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Abstract: Pseudomonas aeruginosa (P. aeruginosa) possesses a plethora of virulence determinants, in-

cluding the production of biofilm, pigments, exotoxins, proteases, flagella, and secretion systems. 

The aim of our present study was to establish the relationship between biofilm-forming capacity, 

the expression of some important virulence factors, and the multidrug-resistant (MDR) phenotype 

in P. aeruginosa. A total of three hundred and two (n = 302) isolates were included in this study. 

Antimicrobial susceptibility testing and phenotypic detection of resistance determinants were car-

ried out; based on these results, isolates were grouped into distinct resistotypes and multiple anti-

biotic resistance (MAR) indices were calculated. The capacity of isolates to produce biofilm was 

assessed using a crystal violet microtiter-plate based method. Motility (swimming, swarming, and 

twitching) and pigment-production (pyoverdine and pyocyanin) were also measured. Pearson 

correlation coefficients (r) were calculated to determine for antimicrobial resistance, biofilm-

formation, and expression of other virulence factors. Resistance rates were the highest for 

ceftazidime (56.95%; n = 172), levofloxacin (54.97%; n = 166), and ciprofloxacin (54.64%; n = 159), 

while lowest for colistin (1.66%; n = 5); 44.04% (n = 133) of isolates were classified as MDR. 19.87% 

(n = 60), 20.86% (n = 63) and 59.27% (n = 179) were classified as weak, moderate, and strong biofilm 

producers, respectively. With the exception of pyocyanin production (0.371 ± 0.193 vs. non-MDR: 

0.319 ± 0.191; p = 0.018), MDR and non-MDR isolates did not show significant differences in 

expression of virulence factors. Additionally, no relevant correlations were seen between the rate of 

biofilm formation, pigment production, or motility. Data on interplay between the presence and 

mechanisms of drug resistance with those of biofilm formation and virulence is crucial to address 

chronic bacterial infections and to provide strategies for their management. 
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1. Introduction 

Pseudomonas aeruginosa (P. aeruginosa) is a motile, non-fermenting Gram-negative 

bacillus with non-fastidious growth requirements, which is ubiquitous in various aquatic 

environments, in addition to being commonly involved in healthcare-associated 

infections (HAIs) [1,2]. P. aeruginosa is considered as an opportunistic pathogen (8–20% of 

hospitalized individuals are colonized), as it is more commonly found in patients affected 

by invasive surgical interventions, immunosuppression (associated with malignancies 

and their treatment, HIV infection), or other underlying diseases (e.g., diabetes) [3–5]. This 

microorganism has been associated with a wide variety of hard-to-treat infections, such 

as ventilator-associated pneumonia (VAP), sepsis, skin and soft tissue infections (linked 

to burn injuries or pressure ulcers), bone and joint infections, otitis externa, and keratitis 

[6,7]; in addition, multisite infections are also fairly common. Pseudomonas spp. are also 

frequent colonizers of the airways in patients affected by cystic fibrosis, contributing to 

acute exacerbations and the progressive decrease in lung function [8]. 

Although P. aeruginosa (and non-fermenters in general) is considered a low-grade 

pathogen, it possesses a plethora of virulence determinants, including its production of 

pigments (pyoverdine, pyocyanine and pyomelanin), exotoxins (such as exotoxins A, S, T 

and U), proteases (leading to tissue destruction), siderophores, lectins, flagella, and 

various secretion systems (most notably the Type III “injectasome”) [9,10]. However, the 

production of biofilm is probably the most important factor in the survival of P. aeruginosa 

in harsh environmental conditions (such as in nosocomial settings, like intensive care 

units [ICUs] and surgical theaters), facilitating the establishment of chronic infections and 

persistence in vivo [11,12]. Biofilms are composed on mono- or multispecies aggregates of 

bacterial communities, various exopolysaccharides (EPS), environmental DNA, and other 

biomolecules (lipids, proteins, carbohydrates) [13]. Biofilms provide protection from sheer 

forces, drying and immune cells, while also leading to the adaptation of P. aeruginosa into 

metabolically-inactive persister cells [14]. In addition to persister (or small colony variant; 

SCV) formation, the chemical composition of biofilms inhibits the diffusion of 

antimicrobials (acting as a pharmacokinetic barrier to these drugs) and 

disinfectants/biocides [15]. Consequently, the minimum inhibitory concentrations (MICs) 

of bacteria embedded in biofilm may be 101–104 times higher, compared to their 

planktonic counterparts [16]. 

The emergence of antimicrobial resistance (AMR) has become a critical issue for 

healthcare professionals worldwide, as their therapeutic armamentarium has become 

severely limited to address infections caused by multidrug-resistant (MDR) bacteria 

[17,18]. As a consequence, infections caused by MDR pathogens are associated with 

increased mortality rates and hospitalization costs, and decreased quality of life (QoL) in 

affected patients [19]. P. aeruginosa possesses intrinsic resistance to a wide range of 

antimicrobials, and due to its pronounced genomic plasticity and rich resistome, it has a 

particular propensity of acquire mechanisms of resistance (through horizontal gene 

transfer) to several, structurally-distinct antimicrobial drugs [9,20]. As a result, P. 

aeruginosa isolates with high-level resistance to fluoroquinolones, aminoglycosides, and 

carbapenems are increasingly common worldwide [21]. The association between biofilm-

forming capacity, virulence factor expression, and the MDR phenotype in pathogenic 

bacteria has been studied extensively [22,23]; however, the topic is still a contentious issue, 

as many authors—using various methodologies and involving different species of 

clinically-relevant bacteria—have come to markedly different conclusions. With this in 

mind, the aim of our present study was to establish the relationship between biofilm-

forming capacity, the expression of some important virulence factors, and the MDR 

phenotype in P. aeruginosa. 

