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Simple Summary: Despite recent improvements in cure rates, pediatric acute lymphoblastic leuke-

mia (ALL) patients remain at risk to develop relapse disease or suffer from therapy-associated side 

effects. Over 5% of adverse events appear in the central nervous system (CNS) and can impact sur-

vival or quality of life of the patients. Inherited genetic variations are possible predictive factors for 

these adverse events. This retrospective study aimed to investigate if inherited genetic variations in 

genes encoding drug-metabolizing enzymes and drug transporters localized in the blood-brain bar-

rier are predictive for CNS events. Our results suggest that certain ABCB1, ABCG2 and GSTP1 gene 

polymorphisms influence CNS toxicity and CNS relapse. A more effective drug-clearance could 

lead to less toxicity but contribute to a higher chance of relapse and vice versa. Genetic variants in 

ABCB1, ABCG2 or GSTP1 genes are promising candidates for personalized medicine. 
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Abstract: Despite improving cure rates in childhood acute lymphoblastic leukemia (ALL), thera-

peutic side effects and relapse are ongoing challenges. These can also affect the central nervous sys-

tem (CNS). Our aim was to identify germline gene polymorphisms that influence the risk of CNS 

events. Sixty single nucleotide polymorphisms (SNPs) in 20 genes were genotyped in a Hungarian 

non-matched ALL cohort of 36 cases with chemotherapy related acute toxic encephalopathy (ATE) 

and 544 controls. Five significant SNPs were further analyzed in an extended Austrian-Czech-

NOPHO cohort (n = 107 cases, n = 211 controls) but none of the associations could be validated. 

Overall populations including all nations’ matched cohorts for ATE (n = 426) with seizure subgroup 

(n = 133) and posterior reversible encephalopathy syndrome (PRES, n = 251) were analyzed, as well. 

We found that patients with ABCB1 rs1045642, rs1128503 or rs2032582 TT genotypes were more 

prone to have seizures but those with rs1045642 TT developed PRES less frequently. The same SNPs 

were also examined in relation to ALL relapse on a case-control matched cohort of 320 patients from 

all groups. Those with rs1128503 CC or rs2032582 GG genotypes showed higher incidence of CNS 

relapse. Our results suggest that blood-brain-barrier drug transporter gene-polymorphisms might 

have an inverse association with seizures and CNS relapse. 

Keywords: encephalopathy; CNS toxicity; CNS relapse; PRES; genetic polymorphisms; childhood 

leukemia 

 

1. Introduction 

Cancer is the leading cause of illness-linked deaths in childhood in the developed 

countries [1]. The most common pediatric malignancy is acute lymphoblastic leukemia 

(ALL). Its effective chemotherapy regimens yield more than 90% long term survival rates 

in developed countries [2]. Although, adverse drug reactions are still a challenge [3]. Phar-

macokinetics and pharmacodynamics of the drugs are also influenced by germline gene 

variants, some already indicated in drug labels [4,5]. The most important genetic risk fac-

tors are already described in pediatric ALL as well, however, they failed to reliably predict 

prognosis [6]. Relapse, and toxicity-related deaths still limit outcome, therefore under-

standing their genetic background and finding predictive biomarkers are still important 

[7,8]. Approximately 5–15% of children with ALL were reported to suffer from acute cen-

tral nervous system (CNS) toxicity during the treatment, while isolated and/or combined 

CNS relapse occurred in 3–8% [9–11]. Neurotoxicity is the second most common adverse 

event to trigger dose-reduction of chemotherapeutic agents [12]. However, there are lim-

ited number of publications investigating prognostic factors of acute CNS toxicity or phar-

macogenetics of CNS relapse in ALL [13–15]. 

There are a few suggested pharmacogenetic risk factors for relapse or neurotoxicity 

in ALL. SNPs in a MTX (methotrexate) pathway enzyme, methylene tetrahydrofolate re-

ductase (MTHFR) were reported to associate with neurotoxicity [16], and so were 

CYP3A5*1/*3 alleles (cytochrome P450 family 3 subfamily A member 5) that play a role in 

vincristine metabolism [17]. Central nervous system toxicity during cancer therapy was 

also associated with genetic variants of ABCB1, ABCG2 and GSTP1 (glutathione S-trans-

ferase 1) [18–20]. Variants in GSTP1 and ABCB1 genes were also associated with CNS re-

lapse or overall relapse [15,21]. Vincristine-pathway genes were not associated with re-

lapse of ALL, but with peripheral neurotoxicity [22]. 

Symptoms of CNS toxicities vary based on etiology and the affected areas. Adverse 

complications within the brain may cause acute, subacute, or delayed encephalopathy [6]. 

