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Eszter Csikós 1, Kata Csekő 2,3, Ágnes Kemény 2,3,4, Lilla Draskóczi 2,3, László Kereskai 5, Béla Kocsis 6,
Andrea Böszörményi 7, Zsuzsanna Helyes 2,3,8 and Györgyi Horváth 1,*

1 Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
csikos.eszter@gytk.pte.hu

2 Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs,
H-7624 Pecs, Hungary; cseko.kata@pte.hu (K.C.); kemeny.agnes@pte.hu (Á.K.);
lilla.draskoczi@gmail.com (L.D.); zsuzsanna.helyes@aok.pte.hu (Z.H.)

3 Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
4 Department of Medical Biology and Central Electron Microscope Laboratory, Medical School,

University of Pecs, H-7624 Pecs, Hungary
5 Department of Pathology, Medical School, University of Pecs, H-7624 Pecs, Hungary; kereskai.laszlo@pte.hu
6 Department of Medical Microbiology and Immunology, Medical School, University of Pecs,

H-7624 Pecs, Hungary; kocsis.bela@pte.hu
7 Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Budapest, Hungary;

boszormenyi.andrea@pharma.semmelweis-univ.hu
8 PharmInVivo Ltd., H-7629 Pecs, Hungary
* Correspondence: horvath.gyorgyi@gytk.pte.hu; Tel.: +36-72-503650-28823

Abstract: Scots pine (SO) and clove (CO) essential oils (EOs) are commonly used by inhalation, and
their main components are shown to reduce inflammatory mediator production. The aim of our
research was to investigate the chemical composition of commercially available SO and CO by gas
chromatography–mass spectrometry and study their effects on airway functions and inflammation in
an acute pneumonitis mouse model. Inflammation was evoked by intratracheal endotoxin and EOs
were inhaled three times during the 24 h experimental period. Respiratory function was analyzed by
unrestrained whole-body plethysmography, lung inflammation by semiquantitative histopathological
scoring, myeloperoxidase (MPO) activity and cytokine measurements. α-Pinene (39.4%) was the
main component in SO, and eugenol (88.6%) in CO. Both SO and CO significantly reduced airway
hyperresponsiveness, and prevented peak expiratory flow, tidal volume increases and perivascular
edema formation. Meanwhile, inflammatory cell infiltration was not remarkably affected. In contrast,
MPO activity and several inflammatory cytokines (IL-1β, KC, MCP-1, MIP-2, TNF-α) were aggravated
by both EOs. This is the first evidence that SO and CO inhalation improve airway function, but
enhance certain inflammatory parameters. These results suggest that these EOs should be used with
caution in cases of inflammation-associated respiratory diseases.

Keywords: clove; Scots pine; essential oil; endotoxin; airway inflammation; mouse model; airway
hyperresponsiveness; myeloperoxidase activity; perivascular edema; cytokine

1. Introduction

Essential oils (EOs) are volatile liquids containing mainly terpenoids (mono-, sesqui-
and diterpenes) and phenylpropane derivatives, which completely evaporate at room tem-
perature. They can be extracted by distillation from various plant parts and are becoming
more and more popular in different fields, e.g., aromatherapy, food preservation, plant
pathology and medical microbiology. Inflammatory lung diseases are among the leading
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causes of death worldwide [1] and they can substantially deteriorate patients’ quality of
life. Due to the volatile character of EOs, they can enter the respiratory tract via inhalation.
Therefore, patients willingly apply EOs as a single or adjuvant treatment for respiratory
diseases and inflammations based on traditional use and empirical evidence. Another
favorable characteristic of EOs is that by containing several components they can exert
pleiotropic effects through a broad range of targets, such as lipoxygenase, cyclooxygenase
and inducible nitric oxide synthase, as well as different receptors, transporters and ion
channels [2,3]. The anti-inflammatory effects of eucalyptus, lavender, thyme and cinnamon
EOs, 1,8-cineole (eucalyptol), and menthol in the airways have already been proved by our
research group [4], as well as others [2,5–7].

