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Abstract: The interaction between human serum albumin (HSA) and apremilast (APR), a novel an-
tipsoriatic drug, was characterized by multimodal analytical techniques including high-performance
liquid chromatography (HPLC), fluorescence spectroscopy and molecular docking for the first
time. Using an HSA chiral stationary phase, the APR enantiomers were well separated, indicating
enantioselective binding between the protein and the analytes. The influence of chromatographic
parameters—type and concentration of the organic modifier, buffer type, pH, ionic strength of the
mobile phase, flow rate and column temperature—on the chromatographic responses (retention
factor and selectivity) was analyzed in detail. The results revealed that the eutomer S-APR bound
to the protein to a greater extent than the antipode. The classical van ’t Hoff method was applied
for thermodynamic analysis, which indicated that the enantioseparation was enthalpy-controlled.
The stability constants of the protein–enantiomer complexes, determined by fluorescence spec-
troscopy, were in accordance with the elution order observed in HPLC (KR-APR-HSA = 6.45 × 103 M−1,
KS-APR-HSA = 1.04 × 104 M−1), showing that, indeed, the later-eluting S-APR displayed a stronger
binding with HSA. Molecular docking was applied to study and analyze the interactions between
HSA and the APR enantiomers at the atomic level. It was revealed that the most favored APR binding
occurred at the border between domains I and II of HSA, and secondary interactions were responsible
for the different binding strengths of the enantiomers.

Keywords: apremilast; drug delivery; HSA binding; chiral chromatography

1. Introduction

The majority of the currently marketed drugs contain at least one chiral center. Al-
though some of them are sold as racemates, the pharmacodynamic and pharmacokinetic
parameters of the enantiomers are inevitably different because of the intrinsic chiral nature
of the human body. The classical example of differences in drug action is the notorious
case of thalidomide; while R-thalidomide is a sedative, S-thalidomide is a teratogen [1–3].
Since proteins are also chiral in nature in terms of both their primary structure and their
secondary or higher-order structures, they have the potential to discriminate between
enantiomers [4–6]. Various types of proteins have been immobilized and used to prepare
chiral stationary phases (CSPs) for liquid chromatography, ranging from enzymes to serum
transport proteins and glycoproteins. Among these, the most important in practice are
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transport proteins such as human serum albumin (HSA), bovine serum albumin (BSA) and
alpha1-acid glycoprotein (AGP) [4,7]. Apart from these three protein-based CSPs, there
are only two other official chromatographic phases described in the US Pharmacopeia,
based on ovomucoid and cellobiohydrolase. The role of protein-type columns in chiral
separation has decreased in recent times. However, an advantage of protein-based columns
is that the chromatographic results can also reflect the in vivo protein binding affinity of
drugs [8]. Since at least 90% of drugs bind to plasma proteins, a high-throughput in vivo
transport protein binding result is particularly important, as HSA binding highly affects
the pharmacokinetics and bioavailability of a drug [9,10]. HSA is a globular protein, and
its heart-shaped structure is composed of three main domains (I–III), each containing two
subdomains (A and B), characterized by the presence of α-helices in the structure, with
multiple ligand-binding sites localized in each of these subdomains [11,12]. According to
Sudlow’s classification, there are two main binding sites for drug ligands of HSA, namely,
Sudlow’s site I, positioned in subdomain IIA, and site II, positioned in subdomain IIIA. Site
I is concerned with the selective binding of heterocyclic anions, such as ibuprofen, while
aromatic carboxylates bind to site II. However, it should be noted that the binding of all the
ligands cannot be described according to the Sudlow’s model. Site III, a third binding pocket
located in subdomain IB, is a hydrophobic D-shaped cavity and is also used for interaction
by some compounds such as bilirubin. Some studies suggested Sudlow’s site III as the third
major site having the potential to bind drug ligands of HSA [13,14]. However, it should be
noted that in vitro and in vivo binding data could be different, as, for example, the fatty
acid content in plasma highly influences the binding properties. There are many methods to
characterize protein–drug interactions: chromatographic techniques [15,16], circular dichro-
ism [17,18], fluorescence [11,19] and nuclear magnetic resonance spectroscopy [20], as well
as ultrafiltration [21], ultracentrifugation [22], calorimetric [23], UV-pH titration [24], etc. In
addition, the characterization of stereoselective drug–protein interactions by computational
methods may also be valuable to provide insights into chiral recognition mechanisms and
to further design and optimize chiral separations [25]. Understanding the analyte–protein
binding interactions on an atomic level can also aid further drug design [26].

