCounter target 

RNA sequences are hybridized directly to soluble fluorescently barcoded probe 

sequences, and quantified after immobilization to an imaging surface, which simplifies 

the workflow and avoids the bias introduced by amplification [63]. However, the 

coverage achievable by the latter two techniques is largely limited by the fact, that only 

those sequences could be measured, for which an oligonucleotide probe is available. It is 

especially an issue in case of NanoString nCounter as the maximum number of different 

barcodes is only 800 [64]. This limitation is totally absent in case of RNA-seq as after 

library preparation all RNA fragments can be further analyzed regardless of the 

nucleotide sequence. The library preparation step, which most commonly consists of the 

enrichment of the investigated sequences, reverse transcription, adaptor ligation and 

amplification, is followed by the sequential addition of fluorescently labelled nucleotides 
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in a flow cell eventually producing tens of millions of sequencing reads [65]. After 

sequencing quality check, adaptor trimming, quality filtering, alignment of the raw RNA-

seq reads to the reference genome and feature counting are performed as steps of the 

recommended bioinformatics evaluation protocols [66, 67]. Proven and standardized 

statistical algorithms mostly in the form of packages for the R programming environment 

[68] are available for the normalization, differential expression analysis and 

dimensionality reduction of data assessed by both DNA microarray [69, 70] and RNA-

seq [71–73] measurements. 

Due to the lower number of microRNAs (about 2,300 [74]) compared to the protein 

coding transcripts (84,107 according to GENECODE reference annotation [75]) the 

starting point of an especially parsimonious approach to uncover key players in the 

pathomechanism of various diseases can be the assessment of the microRNA fingerprint 

of the experimental model relying on the above robust transcriptomics measurement 

workflows. As microRNAs are unavoidable players in the post-transcriptional regulation 

of gene expression, the most important mediators could be selected for further 

experimental validation by in silico analysis of microRNA expression profiles [76]. The 

utilization of these in silico approaches, however, requires the in-depth understanding of 

the network theoretic bases of the available bioinformatics toolset and more specifically 

a detailed knowledge of the complex biology of the post-transcriptional regulation of gene 

expression mediated by microRNAs. 

1.2.2 Basic concepts of network theory 

According to the classical definition big data can be characterized by three Vs: data 

of volume, velocity and variety that are difficult to be handled by usual means. Based on 

newer definitions veracity, that is the variable quality of the data could be also added as 

a fourth V [77]. Out of these four at least three (volume, variety, veracity) are common 

properties of datasets produced by omics technologies [78]. These challenges could be 

only solved by relying on advanced mathematical algorithms and computational 

approaches. Therefore, network theory by providing an objective, mathematical 

description of complex datasets is inevitable for the analysis of omics datasets [79]. 

The complexity of the interactions between entities like biomolecules can be 

translated to the language of networks symbolizing entities by nodes and relevant 
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interactions by edges. Nodes and edges of networks in turn can be described by 

mathematical terms using a pair of sets of vertices and links, respectively. Representation 

of networks by pair of sets is called a graph and provides an objective way to analyze 

networks with the rigorous toolset of discrete mathematics [80, 81]. In case of a network 

with n nodes an n × n matrix A, called the adjacency matrix can be used to describe the 

presence or absence of links between pairs of nodes. Element aij from the ith row and the 

jth column of matrix A is equal to 1 if an edge connects the ith and jth nodes, and 0, if 

there is no edge between these two nodes [82]. Instead of 0 or 1 a real value is assigned 

to each aij in case of weighted graphs, where the absolute value of this real number 

describes the strength of the interaction between the ith and jth nodes. To encode 

activating and inhibiting interactions positive and negative weights could be used, 

respectively. If the network is undirected the adjacency matrix is symmetric (i.e. equals 

to its transpose), while in case of directed networks there are differences between the 

value of the corresponding elements of the adjacency matrix above and below the main 

diagonal depending on the direction of the edges [80, 81]. 

The number of incoming edges of a node is called its degree, while the sum of the 

weight of the incoming edges is called the node strength [81]. Those regions of the 

network where the degree of the nodes mostly counts for the connections within this 

region rather than the remaining parts of the network are called modules or communities 

[83]. 

Most of the naturally occurring and artificial networks can be characterized by 

common fundamental properties like the observations that degree distribution of the 

nodes follows a power law (scale-freeness [84]) and instead of the expected linear relation 

the length of the shortest path between two nodes is proportional to the logarithm of the 

number of nodes in the network (small-worldness [85]). Similarly, in most of the cases 

networks exhibit a hierarchical structure [86] with a high degree of self-similarity [87]. 

1.2.3 Network visualization 

In addition to the objective mathematical description of networks with graphs, 

visualization of networks could facilitate the understanding of the functional relations 

between its constituents. However, in case of large, complex networks finding the best, 

meaningful layout is a challenging task, known as the “hairball” problem [88]. Most of 
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the approaches available for network visualization utilize physical analogies treating 

nodes as balls repelling each other with springs between them to model edges with 

attraction forces [89, 90]. With different optimizations, like space partitioning, the time 

complexity of these algorithms can be significantly reduced [91], however, the resulting 

visualization is quite disappointing for larger real-world networks [88]. Another 

important shortcoming of these algorithms is the lack of an objective measure to quantify 

the quality of the layout. 