Toxic encephalopathy may be reversible or permanent and can lead to neurocognitive 

impairment [23]. The diagnosis of acute toxic encephalopathy is based on clinical features 

and specific MRI findings [24]. Differential diagnosis requires the exclusion of peripheral 

neuropathy, CNS infection, intracranial vascular events, CNS malignancy, effect of seda-
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tive medications, or metabolic disturbances e.g., liver failure [25]. A nomenclature estab-

lished in 2016 defined some typical CNS toxic events of childhood ALL therapy: metho-

trexate-related stroke-like syndrome (SLS), seizures, posterior reversible encephalopathy 

syndrome (PRES), and depressed level of consciousness [26]. PRES and SLS have specific 

clinical and/or radiological patterns. Suspicion for PRES or SLS might be triggered by any 

CNS symptom with unique MRI lesions [10,26]. Chemotherapy related neurotoxicity in 

children with ALL appeared most often among females and at younger age [27]. Moreo-

ver, it was also described that risk for PRES and seizures is higher in older children (>10 

years) [28,29]. Toxicity of intrathecal chemotherapy was associated with age above 3 years 

in a different study [30]. However CNS involvement did not associate with MTX neuro-

toxicity [31]. 

Patients with relapsed ALL face unfavorable outcome, their 5-year overall or event-

free survival (OS, EFS) varies around 30–50% [32,33]. Approximately 30% of patients with 

relapsed ALL have CNS leukemia (combined or isolated) [15,34]. Repeated doses of in-

trathecal chemotherapy (CNS treatment of CNS negative ALL patients) [27,34] in combi-

nation with CNS directed systemic chemotherapy has reduced the CNS relapse rate to 5% 

for the nineties [35]. Intrathecal dose intensification by CNS status at diagnosis could im-

prove the prevention of CNS relapses [36–41]. 

Systemic and CNS directed treatment of ALL are known to be neurotoxic both in the 

short and in the long term [27,34,42]. Vincristine, methotrexate, cytarabine, l-asparaginase, 

iphosphamide, and glucocorticoids (prednisone and dexamethasone) are thought to exert 

the most acute adverse effects in the CNS [13,27]. It is usually hard to find single cause-

effect relationships as multi-agent chemotherapy cycles are used, and other factors like 

drug-drug interactions, cranial irradiation, CNS-infiltration must also be considered [13]. 

Therefore, biomarkers for predicting CNS complications are much needed [34]. 

In 2007, we published a study on BBB pharmacogenetics of CNS toxicity in childhood 

ALL [20]. Acute toxic encephalopathy (ATE, any ≥ grade 3 CNS toxicity directly evoked 

by chemotherapy) was found to be more frequent among patients homozygous for the 

ABCB1 rs1045642 T allele; and the association was stronger with a combination of ABCB1 

rs1045642 TT and ABCG2 rs2231142 CA/AA genotypes. In this study, our aims were to (1) 

reexamine this question on a larger patient cohort, with an extended set of SNPs relevant 

in pharmacogenetics; and (2) to examine the association of the same SNPs with leukemia 

CNS relapse. We hypothesized that a functional SNP leading to a higher concentration of 

chemotherapeutics in the brain would increase the risk of CNS toxicity but reduce the 

chance of CNS relapse, or vice versa. 

2. Materials and Methods 

2.1. Patients 

We enrolled to all study cohorts children treated for frontline ALL, at ages 0–18 years 

(1–18 years for toxicity analyses to avoid infant patients on different chemotherapy regi-

mens; 0–18 years for analyzing relapses) at diagnosis in Hungary, Austria, Czech Republic 

and in the NOPHO group (Denmark, Norway, Sweden, Finland, Iceland, Lithuania, Es-

tonia) [43]. We excluded children with any previous chemotherapy, any major deviations 

from ALL protocol to focus on pharmacogenetic effects. Clinical data were collected from 

the medical records of the patients retrospectively. Data collection sheets of the PdL ‘Ret-

rospective Investigation of Children with ALL/LBL with Central Neurotoxicity Related to 

Therapy’ study were used (with complements to Christina Halsey and the Ponte di Legno 

Toxicity Working Group) as all four contributing groups are participating in that ongoing 

study. See Tables 1–3, and Table S7 for characteristics of cohorts. 
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Table 1. Basic characteristics of the studied populations with acute encephalopathy (AE) and acute toxic encephalopathy 

(ATE). 

