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❖ HAPPE: Harvard automated preprocessing pipeline for electroencephalography 
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❖ RSNs: resting-state networks 

❖ RT: reaction time 

❖ SM: somatomotor network 

❖ SOC: self-organized criticality 

❖ SR: success rate 
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SYMBOL LIST 

❖ DW: weighted node degree 

❖ 𝐷𝑊̅̅ ̅̅̅: average weighted node degree 

❖ f: frequency 

❖ L: length of time series  

❖ P: power density 

❖ q: statistical moment 

❖ s: time scale – size of window in fractal analysis 

❖ SXY: scaling function of time series X and Y 

❖ W: Kendall’s coefficient of concordance 

❖ β: spectral index – power-law exponent describing scale-free relationship in the 

frequency domain (inverse of the “slope”) 

❖ ΔΗ15: strength of multifractality 
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1. INTRODUCTION 

For several centuries, the study of brain activity was limited. The main reason for the 

slow progress has been the difficult access to alive and healthy human brains available 

for non-invasive investigation. Until the early 20th century, scientists had to rely on the 

study of cadaver or animal brains. Occasionally, they would have access to 

neuropsychiatric patients with distinct phenotypes that could offer a glance of the brain 

function. While the anatomy of the brain was well understood from morphological 

studies, most of the knowledge on brain function came from psychological research. Such 

approach was limited for several reasons, one of them being the inability to establish a 

link between neurophysiological processes and behavior. This changed drastically in the 

20th century after the introduction of electroencephalogram (EEG), followed by imaging 

modalities like magnetoencephalogram (MEG), functional near-infrared spectroscopy 

(fNIRS) and functional magnetic resonance imaging (fMRI). In his seminal work 

introducing EEG (1), Berger showed that electrodes attached to the scalp could capture 

the electric potential difference between brain regions. This was the first time that human 

brain activity was recorded non-invasively in real-time. As a result, we expanded the 

repertoire of available experimental paradigms, allowing us to explore brain function in 

more detail.  

Even from the early stages of this new era, it was apparent that EEG could capture 

the fluctuations of brain activity caused by mental strain. The most well-known example 

of such fluctuations is the desynchronization observed during the transition from eyes 

closed to eyes open. The increased sensory input caused by the opening of the eyes is 

accompanied by a shift of the EEG from alpha to beta oscillations (2), which Berger 

himself shown first in 1929 (1). Since then, EEG has been used to study healthy 

populations in laboratories and patients with neuropsychiatric diseases. Most of these 

studies focus on the narrowband (oscillatory) component of electrical activity, usually 

classified in 5 bands (delta: 0.5-4 Hz, theta: 4-7 Hz, alpha: 7-14 Hz, beta: 14-30 Hz and 

gamma: 30-60 Hz). Later, however, more attention has been paid to the broadband (scale-

free) aspect of the EEG, as its fundamental physiological role has been recognized (3–5).  
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 Along with the study of single time series (univariate analysis) of brain activity, 

the investigation of the relationship between pairs of time series (bivariate analysis) (6) 

began. The human brain is a vastly interconnected network [about 1011 neurons and 1015 

synapses (7)], whose dense axonal grid acts as anatomical connections between distant 

brain areas. This anatomical connectivity is facilitated by the plethora of synapses found 

between neurons. On top of these structural connections, the brain's functional 

connectivity (FC) flourishes (8, 9). The main difference between FC and anatomical 

connectivity is that FC goes beyond the constraints of physical synapses since functional 

connections can exist either between: i) directly linked regions or ii) indirectly linked 

regions, connected by interneurons; meaning that anatomical connectivity is a subset of 

functional connectivity. The functional connection between two time series can be 

estimated by their statistical interdependence (10). Three main approaches of FC studies 

have emerged: i) seed-based analysis ii) graph theoretical analysis and iii) independent 

component analysis (ICA)  (11). Only the interaction between a specific area and the rest 

of the brain is investigated in the seed-based analysis, based on the statistical coupling of 

the corresponding neural activities (12). The graph theoretical analysis extends the seed-

based analysis by using all possible regions as seeds (13). The applied neuroimaging 

modality defines the potential regions; in EEG, MEG and fNIRS studies the regions are 

usually the recording channels, while fMRI usually uses anatomically (or functionally) 

cohesive units. On the other hand, ICA groups time series to statistically dependent 

components, assuming that a particular brain source is responsible for each component 

(12). Subsequently, the interdependence between each pair of components is estimated. 