Scots pine (SO) and clove (CO) EOs are among the most popular oils and are commonly
used via inhalation. Their main components, α-pinene and eugenol, have been shown
to reduce inflammatory cytokine production and some inflammatory parameters [8–12].
However, these previous in vitro results describe the effect of only one EO component and
focus only on certain selected inflammatory parameters; therefore, they are not conclusive
and difficult to compare. There are only few in vivo data available, especially on airway
function analysis, data which would be important to determine their potential clinical
benefits and risks, particularly under inflammatory conditions.

SO is obtained by steam distillation of the fresh needles (leaves) and twigs of Pi-
nus sylvestris L. (Pinaceae). The traditional uses of SO include treating respiratory infections
based on its antibacterial, anti-inflammatory, expectorant and analgesic potentials [13]. CO
is obtained by the same method from the dried flower buds of Syzygium aromaticum (L.) Mer-
ill et L. M. Perry (Myrtaceae). According to the European Medicines Agency monograph
on clove oil, it is a traditional herbal medicinal product for the symptomatic treatment of
oral cavity or pharyngeal minor inflammations and for the temporary relief of toothache
due to cavity [14,15]. We selected these two EOs based on their frequent use and presence
in different traditional herbal medicinal products administered by inhalation.

The endotoxin (lipopolysaccharide: LPS)-induced acute airway inflammation mouse
model is the most frequently applied, well-reproducible mechanism model for the study of
EOs in acute respiratory inflammation [4,16–19]. LPS is a component of the Gram-negative
bacterial cell wall, which induces interstitial pneumonitis and acute respiratory obstruction
by a well-defined Toll-like receptor-4 activation on macrophages, resulting in the release of
several inflammatory mediators and consequent neutrophil activation [20].

In our experiments, we aimed to analyze the chemical composition of SO and CO, and
perform a complex investigation on their effects related to airway functions and a range of
inflammatory parameters in the endotoxin-induced acute pneumonitis mouse model.

2. Results
2.1. Chemical Analysis of EOs

The chemical composition of commercially available SO and CO EOs was measured
by gas chromatography with a flame-ionization detector (GC-FID) and mass spectrometry
(GC-MS). The main components in SO and CO were α-pinene (39.4%) and eugenol (88.6%),
respectively (Table 1). In SO, limonene (14.3%), β-pinene (11.0%), α-terpineol (8.8%), β-
caryophyllene (8.4%), δ-3-carene (7.0%), bornyl acetate (3.4%), and fenchone (1.1%) were
also present, while in CO, β-caryophyllene (8.6%), and α-humulene (2.2%) were present in
higher concentrations.
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Table 1. The chemical composition of the investigated essential oils in percentage from 3 parallel
measurements (RI: retention index).

Compound RI Scots Pine (%) Clove (%)

α-Pinene 959 39.4 -
Camphene 977 0.8 -
Fenchone 982 1.1 -
β-Pinene 1005 11.0 -
δ-3-Carene 1036 7.0 -
Limonene 1055 14.3 -
α-Terpineol 1216 8.8 -