APR is a phthalimide analogue (Figure 1) that is used against psoriasis and psoriatic
arthritis. It acts as a selective inhibitor of the enzyme phosphodiesterase-4 (PDE-4) and
inhibits the spontaneous production of TNF-alpha from human rheumatoid synovial cells.
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APR has one chiral center, and the more potent S-enantiomer is marketed. Based on
the public EMEA assessment report of Otezla®, the overall mean APR percent bound was
88.6% in mouse plasma, 90.6% in rat plasma, 80.9% in rabbit plasma, 84.3% in monkey
plasma and only 68.3% in human plasma in the tested concentration range from 0.25
to 2.5 µg/mL [27]. Plasma protein binding was much lower in humans compared to
animals. In the literature, there are no data for albumin binding by APR, even though it
would be of great utility for detecting possible drug–drug interactions. The present work
aimed to scrutinize the stereoselective HSA binding by APR through HPLC, fluorescence
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spectroscopy and molecular docking. Using multimodal analytical techniques is necessary
to eliminate the limitations of each method. Although HPLC separation on an HSA-bonded
CSP has long been described for the analysis and the characterization of HSA binding
by drugs, there are only a few articles in the literature that systematically investigate the
correlation between mobile phase constituents and binding data. Therefore, another aim of
this study was to determine the influence of different chromatographic parameters on the
separation performance, as well as on protein binding. The APR-HSA interactions reported
here explain the binding mechanism at the molecular level and will facilitate efforts to
modify new therapeutic drugs and optimize their distribution within the human body.

2. Results and Discussion
2.1. HPLC Study

A Chiral-HSA column was employed to systematically study the enantiospecific HSA
binding of APR and investigate the effects of several chromatographic conditions upon the
separation performance.

2.1.1. Buffer Type and Organic Modifier

During the initial experimental runs, we evaluated the impact of different buffer types
on the enantioseparation performance. In the early studies described in the literature,
acetate and phosphate buffers were used. The advantage of ammonium–acetate buffers is
their compatibility with mass spectrometry [28–30], while several studies described that
phosphate buffers mimic the physiological conditions of human plasma and, consequently,
are being used in protein-binding studies [16,30]. The experiments were run at 25 ◦C,
both buffers were set at pH = 7, and IPA was used as an organic modifier. The use of the
phosphate buffer resulted in a better peak shape and higher resolution values than that of
the ammonium acetate buffer; therefore, phosphate buffer was used throughout the study.

In the next step, different organic modifiers in different percentages were tested.
Columns with immobilized proteins, such as Chiral-HSA, are very susceptible to the type
and percentage of the organic modifier, which can lead to changes in the tridimensional
structure of the protein and can alter the secondary interactions between the analyte and
the CSP [30,31]. According to the instructions of the column manufacturer, the maximum
usable organic modifier percentage in the mobile phase was 20% [32]. In our study, the
effect of 2-propanol (IPA), 1-propanol (PROP), ethanol (EtOH), methanol (MeOH) and
acetonitrile (ACN) on the retention factor (k) and selectivity (α) was investigated. The
organic modifiers were used in five different percentages in 10 mM phosphate buffer
adjusted to pH 7, using a flow rate of 0.7 mL/min, at 25 ◦C.

Enantioseparation was observed regardless of the applied modifier, and the enan-
tiomer elution order was the same in all cases, R < S, meaning that the eutomer S-APR had a
higher affinity with the protein. The obtained chromatographic data using different organic
modifiers are presented in Table 1, while some representative chromatograms in different
EtOH–buffer mixtures are depicted in Figure 2. As it can be observed, the highest retention
factor was obtained in MeOH, while the lowest was in ACN. It can also be seen that there
is an exponential relationship between the organic solvent content of the mobile phase and
the retention factor. Thus, even a little amount of organic modifier could alter the protein
binding. This also means that the type and proportion of the selected organic modifier
should be considered when comparing measured data. Regarding enantioselectivity, the
highest values were observed in MeOH and IPA. For choosing the most suitable organic
modifier, analysis time, selectivity and column lifetime were all taken into consideration.
Based on these aspects, 4 v/v% IPA was chosen, and further studies were conducted using
a 96/4 v/v% phosphate buffer/IPA mixture.
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Table 1. Retention factors, resolutions and selectivity values in different percentages of five different
organic modifiers on the Chiral-HSA column.