Study Cohort Hungarian 
Austrian Czech NOPHO 4 

Combined 
Joined Validation Cohort 

  Non-matched Matched Matched Matched 

Phenotype AE ATE ATE ATE ATE 

Number of  

patients n 
626 580 108 62 119 137 426 

ATE Cases/controls 

n (%) 

82/544 36/544 36/72 21/41 39/80 47/90 143/283 

(13/87) (6/94) (33/67) (34/66) (49/51) (34/66) (34/66) 

Seizure only n 21 20 20 8 10 6 44 

SLS 1 n 6 6 6 1 6 7 20 

Toxic PRES 2 n 3 3 3 12 18 33 66 

Gender n (%) 339 317 52 26 53 74 205 

Male (54) (55) (48) (42) (45) (54) (48) 

Period of ALL  

diagnosis y 
1990–2015 1990–2015 1992–2015 2010–2018 2003–2017 2008–2015 1992–2018 

Age at diagnosis n 

(%) 
104 88 35 30 42 29 136 

>10 yr n (17) (15) (32) (48) (35) (21) (32) 

Median (range) yr 5.0 (1–18) 5.0 (1–18) 7.7 (1–18) 9.9 (1.8–17.7) 7.1 (1.3–18) 7.0 (1–16) 7.6 (1–18) 

Risk group (HR 3) n 75 69 17 29 15 41 102 

(%) (12) (12) (16) (47) (13) (30) (24) 

Abbreviations: AE: acute encephalopathy; ATE: acute toxic encephalopathy; 1 SLS: Stroke-like syndrome; 2 PRES: Posterior 

re-versible encephalopathy syndrome; 3 HR: high risk, as per patient’s treatment protocol; 4 NOPHO: Nordic Society for 

Pediatric Hematology and Oncology. 

Table 2. Basic characteristics of the studied population of posterior reversible encephalopathy syndrome (PRES). 

Study Cohort Austrian Czech Hungarian NOPHO 2 Combined 

Matched cohorts 

Number of patients n 39 62 18 132 251 

Cases/controls n (%) 
13/26 19/43 6/12 44/88 82/169 

(33/67) (31/69) (33/66) (33/66) (33/67) 

Gender n (%) 18 43 9 76 146 

Male (46) (69) (50) (58) (58) 

Period of ALL diagnosis y 2010–2017 2003–2017 1998–2013 2008–2015 1998–2017 

Age at diagnosis n (%) 14 16 9 23 62 

>10 yr n (36) (26) (50) (17) (25) 

Median (range) yr 9.0(1.8–16.9) 5.68(1.3–14.5) 10.5(4–15) 8.0(1–15) 8.0(1–16.9) 

Risk group (HR 1) n 21 7 3 48 79 

(%) (54) (11) (17) (36) (32) 

Abbreviations: 1 HR: high risk; 2 NOPHO: Nordic Society for Pediatric Hematology and Oncology. 

Table 3. Basic characteristics of the studied population of central nervous system first relapse (CNS relapse). 

Study Cohorts Austrian Czech Hungarian NOPHO 4 Combined 

Matched cohorts 

Number of patients n 8 152 60 100 320 

Isolated CNS 1  

relapse 
1 10 4 19 35 

Combined CNS  

relapse 
2 26 12 12 51 

Isolated BM 2  

relapse 
5 54 16 30 105 

Relapse- free  

controls 
0 62 28 39 129 



Cancers 2021, 13, 2333 5 of 16 
 

 

Gender n (%) 4 102 42 62 210 

Male (50) (67) (70) (62) (66) 

Period of ALL  

diagnosis y 
2010–2014 1996–2017 1992–2013 2008–2015 1992–2017 

Age at diagnosis n 

(%) 
3 29 22 24 78 

>10 yr n (40) (19) (37) (24) (24) 

Median (range) yr 9.5 (5.8–15.9) 4.2 (0.1–17.8) 7.4 (1–17) 5.0 (1–16) 4.9 (0.1–17.8) 

Risk group (HR 3) n 5 38 17 27 87 

(%) (63) (25) (28) (27) (27) 

Abbreviations: 1 CNS: central nervous system; 2 BM: bone marrow; 3 HR: high risk 4 NOPHO: Nordic Society for Pediatric 

Hematology and Oncology. 

The two main studied phenotypes were adverse CNS symptoms called acute enceph-

alopathy (AE) and CNS relapse. The definition of AE was any evolving adverse CNS 

symptom at least grade 3 as per Common Terminology Criteria for Adverse Events 

(CTCAE) v.4.0 occurring after the first dose of anti-leukemic treatment but within 3 weeks 

after the last dose of i.v. chemotherapy [44]. Patients with preceding CNS diseases; with 

uncertain, or mild neurologic symptoms were excluded from all analyses targeting neu-

rotoxicity. 