By representing nodes as two dimensional probability distributions, information 

theoretic approach of relative entropy optimization offers a solution for both above 

problems. Similarly to the adjacency matrix (A), which describes the topology of the 

network, an overlap matrix (B) can be populated by the pairwise overlaps calculated 

between the two dimensional probability distributions representing the nodes. This way 

the strength of the relation between two nodes, which is symbolized by the weight of the 

connecting edge in the adjacency matrix, could also be expressed in terms of the overlaps 

of the above probability distributions. As a result, the topology and the two dimensional 

visualization of the network can be represented by the adjacency matrix and the overlap 

matrix, respectively, and Kullback–Leibler divergence (relative entropy, D) can be 

calculated to express the difference between the information content of these two 

matrices: 

𝐷(𝐴‖𝐵) =∑𝑎𝑖𝑗𝑙𝑛
𝑎𝑖𝑗 ∑ 𝑏𝑖𝑗𝑖𝑗

𝑏𝑖𝑗 ∑ 𝑎𝑖𝑗𝑖𝑗
𝑖𝑗

 

where aij and bij are the elements in the ith row and the jth column of the A adjacency 

matrix and the B overlap matrix, respectively. This relative entropy value accounts for 

the difference between the information content of the original network topology and the 

two dimensional visualization. Therefore, minimization of the relative entropy function 

could result in achieving the optimal two dimensional layout of the network characterized 

by the lowest possible information loss [92]. Although this way the improvement of the 

visualization could be naturally and elegantly accompanied by a measure to quantify the 

layout quality, it remained an open question whether this algorithm can be implemented 

as a user-friendly application with reasonable time and space complexity, which could 

effectively avoid local minima of the state space. 
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1.2.4 Network theoretical models of molecular biological processes 

Soon after the introduction of omics techniques it was noticed that advantages in 

the analysis of complex systems offered by objective mathematical evaluation and 

intuitive visualization of networks could be exploited for the investigation of various 

molecular biological systems [93]. Network topologies utilized for the evaluation of 

omics datasets can be classified into three main approaches based on the level of 

generality [79]. 

The first and most general approach is to reverse engineer the map of molecular 

biological interactions, and to construct and study so-called interactome networks, which 

are independent from the cell or tissue type and the phenotype [94]. Interactome networks 

can be further subdivided based on which biomolecules and interactions are represented 

by the nodes and the edges, respectively. While in gene regulatory networks genes are 

connected by edges symbolizing transcriptional regulation of gene expression [95, 96], 

protein-protein interaction networks are built of edges describing physical interactions 

between proteins [97]. MicroRNA-target interaction networks depict microRNAs and 

messenger RNA (mRNA) targets of microRNAs as nodes, and silencing interactions as 

edges [98]. Relying on these interactome networks either individual mediators or 

functional groups of mediators relevant in the pathogenesis of various diseases can be 

selected for experimental validation by network topological algorithms like the disease 

module approach [79]. Disease modules are communities in the interactome that are 

closely associated to various disease phenotypes [99]. 

As a second approach co-expression networks account for those algorithms that 

define the associations between biomolecules based on their relative abundance [100]. 

Assessing topological properties, like centrality measures and identifying modules in co-

expression networks could eventually reveal tissue-specific expression patterns that are 

responsible for the development of the studied phenotype [101]. 

In the third approach biological networks specific to tissue types and phenotypes or 

even for each individual samples are created and differences between them are 

investigated by the toolset of differential networking, which provides extra information 

when compared to the classical differential expression paradigm [102, 103]. 
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1.3 MicroRNA-target interaction networks 

Beyond network theory development and utilization of bioinformatics tools for the 

analysis of microRNA transcriptomics datasets also necessitates a detailed knowledge of 

the highly complex nature of the post-transcriptional regulatory network realized by the 

interactions of various forms of coding and non-coding RNAs and RNA-binding proteins 

[104–106]. 

1.3.1 Role of microRNAs in the post-transcriptional regulation of gene expression 

The importance of post-transcriptional regulation could be best highlighted by the 

fact that while among physiological conditions it is a major determinant of differences 

between the proteomics profile of various tissues [107], alterations of it could contribute 

to the development of different kinds of diseases [108]. Besides RNA-binding proteins a 

central effector mechanism of the post-transcriptional regulatory network is RNA 

interference [109].  

RNA interference is an umbrella term for those small non-coding RNA-mediated 

processes that lead to the reduction of the expression of a target gene at either the mRNA 

or the protein level [110]. There are three classes of small non-coding RNAs that 

effectuate RNA interference, namely microRNAs (often abbreviated as miRNAs) with a 

mean length of approximately 22 nucleotides, the 20-25 nucleotides long small interfering 

RNAs (siRNAs) and the 23-29 nucleotides long so-called “Piwi-interacting” RNAs 

(piRNAs) [111, 112]. In contrast to piRNAs, which are created during the process called 

ping-pong cycle [113], endogenous or exogenous double-stranded RNAs and the hairpin 

structure of the pre-microRNAs are cleaved by the Dicer endoribonuclease to give rise to 

the mature form of siRNAs and microRNAs, respectively [110]. Small non-coding RNAs 

belonging to the above three classes associates to and guide the members of the Argonaute 

protein family to the appropriate target mRNAs based on sequence complementarity 

forming the RNA-induced silencing complex (RISC) [114]. While target mRNA cleavage 

requires perfect complementarity in case of siRNAs and most piRNAs, microRNAs (and 

some piRNAs) recognize their targets by the hybridization of the 6-7 nucleotides long 

seed region near the 5’ end of the microRNA to the 3’ untranslated region of the target 

transcript [112, 114, 115]. Although microRNA-mediated gene silencing happens rather 
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by less powerful means like mRNA destabilization, mRNA degradation or translational 

inhibition, this permissive pairing rule makes the regulatory network of microRNAs 

highly intricate by allowing for one microRNA to bind to multiple mRNAs and one 

mRNA to be targeted by multiple microRNAs [116, 117]. This regulatory network is 

further complicated by dynamic phenomena like antagonism between microRNAs and 

sponging effects that is formulated within the competing endogenous RNA (ceRNA) 

hypothesis [104–106]. Therefore, it is obvious that the effect of alterations of microRNA 

expression profiles could only be predicted by taking into account the contribution of all 

microRNAs by network theoretic algorithms. 