Organic Modifier % kR-APR kS-APR Rs α

MeOH

2 13.05 19.00 1.78 1.46
4 9.32 15.27 1.56 1.63
6 6.05 8.07 1.01 1.34
8 4.48 5.32 0.65 1.19
10 3.72 3.98 0.32 1.07

EtOH

2 8.72 13.84 1.93 1.59
4 4.93 6.52 1.32 1.32
6 3.33 4.12 0.85 1.24
8 2.83 3.20 0.60 1.13
10 2.66 2.94 0.32 1.10

1-PROP

2 8.99 13.98 1.36 1.55
4 5.96 8.04 0.99 1.35
6 4.19 5.20 0.62 1.24
8 1.99 2.25 0.31 1.13
10 1.32 1.32 0 1

IPA

2 8.04 13.48 1.94 1.68
4 5.00 7.62 1.43 1.52
6 3.01 3.76 1.19 1.24
8 2.26 2.56 0.65 1.13
10 1.45 1.45 0 1

ACN

2 7.56 10.05 1.46 1.33
4 3.98 4.90 0.69 1.23
6 2.80 3.09 0.31 1.11
8 2.03 2.03 0 1
10 1.42 1.42 0 1
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Figure 2. Effect of EtOH content in the mobile phase on enantioseparation of APR enantiomers.
Chromatographic conditions: Chiral-HSA column, thermostated at 25 ◦C, flow rate 0.7 mL/min.

2.1.2. Buffer pH, Ionic Strength and Flow

In the next steps, the effect of buffer pH and ionic strength upon separation perfor-
mance was monitored. According to the manufacturer, the Chiral-HSA column is stable
between pH 5 and 7 [32]. APR is a neutral molecule; therefore, its protonation state is
independent of the pH. However, the protonation state of HSA differs at various pH
values (its anionic character increases with pH), which can highly influence the binding
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process [16,33]. Four different pH values—5.5, 6.0, 6.5 and 7.0—were investigated, and in
general, lower retention factors were obtained at higher pH values in IPA; however, due to
a better peak shape, better resolution values were observed at lower pH (Figure 3). This
experiment also underlines the necessity of an appropriate pH control in characterizing
protein binding, regardless of the method.
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As another step, the effect of the buffer’s ionic strength (10 mM, 20 mM, 30 mM, 40 mM
phosphate with 4 v/v% IPA) was investigated. The relationship between ionic strength
and retention and selectivity is not linear. Higher selectivity values were observed at
10 mM ionic strength in this range. The flow rate also varied between 0.5 and 0.8 mL/min.
As expected, a higher flow rate caused lower retentions without a significant change in
enantioselectivity.

Based on the obtained results, further experiments were performed with 10 mM
phosphate buffer pH = 7/IPA 96/4 v/v%, with a 0.7 mL/min flow.

2.1.3. Effect of the Temperature—Thermodynamic Analysis

The separation temperature is one of the main determinant factors that can affect
selectivity, resolution, retention factor and even the elution order of enantiomers during
HPLC enantioseparations [34,35]. To investigate the effects of temperature and to gain a
better understanding of the mechanistic aspects of the enantiodiscrimination process on
the Chiral-HSA column, thermodynamic analysis was performed in a 10 mM phosphate
buffer/IPA 96/4 v/v% mixture.

To understand the energetic interactions between the analytes and the stationary phase,
the classical van ’t Hoff approach was applied assuming only enantioselective interaction
sites on the stationary phase. However, it should be noted that it is more realistic if both
enantioselective and non-enantioselective interactions are considered [36,37].

Van ’t Hoff plots were constructed according to Equation (1) by plotting the natural
logarithm of the retention factor as a function of the inverse of the absolute temperature in
the temperature range of 10–30 ◦C, with 5 ◦C increments (a higher temperature was not
applied due to possible column damage)

ln k =
∆H

◦

RT
+

∆S
◦

R
+ ln Φ (1)

where R stands for the universal gas constant, T is the temperature in Kelvin, and k is the
retention factor of the individual enantiomers. ∆H◦ denotes the standard enthalpy, while
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∆S◦ is the standard entropy change of transfer of the solute from the mobile phase to the
stationary phase, and Φ is the phase ratio of the HSA column. If ∆H◦ is constant in the
selected temperature range, a linear relationship is obtained between lnk and 1/T, with
a slope of −∆H◦/R and an intercept of ∆S◦/R + lnΦ. Since the value of the phase ratio
is seldom known, ∆S◦* values (∆S◦* = ∆S◦ + RlnΦ) are often used to compensate for the
uncertainty in Φ [38,39].