CNS adverse events with no known secondary etiology are defined as acute toxic 

encephalopathy (ATE.), as subgroup of AE. AE cases with identified underlying systemic 

causes including cerebrovascular events, CNS infections, actual CNS leukemia not in re-

mission, metabolic alterations (e.g., severe electrolyte disturbance, hepatic encephalopa-

thy, hypoglycemia or diabetic ketoacidosis) or insufficient CNS circulation (e.g., hyper-

tensive encephalopathy, increased intracranial pressure, severe anemia or sepsis with hy-

potension or hypoxia) possibly causing CNS symptoms were excluded. See more details 

in Supplementary Materials Patient Criteria. Hence, only events with suspected direct 

chemotherapy-related CNS adverse toxic effects were stratified as drug-induced ATE. 

These patients could be classified into the overlapping Delphi consensus definitions of 

stroke-like syndrome (SLS), seizures without other neurological events, depressed level 

of consciousness, posterior reversible encephalopathy syndrome (PRES), however, these 

symptoms could also be observed with known secondary cases in the AE cohort [26] (Fig-

ure 1.). Two controls per case were enrolled. Controls were pediatric patients with ALL 

who experienced none of these events, had no comorbidities, medical history, or co-med-

ication that may have influenced the occurrence of CNS complications or drug pharma-

cokinetics. 

We categorized each event of AE according to four different types of chemotherapy 

cycles taking into account during or after what type of chemotherapy the CNS complica-

tion evolved (see more details in Table S1b). 

Boxes of studied phenotypes are highlighted with blue background. Note: symptoms 

of ATE subgroups may overlap, see definitions at Reference [26]. Further rare manifesta-

tions of ATE are not demonstrated in the Figure 1., e.g., ataxia, extrapyramidal move-

ments, steroid evoked psychosis, etc. Secondary CNS toxicities may present with differ-

ent, similar or same symptoms as ATE. E.g. PRES can be caused by hyponatremia or by 

severe hypertension, but may also present without these. 

For the CNS relapse case-control analysis, 1st ALL relapse cases were selected, both 

isolated CNS and combined medullary plus CNS, and other extramedullary plus CNS 

relapses. Three controls per one case were matched: two non-relapsed patients with ALL 

and one isolated BM first relapse case. See Supplementary Materials Patient Criteria for 

details. 
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2.2. Study Design, Overview 

Following the 2007 publication, further Hungarian ALL patients were enrolled be-

tween 2005 and 2015. Sixty SNPs in 20 genes encoding drug-metabolizing enzymes and 

transporters were studied on the whole 1990–2015 Hungarian non-matched patient cohort 

(n = 580). To validate prior results, we organized a European case-control matched cohort 

with Austrian, Czech, and Nordic Society of Pediatric Hematology and Oncology 

(NOPHO) groups for validation of the ATE—genotype associations found in the Hungar-

ian population (validation cohort: 107 ATE cases and 211 controls). SLS, seizure without 

other neurological events, toxic PRES, altered consciousness, and their overlap cases were 

requested, and two matched controls for each case. The same enrolment criteria were used 

for all of the study groups when selecting patients for the Joined validation cohort. In the 

same study, we also examined another AE phenotype, PRES, which included cases with 

toxic or secondary causes (82 PRES cases, 169 controls). Together, the four groups had 

enough cases to test for the effect of the same SNPs on CNS relapse, as well (86 CNS re-

lapse cases (isolated or combined), 105 isolated bone-marrow (BM) relapse cases, 129 con-

trols). The number of patients to be involved was designed based on the results of the 

discovery population with the statistical power of 0.8. For the demonstration of the study 

elements of CNS toxicity in a flow chart see Figure 1. 

Figure 1. Classification of CNS toxicities during childhood ALL therapy. 

Throughout the paper, by ‘Joined cohort’, we mean the Austrian-Czech-NOPHO 

case-control ATE validation population. By ‘Combined cohort’ of ATE or PRES or CNS 

relapse, we mean the matched study populations of all the four study groups (Hungarian, 

Austrian, Czech and NOPHO), respectively. See Figure 2. 
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Figure 2. Study design. 

2.3. Ethical Considerations 

The study was conducted according to the principles expressed in the Declaration of 

Helsinki for all nations. Written informed consent was requested from all patients or the 

parents or guardians of the minors involved in the study. The study was approved by the 

ethical committees in the participating countries. These are: Ethics Committee of the Med-

ical University of Vienna on 3 August 2010 (No. 641/2010) (Austrian patients); Ethics Com-

mittee of University Hospital Motol (approval file number NV15-30626A, approved in 

August 2014) (Czech patients); Ethics Committee of the Hungarian Medical Research 

Council (approval file number 12988-52-1018/-EKU, Date: 29 September 2003, 23310–

1/2011/EKU, Date: 19 January 2012, ad. 60106-1/2015/EKU, Date: 21 December 2015) (Hun-

garian patients). The database containing phenotype data was approved by the Swedish 

Ethical Review Authority (731-10 (date 17 January 2011), the regional ethical review board 

of The Capital Region of Denmark (H-2-2010-022), the Danish Data Protection Authorities 

(j.nr.: 2012-58-0004), and by relevant regulatory authorities in all participating countries. 