Bornyl acetate 1300 3.4 -
Eugenol 1372 - 88.6

Longifolene 1429 0.5 -
β-Caryophyllene 1435 8.4 8.6
α-Humulene 1471 0.8 2.2

Caryophyllene oxide 1594 0.7 0.5

Total 96.2 99.9

2.2. Respiratory Functions

LPS treatment significantly reduced breathing frequency and minute ventilation, and
increased tidal volume, time of inspiration and expiration, and peak expiratory flow 24 h
after administration. Meanwhile, it did not alter peak inspiratory flow and relaxation time
(Figure 1a–h). Both EOs significantly alleviated carbachol-induced airway hyperresponsive-
ness and inhibited LPS-induced peak expiratory flow increase (Figure 1h,i). SO inhalation
also significantly reduced tidal volume (Figure 1b) compared to the LPS-PO-treated group,
but had no other observable effect on other airway parameters.
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Figure 1. Effects of Scots pine (SO) and clove (CO) essential oils on (a) breathing frequency, (b) tidal
volume, (c) minute ventilation, (d) relaxation time, (e) time of inspiration, (f) time of expiration,
(g) peak inspiratory flow, (h) peak expiratory flow and (i) Penh compared to the negative control
paraffin oil (PO), after lipopolysaccharide (LPS-black columns)/phosphate-buffered saline (PBS-white
columns) treatment (n = 6–8/group, * p < 0.05, ** p < 0.005, *** p < 0.0005, **** p < 0.0001 vs. respective
PBS-treated group, # p < 0.05, ## p < 0.005, ### p < 0.0005 vs. LPS-PO-treated mice; two-way ANOVA
followed by Tukey post-test).

2.3. Lung Histopathological Evaluation

LPS administration induced neutrophil granulocyte and macrophage infiltration asso-
ciated with a remarkable perivascular and peribronchial edema formation (Figures 2 and 3).
Neither SO nor CO significantly altered any LPS-induced histopathological parameters,
partially due to the great interindividual variation of the semiquantitative score values.
However, in contrast to the PO-treated controls, none of the observed inflammatory mark-
ers were significantly increased in the CO-treated group, and edema as well as macrophage
infiltration did not significantly elevate in the SO-treated group either, showing anti-
inflammatory actions of the investigated EOs (Figure 3).

2.4. LPS-Induced Lung Myeloperoxidase (MPO) Activity Was Aggravated by SO and CO
Inhalation

MPO production correlating with granulocyte and macrophage activity was measured
from the lung homogenates. LPS treatment significantly increased MPO activity, and
surprisingly both SO and CO treatments induced an approximately 2-fold further elevation
of this inflammatory parameter (Figure 4).

2.5. SO and CO Aggravated LPS-Evoked Inflammatory Cytokine Concentrations of the Lung

SO significantly aggravated LPS-induced interleukin-1beta (IL-1β), keratinocyte
chemoattractant (KC), monocyte chemoattractant protein 1 (MCP-1), macrophage inflam-
matory protein 2 (MIP-2), and tumor necrosis factor alpha (TNF-α), while CO significantly
enhanced interleukin-1 (IL-6), and KC (Figure 5).
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3. Discussion

Since the in vivo effects of SO and CO EOs are not convincingly demonstrated in the
literature, and the data are partially contradictory, we therefore focused on testing the
effect of these EOs in an endotoxin-induced acute pneumonitis mouse model. Our study
provides here the first evidence that both SO and CO (with α-pinene and eugenol as main
components, respectively) inhalation decrease inflammatory airway hyperresponsiveness
in the LPS-induced acute lung injury model. Neither EO induced histopathological changes
in the non-inflamed lung, but in the case of both treatments, LPS-induced characteristic
inflammatory alterations as shown by the semiquantitative scores were not significant.
Surprisingly, in contrast to these functional and morphological results, MPO activity and
several inflammatory cytokines were remarkably aggravated by both EOs.

The novelty of our work is emphasized by the fact that this is the first study demon-
strating the in vivo effects of SO on inflammation. Our findings are partially consistent
with previous results obtained with components of SO and EOs of other pine species.

Orally administered maritime pine (Pinus pinaster Ait) EO (with 13.5% α-pinene
content) did not show anti-inflammatory effects in the carrageenan-induced hind paw
edema mouse model [21].

Myrtol, a standardized mixture of EOs primarily containing cineole, limonene and
α-pinene (from Pinus species) administered orally, inhibited LPS-induced neutrophil ac-
cumulation, TNF-α and IL-6 concentrations, but, in agreement with our results, increased
MPO activity 6 h after LPS administration in the mouse [22]. These partially contradictory
data might be due to the different EO composition and the duration of the study. In a
clinical study, Myrtol improved mucociliary clearance in patients with chronic obstructive
pulmonary disease, but did not affect respiratory functions [23]. Short-term exposure of
α-pinene did not evoke acute lung function changes, but caused mild irritation in higher
concentrations [24]. However, the inhalation of turpentine with high (35%) δ-3-carene
content increased airway resistance, besides causing discomfort in the throat and airways
of healthy men [25].