Similarly, the differences in the change of standard enthalpy ∆(∆H◦) and standard
entropy ∆(∆S◦) for the two enantiomers moving from the mobile phase to the stationary
phase were also calculated according to the modified van ’t Hoff equation:

ln α = −
∆
(
∆H

◦)
RT

+
∆
(
∆S

◦)
R

(2)

The isoenantioselective temperatures (Tiso) were also calculated as the ratio between
∆(∆H◦) and ∆(∆S◦), according to Equation (3). Tiso represents the temperature at which
the enthalpy contribution is compensated by the entropic term, which means that Gibbs’
enthalpy (∆(∆G◦)) equals zero. The thermodynamic parameter ∆(∆G◦) provides informa-
tion on the strength of binding between selector and selectant, with more negative values
indicating a more efficient binding. Consequently, a value of ∆(∆G◦) = 0 means that there
is no difference between the binding strength of the enantiomers; therefore, at Tiso, the two
enantiomers co-elute, and no separation is achieved.

Tiso =
∆
(
∆H

◦)
∆
(
∆S◦) (3)

∆
(

∆G
◦
)
= ∆

(
∆H

◦
)
− T ∗ ∆

(
∆S

◦
)

(4)

The obtained thermodynamic data are summarized in Table 2.

Table 2. Calculated thermodynamic parameters of APR enantiomers on the Chiral-HSA column in
10 mM phosphate buffer/IPA 96/4 v/v% mixture.

Enantiomer Equation r2 ∆(∆)H◦

(kJ/mol)
∆(∆)S◦

(J/molK)
∆(∆)G◦

(kJ/mol)
Tiso
(◦C) Q *

R-APR lnk1 = 3189.8x − 9.176 0.9994 −26.52 −76.29 −3.79
S-APR lnk2 = 3641.8x − 10.438 0.9997 −30.28 −86.78 −4.42

lnα = 452.01x − 1.2619 0.9881 −3.76 −10.49 −0.63 85.20 1.2

* Q =
∆
(

∆H
◦ )

T·∆(∆S◦ )
at 298 K.

The results of the thermodynamic analysis revealed that the retention factors decreased
as the temperature increased, and the selectivity values followed the same trend. The linear
relationships indicated that the retention of the enantiomers occurred via a single associative
mechanism and that the solvation–desolvation equilibrium did not obscure the association
process of the analytes with the stationary phase [3,40]. The Q value, which is used for
visualizing the relative contribution of enthalpic and entropic terms to the free energy of
adsorption, was higher than 1, indicating that enthalpic control was mainly responsible
for the separation of the APR enantiomers, which is usually the case for protein-based
columns. The Tiso value was too high to be of practical importance; however, theoretically,
further raising the temperature above the Tiso value would reverse the elution order, due
to the greater entropic contribution. The high difference between the standard enthalpies
(∆(∆H◦) > 1 kJ/mol) showed a higher affinity and preferential binding of the S-enantiomer
to the chiral selector, when compared to its antipode.
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2.1.4. Characterization of the APR-HSA Binding by HPLC

Chromatographic columns with HSA can be used to determine the binding percentage
of different drugs. Different organic mobile phase modifiers were used and compared
during this study for the analysis of their effect on the calculated bound% [16,30].

As it was observed, the decrease of the organic modifier percentage in the mobile
phase caused an exponential increase in the retention times of both enantiomers. Therefore,
for the calculations, the logarithm of the retention factors was plotted against the organic
modifier proportion. With this conversion, a linear relationship was obtained, which could
be easily extrapolated to zero for supposedly the best imitation of in vivo conditions. As
the intercept of these linear equations, a k value is expressed that can be used to calculate
the bound% according to Equation (7).

Using this method, the calculated bound% data are shown in Table 3.

Table 3. Bound percentage values (b%) determined for the extrapolation to zero percentages of
different organic modifiers.