Genotype data were stored at the Technical University of Denmark’s server Comput-

erome (NOPHO patients). 

2.4. Laboratory Methods 

DNA was isolated from peripheral blood taken in remission and 60 SNPs (Table S1a) 

of drug-metabolizing or transporting genes were selected and genotyped in the Hungar-

ian population. The main features of the studied SNPs are summarized in Table S1a. Gen-

otype data of 5 SNPs were requested from collaboration partners. In the Austrian cohort 

genotyping was performed via Sanger sequencing of remission bone marrow samples (see 

Table S1c for primer sequences). Major proportion of Czech patients was genotyped using 

KASPar (KBioscience Competitive Allele-Specific Polymerase chain reaction)-on-Demand 

prevalidated assays (LGC Biosearch Technologies , Hoddesdon, United Kingdom). Minor 

proportion was genotyped using the single nucleotide polymorphism arrays (Hu-

manOmni Express BeadChip from Illumina, San Diego, CA, United states and CytoScan 

HD arrays from Affymetrix, Santa Clara, CA, United States) as described previously [45]. 

Genotyping of Hungarian patients was conducted using TaqMan® OpenArray™ Geno-

typing System (Thermo Fisher Scientific, Waltham, MA, United States) or using KASPar-

on-Demand prevalidated assays (LGC Biosearch Technologies, Hoddesdon, United King-

dom) following the manufacturer’s instructions as described earlier [46]. The genotyping 

of NOPHO patients were performed using Omni2.5exome-8-BeadChip arrays (Illumina, 
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San Diego, CA, United States) and described in detail in the article of Wolthers et al. [47] 

and Hojfeldt et al. [48]. 

2.5. Statistical Analysis 

In the Hungarian cohort, multivariate logistic regression models (for case-control 

analysis) and Cox proportional hazards regression models (for survival analysis) were 

used to investigate the influence of genetic polymorphisms on the neurological symptoms 

affecting the brain and CNS relapse. In the Joined cohort and during the analysis of the 

Combined cohort, conditional logistic regression models (for case-control analysis on co-

horts with matched controls) and Cox proportional hazard regression models for nested 

case-control data (for survival analysis on cohorts with matched controls) were used. We 

calculated the OS, EFS in every disease cohort (AE sub-phenotypes, CNS relapse). Fisher 

exact test was used to evaluate the association between NOPHO or BFM-protocols and 

occurrence of the studied phenotypes. Detailed study constructions of CNS events are 

shown in Figure 2. The number of cases with depressed level of consciousness was below 

10, so we did not analyze this sub-phenotype separately. Confounders used in analyses 

are shown in Table S1b. Allele frequencies were estimated by allele counting and tested 

for deviation from Hardy-Weinberg equilibrium (HWE) by the on-line software (Tests for 

deviation from Hardy-Weinberg equilibrium p. https://ihg.gsf.de/cgi-bin/hw/hwa1.pl.). 

Significant violation of HWE was considered if p ≤ 1.13E-02. Confidence intervals (CI) or 

hazard ratios (HR) were calculated at the 95% level. The analyses were performed study-

ing the genotypes separately (11 vs. 12; 11 vs. 22), using dominant (11 vs. 12/22) or reces-

sive (11/12 vs. 22) models, with the common homozygotes signed as 11 and the rare (2) 

allele supposed to be dominant. If the number of rare homozygote patients was n ≤ 10, we 

merged them with heterozygote patients for the analyses. Genotype combinations were 

determined based on the results of these merged groups. Multiple testing corrections were 

performed using the Benjamini-Hochberg false discovery rate (FDR) method with a type 

I error rate of 13% [49,50]. Alpha levels of p ≤ 1.13E-02 were considered significant after 

FDR correction in multiple testing for the studied SNPs (with 465 analyses performed for 

60 or 5 SNPs and each phenotype). Results reported without mentioning the used model 

were studied in additive model. Analyses were performed using IBM SPSS Statistics 25.0 

(IBM Corporation, Armonk, NY, United States) and R statistical software (version 3.6.3, R 

Foundation for Statistical Computing, Vienna, Austria). Conditional logistic regression 

analyses were performed by the clogit function of the survival package of R [51]. Cox 

proportional hazards regression analyses for nested case-control data were performed by 

the multipleNCC package [52]. Power analysis was conducted by PS: Power and Sample 

Size Calculation 3.1.2. 