2. Materials and Methods 

2.1. Isolates 
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A total of three hundred and two (n = 302) P. aeruginosa isolates were included in this 

study, which were kindly provided from the strain collections of a Hungarian and Italian 

tertiary care hospital. The study uses a cross-sectional design, with microorganisms that 

were isolated between 1 Janurary 2019 and 1 Janurary 2020., originating from various 

types of clinical specimens, being randomly selected to be included in our experiments. 

During the study, P. aeruginosa ATCC 27853 (MDR isolate, weak biofilm producer) and P. 

aeruginosa PAE 170022 (susceptible isolate, strong biofilm producer) were used as control 

strains, obtained from the American Type Culture Collection (Manassas, VI, USA) [24]. 

Stock cultures were stored at −80 °C in a cryopreservation medium (700 µL trypticase soy 

broth + 300 µL 50% glycerol) until use. 

2.2. Re-Identification of Isolates 

 All isolates included in our study were re-identified as P. aeruginosa before further 

experiments. Re-identification of isolates was carried out using matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; Bruker 

Daltonics, Bremen, Germany); to perform the MALDI-TOF assay, bacterial cells from fresh 

overnight cultures on agar plates were transferred to a stainless steel target with a sterile 

toothpick. An on-target extraction was performed by adding 1 µL of 70% formic acid prior 

to the matrix. After drying at room temperature, the cells were covered with 1 µL matrix 

(α-cyano-4-hydroxy cinnamic acid in 50% acetonitrile/2.5% trifluoro-acetic acid; Bruker 

Daltonics, Bremen, Germany). Mass spectrometry analyses were performed by a 

MicroFlex MALDI Biotyper (Bruker Daltonics, Bremen, Germany) in positive linear mode 

across the m/z range of 2 to 20 kDa; for each spectrum, 240 laser shots at 60 Hz in groups 

of 40 shots per sampling area were collected [22]. For analyses of spetra, the MALDI 

Biotyper RTC 3.1 software and the MALDI Biotyper Library 3.1 (Bruker Daltonics. 

Bremen. Germany) were utilized. After analysis, a log(score) value was assigned to all 

isolates, indicating the reliability of MALDI-TOF MS identification. The log(score) values 

were evaluated as follows: a log(score) <1.69 showed unreliable identification, 1.70–1.99 

corresponded to probable genus-level identification, 2.00–2.29 corresponded to reliable 

genus-level identification, while a score ≥2.30 corresponded to reliable species-level 

identification [25]. 

2.3. Antimicrobial Susceptibility Testing, Resistotyping 

Antimicrobial susceptibility testing for respective isolates was carried out using the 

Kirby-Bauer disk diffusion method (Oxoid, Basingstoke, UK), and in subsequent 

experiments (when relevant) with E-tests (Liofilchem, Roseto degli Abruzzi, Italy) on 

Mueller-Hinton agar (MHA) (bioMérieux, Marcy-l’Étoile, France) plates in case of 

ceftazidime (CAZ; 10 µg), cefepime (FEP; 30 µg), imipenem (IMI; 10 µg), meropenem 

(MER; 10 µg), ciprofloxacin (CIP; 5 µg), levofloxacin (LEV; 5 µg), gentamicin (GEN; 10 

µg), and amikacin (AMI; 30 µg), respectively. Colistin (COL) susceptibility was performed 

using the broth microdilution method in cation-adjusted Mueller–Hinton broth (MERLIN 

Diagnostika GmbH, Bremen, Germany). Intermediate results were grouped with and 

reported as resistant [26]. The isolates were grouped into distinct resistotypes based on 

the presence of phenotypic resistance to relevant antimicrobials [27]. Interpretation of the 

results were based on the recommendations of the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) relevant at the time of isolation [28]. Classification of the 

isolates as (MDR; resistance to at least one agent in ≥3 antibiotic groups) was based on 

Magiorakos et al. [29]; in subsequent analyses, isolates were divided as non-MDR and 

MDR. A multiple antibiotic resistance (MAR) index—ranging between 0 and 1—was 

calculated by dividing the total number of detected resistance to antimicrobials for each 

isolate by the total number of tested antimicrobials [27]. 

2.4. Phenotypic Detection of AmpC Overexpression and Carbapenemase Production 
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In CAZ-resistant isolates, the overexpression of AmpC β-lactamase enzymes was 

tested by an agar plate method, where the agar base was supplemented with cloxacillin 

(250 µg/mL); during this assay, the property of cloxacillin—capable of inhibiting the 

effects of AmpC β-lactamases—was used [26,30]. A two-fold difference in CAZ MICs 

(determined by E-tests; Liofilchem, Roseto degli Abruzzi, Italy) with or without the pres-

ence of cloxacillin, was considered as positivity for AmpC overexpression [26,30]. Pheno-

typic screening for carbapenemase-production—performed if MER disk diameters were 

either in the intermediate (23–18 mm) or resistant (<19 mm) categories [28]—was assessed 

by the modified Hodge (cloverleaf) test (MHT), optimized for P. aerugniosa, as previously 

described [31]. In the assay, MER disks (10 µg; Oxoid, Basingstoke, UK) were utilized and 

Escherichia coli ATCC 25922 was used as an indicator organism. 