α-Pinene, the main component of SO, decreased TNF-α, IL-1β, IL-6, intercellular adhe-
sion molecule-1 (ICAM), and macrophage inflammatory protein-2 (MIP-2) levels, as well as
eosinophil and mast cell infiltration in the nasal mucosa in an ovalbumin-sensitized allergic
rhinitis mouse model [26]. It inhibited IL-6, TNF-α and NO productions in LPS-activated
isolated mouse peritoneal macrophages by suppressing the mitogen-activated protein ki-
nases (MAPKs) and the nuclear factor-kappa B (NF-κB) pathways [11]. EOs obtained from
P. heldreichii (α-pinene 10.57%), P. peuce (α-pinene 36.79%) and P. mugo (α-pinene 21.34%)
reduced IL-6 secretion from the LPS-activated RAW 264.7 mouse monocyte/macrophage-
like cell line only in higher concentrations, but did not modify or even increased secretion
in lower concentrations [27], suggesting clear concentration-dependent effects.

Meanwhile, P. pinaster EO (α-pinene 62%) did not inhibit LPS-indued TNF-α and
CCL2 production in human acute monocytic leukemia cells (THP-1) [28].

Regarding Syzygium aromaticum, it is important to note that most available data refer
to the aqueous extract but not the EO of the plant, or focused only on the main component,
eugenol. The aqueous extract of clove (i.p.) significantly reduced matrix metalloproteinase-
2 (MMP-2) and -9 activities, neutrophil count and protein leakage into bronchoalveolar
lavage fluid in an LPS-induced inflammation mouse model. Furthermore, it also decreased
MPO activity concentration-dependently in phorbol myristate acetate-stimulated human
neutrophils [29]. The same extract reduced carrageenan-induced hind paw edema and
liver succinate dehydrogenase and xanthine oxidase activities in the rat [30].

CO did not affect phagocytosis. It significantly increased the expression of inducible ni-
tric oxide synthase (iNOS), but reduced IL-6 production in LPS-activated RAW 264.7 cells [31].

Eugenol, the main component of CO, is the most thoroughly studied substance in rela-
tion to inflammation [8–10,12]. Eugenol did not affect LPS-induced respiratory changes, but
reduced lung edema, inflammatory cells, and IL-6 and IL-1β levels in the bronchoalveolar
lavage fluid, as well as inflammatory cell infiltration [32].
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In another study, i.p. eugenol reduced LPS-induced pulmonary inflammation, im-
proving lung function as well as significantly reducing neutrophil and macrophage counts
and TNF-α level [33]. Similar to this finding, eugenol inhibited changes in lung mechanics,
pulmonary inflammation, and alveolar collapse elicited by diesel particles [34]. In contrast
to these experimental data, eugenol may cause different adverse reactions in humans,
including skin irritation, inflammation, ulcer formation, dermatitis, or slow healing [35].

These controversial findings with both SO and CO are likely to be due to the different
compositions of the aqueous extracts and the EOs, the different effects of the main com-
ponents by themselves as compared to the complexes, the differences between the ways
of administration and concentration, and the mechanisms of the inflammatory processes.
Despite the fact that our results provide useful information regarding the potential benefits
and risks of EO inhalation in airway inflammation, a limitation of our experimental design
is that we could not measure the exact EO concentration in the inhalation box, but could
only calculate its maximum value.

4. Materials and Methods
4.1. EO Samples and the Gas Chromatographic Analysis of Their Composition

Scots pine (Pinus sylvestris L.) and clove (Syzygium aromaticum (L.) Merr. & L. M.
Perry syn. Eugenia caryophyllata Thunb.) EOs were bought from Aromax Ltd. (Budapest,
Hungary). To analyze the chemical composition of the EO samples, gas chromatography–
mass spectrometry (GC-MS, Agilent 6890 N/5973 N GC-MSD, Santa Clara, CA, USA)
was used. The percentage compositions of the EOs were evaluated by a flame ionization
detector (FID). Compounds were identified based on retention data and spectral data of
standard compounds, and the NIST 05 mass spectral library was also applied as previously
described [36,37].