From the three methodologies, we applied graph theoretical analysis that provides a 

straightforward framework for estimating functional connectivity and characterizing 

brain networks.  

The functional connectome of a brain network can be constructed as a 

constellation of nodes interconnected by edges. The network nodes represent the different 

brain regions, while the edges are the functional links between them (FC). The direct 

study of FC is possible and straightforward for a small number of nodes and edges, but it 

becomes increasingly complicated for larger networks. For example, a (moderately 

dense) 64-channel EEG system has 2016 (64x63/2) possible connections. It is clear then 

that FC data needs to be reduced by appropriate mathematical techniques to distill 
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information about the network’s architecture, at the cost of less circumscribed 

localization. Such a solution can be found in graph theory (13–15), which allows the 

estimation of several network properties by deriving measures of the connectome. Using 

graph theory, scientists could draw significant conclusions about the architecture of brain 

networks, both in healthy and diseased populations. For example, it has been found that 

the healthy brain follows a small-world network organization (16). According to this, 

most cortical areas are sparsely interconnected, while a small number of hub regions are 

responsible for the linkage between these functionally distant areas. These hub regions 

seem fundamental for normal brain function since disruption of hub regions and small-

world architecture have been linked with clinical conditions like coma, Alzheimer’s 

disease, and schizophrenia (17–22). The density of these small-world networks seems to 

be governed by scale-free dynamics (23).  

While the study of FC started with cognitive and motor stimuli (8, 9), 

understanding resting-state FC is vital to precisely study the effect of task on brain 

network architecture. Resting-state is defined as the awake stake during which the subject 

is not performing any task and is requested to empty his/her mind. Despite its name, 

resting-state is associated with considerable neural activity accompanied by high energy 

consumption (due to cellular metabolism), which increases only by 5% during task (24). 

This shows that brain activation during a mental process is not as simple as the additional 

recruitment of brain regions; on the contrary, it is a balanced activation (deactivation) of 

relevant (irrelevant) areas (25). Due to their simultaneous activity in the resting-state, 

functionally coupled groups of brain regions give rise to resting-state networks (RSNs), 

with the default mode network (DMN) being the most prominent example (24, 26, 27). 

DMN is a constellation of brain regions, including precuneus, medial prefrontal cortex, 

and posterior cingulate gyrus, active during resting-state. Upon mental task, the activity 

of DMN decreases. These findings suggest that brain activity does not fluctuate randomly 

during rest. On the contrary, there is a universal baseline of brain activity, which is thus 

organized even without external stimulus (28). Recently, this resting-state neural 

architecture has been found to fluctuate in a scale-free manner (29).  

The scale-free (or fractal) brain dynamics are ubiquitous (30–32). Fractals were 

initially introduced as geometrical constructs with a fractional dimension that can be 
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scaled-up or scaled-down yet maintain similar morphology (self-similarity) (33). One 

such example is the Koch curve in Figure 1A. Physiological processes also scale 

according to a self-affine manner (temporal fractals), meaning direction-wise self-

similarity (34). Figure 1B shows how an EEG recording maintains similar morphology 

when scaled up. Since the rescaling of the EEG time series occurs only in time (and not 

in amplitude), the EEG signals show self-affinity (rescaling in one specific direction) 

rather than self-similarity (rescaling in all directions). Of course, for natural fractals, self-

similarity is only in statistical distribution instead of that of geometrical fractals; we can 

thus infer that the self-affine models do not perfectly fit empirical data, such as 

neurophysiological processes recorded from the brain (34). This deviation from perfect 

fractal forms of the natural systems is due to the physical world's inherent randomness 

and finite nature. Mathematically, a scale-free property emerges in the power-law 

relationship between a measure (Ω) of the process and its scale (s): Ωsλ (34). It is then 

easily understood that Ω's ratio in two different scales is influenced only by the relative 

scale and not their explicit values: 
𝛺1

𝛺2
= (

𝑠1

𝑠2
)

𝜆

, hence the term “scale-free” is coined for 

the process. In the time domain, this relationship is illustrated by the scaling function, 

which describes the dependence of scale on the signals’ covariance (see section 3.1.1).  