2.5. Phenotypic Detection of Bacterial Efflux Pumps Contributing to the Drug-Resistant 

Phenotype 

The effect of phenylalanine-arginine β-naphthylamide (PAβN)—a compound with 

well-known efflux pump inhibitory activity—on the susceptibility of tested antimicrobials 

was detected using the agar dilution method described previously [32]. The experiments 

were performed in case of isolates resistant to MER and/or CIP, based on the disk diffu-

sion-based susceptibility tests. During the experiments, the concentration of PAβN was 

40 µg/mL in the agar base; a two-fold decrease in MER and/or CIP MICs (determined by 

E-tests; Liofilchem, Roseto degli Abruzzi, Italy) in the presence of PAβN, compared to the 

MIC values without the inhibitor, was considered as positivity for efflux pump overex-

pression [32]. P. aeruginosa ATCC 27853 was used as a control strain. 

2.6. Biofilm Production 

The capacity of respective P. aeruginosa isolates to produce biofilm was assessed 

using a microtiter-plate based method previously described by Ramos-Vivas et al. [33]. In 

brief, overnight P. aeruginosa cultures (grown on Luria–Bertani [LB] agar) were inoculated 

into 5 mL of Luria-Bertani (LB) broth, and incubated overnight at 37 °C. The following 

day, 180 µL of LB broth and 20 µL of P. aeruginosa suspension (set at 106 CFU/mL) were 

measured onto 96-well flat-bottomed microtiter plates, to a final volume of 200 µL, and 

incubated for 24 h at 37 °C. After the incubation period, the supernatants were discarded 

and the wells were washed three times using 200 µL of phosphate buffered saline (PBS; 

pH at 7.2), to remove planktonic cells that may interfere with the the interpretation of the 

results. After washing, the wells were fixed with 250 µL of methanol (Sigma-Aldrich, St. 

Louis, MO, USA) for 10 min and stained with a 1.0% crystal violet (CV; Sigma-Aldrich, St. 

Louis, MO, USA) solution for 15 min. Subsequently, the CV solution was discarded, and 

the wells were washed three times with purified water to remove excess stain. The con-

tents of the wells were re-suspended in 250 µL of 33% V/V% glacial acetic acid (Sigma-

Aldrich, St. Louis, MO, USA) and absorbance at 570 nm (OD570) was measured using a 

microtiter plate reader. All experiments were carried out in triplicate. The interpretation 

of the results was carried out based on the recommendations of Ansari et al., i.e., isolates 

were classified as weak/non-biofilm producers with OD570 values <0.12, moderate biofilm 

producers with OD570 = 0.12–0.24, and strong biofilm producers with OD570 values >0.24, 

respectively [34]. 

2.7. Motility (Swimming, Swarming, and Twitching) Assays 

For motility assays, bacterial cultures grown overnight were diluted to a density of 

105 CFU/mL and transferred to Petri dishes containing Tryptic Soy Agar (TSA) medium, 

with different concentrations of agar (0.3%, 0.8% and 2% for swimming, swarming, and 

twitching motility, respectively). The bacterial suspension was transferred into the agar 

medium by puncture using a pipette tip (at 1/2 depth for swimming and swarming mo-

tility and at full depth for twitching motility) [35,36]. The plates were then incubated at 37 
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°C for 24 h (swimming and swarming motility) and 48 h (twitching motility). After the 

incubation period, the diameter of the growth zones (mm) were measured; in case of 

swimming and swarming motility, the measurements were made directly, while in case 

of twitching motility, the agar layer was removed and the bottom of the plates were 

stained directly with 0.01% CV solution (Sigma-Aldrich, St. Louis, MO, USA) [35,36]. All 

experiments were carried out in triplicate. 

2.8. Production of Pyoverdine and Pyocyanin Pigments 

An overnight grown bacterial culture was diluted to 105 CFU/mL in TSB, transferred 

to 24-well culture plates (Sarstedt, Nümbrecht, Germany), and incubated at 37 °C for 48 

h. Following incubation, each bacterial suspension was collected in an Eppendorf tube 

and centrifuged at 10,000 RPM. The supernatants were transferred to transparent 96-well 

plates for pyocyanin measurements, while they were transferred to black 96-well plates 

for pyoverdine measurements. The absorbance for pyocyanin (OD686) was measured at λ 

= 686 nm, while the fluorescence of pyoverdine at λex/em = 395/460 nm (EM460 at EX395), using 

a microtiter plate reader [37,38]. All experiments were carried out in triplicate. 

2.9. Statistical Analyses 

Descriptive statistical analysis (including means with ranges and percentages to char-

acterize data) was performed using Microsoft Excel 2013 (Redmond, WA, USA, Microsoft 

Corp.). Independent sample t-tests were performed to compare measurements of OD570 

(for biofilm production), growth zones (for swimming, swarming and twitching motility), 

OD686 (for pyocyanin production) and EM460 (for pyoverdine production) between MDR 

and non-MDR P. aeruginosa isolates. A correlation matrix was calculated to determine the 

association between the measurements (i.e., numerical data OD570, growth zones in mm, 

OD686 and EM460, respectively) corresponding to the expression of virulence-determinants. 

In addition, correlation between the presence of resistance against tested antibiotics and 

biofilm formation was also determined, where isolates received a score of 0/1 depending 

on the susceptibility/resistance to an antimicrobial, and 0/0.5/1, based on the classification 

of the biofilm-forming capacity (weak/moderate/strong) of the isolate, respectively. Based 

on the value of the Pearson-correlation coefficients (r), the relationship between the vari-

ables was determined as follows: of |r| < 0.3 were denoted as weak correlation, 0.3 < |r| 

< 0.5 as moderate correlation, and 0.5 < |r| < 0.85 as strong correlation [39]. Statistical 

analyses were performed with SPSS software version 22 (IBM Corp., Armonk, NY, USA). 