Organic Modifier b%R-APR b%S-APR

MeOH 94.5 96.8
EtOH 91.4 94.8

1-propanol 94.0 96.4
IPA 92.1 95.7

ACN 91.3 93.7

Average + SD% 92.7 ± 1.5 95.5 ± 1.3

The data showed that APR binding to HSA was significant, as the bound% value was
higher than 90% for both enantiomers. From the obtained data, it can also be observed that
the obtained values were similar, indicating that the organic modifier did not significantly
influence the binding study of APR to HSA.

2.2. Fluorescence-Based Binding

Fluorescence quenching is a popular method for the study of molecular interactions
between proteins and drugs because it is sensitive, rapid and easy to use [41–44]. In this
study, the fluorescence spectroscopic method was used to determine the stability constants
of both enantiomers complexed with albumin to interpret the enantiospecific difference
of HSA binding. The emitted fluorescence of HSA is primarily caused by amino acids
with aromatic side chains, their specific location within the protein and their interactions.
When the native structure is disrupted by a drug interacting with the protein, usually a
decrease in the native fluorescence can be observed. Therefore, as expected when HSA
was titrated with increasing concentrations of APR, a quenching could be observed in the
fluorescence of HSA. The molecular mechanisms that lead to fluorescent quenching are
excited state reactions, molecular rearrangements, transfer of energy and static and dynamic
quenching [45]. To avoid any error, the fluorescence of the actual concentration of APR was
measured as well and subtracted from the fluorescence of the complex. The resulting spectra
in the case of R-APR are shown in Figure 4, where the cumulative emitted fluorescence
intensity is plotted against the excitation wavelength. The maximum fluorescence intensity
of native HSA was determined at an excitation wavelength of 280 nm; therefore, the
quenching data were measured at this wavelength. While increasing the APR concentration,
a progressive decrease was observed in the fluorescence intensity of HSA. Because the
structure of HSA presents a single Trp (Trp-214), the decrease could be due to the altered
microenvironment of the Trp-214.
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Figure 4. Quenching of HSA fluorescence by R-APR.

The observed fluorescence intensities of HSA and the HSA–APR complexes at in-
creasing APR concentrations were plotted against the total concentration of APR in the
solution, and the stability constants were calculated according to Equation (18) by non-
linear parameter fitting. The equation does not contain any simplifications; it can be
used universally.

The calculated stability constants (KR-APR-HSA = 6.45 × 103 M−1 and KS-APR-HSA= 1.04
× 104 M−1) indicated that the strong interaction between HSA and APR was responsible
for the fluorescence quenching. The fluorescent data support the results acquired from the
HPLC measurements and confirm that the chromatographic enantioseparation took place
due to the different binding affinities of the enantiomers with HSA.

2.3. Molecular Docking Results

All in all, five binding sites were identified in HSA and S-APR, and its isomer were
docked into each of those (Figure 5).

The least and most favored binding of APR on HSA deviated by almost 5 kcal/mol in
terms of docking scores (Table 4, Figure 5, lime and yellow, respectively).

Table 4. Docking scores of APR at potential human serum albumin (HSA) binding sites.

Docking Score of S-APR
(kcal/mol)

Docking Score of R-APR
(kcal/mol)

Structures at the Potential
Binding Sites *

−4.2 −7.1 red
−6.7 −6.8 blue
−3.8 −4.3 lime
−8.7 −5.1 yellow
−7.9 −3.2 cyan

* The colors are assigned according to Figure 5.
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Figure 5. APR (S) and its enantiomer (R) docked to potential binding sites of human serum albumin
(HSA, top left corner). I, II and III are HSA domains. The structures are highlighted in red, blue,
lime, yellow and cyan. The most favored APR binding was selected along with the corresponding
enantiomer (top right corner). Amino acid residues within 2 Å of the ligands are highlighted (bottom).

Two of the identified potential binding sites somewhat overlapped, and thus, the
docking to those resulted in overlapping APR structures (Figure 5, red and blue ligands).
These differed in terms of the corresponding docking scores by >2.5 kcal/mol (Table 4,
S-APR). The most preferred binding (yellow) of the eutomer (S-enantiomer) was lower by
1.68 kcal/mol compared to the most favored binding of the distomer (R-enantiomer) (red)
in terms of docking score (Table 4), which is in excellent agreement with the experimental
findings. The position of the S-enantiomer with the most favored docking score (yellow)
was further analyzed and compared with the position of the R-enantiomer (Figure 5, top
right corner). HSA is divided into three main domains, and the most favored APR binding
occurred at the border between domains I and II (Figure 5, top right corner). The binding
pocket around the S-enantiomer is more compact, with five amino acid residues within
2 Å (VAL7, LEU69, PHE70, LEU250 and LEU251) compared to the binding site for the
R-enantiomer, which only includes three residues (HIS9, LEU22 and ALA254) within
this distance (Figure 5, bottom). Thus, more interactions occur between HSA and the
S-enantiomer, including a T-shaped π-stacking, which involves PHE70 and the phenyl
group of the drug (Figure 5, bottom right corner). The occurrence of a π–π interaction is
well in line with the predicted atomistic details.