4.2. Animals

In the animal experiments, 10–18-week-old female C57BL/6J mice [20] weighing
21.7 ± 0.30 g (mean ± SEM) at the beginning of the experiment were used. The age
distribution of the mice was similar in each group to avoid age-related differences. They
were bred and kept in the Laboratory Animal House of the Department of Pharmacology
and Pharmacotherapy at the University of Pécs. Optimal parameters were provided for
all the animals (e.g., 325 × 170 × 140 mm cages, 12 h light/dark cycle, 24–25 ◦C, mouse
chow, water).

During the experiments, the following regulations were considered: European legisla-
tion (Directive 2010/63/EU) and Hungarian Government regulation (40/2013., II. 14.) on
the protection of animals used for scientific purposes, and the recommendations of the In-
ternational Association for the Study of Pain. The study design was approved by the Ethics
Committee on Animal Research of the University of Pécs (license No.: BA02/2000-26/2018,
21 June 2018).

4.3. Induction of Acute Airway Inflammation and Groups of Animals

Animals received 100 µg Escherichia coli (serotype: 083) LPS intratracheal (i.t.) dis-
solved in 60 µL phosphate-buffered saline (PBS) to induce acute airway inflammation. The
endotoxin was isolated and purified in the Department of Microbiology, University of
Pécs. The animals were put under ketamine (100 mg/kg i.p.; Sigma Aldrich, St. Louis,
MO, USA) and xylazine (5 mg/kg i.p.; Sigma Aldrich, St. Louis, MO, USA) anesthesia
during the administration of LPS. Control mice received the same volume of sterile PBS [38].
Animals were treated with 30 min EO inhalation 1 h prior to and 4 and 23 h following
LPS/PBS administration as previously described [4]. The negative control of the EOs was
paraffin oil (PO). The maximum concentration of the EOs was calculated as 6.55 µL/L.
Mice were randomized into six groups: (1) the control group treated with PBS i.t. and PO
inhalation, (2) mice treated with LPS i.t. and PO inhalation, (3) PBS i.t. and SO inhalation,
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(4) LPS i.t. and SO inhalation, (5) PBS i.t. and CO inhalation, (6) LPS i.t. and CO inhalation
(n = 6–8/group).

4.4. Pulmonary Function Measurement

Respiratory functions were determined in conscious and spontaneously breathing
animals by unrestrained whole-body plethysmography (WBP) (PLY3211, Buxco Europe
Ltd., Winchester, UK) 24 h after PBS/LPS administration [39]. Baseline measurements
were registered with aerosolized saline to determine the respiratory parameters, such as
breathing frequency, tidal volume, minute ventilation, relaxation time, time of inspiration
and expiration, peak inspiratory and expiratory flow. The enhanced pause (Penh; calculated
as: (expiratory time/relaxation time)/(max. expiratory flow/max. inspiratory flow))
correlating with airway hyperresponsiveness [39] was measured after carbachol (11 and
22 mm; Sigma Aldrich, St. Louis, MO, USA)-induced bronchoconstriction as previously
described [4]. Airway function parameters were registered and averaged by the BioSystem
XA Software for Windows (Buxco Research Systems, Wilmington, NC, USA).

4.5. Histopathological Assessment and Semiquantitative Scoring

After airway function measurements, the mice were anaesthetized, and their lungs
were harvested. Left lungs were fixed in 4% formaldehyde, embedded in paraffin, sec-
tioned with a microtome (5–7 µm), and stained with hematoxylin–eosin. Semiquantitative
histopathological scoring was performed by an expert pathologist in a blinded manner.
Perivascular edema (0–3), perivascular/peribronchial neutrophil accumulation (0–3), and
infiltration of macrophages/mononuclear cells in the alveolar spaces (0–2) were scored as
previously described [40,41]. The total inflammatory score was assessed (0–8) by adding
the subscores of the individual histopathological parameters.