3. Results 

3.1. Antimicrobial Resistance of P. aeruginosa Isolates, Resistotyping 

The antimicrobial resistance levels of the P. aeruginosa isolates included in the study 

were the following: CAZ 56.95% (n = 172), LEV 54.97% (n = 166), CIP 52.64% (n = 159), FEP 

49.34% (n = 149), GEN 33.77% (n = 102), AMI 25.82% (n = 78), MER 23.17% (n = 70), IMI 

21.19% (n = 64), and COL 1.66% (n = 5; MIC> 2 mg/L); overall, 44.04% (n = 133) of isolates 

were classified as MDR. The distribution of the various resistotypes detected among P. 

aeruginosa isolates are presented in Table 1. 

Table 1. Resistotype distribution and MAR indices of respective isolates. 

Resistotypes Resistance Pattern MAR Index 
MDR  

Status 

Ratio of Isolates 

(n, %) 

0 None 0 

non-MDR 

55.96% (n = 169) 

130 (43.05%) 

I CAZ 0.111 1 (0.33%) 

II CAZ, LEV 0.222 7 (2.32%) 

III CAZ, CIP, LEV 0.333 15 (4.97%) 

IV CAZ, FEP, CIP 0.333 4 (1.32%) 
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V CAZ, FEP, LEV 0.333 4 (1.32%) 

VI CAZ, FEP, GEN 0.333 5 (1.66%) 

VII CAZ, FEP, CIP, LEV 0.444 3 (0.99%) 

VIII CAZ, FEP, CIP, LEV, GEN 0.555 

MDR 44.04% (n = 

133) 

5 (1.66%) 

IX CAZ, FEP, CIP, LEV, IMI 0.555 10 (3.31%) 

X CAZ, FEP, CIP, LEV, MER 0.555 10 (3.31%) 

XI CAZ, FEP, CIP, LEV, GEN, IMI 0.666 7 (2.32%) 

XII CAZ, FEP, CIP, LEV, GEN, MER 0.666 7 (2.32%) 

XIII CAZ, FEP, CIP, LEV, IMI, MER 0.666 16 (5.29%) 

XIV CAZ, FEP, CIP, LEV, GEN, AMI 0.666 23 (7.62%) 

XV CAZ, FEP, CIP, LEV, GEN, AMI, IMI 0.777 16 (5.29%) 

XVI CAZ, FEP, CIP, LEV, GEN, AMI, MER 0.777 22 (7.28%) 

XVII CAZ, FEP, CIP, LEV, GEN, AMI, COL 0.777 2 (0.67%) 

XVIII CAZ, FEP, CIP, LEV, GEN, AMI, IMI, MER 0.888 12 (3.97%) 

XIX CAZ, FEP, CIP, LEV, GEN, AMI, IMI, MER, COL 1.000 3 (0.99%) 

3.2. Detection of AmpC Overexpression, Carbapenemase Production, and Efflux Pump 

Overexpression Using Phenotypic Methods 

To ascertain the contribution of various resistance mechanisms in the drug resistance 

of the relevant P. aeruginosa isolates, phenotypic tests were utilized. Using the cloxacillin 

plate-based assay, AmpC overexpression—corresponding to a two-fold decrease in the 

CAZ MICs—was noted in 48.26% (n = 83; 27.48% overall) of isolates; CAZ resistance was 

characteristic to all (83/83) of these isolates, while 61/83, 13/83, and 11/83 were resistant to 

FEP, MER, and IMI, respectively. The MHT test was used to detect for the production of 

carbapenemases: the test was positive in 25.71% (n = 18; 5.96% overall) of cases, when non-

susceptibility to MER (or both) was seen. The effects of efflux pump overexpression (based 

on the PAβN screening agar, demonstrated by the two-fold decrease in MICs in the pres-

ence of the inhibitor) were noted in 31.42% (n = 22; 7.28% overall) with regards to MER 

resistance and in 54.72% (n = 87; 28.8% overall) regarding CIP resistance, respectively. In 

the case of n = 3 isolates AmpC-hyperproduction and MHT-positivity, while in n = 6 iso-

lates, efflux pump overexpression and MHT positivity were noted; in n = 3 isolates, efflux 

pump overexpression, AmpC hyperproduction, and MHT positivity were detected sim-

ultaneously. 

3.3. Biofilm Formation and Expression of Virulence Factors (Pigments, Motility) among Non-

MDR and MDR P. aeruginosa 

Biofilm formation assays were carried out in a microtiter plate-based platform, using 

CV staining. Based on the OD570 measurements, 19.87% (n = 60) of the isolates were 

weak/non-biofilm producers, 20.86% (n = 63) were moderate biofilm producers, while 

59.27% (n = 179) were strong biofilm producers, overall. The distribution of isolates with 

different biofilm-forming capacities did not show pronounced differences among the 

MDR and non-MDR groups (Table 2). Additionally, while numerical differences may be 

seen, MDR and non-MDR isolates did not show significant differences in expression of 

virulence factors (measured via our in vitro experiments), with the exception of pyocyanin 

production (OD686), which was shown to be higher among MDR isolates (0.371 ± 0.193 vs. 

non-MDR: 0.319 ± 0.191) (Table 2). 