3. Materials and Methods
3.1. Materials

R- and S-APR were purchased from Beijing Mesochem Technology Co. Ltd. (Beijing,
China). Human serum albumin was ordered from Tokyo Chemical Industry Co. Ltd.
(Tokyo, Japan). Methanol (MeOH), ethanol (EtOH), 1-propanol (PROP), 2-propanol (IPA)
and acetonitrile (ACN) of gradient grade were purchased from Merck (Darmstadt, Ger-
many). The immobilized Chiral-HSA column (4.0 × 100 mm, 5 µm) was ordered from
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Chiral Technologies Inc., a subsidiary of Daicel Chemical Industries Ltd. (Tokyo, Japan).
Analytical-grade acetic acid, phosphate salts, phosphoric acid, sodium hydroxide and
ammonium–acetate were ordered from Sigma-Aldrich, Hungary (Budapest, Hungary).
These were used for the preparation of the buffer solution. All reagents were used without
further purification. The deionized water was prepared by a Milli-Q Direct 8 Millipore
system (Millipore Corporation, Bedford, MA, USA).

3.2. HPLC

LC–UV analysis was carried out on an Agilent 1100 HPLC system consisting of a
quaternary pump, an autosampler, a column compartment, and a DAD detector (Agilent
Technologies, Waldbronn, Germany). ChemStation software (ver.: B04 03-SP2) was used
for data analysis. UV detection was performed at 230 nm. The APR stock solution was
prepared at 1 mg mL−1 in MeOH, and further dilutions were made with water. An injection
volume of 5 µL was used.

The retention factor (k) was calculated using the following equation:

k =
tr − t0

to
(5)

where tr is the retention time of the analyte, and t0 is the dead time, determined as the first
peak appearance in the chromatogram.

The separation factor (α) was calculated as follows:

α =
k2

k1
(6)

where k1 and k2 are the retention factors of the first- and second-eluting enantiomer, re-
spectively. The k values were used to calculate the albumin-bound percentage (b%) using
Equation (7) by zonal elution chromatography [12]:

b% =
k

1 + k
·100 (7)

3.3. Fluorescence Measurements

The fluorescence measurements were carried out on a Jasco J-815 spectropolarimeter
with a connected CDF-426L fluorescence detector and a temperature-controlled 10 mm
cuvette holder (Jasco, Tokyo, Japan), thermostated to 25 ◦C with a Lauda water bath circu-
lation thermostat (Lauda Brinkmann, Königshofen, Germany). Spectra Manager software
(ver.: 2.08.04) was used for data analysis. The fluorescence analysis was performed with an
excitation spectrum of 260–300 nm and detection of the cumulative fluorescence spectrum.
The HSA solution was prepared at 0.064 mg mL−1 in 10 mM phosphate buffer adjusted to
pH 7. A volume of 3 mL of the HSA stock solution with an HSA concentration of 0.32 µM
was titrated with 2.5–30 µL of S- and, separately, R-APR solutions prepared at 3.75 mg
mL−1 in MeOH, which equals to a range of 6.8–80.6 µM of APR in the measured solution.

The stability constants of both enantiomers were calculated. The measured fluores-
cence signal (Iobs.) is the weighted average of the free protein fluorescence (IHSA) and the
bound, complexed species fluorescence (IAPR-HSA), as Equation (8) shows. Note that since
the fluorescence signal of the ligand (APR) was subtracted for each sample, (IAPR) could be
excluded from this equation

Iobs. = IHSA·χHSA + IAPR−HSA·χAPR−HSA (8)

where XHSA is the mole fraction of free HSA, while XAPR-HSA is the mole fraction of the
APR-HSA complex. The molar fractions can be expressed as follows:
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χHSA =
[HSA]

[HSA]T
=

[HSA]T − [APR − HSA]

[HSA]T
(9)

χAPR−HSA =
[APR − HSA]

[HSA]T
(10)