1.3.2 MicroRNA target identification 

The primary prerequisite for inferring mRNA level transcriptomic changes from 

microRNA fingerprints is to identify the target genes of each microRNA showing 

expression changes between the studied phenotypes. Identification of the most relevant 

targets of microRNAs could happen based on either experimentally validated data or 

predictions assessed by various algorithms [106]. Although, records in experimentally 

validated, manually curated databases, like miRecords, miRTarBase or DIANA-TarBase 

are relatively reliable, these datasets only cover a tiny portion of the possible microRNA-

target interactions [98, 118, 119]. Therefore, relying solely on experimentally validated 

databases could result in overlooking many important interactions, that were not studied 

so far [120].  

Algorithms to predict microRNA targets, on the other hand, could provide full 

coverage of the possible interactions, they are still limited by a significant proportion of 

false positive findings [121]. One explanation for this poor specificity of prediction 

algorithms could be the fact that they focus on only few selected aspects of the greatly 

complex biology of the post-transcriptional regulatory system. The miRanda algorithm 

for example considers only sequence complementarity between the studied microRNA 

and its target [122], while the accompanying scoring algorithm, called mirSVR integrates 

the contribution of evolutionary conservation of the microRNA-target interaction, 

thermodynamic stability of microRNA-target complex and a few sequence related 

features into a support vector regression model [123]. Similarly, the MirTarget algorithm 

behind the miRDB database calculates target scores based on properties of the sequence 
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of the microRNA and the target by utilizing a support vector regression approach [124]. 

Conversely, PITA (Probability of Interaction by Target Accessibility) considers the 

binding site accessibility as a main determining factor of microRNA-target interactions 

[125]. Even though the context++ score of the TargetScan algorithm unites most of the 

above aspects in one comprehensive regression model, it still totally ignores the 

contribution of RNA-binding proteins [126]. This latter problem at least partly solved by 

the MREdictor algorithm, which searches for the well-conserved binding sites of Pumilio 

proteins, that could facilitate microRNA-mediated silencing by opening up the secondary 

structure of the target transcripts [127]. Nevertheless, one essential common shortcoming 

of all the currently available algorithms is that they are mostly based on such regression 

models and machine learning approaches, that are massively trained for the selected 

datasets [128]. This overfitting to the training set could likely explain how the authors of 

both TargetScan and MirTarget could have proved vice versa that their own algorithm is 

superior compared to the other [124, 126]. 

An additional problem is the relative lack of software tools that can consider the 

effect of multiple microRNAs on the same target. Currently there are only a few 

algorithms that is capable of analyzing microRNA-target interaction network as a whole 

[129, 130]. 

Here we propose that building and analyzing microRNA-target interaction 

networks by combining available experimental and predicted data could solve both above 

problems.  
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2 Objectives 

We aimed to develop and validate two pieces of user-friendly software utilizing 

network theoretic algorithms to facilitate the identification of key pathways and 

functional modules in the interactome by the unbiased analysis of omics datasets. 

Firstly, our goal was to implement a network layout algorithm that is capable to 

visually highlight functional modules in the layout of real-world networks and to 

objectively quantify the quality of the resulting network visualization. 

The second purpose of this work was to develop a software that by evaluating 

transcriptomics profiles and by combining multiple publicly available microRNA-target 

interaction databases could select those genes that are most likely regulated by the set of 

differentially expressed microRNAs. We aimed to validate this latter software by 

analyzing the microRNA fingerprints of animal comorbidity models, to also contribute to 

the elucidation of the underlying pathomechanisms and to the identification of novel 

therapeutic targets.  
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3 Results 

3.1 The EntOptLayout software 

To address the “hairball” problem of network visualization and to facilitate the 

quantification of the layout quality the relative entropy optimization algorithm proposed 

by Kovács et al. [92] was implemented as a user-friendly software called EntOptLayout 

and it was validated on several biological and synthetic networks. 

3.1.1 Software characteristics 

The EntOptLayout software was implemented in Java programming language as a 

plugin (http://apps.cytoscape.org/apps/entoptlayout) for the cross-platform compatible 

Cytoscape network analysis and visualization framework [131], therefore its graphical 

user interface is available for every major operating systems including GNU/Linux, 

macOS and Microsoft Windows. 

To improve calculation speed, the plugin divides the network into disconnected 

subgraphs and performs the optimization tasks on the resulting components separately. 

Adjacency matrices populated by edge weights of the network are stored using the 

compressed row storage (CRS) sparse matrix representation [132]. CRS significantly 

reduces the memory space complexity of the plugin compared to the conventional dense, 

two dimensional array representation while it still enables efficient reading of the matrix 

entries. Although CRS has a poor write performance, in case of adjacency matrices this 

limitation only affects the initialization phase, as no further modification of the adjacency 

matrix entries is needed during the layout calculation tasks. 

According to the relative entropy optimization algorithm [92] a probability 

distribution is assigned to each node and overlap matrices are calculated to describe the 

resulting layout. As elements of the overlap matrix are updated frequently and new values 

are read only a few times during the layout optimization, computation of the overlaps are 

performed on-the-fly, when they are needed without significant performance loss. 