The correlation between the presence/absence (denoted as 0 and 1 in the analyses) of 

resistance to relevant antibiotics and biofilm-forming capacity (denoted as 0, 0.5 and 1 in 

the analyses for weak, moderate, and strong biofilm production, respectively) is presented 

in Table 3. Similarly to our previous findings (MDR/non-MDR), biofilm formation did not 

show significant correlation with the existence of resistance to any antibiotic tested, with 

|r| values consistently < 0.3, with the exception of CIP (r = 0.309; p > 0.05) and LEV (r = 
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0.324; p > 0.05). The correlation matrix on the phenotypic expression of biofilm formation 

and other virulence factors is presented in Table 4; no relevant correlations (with |r| values 

consistently < 0.1) were seen between the rate of biofilm formation and pigment produc-

tion or motility. 

Table 2. Biofilm formation and expression of other virulence factors among non-MDR and MDR P. 

aeruginosa. 

  Non-MDR (n = 169) MDR (n = 133) Statistics 

Biofilm formation (OD560) 

(mean ± SD) 
0.333 ± 0.216 0.316 ± 0.200 n.s. (p = 0.634) 

Weak/non-biofilm 

producer (n, %) 
18.34% (n = 31) 21.80% (n = 29) 

n.r. 
Moderate biofilm 

producer (n, %) 
30.77% (n = 52) 8.27% (n = 11) 

Strong biofilm producer 

(n,%)  
50.89% (n = 86) 69.93% (n = 93) 

Swimming motility (mm) 

(mean ± SD) 
29.31 ± 10.99 27.46 ± 10.38 n.s. (p = 0.183) 

Swarming motility (mm) 

(mean ± SD) 
32.05 ± 17.88 32.79 ± 18.49 n.s. (p = 0.728) 

Twitching motility (mm) 

(mean ± SD) 
13.63 ± 7.24 14.23 ± 6.75 n.s. (p = 0.458) 

Pyocyanin production 

(OD686) 

(mean ± SD) 

0.319 ± 0.191 0.371 ± 0.193 p = 0.018 

Pyoverdine production 

(EM460) 

(mean ± SD) 

2012 ± 1132 2064 ± 1124 n.s. (p = 0.774) 

n.s.: not significant; n.r.: not relevant; values in boldface were p < 0.05 

Table 3. Correlation matrix regarding the microbial categories (weak/moderate/strong) based on biofilm formation and 

resistance to antibiotics in P. aeruginosa isolates. 

 CAZ FEP IMI MER CIP LEV GEN AMI COL  

Biofilm 

formation 

0.123 0.134 0.101 0.124  0.309 0.324 0.139 0.113 −0.012 

Pearson-corre-

lation coeffi-

cient (r = ) 

0.231 0.218 0.581 0.564 0.102 0.099 0.567 0.605 0.986 Statistics (p = ) 

Table 4. Correlation matrix regarding the phenotypic expression of biofilm formation and other virulence factors among 

tested P. aeruginosa isolates. 

 
Biofilm 

Formation 

(OD570) 

Swimming 

Motility (mm) 

Swarming 

Motility 

(mm) 

Twitching 

Motility 

(mm) 

Pyocyanin 

Production 

(OD686) 

Pyoverdine 

Production 

(EM460) 

 

Biofilm 

formation 

(OD570) 

X 0.981 0.580 0.518 0.581 0.373 

Statistics (p = ) Swimming 

motility (mm) 
−0.003 X 0.143 0.432 0.998 0.244 

Swarming 

motility (mm) 
0.032 0.084 X 0.303 0.351 0.389 
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Twitching 

motility (mm) 
−0.032 −0.045 −0.059 X 0.118 0.244 

Pyocyanin 

production 

(OD686) 

−0.0370 0.001 0.054 0.090 X 0.814 

Pyoverdine 

production 

(EM460) 

0.051 −0.067 −0.050 −0.067 0.014 X 

 Pearson correlation coefficient (r = )  

4. Discussion, Review of the Literature 

The increasing prevalence of MDR infections globally—especially in non-fermenting 

Gram-negative bacteria—may be considered as one of the hallmarks of the 21st century, 

especially when it comes to the procurement of safe and effective medical care [40,41]. The 

injudicious use of antibiotics and the lack of newly developed antibiotics are important 

hallmarks of this impending crisis [42,43]. Based on the projections of the “Burden of An-

timicrobial Resistance Collaborative Group”, corresponding to the European Union (EU) 

and the European Economic Area (EEA), over 700,000 infections, >33,000 deaths, and 

~900,000 disability-adjusted life years (DALY) were attributable to MDR bacteria, in the 

year 2015 alone [44]. Non-fermenting Gram-negative bacteria extensively contribute to 

the overall infectious disease burden—especially in immunocompromised individuals—

which is now showing an increasing trend of morbidity and mortality (HAIs are associ-

ated with an overall mortality rate of 20–60%), due to the developments in resistance rates 

[45,46]. This has been confirmed by the World Health Organization’s (WHO) published 

report, in which carbapenem-resistant Acinetobacter baumannii complex (CR-AB), car-

bapenem-resistant P. aeruginosa (CR-PA), and carbapenem-resistant and/or ESBL-produc-

ing Enterobacterales were all identified as “critical priority” pathogens for the develop-

ment of novel antibiotics and alternative anti-infective treatment strategies [47]. 