Another example of scale-free brain dynamics is the 1/f noise of the EEG’s power 

spectrum (35), where the power density (P) is related to the frequency (f) in a power-law 

manner (𝑃 = 𝑓𝜆). This is best illustrated in the linear relationship observed in the log1-

log power spectrum (Figure 2A). The superposition of oscillatory neural activity appears 

as narrow range peaks representing the traditional EEG bands (e.g. 10 Hz activity giving 

rise to the alpha peak). Earlier, researchers have focused on the oscillatory components 

of brain activity, while the broadband fractal component was believed to be noise, hence 

“1/f noise”. In the last decades, the importance of the scale-free component has been 

recognized as it bears fundamental physiological significance (30), which can be 

modulated by pharmacological agents (36, 37). As a result, several studies have 

investigated the fractal properties of EEG in healthy (38–40) and diseased populations 

(41–43). It was also shown that the EEG changes observed in schizophrenia (44) and 

during object recognition (45) are entirely caused by changes in the fractal profile of the 

 
1 In the entirety of this dissertation log corresponds to the natural logarithm.  
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signal, suggesting that a great wealth of information can be found in the scale-free 

analysis of EEG records. Moreover, fractal formalism has been extended to 

multifractality, where more complex interactions of this time-persisting FC can be studied 

(46). Such properties can be represented in the spectrogram, which is a time-resolved 

representation of the power spectrum of a signal. Monofractal signals have a generally 

homogeneous spectrogram, meaning that the frequency components remain constant 

throughout the signal (Figure 3). On the other hand, the relative ratio of frequency 

components changes in multifractal signals as function of time (Figure 3). So far, only 

the scale-free properties of the univariate EEG signals have been studied extensively; on 

the other hand, the scale-free coupled dynamics of EEG tracings have remained hidden. 

 

Figure 1: Geometrical and statistical fractals. Panel A: Self-similarity in Koch curve2. Geometrical fractals 

consist of smaller pieces identical to the whole structure. Note that the small piece of curve magnified in 
the lower part looks morphologically similar to the curve in the upper part. Panel B: Self-affinity in EEG 

signal. The lower part is the 20 seconds-long scaled-up version of the original 40 second time series. The 

two signals might not be identical, yet their values have the same distribution. 

To this day, only a few studies have investigated the temporal fractal nature of FC 

(47–50). The aforementioned power-law relationship can be found in the coupled 

dynamics as well, both in the frequency (51) (power-law of cross-power spectrum shown 

in Figure 2B) and time domain (52) (scaling function shown in Figure 4). The fractal 

nature of FC indicates the existence of coupling that persists through time, in contrast to 

the FC of characteristic time scales captured by traditional methods [e.g. Pearson’s 

correlation and mutual information (53), a non-parametric entropy-based bivariate 

measure].  

 
2 Janaka Wansapura (2021). KOCH CURVE 

(https://www.mathworks.com/matlabcentral/fileexchange/55796-koch-curve), MATLAB Central File 

Exchange. Retrieved May 28, 2021. 
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Figure 2: Power-law relationship in the EEG spectra. Panel A: The power-law relationship of the power 

spectrum of the EEG signal is best demonstrated in a log-log axis. Blue: delta band (0.5-4 Hz), Green: theta 

band (4-7 Hz), Yellow: alpha band (7-14 Hz), Orange: beta band (14-30 Hz), Pink: gamma band (30-60 

Hz). Panel B: The power-law relationship of the cross-power spectrum of a pair of EEG signals is best 

demonstrated in a log-log axis. 