To reduce relative entropy and consequently improve the quality of the network 

visualization besides position standard deviation and normalization (height) of the above 

mentioned probability distributions can be also optimized in separate calculation tasks. 

These optimization steps were implemented as Newton-Raphson iterations on the first 
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derivative of the functions describing the relation between relative entropy and the 

optimized parameter. 

Similarly, EntOptLayout plugin is capable to perform data ordering on the input 

network as a separate calculation task by optimizing node positions in one dimension. 

The ordered dataset can be exported as a conventional spreadsheet.  

When a calculation task is finished, raw and normalized relative entropy (i.e. 

normalized information loss) values are displayed in new columns added to the network 

table. Component-wise relative entropy values are also available in a separate Cytoscape 

table. With these numbers the user can easily follow the evolution of the network layout 

while it is converging to an optimal state. 

The EntOptLayout plugin provides three different user selectable main diagonal 

handling approaches for the adjacency and overlap matrices. It is optimal to ignore the 

main diagonal, when self-links are impossible or irrelevant in the network. If self-links 

are as relevant as the rest of the links in the network, double consideration of the main 

diagonal is recommended. The single option is kept only for compatibility and testing 

purposes. 

At the beginning of calculation tasks node positions can be either kept, initialized 

with random values based on a user defined random seed or with the visible coordinates. 

Similarly to other network layout plugins, column containing edge weights could be 

selected from a list box in EntOptLayout settings, however, visualization without 

considering edge weights is also possible. Although calculation tasks are stopped 

automatically when no further significant improvement can be achieved in the layout 

quality, a user adjustable time limit is also available to specify a maximal running time 

for larger networks. 

To highlight the structural characteristics of the network determined by mutual 

neighbors of the nodes, a special option to raise the adjacency matrix to the second power 

before starting calculations is also implemented in EntOptLayout. 

3.1.2 Validation of the EntOptLayout software 

The EntOptLayout algorithm was validated using both normal and diseased or 

perturbed versions of human and yeast interactomes and benchmark networks. Human 

validation datasets included a full (Interactome3D [133]), an Alzheimer's diseases related 
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[134] and a human immunodeficiency virus (HIV) related [135, 136] protein-protein 

interaction network, a biological pathway network (Reactome [137]) and a cancer 

signaling network [138]. One yeast protein-protein interaction network was analyzed both 

in its normal and heat shocked state [139] and also a Saccharomyces cerevisiae genetic 

interaction network was investigated [140].  

It was observed that using EntOptLayout after preprocessing of the layout by 

Cystoscape’s default Prefuse force-directed algorithm could result in better visualizations 

in terms of normalized information loss values compared to the case when EntOptLayout 

is applied alone (Figure 1). 

 

 

Figure 1 EntOptLayout visualizations of the Interactome3D protein-protein interaction 

network [133] (A, B) and a cancer signaling network [138] (C, D) with and without 

preprocessing by the Prefuse force-directed algorithm [141]. Functional protein 

complexes were identified by the ModuLand software [142] and were highlighted by 

various colors. Normalized information loss (D value) was indicated for each layout. 

On the Interactome3D protein-protein interaction network it was demonstrated that 

raising the adjacency matrix to the second power before the actual visualization could 

considerably reduce the normalized information loss both for layouts created by the so 

far best-performing Prefuse force-directed algorithm and those post-processed by 

EntOptLayout. In case of EntOptLayout the reduction was more substantial (Figure 2). 
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Figure 2 Prefuse force-directed (A, B) and preprocessed EntOptLayout (C, D) 

visualizations of the Interactome3D protein-protein interaction network [133] with (B, 

D) and without (A, C) raising the adjacency matrix to the second power before layout 

optimization [141]. Functional protein complexes were identified by the ModuLand 

software and were highlighted by various colors. Normalized information loss (D value) 

was indicated for each layout. 

According to marked improvements in normalized information loss sequential 

position and width optimization of the studied biological networks using EntOptLayout 

consistently resulted in a better layout compared to the currently available network 

visualization algorithms. As shown in Figure 3 in case of the Interactome3D protein-

protein interaction network the visualization by EntOptLayout after preprocessing by the 

Prefuse force-directed algorithm and using the second power of the adjacency matrix 

option yielded a much lower relative entropy value (D = 0.077) compared to the layouts 

prepared by either the spring-embedded (D = 0.294) [89], the EClerize (D = 0.353) [143] 

or the Prefuse force-directed algorithm alone (D = 0.299) [131, 144]. 

When visualizing synthetic graphs generated with predefined number and overlap 

of the modules [145], it was clearly demonstrated that EntOptLayout with the second 

power of adjacency matrix option could separate modules much better than the best 

currently available algorithm (Figure 4). This improvement was also reflected by the 

normalized information loss values. 
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Figure 3 Visualization of the Interactome3D protein-protein interaction network [133] 

by the Prefuse force-directed (A), the EntOptLayout (B), the spring-embedded (C) and 

the EClerize (D) algorithms [141]. Normalized information loss (D value) was indicated 

for each layout. 

 

Figure 4 Generated networks with mixing parameter of 0.1 (A, B) and 0.25 (C, D) of 

the predefined modules (blue, green and red) [145] visualized by the Prefuse force-

directed (A, C) and the EntOptLayout (B, D) algorithms [141]. Normalized information 

loss (D value) was indicated for each layout. 
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3.2 Software characteristics of the miRNAtarget software 

A software with a user-friendly, web-based graphical user interface 

(https://mirnatarget.com) called miRNAtarget was implemented in C++ programming 

language for the prediction of the most relevant common targets of differentially 

expressed microRNAs. MiRNAtarget constructs a microRNA-target interaction network 

by combining data from experimentally validated, manually curated (miRTarBase [98]) 

and predicted (microRNA.org [123], miRDB [124]) microRNA-target interaction 

databases. In this generated microRNA-target interaction network target hubs (i.e. target 

nodes with the greatest degree or node strength) are identified as mediators with the 

highest probability to be regulated by differentially expressed microRNAs [146, 147]. 