P. aeruginosa—especially under strong selection pressures in nosocomial environ-

ments—has the capacity of becoming resistant to most relevant antimicrobials [9,48]. This 

includes intrinsic non-susceptibility to many orally-available agents (e.g., a chromoso-

mally-encoded AmpC β-lactamase, which may be stably de-repressed), and the acquisi-

tion of novel resistance genes through the means of horizontal gene transfer (i.e., in-

tegrons, plasmids, or transposons), leading to resistance to the four major group of anti-

pseudomonal agents, namely relevant cephalosporins (and cephalosporin/β-lactamase 

combinations), carbapenems, aminoglycosides, respiratory fluoroquinolones (ciprofloxa-

cin, levofloxacin, and moxifloxacin), and colistin [49]. Based on the data from the ECDC 

Surveillance Atlas of Infectious Diseases for 2019, resistance rates in P. aeruginosa ranged 

between 3.5−52.2%, 4.5–52.2%, 0.3–48.9% and 0–55.4% for ceftazidime, fluoroquinolones, 

aminoglycosides, and carbapenems in EU countries, respectively [50]. In addition to these 

genetically-determined resistance mechanisms (leading to the expression of mutated tar-

get proteins or inactivating enzymes, the relevance of so-called “adaptive” mechanisms 

also needs to be discussed; strong biofilm formation and metabolic downregulation to-

wards the emergence of SCVs are difficult to study in vitro, but their relevance in in vivo 

infection dynamics must not be underestimated, as they lead to therapy-resistant, recalci-

trant infections [51]. 

In clinical practice, MDR Pseudomonas infections are most often treated by car-

bapenem antibiotics, as these drugs are often considered the last safe and effective alter-

natives to treatment, especially in some patients (e.g., the elderly), where other drugs 

would be contraindicated due to their toxic adverse events or in cases (e.g., critically ill 

patients) where pathophysiological changes may significantly alter antibacterial pharma-

cokinetics, making the dosing of other drugs difficult [52]. Thus, the growing rate of CR-

PA in nosocomial infections (with rates ranging between 0–60%, showing pronounced 
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geographical differences) is a chilling concept; in a recently published meta-analysis, it 

was found that in addition to a history of carbapenem use, the prior use of piperacil-

lin/tazobactam or vancomycin were all relevant risk factors for the acquisition of CR-PA 

[53,54]. Phenotypic carbapenem resistance is often due to a combination of more than one 

mechanism of resistance, which may be mediated via modifications in the transpeptidases 

(or penicillin-binding proteins; PPB2 and 3) [55], outer membrane impermeability (often 

due to OprD porin deficiency or loss) [56], overexpression of efflux pump systems [57], 

and the production of carbapenemases. Carbapenemases are β-lactamases with versatile 

hydrolytic capabilities; they can hydrolyze penicillins, cephalosporins, monobactams, and 

carbapenems [58]. Based on their biochemical characteristics and substrate profile, car-

bapenemases are classified into serine (including Ambler Class A [KPC], C [AmpC] and 

D [OXA-48-like family]) and metallo-β-lactamases (MBLs; Ambler Class B) [59]. These en-

zymes are often encoded by horizontally-transferable genes, which are often also associ-

ated with resistance determinants to other classes of antimicrobial drugs [60]. Currently, 

the propagation of carbapenemase-producing organisms, especially in non-fermenting 

Gram-negative bacteria, is a public health issue these resistance-determinants may rapidly 

disseminate, leading to outbreaks of bacteria with extensive resistance [61]. While Class 

A and D carbapenemases have also been described, the metallo-β-lactamases blaVIM and 

blaIMP are the most prevalent in Pseudomonas spp. [62,63]. The treatment of CR-PA infec-

tions heavily rely on last-resort agent that are either associated with more serious adverse 

events (colistin), or that are relatively new, with limited clinical experience in these infec-

tions (ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, 

plazmomycin) [64]. In addition, the therapy of metallo-β-lactamases is especially difficult, 

as currently there are no β-lactamase-inhibitors authorized for clinical use that would be 

effective against these enzymes. For example, in a study by O’Neall et al., n = 250 car-

bapenem non-susceptible P. aeruginosa isolates were tested for their susceptibility for 

ceftolozane/tazobactam and ceftazidime/avibactam, showing that these drugs presented 

with good in vitro efficacy against these isolates, but only as long as they did not produce 

carbapenemases; on the other hand, isolates carrying blaVIM or blaNDM were resistant to 

these new antibiotic combinations [65]. Thus, it is unsurprising that many clinical studies 

have highlighted that CR–PA infections are associated with worse clinical outcomes, com-

pared to their carbapenem-susceptible counterparts [66]. 

In studies trying to ascertain the relationship between biofilm formation and drug 

resistance, phenotypic or a combination of phenotypic and molecular-based (PCR) meth-

odologies are used, involving a wide variety of isolates from distinct clinical origins 

[67,68]. The majority of these studies have highlighted that around 75–99% of Pseudomonas 

spp. are biofilm producers, including 8–50% being characterized as strong biofilm pro-

ducers [23]. As a part of our study, a large pool (n = 302) of P. aeruginosa isolates from 

diverse geographical and clinical origins were subjected to phenotypic tests to ascertain 

the possible correlation between biofilm-forming capacity, pigment production and mo-

tility (chosen as representative expressions of virulence), and antimicrobial resistance in 

these isolates. In our pool of isolates, resistance rates were the highest for ceftazidime and 

the fluoroquinolones, while >44% was classified as MDR. Over 25% isolates were charac-

terized by the expression of AmpC β-lactamase, ~6% was positive for carbapenemase-

production, and in ~7%, carbapenem non-susceptibility was affected by efflux pump over-

expression, respectively (based on the phenotypic tests applied). Majority of isolates 

(59.27% overall) were strong biofilm producers, both in the MDR and non-MDR groups. 