 

Figure 3: Spectrograms of monofractal and multifractal signals. Panel A: The distribution of frequency 

components remains fairly consistent during time in monofractal signals. Normalized frequency is the 

frequency divided by the sampling frequency of the signal. Panel B: The distribution of frequency 

components greatly varies during time in multifractal signals. Signals used for the demonstration originally 

appeared at Ihlen 2012 (54). 
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Even though the resting-state studies have dominated the field, more and more 

scientists have begun exploring the change of FC during mental strain. During a complex 

cognitive activity, distant brain regions have to cooperate, making task conditions great 

experimental paradigms for FC studies (55–58). For example, during visual pattern 

recognition (VPR), the information is relayed to the visual cortex found in the occipital 

lobe. From there, functional connections convey the signal to the high-level association 

areas located in the frontal and parietal cortices (59, 60). Such FC was studied earlier by 

our research group, which showed that the interconnectivity of the prefrontal cortex 

increases during VPR (61). This study used only Pearson’s correlation as FC estimator, 

which can capture only linear relationships between the network nodes at a specific time 

scale (62).  
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2. OBJECTIVES 

Previous studies showed that the coupling of the brain regions is scale-free. These 

findings have been so far constrained only to the monofractal case, even though brain 

dynamics have multifractal features. In the research underlying this dissertation, I 

investigated the multifractal aspect of functional connectivity using the already-

introduced bivariate focus-based multifractal (BFMF) analysis. To evaluate the presence 

of scale-free coupled dynamics, we devised a new battery of bivariate multifractality 

assessment tests. These qualitative procedures were adapted from similar modifications 

of univariate tests or explicitly designed bivariate tests. BFMF analysis and subsequent 

scale-free assessment of FC were performed in two different sample populations and 

experimental protocols. An online dataset of resting-state eyes-closed EEG recordings 

was analyzed in the first study. Our goal was to validate BFMF as a viable FC estimator 

by studying the percentage of genuinely multifractal connections and the regional and 

subject variability of the examined coupled dynamics. I also attempted to elucidate the 

neurophysiological significance of scale-free coupled dynamics related to coordinated 

activities within and between resting-RSNs.  

The second study targeted the task-related reorganization of multifractal functional 

connectivity during cognitive workload preceded by an eye-closed and eyes-open period. 

The utilized cognitive paradigm was a VPR task of stratified difficulty due to its ability 

to elicit network changes. The same battery of multifractality assessment tests was 

recruited to validate the multifractal nature of the connections during the task. The 

regional variability in task conditions was investigated. Finally, we studied the shift of 

brain’s multifractal functional connectivity reconstructed from EEG recorded from 14 

cortical regions during task and how it correlates with the performance metrics (success 

rate and reaction time).  
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3. METHODS  

The methods section is divided into three parts. Our new algorithm for multifractal FC 

estimation is introduced in the first part, followed by its accompanying multifractality 

assessment tests. Then (second part), the construction of brain networks is described. 

Finally, the third part gives a detailed description of the measurement protocols and 

experimental paradigms.  

3.1. Scale-free functional connectivity estimation 

3.1.1. Bivariate focus-based multifractal analysis 

In the last decades, different bivariate (i.e., concerning two time series) fractal analytical 

methods were developed (46, 52, 63). One of them is the bivariate focus-based 

multifractal analysis (64) which is the focus of this dissertation. The main goal of BFMF 

is to capture the scaling exponents with which the covariance of two signals depends on 

the used scale. These exponents can give insights about the multifractal coupled dynamics 

of the brain.  

 The BFMF analysis between two time series X and Y of length L progresses as 

follows. Initially, the mean is subtracted from every time series (centering), followed by 

bridge-detrending. Detrending is a common step in fractal time series analysis (65). In 

bridge-detrending, a line is drawn connecting the first and last datapoints of the vth 

window. This line is then subtracted from the corresponding points of the window (66, 

67). Subsequently, the scaling function SXY can be calculated: 

 
𝑆𝑋𝑌(𝑞, 𝑠) =  (

1

𝑁𝑠
∑ |𝑐𝑜𝑣𝑋𝑌(𝑣, 𝑠)|𝑞𝑁𝑠

𝑣=1 )
1/𝑞

, (1) 
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where Ns is the number of non-overlapping windows3 of size4 s (s=2n) indexed by v. The 

statistical moment order, q, takes the integer values between -15 and +15, adequate5 

minimal and maximal values, respectively (68). The covariance of the two signals in the 

vth window is denoted by covXY(v, s). In the special case of q=0, the scaling function 

should be defined alternatively (due to the division of 0 in the exponent, 1/q), resulting in 

a modified formula:  

 
𝑆𝑋𝑌(0, 𝑠) =  𝑒

1

2𝑁𝑠
∑ 𝑙𝑜𝑔(|𝑐𝑜𝑣𝑋𝑌(𝑣,𝑠)|𝑁𝑠

𝑣=1 )
, (2) 

in line with the univariate multifractal analysis (69). When the entire time series are used 