3. Results 

3.1. Chemotherapy Related Adverse Neurological Symptoms 

3.1.1. Case-Control Analyses 

Acute encephalopathy and its sub-phenotype, ATE, were first studied in the Hun-

garian discovery cohort. The following genotypes below were found to associate with 

both AE and ATE: ABCB1 rs1045642 TT, rs1128503 TT and the combination of ABCB1 

rs1045642 TT genotype with ABCG2 rs2231142 CA or AA genotypes. GSTP1 rs1695 AG + 

GG genotype associated with decreased risk for AE and ATE in this cohort. ABCB1 

rs2032582 TT associated with ATE only. The other examined 55 SNPs showed no signifi-

cant association with ATE. The summary of the results is shown in Table S2a and Table 

S4a. When analyzing the 5 selected SNPs and ATE in the Joined validation cohort (Aus-

trian, Czech and NOPHO case-control cohort), none of the associations could be con-

firmed. The relation of GSTP1 rs1695 and ATE was actually the opposite of that found in 

the Hungarian cohort, while tests with the ABC SNPs were largely non-significant (see 

Table S2a, Table S4b). 
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The Combined cohort of patients including both the matched Hungarian ATE cohort 

and the Joined validation cohort was large enough for more detailed analyses of neuro-

toxicity phenotypes: seizure without other neurological events, SLS, and toxic PRES. T 

alleles of ABCB1 rs1045642, rs1128503 and rs2032582 polymorphisms appear to be associ-

ated with seizures, and particularly with seizures during Induction-like chemotherapy 

cycles (see Table S2a and Table S4c). On the other hand, the ABCB1 rs1045642 CT genotype 

might be protective against PRES and toxic PRES. In addition to the genetic variations, 

CNS 2 status was also predictive for PRES (OR = 5.08, CI 95% (2.10–12.29)) (see Table S2a, 

Table S4c and Table S4d). PRES and toxic PRES were more frequent in the NOPHO cohort 

compared to those of the countries using BFM-protocols (OR = 2.14, CR95% (1.25–3.67), 

OR = 2.98, CI95% (1.33–6.65)) (see Table S4e). SLS did not associate with the studied SNPs. 

3.1.2. Survival Analyses on the Neurotoxicity Case-Control Cohorts 

OS and EFS were studied on cohorts with adverse neurological symptoms and in 

association with SNPs. A higher risk for death was associated with AE in the studied un-

matched Hungarian cohort (HR = 2.51, CI 95% (1.32–4.76)). Among the 82 AE cases, in our 

database two cases died related to neurotoxicity (9.5% of all exits). Examining SNPs with 

survival on the unmatched Hungarian cohorts of AE or ATE, patients with CYP3A5 

rs4646450 T allele had worse outcome (both OS and EFS). This risk was even higher in 

patients with TT genotype. CYP3A4 rs3735451 GG genotype associated with poorer OS 

and EFS (see Table S2b, Table S5a). Analyzing the Combined matched cohort of ATE in 

which only 5 SNPs were genotyped, GSTP1 rs1695 GG + AG genotype was associated 

with better outcome (OS), and this association remained significant in the seizure sub-

phenotype cohort, and in the ATE cohort during Induction-like cycles (see Table S2b, Ta-

ble S5b). Analyzing EFS of the Combined cohort in PRES, the worse outcome was associ-

ated with ABCB1 rs2032582 TT genotype and with the combination of ABCB1 rs1045642 

TT genotype with ABCG2 rs2231142 CA or AA genotypes (see Table S2b, Table S5c). 

3.2. Central Nervous System Relapse 

We analyzed the impact of SNPs in metabolizing enzymes and transporters on the 

prevalence of CNS relapse, using the Combined relapse case-control cohort. When com-

paring patients with isolated or combined CNS relapse to non-relapsed controls, the 

ABCB1 rs2032582 GT and the rs1128503 TT + CT genotype seemed to be protectors against 

CNS relapse. The results are shown in Table S3a and Table S6a. Analyzing the survival of 

the Combined relapse case-control cohort, we have not found any significant SNPs in as-

sociation with CNS relapse. The summary of the results is shown in Table S3b. The full 

set of results can be found in Table S6b. 

3.3. Inverse Association of SNPs with Chemotherapy Related Adverse Neurological Events and 

CNS Relapse 

Examining Combined cohorts of ATE and CNS relapse including case-control 

matched cohorts from all groups, we have found that patients with ABCB1 rs1128503 TT 

or rs2032582 TT genotypes were more prone to have toxicity related seizures but lower 

incidence of CNS relapse. For more details see Figure 3 and Table 4. 

ABCB1 rs1045642 TT was also in inverse association with seizure and PRES in the 

Combined cohort (p = 0.011, OR = 0.34, CI95% (0.15–0.78), p = 0.017, OR = 2.10, CI95% (1.14–

3.87), respectively) (Figure 4). 
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Table 4. Summary of the results of toxic seizure and CNS relapse analyses in Combined cohort. 