Based on our results, no relevant correlation was seen between the resistance to individual 

antibiotics—or the presence of the MDR phenotype as a whole—and biofilm-forming ca-

pacity. Similarly—with the exception of pyocyanin production—no association was noted 

for other virulence factors and drug resistance. Based on our experimental data, we also 

did not observe a notable relationship between biofilm formation and other virulence fac-

tors. It is interesting to note that there was no association between the levels of different 

motilities expressed by Pseudomonas; this may be explained by the fact that—although all 
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of these motility strategies have important physiological roles—their differential expres-

sion is needed to accommodate the adaptation of this pathogen to different niches [9,69]. 

Pyocyanin is a blue-green, lipid soluble pigment, which has redox-active properties, 

being a major electron acceptor for molecular O2; the synthesis of this pigment is mediated 

by PhzM (N-methyltransferase) and PhzS (flavin-dependent hydroxylase) [70]. This pig-

ment has been described as an essential factor in the virulence of Pseudomonas, especially 

in skin and soft tissue infection and invasive infections of the lungs. Pyocyanin may often 

be detected in high concentrations in the airway tissues and sputum of CF patients, where 

it contributes to chronic lung infection and bronchiectasis by facilitating mucus overpro-

duction, inhibition of ciliary activity and the α1-protease inhibitor (leading to excess tissue 

injury), and inhibition of IL-2 expression, leading to increased IL-8 release [71]. Pyocyanin 

may also have inhibitory properties on other bacterial species, aiding Pseudomonas in the 

competition in a given ecological niche; among others, this phenomenon was demon-

strated in the decreased diversity of microbial communities in the sputa of patients, where 

pyocyanin concentrations were high [72,73]. Our experiments found that the production 

of pyocyanin was a distinctive hallmark between the MDR and non-MDR group, with 

isolates in the former group showing higher levels of pigment production. During the 

experiments of Fuse et al., reverse-phase high-performance liquid chromatography (RP-

HPLC) was used for the quantitative extraction of pyocyanine in P. aeruginosa; their study 

concluded that MDR (including many MBL-producers) reduced pyocyanine expression, 

compared to the non-MDR group [74]. With similar aims to our study, Gholami et al. in-

cluded 100 P. aeruginosa isolates from clinical and environmental origins; they found 

blaTEM and blaSHV positivity in 92%/16% and 20/6% of the isolates, respectively, with 

clinical isolates having higher proclivity to becoming MDR. 70% and 28% (with 98% and 

70% of these isolates carrying the algD and algU genes) of these isolates were classified as 

strong biofilm producers; however, no association between the MDR phenotype and bio-

film-formation was found [75]. Yamani et al. utilized phenotypic and genotypic methods 

to characterize 66 Pseudomonas isolates: in their study, 53.03%/24.24%/22.73% of isolates 

were classified as strong/moderate/weak biofilm producers, respectively. By measuring 

the expression levels of 10 virulence genes (exoT, exoS, exoU, phZ, las and pil genes), they 

found that—although all associated genes were present in all isolates—all biofilm and 

virulence-associated genes were significantly upregulated in non-MDR isolates, demon-

strating an inverse correlation [76]. The experiments of Kamali et al. included 80 isolates, 

from which 50% were characterized as moderate or strong biofilm producers; they found 

that 87.5% possessed all three genes relevant for biofilm formation (algD, pslD, and pelF) 

and a positive correlation between biofilm formation and the presence of these genes, 

while no association was noted between biofilm formation and drug resistance [77]. 

Jabalameli et al. studied the carriage of Type III secretory toxin-encoding genes and their 

cytotoxic action on A549 human lung cancer cell lines in 96 clinical P. aeruginosa isolates, 

finding that the carriage of exoT, exoY, exoU, and exoS were 100%, 95%, 64.5%, and 29%, 

respectively. 47%/26% of the isolates were strong/moderate biofilm producers, respec-

tively; no association was seen between resistance phenotype and biofilm formation, and 

interestingly, neither between the presence of toxin-encoding genes and the extent of toxic 

effects seen on the cell lines [78]. 

In contrast, the study of Abidi et al., which included 22 P. aeruginosa isolated from 

keratitis, concluded that strong biofilm producers were significantly more common 

among MDR isolates [79]. Choy et al. involved 77 Pseudomonas isolates originating from 

keratitis of contact lens and non-contact lens origin; while no correlation was seen be-

tween drug resistance and biofilm formation, the presence of the exoU gene (mostly found 

in contact lens-related isolates) and strong biofilm formation showed strong positive cor-

relations [80]. In a study involving 74 P. aeruginosa from the sputum of CF and non-CF 

patients, Perez et al. noted that no differences in biofilm formation were observed among 

isolates from different patient origins (although 85.7% of CF isolates presented as the mu-

coid phenotypic variant), MBL positivity showed strong association with strong biofilm 
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production [81]. In a study involving n = 190 isolates, Eladawy et al. found no relevant 

associations between antimicrobial resistance, biofilm formation, and the presence of 

genes encoding for selected virulence factors (i.e., alignate, biofilm, exotoxin A, L-orni-

thine monooxygenase, phospholipases T3SS, proteases, and pyocyanin) [82]. da Costa 

Lima et al. used molecular methods to assess the correlation between the presence of 

quorum sensing (QS) genes and biofilm formation in 40 P. aeruginosa isolates: while all 

isolates carried these genes, no association was found with the capacity to produce biofilm 