4.6. Spectrophotometric Measurement of Myeloperoxidase (MPO) Activity

Lung inflammation was further characterized by MPO enzyme activity assessment
correlating with activated neutrophil and macrophage infiltration. Spectrophotomet-
ric measurement was performed from the right lung homogenates using H2O2-3,3′,5,5′-
tetramethylbenzidine (TMB/H2O2), and MPO activity was compared to a human standard
MPO preparation as described earlier [39]. All reagents were obtained from Sigma-Aldrich
Ltd. (St. Louis, MO, USA).

4.7. Measurement of Inflammatory Cytokine Concentration Using Luminex xMAP Technology

The excised and frozen lung tissue samples were thawed and weighed, then immedi-
ately placed in cold PBS containing 0.01% phenylmethanesulfonyl fluoride (PMSF, Sigma
Aldrich, St. Louis, MO, USA, P7626) protease inhibitor, and were homogenized on ice with
a Miccra D-9 Digitronic device (Art-moderne Laborteknik, Germany). Homogenates were
centrifuged for 20 min (4 ◦C, 4000 rpm) and clear supernatants were collected and stored at
−80 ◦C until the measurement. With a customized Milliplex Mouse Cytokin/Chemokine
Magnetic Bead Panel (MCYTOMAG-70K), Luminex Multiplex Immunoassay was per-
formed to determine the protein concentrations of the following cytokines/chemokines:
interleukin-1beta (IL-1β); interleukin-6 (IL-6); chemokine (C-X-C motif) ligand 1 (CXCL1),
also called keratinocyte chemoattractant (KC); chemokine (C-C motif) ligand 2 (CCL2),
also called monocyte chemoattractant protein 1 (MCP-1); chemokine (C-X-C motif) ligand
2 (CXCL2), also called macrophage inflammatory protein 2 (MIP-2); and tumor necrosis
factor alpha (TNF-α). The six analytes were detected simultaneously in a 96-well plate.
All samples were tested undiluted in a blind fashion and in duplicate. Based on the in-
structions, a mixture of the six antibody-coated bead population was added to the plate
at 25 µL/well together with standards and controls to the designated wells. Following
overnight incubation at 4 ◦C, the plate was washed three times using a handheld magnetic
plate. After washing, 25 µL/well of detection antibody solution was added and incubated
for 60 min at RT with shaking at 500 rpm. After subsequent washing steps, 25 µL/well of
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streptavidin–phycoerythrin (SAPE) solution was added and incubated for 30 min at RT
shaking at 500 rpm. After washing three times, 150 µL/well of drive buffer was added to
the plate and the assay was read on a MAGPIX Luminex (TermoFisher, Budapest, Hungary)
instrument. Five-PL regression curves were used to plot the standard curves for all analytes
by the Belysa 1.1 software (Sigma Aldrich, St. Louis, MO, USA) analyzing the bead median
fluorescence intensity. Results are given in pg/mL and were normalized to the total protein
concentration of the sample.

4.8. Statistical Analysis of Data

Statistical analysis was performed in GraphPad Prism v6 (GraphPad Software, San
Diego, CA, USA). Unless noted otherwise, all data represent the mean ± SEM. Respiratory
parameters and MPO activity were analysed with two-way ANOVA followed by Tukey
post-test. Composite histopathological inflammatory score values were evaluated by
Kruskal–Wallis analysis followed by Dunn’s post-test. In all cases, p < 0.05 was accepted
as significant.

5. Conclusions

This study provides the first evidence that SO and CO inhalation improve airway
function, but enhance certain inflammatory parameters. Therefore, we conclude that these
EOs could be beneficial for certain functional respiratory disorders, but should be used
with caution in cases of inflammation-associated airway conditions.
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