Study Cohorts Seizure CNS Relapse 

Cases vs.  

Patients without 

Relapse  

(n = 86/129) 

(Cases/Controls) (n = 44/89) 

Gene SNP Comparisons OR (CI95%) OR (CI95%) 

ABCB1 

rs1128503 

TT + CT vs. CC 2.10 (0.82–5.39) 0.48 (0.24–0.96) 

TT vs. CC + CT 2.49 (0.99–6.26) 0.74 (0.33–1.64) 

CT vs. CC 1.67 (0.61–4.52) 0.48 (0.23–1.01) 

TT vs. CC 3.50 (1.10–11.12) 0.46 (0.18–1.16) 

rs2032582  

(triallelic) 

AG vs. GG nv 0.54 (0.10–2.97) 

TA vs. GG 2.16 (0.16–28.70) nv 

TT vs. GG 3.71 (1.23–11.17) 0.59 (0.25–1.40) 

GT vs. GG 1.37 (0.50–3.75) 0.41 (0.20–0.87) 

Abbreviations: nv: not valid; CNS: central nervous system; REL: relapse. Results with p ≤ 0.05 are 

shown with bold italics characters, significant results with p ≤ 1.13E-02 are shown with bold char-

acters. 

 

Figure 3. Inverse associations of blood-brain-barrier SNPs with toxic seizure or CNS relapse in case-control analyses. The 

studied populations were the Combined case-control cohorts of ATE and CNS relapse, respectively. (A) Genotype fre-

quencies between cases and controls regarding association of ABCB1 rs1128503 and seizure, (B) Genotype frequencies 

between cases and controls regarding association of ABCB1 rs1128503 and CNS relapse, (C) Genotype frequencies between 

cases and controls regarding association of ABCB1 rs2032582 (triallelic) and seizure, (D) Genotype frequencies between 

cases and controls regarding association of ABCB1 rs2032582 (triallelic) and CNS relapse. Colors refer to genotypes. 
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Figure 4. Genotype distributions of ABCB1 rs1045642 in seizure or PRES Combined cohorts. (A) 

Genotype frequencies between cases and controls regarding association of ABCB1 rs1045642 and 

seizure, (B) Genotype frequencies between cases and controls regarding association of ABCB1 

rs1045642 and PRES. Colors refer to genotypes. 

4. Discussion 

In this study, we evaluated the association of SNPs in drug-metabolizing and trans-

porting genes with acute CNS toxicity and CNS relapse episodes in patients with child-

hood acute lymphoblastic leukemia. In the Hungarian cohort, we found that ABCB1 

rs1045642, rs1128503, and rs2032582 TT genotypes, the combination of ABCB1 rs1045642 

TT genotype with ABCG2 rs2231142 CA or AA genotypes, and GSTP1 rs1695 AA geno-

type may increase the risk of chemotherapy-related adverse neurological symptoms. 

These associations were not confirmed in the Austrian-Czech-NOPHO Joined validation 

cohort, however, still appeared as significant in the seizure subgroup of the Combined 

cohort. Interestingly, there appears to be an inverse association of the SNP rs1045642 with 

PRES and seizure in Combined cohorts. Our results with ABCB1 rs1128503 and rs2032582 

in relation with seizure and CNS relapse suggest that blood-brain-barrier drug transporter 

gene-polymorphisms might have an inverse association with CNS toxicity and CNS re-

lapse. The Hungarian AE cases had lower OS, CYP3A5 rs4646450 and CYP3A4 rs3735451 

associated with worse OS and EFS in the Hungarian AE and ATE cohorts. 

Patients with CNS toxicity had worse survival than control patients in our analysis. 

The direct contribution of neurotoxic events to the deaths were negligible. This is in par-

allel with findings of other studies and may be related to treatment delays, dose-reduc-

tions or omissions of intrathecal or systemic chemotherapy after the neurotoxic event, or 

enzyme inducing antiepileptic therapies increasing the metabolism of chemotherapy [53–

56]. Delays in intrathecal MTX treatment caused by MTX neurotoxicity associated with 

increased risk of CNS relapse [31]. Similar strategies were applied indeed unfortunately 

in some hospitals at the time when our study cohort was treated [56]. 