[83]. Subedi et al. included 22 isolates from eye infections and CF sputa for testing: the 

prevalence of exoU was 61.5%, and isolates carrying exoU showed higher rates of re-

sistance and higher rates of mutations in the quinolone resistance determining region 

(QRDR) [84]. In a study involving 78 clinical and environmental isolates, Karami et al. 

found MDR rates of 48.7% and a strong positive association was shown between biofilm-

formation and the MDR status [85]. Bahador et al. noted a positive association between 

biofilm formation and the presence of the exoU and exoS genes (36.6% and 55.7%, respec-

tively), but not with antimicrobial resistance (16% of isolates were extensively drug re-

sistant [XDR]) in the 75 pseudomonads tested [86]. In a comprehensive laboratory study 

by Milojkovic et al. involving 94 isolates—similarly to our study—no correlation was 

noted between antibiotic resistance, genetic composition, pigment production, serotypes, 

and biofilm formation [87]. Cho et al. assessed biofilm formation and MBL carriage in 

carbapenem-resistant P. aeruginosa isolates; the overwhelming majority of isolates (>92%) 

were biofilm producers. Furthermore, the presence of the pslA gene and the MDR pheno-

type all showed positive association with biofilm-forming capacity [88]. Eighty-six P. ae-

ruginosa isolates (involving >31% MDR and >12% XDR), collected from various clinical 

materials, were included in the study of Zahedani et al., where strong correlations were 

found between the expression of efflux pumps and biofilm formation 

(22.47%/21.34%/11.23% were strong/moderate/weak biofilm producers); additionally, the 

presence of some efflux pumps (MexEF-OprN) reduced the virulence of these isolates, 

while others (MexAB-OprM, MexCD-OprJ) did not have the same effect [89]. Rodulfo et 

al. involved n = 176 strains (isolated between 2009 and 2016) in their experiments, showing 

high levels of drug resistance (38.1% MDR), and resistance rates showed strong associa-

tion with the presence of exoU and hemolysin, while negative associations with twitching 

motility [90]. In isolates originating from endotracheal aspirates from ICU patients, Fricks-

Lima et al. found strong and significant correlations between ceftazidime and imipenem-

resistance and strong biofilm-forming capacity [91]. 

Biofilms are characterized by a protective form of growth (essential for survival) in a 

nosocomial environment, which may also maintain an inflammatory environment in vivo 

[91,92]. Nevertheless, it is obvious that the continuous, long-term expression of antibiotic 

resistance-determinants and virulence factors is detrimental for the microorganism’s abil-

ity to adapt to environmental changes [93,94]. For example, in chronic infections, where 

P. aeruginosa establishes long-term persistence in biofilm, the expression of virulence fac-

tors is downregulated, to accommodate for the lower metabolic activity in the exopoly-

saccharide matrix [95]. QS is one of the principal mechanisms responsible for—among 

others—the regulation of virulence factor expression and biofilm formation. QS in Pseu-

domonas consist of a three interconnected systems, namely the Las, Rhl, and Pqs systems; 

these systems facilitate the changes needed for the pathogens’ survival, by the sensing of 

diffusible signal molecules found in their surroundings, which is a proxy for the popula-

tion density in the niche [96–98]. However, many antibiotics also have the ability to affect 

these QS systems in Pseudomonas, either by directly acting on gene expression or by the 

degradation of these signal molecules [99]. The emergence of P. aeruginosa isolates with 

different biofilm-forming capacities may also inform the genetic heterogeneity within 

these species, which is an important factor for successful infection in humans [9]. Never-

theless, differences in the phenotypes and susceptibility trends in these isolates may also 

stem from their different geographical origin and the sampling frame used [100]. The main 

limitation of our study was the reliance on the use of phenotypic methods only during the 
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assessment of the resistance, biofilm-forming, and virulence phenotype of the isolates; 

therefore, we did not have data from molecular methods or on the clonal complexes (CCs) 

for the isolates implicated in the assays. On the other hand, our data are generated from a 

considerably large number of geographically-distinct isolates. 

5. Conclusions 

P. aeruginosa is an opportunistic pathogen, which is often implicated in infectious pa-

thologies, leading to a considerable disease burden worldwide. Along with its intrinsic 

resistance to many antibiotics, Pseudomonas infections are further complicated by the in-

creasing prevalence of carbepenem and colistin non-susceptibility in these strains. Pseu-

domonas species possess many important virulence factors in their repertoire, in addition 

to their propensity to form biofilms (75–100% are biofilm producers). Data on interplay 

between the presence and mechanisms of drug resistance with those of biofilm formation 

and virulence is crucial to address chronic bacterial infections (leading to therapeutic fail-

ure and decreased quality of life in the affected patients), and to provide strategies for 

their management. Our study has showed that isolates with the MDR and non-MDR phe-

notype did not differ significantly in the context of the virulence determinants studied 

(biofilm, various motilities, pyoverdine), with the exception of pyocyanin production. 

Similarly, no statistically-relevant interplay was observed between the individual viru-

lence factors. The latter may either be explained by the adaptation of the microorganism 

to express their virulence factors only in situations where they are necessary for survival, 

or our in vitro methodologies utilized were not sophisticated enough to detect their asso-

ciation. As presented in our paper, many authors have aimed to provide clarity on asso-

ciation between biofilm-forming capacity, virulence factor-expression, and the MDR phe-

notype in P. aeruginosa, but the presently-available results do not yet allow for a conclu-

sion to be made. Additional experiments—preferably involving genomics and/or in vivo 

methods—are needed to provide further clarity and insights into this field. 
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