Target hubs predicted by the miRNAtarget software were experimentally validated 

in multiple projects [146–149] including two studies to investigate the direct myocardial 

effect of hypercholesterolemia and sensory neuropathy detailed in the next two chapters. 

3.3 Hypercholesterolemia-induced myocardial dysfunction 

Utilizing an unbiased study design [37] cardiac microRNA fingerprint of normo- 

and hypercholesterolemic rats were analyzed by the miRNAtarget software and predicted 

targets were experimentally validated to elucidate the molecular pathomechanism behind 

the primary myocardial dysfunction associated to hypercholesterolemia. 

 

Figure 5 Volcano plot showing the microRNAs upregulated (red) and downregulated 

(green) in the heart of the hypercholesterolemic rats compared to the control rats [146]. 
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3.3.1 Differentially expressed microRNAs 

After demonstrating the presence of hypercholesterolemia and myocardial 

dysfunction in Wistar rats (Rattus norvegicus) fed by cholesterol-enriched diet, cardiac 

microRNA expression profiles of treated and control rats were assessed by DNA 

microarray technique in a previous study [150]. Out of the 350 measured and 120 

detectable microRNAs 10 and 47 microRNAs showed downregulation and upregulation, 

respectively (Figure 5). 

3.3.2 Predicted microRNA targets 

The microRNA-target interaction network constructed by miRNAtarget from 

differentially expressed microRNAs and their predicted targets is shown in Figure 6A. 11 

targets were predicted to have a degree of at least 4 out of which 4 were selected for 

experimental validation based on review of the relevant literature (Figure 6B and C). 

 

Figure 6 EntOptLayout visualization of the microRNA-target interaction network of the 

down- (green) and upregulated (red) microRNAs and their predicted targets (blue) in the 

rat model of the hypercholesterolemia-induced myocardial dysfunction [146]. Target 

hubs are indicated by dark blue color (A). Four target hubs (Adrb2, Ppp3r1, Cask and 

Sgk1) selected for validation are highlighted in panel B and C. 
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The four candidate targets were beta-2 adrenergic receptor (Adrb2), calcineurin B type 1 

(Ppp3r1), calcium/calmodulin-dependent serine protein kinase (Cask) and 

serum/glucocorticoid regulated kinase 1 (Sgk1). 

3.3.3 Target validation 

Predicted downregulation of Adrb2 in the hypercholesterolemic hearts compared to 

the control group was successfully validated both on the mRNA and the protein levels, 

by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot 

measurements, respectively. Although, the expected downregulation of calcineurin B 

type 1 could not be observed on the mRNA (Ppp3r1) level, the protein product (CNB1) 

of this gene was significantly downregulated. In case of Cask we could not validate our 

predictions (Figure 7). Contrary to the data in the Human Protein Atlas on the cardiac 

expression of the human orthologue of Sgk1 [151], its expression on the mRNA level was 

not detected in our rat heart samples. 

 

Figure 7 qRT-PCR (A) and Western blot (B) validation results of the selected targets 

(Adrb2, Ppp3r1 and Cask) of microRNAs differentially expressed in the heart of rat 

model of hypercholesterolemia-induced myocardial dysfunction [146]. 
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Direct interaction between Adrb2 and two selected microRNAs, namely rno-miR-195 and 

rno-miR-322, was also demonstrated by microRNA-luciferase reporter assay (Figure 8). 

 

Figure 8 Results of the validation of direct interaction between rno-miR-195 and rno-

miR-322 and their predicted target Adrb2 by microRNA-luciferase reporter assay (A) 

and schematic structure diagram of the luciferase reporter vector (B) and  

beta-galactosidase reporter vector (C) used in this assay [146]. 

3.4 Sensory neuropathy-induced myocardial dysfunction 

Similarly to the investigation of hypercholesterolemia-induced myocardial 

dysfunction an unbiased, microRNA omics based study was conducted to unravel the role 

of microRNAs in the development of diastolic dysfunction related to sensory neuropathy, 

and miRNAtarget was further validated on the resulting dataset. 

3.4.1 Differentially expressed microRNAs 

Sensory neuropathy and consequent diastolic dysfunction was successfully induced 

by systemic capsaicin treatment in male Wistar rats as a model for the neurological and 

related cardiac consequences of diabetes mellitus [152]. By DNA microarray 

measurement performed on the rat hearts expression of 257 microRNAs was detected and 

in case of 8 microRNAs either significant differential expression or an absolute binary 

logarithm of fold change (log2FC) above 0.6 was demonstrated (Table 1). 
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Table 1 List of differentially expressed microRNAs in the rat model of sensory 

neuropathy-induced diastolic dysfunction when compared to the control group [147]. 