The square brackets denote the equilibrium concentration of the species in molarity,
while the ‘T’ subscript represents the total (analytical) concentration of APR or HSA present,
i.e.:

[HSA]T = [HSA] + [APR − HSA] (11)

[APR]T = [APR] + [APR − HSA] (12)

The law of mass action for the protein binding can be written as follows:

K =
[APR − HSA]

[APR]·[HSA]
(13)

which in turn can be combined with Equations (11) and (12) to obtain the following
expression:

K·([APR]T − [APR − HSA])·([HSA]T − [APR − HSA]) = [APR − HSA] (14)

Rearranging expression (10) leads to a quadratic expression for [APR-HSA]:

[APR − HSA]2 +
(
−[APR]T − [HSA]T − 1

K

)
·[APR − HSA] + [APR]T ·[HSA]T = 0 (15)

The solution to the above quadratic equation gives rise to only one real solution of
chemical relevance:

[APR − HSA] =
([APR]T+[HSA]T+

1
K )−

√
([APR]T+[HSA]T+

1
K )

2−4·[APR]T ·[HSA]T
2 (16)

Finally, by combining Equations (8)–(10), we can express the observed fluorescence
intensity as follows:

Iobs. = IHSA·
[HSA]T − [APR − HSA]

[HSA]T
+ IAPR−HSA·

[APR − HSA]

[HSA]T
= IHSA − (IHSA − IAPR−HSA)·

[APR − HSA]

[HSA]T
(17)

and inputting the expression of Equation (16) into Equation (17) provides us with an
expression for Iobs. in terms of parameters that can be fitted (analytical concentrations
of APR and HSA, stability constant, and limiting fluorescence intensity of HSA and the
complex) using regression analysis:

Iobs. = IHSA − (IHSA − IAPR−HSA)·

(
[APR]T + [HSA]T + 1

K

)
−
√(

[APR]T + [HSA]T + 1
K

)2
− 4·[APR]T ·[HSA]T

2·[HSA]T
(18)

The stability constants were calculated by non-linear parameter fitting by Origin
software (OriginPro 8.5, OriginLab Corporation, Northampton, MA, USA).

3.4. Docking Study

The calculations were carried out using the Schrödinger suite (Release 2020-4). Due to
the fact that the APR-HSA complex is not available in the Protein Data Bank (PDB), an HSA
structure—PDB ID: 1H9Z [46]—with appropriate resolution (2.5 Å) was selected, which
was applied in previous studies [47–49]. The 3D structure was imported into the Protein
Preparation Wizard [50], non-protein species were deleted, and the protein was prepared by
using default settings. The preparation process included the addition of hydrogen atoms to
the HSA model, after which PROPKA was employed to predict the protonation state of the
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residues at physiological pH [51], and the system was minimized by using the OPLS3e force
field [52]. Potential binding sites on HSA were identified using SiteMap [53,54]. The ligand
structure was prepared using the LigPrep module, while the Receptor Grid Generation
module was used to specify the target area by applying the SiteMap results. Flexible
molecular docking was performed using the extra precision (XP) mode of Glide [55–57].
Visualization of the structures was carried out by using VMD 1.9.3 [58].

4. Conclusions

In the present work, the enantioselective, in vitro HSA binding of APR was inves-
tigated. Using state-of-art techniques, the APR-HSA complex was characterized at the
molecular level. The development of fast enantioselective methods for the characterization
of protein binding is crucial in the early stage of drug development, because the different
HSA binding of enantiomers is necessarily associated with different pharmacokinetic prop-
erties. We found that the eutomer S-APR bound stronger to HSA than its antipode, mainly
due to an extra secondary interaction between S-APR and PHE70 in HSA. It can also be seen
that complementary techniques such as chromatography, spectroscopy and computational
methods should be applied for an accurate and detailed characterization. Chromatographic
methods can be used to quantify the enantioselective binding and to foretell in vivo the
binding to HSA of the individual enantiomers, while fluorescence spectroscopy can be
used to determine the stability constants of the enantiomer–HSA complexes. Docking
methods can reveal the binding regions and secondary interactions between the carrier
protein and individual enantiomers. However, it should be noted that in vitro and in vivo
data may differ. The equilibrium and structural information presented in our work also
offer a molecular basis for a better understanding of APR pharmacokinetic properties.
Our general method could be applied for other chiral drugs, for which the enantiospecific
pharmacokinetic parameters could be important.
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