ABC transporters are important in the resistance to methotrexate, cytarabine, vincris-

tine, anthracyclines, and dexamethasone, influence response to treatment and survival 

[57–59]. Genetic variants of ABCB1 were studied in hematological malignancies, a broad 

variety of conclusions regarding their function was observed but their true clinical impact 

is still under debate [60]. ABCB1 rs1045642 TT + CT vs CC alleles were associated with 

higher 24 h plasma MTX concentration [61]. In contrast, rs1045642 CC genotype associated 

with higher MTX plasma level and with relapse investigating high risk ALL patients in 

another study [62]. ABCB1 genetic variants can influence cerebrospinal fluid (CSF) drug 

levels. The CSF concentration of MTX was different between the rs1045642 C allele (CC + 

CT) carriers and TT homozygous patients [63]. ABCB1 SNPs were found to associate with 

vincristine-related neurotoxicity in a study, however, they have found no association with 

SNPs included in our analysis [64]. Another ABCB1 SNP, rs4728709 T allele was also pro-

tective against neurotoxicity in the study of Ceppi et. al. [22]. ABCB1 rs1045642 (C3435T) 

and rs2032582 (G2677T) TT genotype associated with worse EFS and the same trend was 
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observed if rs1128503 T allele was also included in the analysis [22]. GSTP1 protects 

against oxidative stress, GSTP1 rs1695 is a missense variant, decreases the enzyme activity 

[65]. GSTP1 rs1695 GG genotype associated with CNS toxicity and also with attention def-

icit in ALL survivors [19,66]. GSTP1 rs1695 G allele in two different studies increased and 

reduced the risk for CNS relapse in ALL [15,67–70]. 

This study has multiple limitations. The retrospective data collection may have re-

sulted in skewed populations. Another difficulty lies in the categorization of neurotoxic 

events into phenotype subgroups (like SLS, seizures, PRES), or into etiology groups (toxic 

or secondary). Various subsets of tests were missing (not performed or not available in 

retrospect) for some of the neurotoxicity cases, e.g., blood pressure, miscellaneous labor-

atory results and imaging. The differentiation of toxic PRES (direct drug toxicity) and sec-

ondary PRES (e.g., PRES evoked by hyponatremia or hypertension which had been 

caused by chemotherapy) is especially difficult and may just be theoretical. We aimed to 

be consistent and applied the logic described in Figure 1. and Supplementary Materials 

Patient Criteria and also took both the original opinion of the treating physician and the 

Delphi definitions [26] into consideration. The categorization of events was unambiguous 

in the large majority of the cases, so we think these factors don’t undermine the results of 

the study. Discrepancies in CNS2 status classification among study groups are well 

known, this confounding factor could not be avoided. Treatment heterogeneity may also 

have influenced our results. NOPHO protocols use higher and more frequent dosing of 

vincristine than BFM-based protocols applied in the other groups, the high rate of PRES 

among NOPHO patients may also relate to this. 

Despite some identified associations that are concordant with our original hypothe-

sis, we can’t formulate practical clinical guidance based on our results. As neurotoxic ep-

isodes proved to be reversible with only very few exceptions, surely CNS relapse should 

be the main focus in any future attempt on therapy individualization. There is great need 

for even larger international studies for studying these very rare events in more homoge-

nous cohorts. 

5. Conclusions 

In the present study SNPs were investigated in a European international collabora-

tion to assess their role in CNS complications and related survival. Key BBB genes ABCB1 

and GSTP1 and their SNPs rs1045642, rs1128503, rs2032582 and rs1695 came to focus. Our 

findings suggest that genetic variations which are associated with a lower or higher risk 

of CNS complications can also associate with better or worse outcomes in respect of sur-

vival, respectively. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-

6694/13/10/2333/s1, Supplementary Patient Criteria, Table S1a: Information about the studied SNPs, 

Table S1b: Confounders and stratification listed for every analyses, Table S1c: Primer sequences 

used in Sanger-sequencing of the Austrian population, Table S2a: Results of the case-control analy-

sis of chemotherapy related adverse neurological events, Table S2b: Survival analysis on the CNS 

adverse event case-control cohort, Table S3a: SNPs analyzed in the CNS relapse Combined case-

control cohort, Table S3b: Results of the survival analysis of CNS relapse Combined cohort, Table 

S4a: Results of acute encephalopathy and acute toxic encephalopathy case-control study in the Hun-

garian cohort, Table S4b: Results of acute toxic encephalopathy case-control study in the joined val-

idation cohort, Table S4c: Results of acute toxic encephalopathy case-control study in the combined 

cohort, Table S4d: Results of PRES case-control study in the combined cohort, Table S4e. Results of 

treatment protocol-comparisons among acute toxic encephalopathy subphenotypes in the com-

bined cohort, Table S5a: Results of the survival study in the Hungarian cohort with acute encepha-

lopathy and acute toxic encephalopathy, Table S5b: Results of the survival study in the combined 

cohort with acute toxic encephalopathy, Table S5c: Results of the survival study in the combined 

cohort with PRES, Table S6a: Results of case-control study in combined cohort with CNS relapse, 

Table S6b: Results of survival study in combined cohort with CNS relapse, Table S7: Applied pro-

tocols in the studied populations. 
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