Mean and standard deviation (SD) of binary logarithm of fold change (log2FC) are 

indicated. Expression changes with p < 0.05 calculated by unpaired Student’s t-test are 

marked with an asterisk (*). 

microRNA log2FC mean log2FC SD Regulation 

rno-miR-344b-1-3p −1.95 * 0.47 down 

rno-miR-466b-1-3p −1.10 * 0.49 down 

rno-miR-98-5p −1.07 1.26 down 

rno-let-7a-5p −1.03 1.21 down 

rno-miR-1-3p −0.88 1.19 down 

rno-miR-206-3p −0.86 1.23 down 

rno-miR-34b-3p 0.63 0.46 up 

rno-miR-181a-2-3p 0.75 * 0.27 up 

 

 

 

Figure 9 EntOptLayout visualization of the predicted microRNA-target interaction 

network of differentially expressed microRNAs (red) in the rat model of sensory 

neuropathy-induced diastolic dysfunction when compared to the control group [147]. 

Predicted targets are represented by blue nodes, while target hubs with a degree of at 

least 3 are highlighted by dark blue color. Regions of the network containing the 

selected targets are magnified in panel A and B. 
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3.4.2 Predicted microRNA targets 

With the use of miRNAtarget software 15 microRNA targets with a degree of at 

least 3 was identified in the predicted microRNA-target interaction network (Figure 9). 

Out of these 15 predicted targets insulin-like growth factor 1 (Igf1), solute carrier family 

2 member 12 (Slc2a12), eukaryotic translation initiation factor 4E (Eif4e) and unc-51 like 

autophagy activating kinase 2 (Ulk2) were selected for experimental validation based on 

available literature data indicating their effect on myocardial function or their role in the 

pathogenesis of diabetes. 

3.4.3 Target validation 

In case of all four selected targets, namely Igf1, Slc2a12, Eif4e and Ulk2, the in 

silico predicted upregulation was observed even at the mRNA level by qRT-PCR as 

shown in Figure 10. 

 

Figure 10 Results of the qRT-PCR measurement of the mRNA level of four selected 

microRNA targets,  namely Igf1 (A), Slc2a12 (B), Eif4e (C) and Ulk2 (D), in the rat 

model of sensory neuropathy-induced diastolic dysfunction in comparison to the control 

group [147]. Comparisons were done by Student’s t-test and p-values under the 

significance level were indicated by asterisks (* p < 0.05, ** p < 0.01). 
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4 Discussion 

In this study we successfully developed two software tools and demonstrated their 

usefulness in the unbiased, microRNA omics based approach for the investigation of the 

molecular pathomechanism of cardiovascular disorders and comorbidities, that could 

provide a way to avoid further failures in the clinical translation of drug candidates [37, 

76]. 

4.1 Improved visualization of biological networks 

Here we successfully implemented the relative entropy optimization algorithm [92] 

in the form of the user-friendly EntOptLayout network visualization plugin for the widely 

used Cytoscape network analysis framework demonstrating its advantages over currently 

available software tools. 

4.1.1 Objective measure for the quality of the network layouts 

A unique feature of the EntOptLayout plugin is the ability to measure the quality of 

the resulting layout in terms of the normalized information loss (D value). With this 

capability EntOptLayout makes it possible to objectively compare network visualizations 

and the performance of layout algorithms when applied on the same network. 

The minimization of the information loss as a central idea behind EntOptLayout 

also guarantees that the achieved layout visually reflects the information content of the 

network topology as precisely as it is reasonably possible [92]. 

4.1.2 Advances in the visual identification of functional modules in biological networks 

Utilizing relative information loss as a quality measure it was demonstrated that 

when applying alternating updates of the node positions and widths to avoid local minima 

of the relative entropy function, EntOptLayout outperforms the currently available 

network layout algorithms [89, 131, 143, 144] in visualizing protein-protein interaction, 

biological pathway and signaling networks. Furthermore, when compared to other 

algorithms visual discrimination of functional modules in the above biological networks 

and in generated random benchmark networks was easier in case of the visualizations 

produced by EntOptLayout especially if the option to raise the adjacency matrix to the 
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second power was switched on. As identifying modules in interactomes or signaling 

networks bear a special importance for exploring genes related to certain diseases [99, 

153] and in drug discovery [154], the above capability to separate modules even by 

looking at the layout could be greatly beneficial for the analysis of biological networks.  

In addition, implementation details, like sparse matrix representation of the 

adjacency matrix [132] and on-the-fly calculation of the node overlaps instead of storing 

these values in dense matrices improved memory handling and thus made it possible to 

visualize large networks even on average hardware. 

4.1.3 Current limitations and future perspectives 

Even though our results suggest that EntOptLayout can reduce the relative 

information loss compared to other network visualization algorithms, this improvement 

is more pronounced if preprocessing is performed by force-directed methodologies before 

applying the relative entropy optimization. As predicted by Kovács et al. [92] the reason 

for this shortcoming is most likely that, while EntOptLayout could align nodes within 

local structures like modules with a so far unprecedented accuracy, macroscopic 

arrangement of these structures depends on the randomly generated initial position of the 

nodes. This way instead of the global optimum the resulting layouts represent one of the 

local minima determined by the macroscopic structure, which behavior could be 

prevented by applying a preprocessing step. 

In case of large networks, the recommended running time of EntOptLayout is 

10,000 seconds, which far exceeds the time requirement of other highly optimized, but 

less precise algorithms. Both above problems could be overcome by applying a 

hierarchical layout approach [92], which is currently being implemented by our team. 

Another possible problem with EntOptLayout is when using the option to raise the 

adjacency matrix to the second power, the resulting layouts are less visually pleasing by 

subjective measures. However, this is a tradeoff with which we have to face, if it is a 

requirement to be able to discriminate modules of the network even by looking at the 

layout. If a nice layout is preferred over a more meaningful one, it can be easily achieved 

by EntOptLayout switching off the option to raise the adjacency matrix to the second 

power.  
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4.2 Unbiased prediction of target hubs in microRNA-target networks 

For the unbiased, in silico prediction of the most relevant targets of differentially 

expressed microRNAs miRNAtarget software was implemented and successfully 

validated using microRNA expression profiles assessed from two cardiovascular 

comorbidity models. 

4.2.1 A validated software for accurate microRNA-target hub prediction 

Because of the poor coverage provided by experimentally validated microRNA-

target interaction databases [120] and the high proportion of false positive records in 

predicted databases [121], in this study we proposed to combine multiple sources of 

microRNA-target interaction data within a simple network theoretic model as 

implemented in the miRNAtarget software. Based on the successful experimental 

validation of most of the target expression changes predicted by the miRNAtarget 

software, the above approach to combine experimental [98] and predicted [123, 124] 

microRNA-target interaction data proved to be effective. This way both the elimination 

of many false positive microRNA-target interactions and the extension of coverage could 

be achieved. 

By identifying microRNA targets with high network theoretical centrality values, 

like node degree or node strength miRNAtarget also makes it possible to take into 

consideration the effect of all the differentially expressed microRNAs predicted to 

regulate the same target. This feature let us tackle the problem of the high complexity of 

microRNA-target interaction networks [116, 117] for which well-established tools were 

lacking so far [128]. 

With appropriate layout of microRNA-target interaction networks generated by 

miRNAtarget could be also used to visually identify the most relevant mediators and 

functional modules of the post-transcriptional regulatory mechanisms. For this purpose, 

all networks assessed by miRNAtarget was visualized by the EntOptLayout plugin 

achieving a visually pleasing layout, on which key mediators can be recognized easily. 

Furthermore, with a user-friendly web frontend miRNAtarget serves as a tool that 

can be used even by those researchers, who does not have previous bioinformatics 

expertise this way facilitating the wider adoption of microRNA omics based, unbiased 
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approaches [37, 76] for the study of various diseases, hopefully even outside the domain 

of cardiovascular biology. 

4.2.2 Novel mediators identified as possible drug targets in cardiovascular 

comorbidities 

Based on our in silico predictions here we demonstrated the significant 

downregulation of beta-2 adrenergic receptor (Adrb2) on both the mRNA and protein 

level in the rat model of hypercholesterolemia-induced myocardial dysfunction. Predicted 

direct interaction between Adrb2 mRNA and two upregulated microRNAs was also 

verified in this study (rno-miR-195 and rno-miR-322) by luciferase reporter assay. In 

addition, downregulation of Adrb2 due to direct interaction with a third microRNA (rno-

miR-16) also predicted by miRNAtarget software was shown in an independent study 

[155]. Although, other mechanisms including transcriptional regulation or epigenetic 

changes could have also contributed to the downregulation of Adrb2, these findings 

support the presence of microRNA-mediated downregulation of Adrb2 in the 

hypercholesterolemic heart. As Adrb2 was previously shown to be an important 

determinant of cardiac function [156], the above alterations are likely related to the 

development of myocardial dysfunction in hypercholesterolemia. Similarly, in silico 

predicted downregulation of calcineurin B type 1 (Ppp3r1) was successfully validated at 

the protein level in the hypercholesterolemic rat hearts. Furthermore, another study 

provided experimental evidence for the direct regulation of Ppp3r1 by the members of 

the miR-30 family [157], which was independently predicted by our software as a reason 

for the expected expression change of Ppp3r1. Based on data available in the literature on 

the role of Ppp3r1 in heart failure and cardiac hypertrophy [158], downregulation of 

Ppp3r1 could have also contributed to the progression of myocardial dysfunction 

observed in our model. 

In case of the rat model of systemic neuropathy-induced myocardial dysfunction 

predicted upregulation of all four selected targets of the downregulated microRNAs were 

successfully validated at the mRNA level. Out of these validated targets upregulation of 

insulin-like growth factor 1 (Igf1) and its downstream signaling pathway mediated by 

mTOR (mechanistic target of rapamycin), which includes another one of our validated 

targets, namely eukaryotic translation initiation factor 4E (Eif4e), were previously shown 
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to be involved in various cardiac pathologies contributing to the development of cardiac 

hypertrophy and heart failure [159–161]. The third validated target in this study, unc-51 

like autophagy activating kinase 2 (Ulk2) is an activator of autophagy, which process 

participates in the development of diabetic cardiomyopathy [162, 163]. In addition, here 

we also validated the predicted upregulation of solute carrier family 2 member 12 

(Slc2a12), an insulin sensitive glucose transporter that according to literature data 

becomes more abundant on cardiomyocytes during diabetes [164, 165]. 

Following further functional validation the above mediators could serve as possible 

novel targets for therapeutic approaches for the treatment of myocardial dysfunction 

induced by comorbidities including hypercholesterolemia and diabetic neuropathy. 

4.2.3 Current limitations and future perspectives 

Although here it was proven, that miRNAtarget is capable to make accurate 

predictions even in case of complex microRNA-target interaction networks, in the rat 

model of hypercholesterolemia-induced myocardial dysfunction expected expression 

change of a target with especially high node degree, namely Cask, could not be validated 

experimentally. We suppose that this phenomenon is likely due to the presence of 

adenylate-uridylate-rich sequences in the Cask mRNA, that are capable to bind the ELAV 

like RNA binding protein 1 (Elavl1, also known as human antigen R), which in turn can 

inhibit the silencing effect of targeting microRNAs [166]. At the same time, in the Ppp3r1 

mRNA conserved binding sites of Pumilio RNA-binding proteins are located, which 

could explain the increased silencing effect of the interacting microRNAs in case of 

Ppp3r1, as synergism between microRNAs and Pumilio proteins is well established [167]. 

Taken together, these observations justify our ongoing efforts to include the effect of 

RNA-binding proteins in our microRNA-target interaction network model to obtain even 

more precise predictions. 

Moreover, prediction of intricate regulatory effects like those described within the 

ceRNA hypothesis [104–106], instead of the current barely topological approach requires 

a network dynamic analysis of microRNA-target interactions, which we are also working 

on at the time of writing. 

Targets predicted for the microRNAs differentially expressed in the rat model of 

sensory neuropathy-induced myocardial dysfunction were only validated at mRNA level 
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by qRT-PCR, which obviously not cover the known repression effect of microRNAs on 

the translation [117]. It was, however, demonstrated previously that translational 

repression precedes target destabilization and its contribution to silencing is less 

substantial when compared to mRNA degradation due to target destabilization [168, 169]. 

Therefore, successful validation of predicted expression changes on the mRNA level by 

qRT-PCR is a strong indication for the existence of microRNA-target interactions, which 

was also acknowledged by one of the most popular experimentally validated microRNA-

target interaction databases [98]. 

Partly because of the above limitations, it is also important to note that in neither 

study can we exclude the possibility that the observed expression changes of the predicted 

targets could be at least in part a result of mechanisms independent from microRNA-

mediated silencing, like transcriptional or epigenetic regulation of gene expression [37]. 

Nevertheless, evidence for the direct interaction between Adrb2 and investigated 

microRNAs was demonstrated by luciferase reporter assay in case of the rat model of 

hypercholesterolemia-induced myocardial dysfunction, which further supports the 

validity of our in silico approach. 

Lastly, elucidation of the exact role of the newly identified targets in the 

pathomechanism requires further investigation in case of both models of comorbidity-

induced myocardial dysfunctions.  
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5 Conclusions 

We developed and successfully validated two user-friendly software tools, namely 

EntOptLayout and miRNAtarget for the unbiased, network theoretic analysis of omics 

datasets to identify potential molecular drug targets. We conclude that the present thesis 

is based on the following novel findings: 

1. By utilizing the principle of relative entropy optimization and the novel approach 

of raising the adjacency matrix to the second power the EntOptLayout plugin 

performed markedly better in the spatial separation of functional modules of 

biological networks compared to the currently available best-performing software 

tools, this way facilitating the identification of key mediators even by visual 

inspection of the network layout.  

2. Normalized information loss values calculated by EntOptLayout for the objective 

quantification of the quality of the network arrangements, also demonstrated that 

visualizations produced by EntOptLayout are superior than the ones assessed by 

traditionally best-performing algorithms. 

3. The miRNAtarget software, which we made available also as a web based tool, 

for improved coverage and quality utilizes microRNA-target interaction data from 

multiple experimentally validated and predicted databases to construct and 

analyze a microRNA-target interaction network. MicroRNA-target hubs with the 

highest node degree, identified by miRNAtarget as the most relevant mediators, 

were successfully validated by multiple experimental approaches in two animal 

models of cardiovascular comorbidities, providing evidence for the utility of 

miRNAtarget. 

4. In addition to the validation of miRNAtarget, by the unbiased, omics based 

investigation of the above two comorbidity models we first identified and 

validated potential new drug targets for the treatment of myocardial dysfunction 

induced by hypercholesterolemia (Adrb2, Ppp3r1) and sensory neuropathy (Igf1, 

Slc2a12, Eif4e, Ulk2). 
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6 Summary 

Despite the great epidemiologic burden of ischemic heart disease all attempts for 

the clinical translation of cardioprotective approaches was notoriously unsuccessful so 

far. Based on a growing body of evidence the reason for these failures is twofold. Firstly, 

the modifying effect of comorbidities are ignored during the preclinical studies of 

ischemic heart disease, and secondly novel targets in most cases were identified by 

utilizing biased, hypothesis-driven methodologies. In addition, the second problem is 

further aggravated by the lack of user-friendly software tools for the unbiased analysis of 

huge omics datasets belonging to the domain of big data. 

Therefore, our aim was to develop and validate two easy-to-use software tools 

utilizing network theoretic principles for the analysis of omics datasets especially 

focusing on microRNA expression profiles. In addition, we aimed to identify possible 

novel molecular targets by the above in silico techniques in the experimental model of 

myocardial dysfunction induced by two comorbidities, namely hypercholesterolemia and 

sensory neuropathy. 

Here, we successfully implemented and validated the EntOptLayout network 

visualization plugin for the Cystoscape framework with a capability to objectively 

quantify the quality of network layouts by the normalized information loss value. It was 

demonstrated that on biological networks EntOptLayout outperforms the currently 

available best network visualization algorithms in terms of both the normalized 

information loss values and the spatial separation of functional modules. For network 

theoretical prediction of the most relevant common targets of differentially expressed 

microRNAs miRNAtarget software was developed and its predictions were validated 

experimentally using the samples gathered from our comorbidity animal models. As a 

result, predicted expression change of two targets in hypercholesterolemia-induced 

myocardial dysfunction (Adrb2, Ppp3r1), and four targets in sensory neuropathy-induced 

diastolic dysfunction (Igf1, Slc2a12, Eif4e, Ulk2) was confirmed experimentally. 

In summary novel in silico methods implemented and validated in this study could 

facilitate the unbiased analysis of omics datasets hopefully even outside the domain of 

cardiovascular biology, and after further investigation validated targets could serve as 

potential new drug targets for the treatment of the studied cardiovascular comorbidities.  
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