(s=L), the scaling function becomes independent of q: 

 𝑆𝑋𝑌(𝑞, 𝐿) = |𝑐𝑜𝑣𝑋𝑌|. (3) 

 The scaling function is used for the estimation of the bivariate generalized Hurst 

exponent [H(q)], which is proportional to SXY [𝑆𝑋𝑌(𝑞, 𝑠) ∝ 𝑠𝐻(𝑞)]. This relationship is 

best visualized in a log-log axis (Figure 4). The simultaneous fit for every statistical 

moment (q), with regression lines intersecting at the same point [termed Focus, an 

estimated value of scaling function at s=L which is not equal to 𝑆𝑋𝑌(𝑞, 𝐿)], provides more 

robust estimates of bivariate H(q) (70), compared to individual fit for every q (46, 63). 

The coefficients of these models define bivariate H(q). As explained below, H(2) signifies 

the degree of linear long-term cross-correlation between X and Y, while bivariate ΔH15 

reflects the multifractality between X and Y.  

 

3BFMF is a bivariate variation of focus-based multifractal formalism (FMF) (70) using signal summation 

conversion (SSC)(67). Preliminary analysis of FMF and SSC have shown that a sliding window approach 
does not provide additional benefits than non-overlapping windows. In order to avoid redundancy and for 

the sake of computational efficiency, we decided to use non-overlapping windows as in our previous 

publications (67, 70, 102, 103, 129) 

4 Dyadic scales are chosen because in logarithmic scales the points on the graph are equidistant, resulting 

in the best combination of small standard error and small leverage of points during the linear regression 

(137). 
5 More positive or negative values of q would have contributed minimally due to the redundancy of the 

multifractal spectrum, as illustrated in Figure 10C of Nagy et al. (103). 
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The meaning of the bivariate generalized Hurst exponent is a direct extension of 

its univariate counterpart (51) described below. The autocorrelation function (ρk) of a 

signal with a univariate H(2 is given by: 

 
𝜌𝑘 =

1

2
(|𝑘 + 1|2𝐻(2) − 2𝑘2𝐻(2) + |𝑘 − 1|2𝐻(2)), (4) 

where k is the lag (expressed in time or datapoints). Substituting univariate H(2) with 0.5, 

the autocorrelation decays to 0 instantly. When univariate H(2)<0.5 the autocorrelation 

function will take longer to reach zero, yet its memory is still finite. This can be best 

understood by estimating ∫ 𝜌𝑘
∞

0
 for such signals; in these cases the univariate. integral is 

a finite real number (71). On the contrary, when univariate H(2)>0.5, the decay of ρk is 

much slower; ∫ 𝜌𝑘
∞

0
 is infinite, i.e. the memory of the signal would asymptomatically 

approximate zero but would never reach it. Based on these, the signal’s memory is divided 

into 3 categories: i) short-term memory for univariate H(2)<0.5, ii) no memory for 

univariate H(2)=0.5 and iii) long-term memory for univariate H(2)>0.5. For bridge-

detrended and centered signals with long-term memory signals positive (negative) values 

are more likely to be followed by positive (negative) values. For signals with the same 

preconditioning and lacking memory positive (negative) values are equally likely to be 

followed by positive or negative values. Finally, in case of signals with short-term 

memory positive (negative) values are more likely to be followed by negative (positive) 

values after centering and detrending. Even if Eq. 4 shows a power-law relationship for 

both H(2)>0.5 and H(2)<0.5, it is accustomed to say that processes with H(2)<0.5 decay 

in an exponential manner (72). This framework can be straightforwardly extended to the 

bivariate cases. In bivariate scale-free analysis: i) bivariate H(2)>0.5 corresponds to long-

term cross-correlation ii) bivariate H(2)=0.5 indicates no-memory cross-correlation and 

iii) bivariate H(2)<0.5 represents short-term cross-correlation. 

  In the case of coupled monofractal dynamics, all bivariate H(q) equal to bivariate 

H(2); on the other hand, multifractal relationships display greater complexity. As seen in 

Eq. 1, the scaling function values for negative q are mainly determined by small 

covariances, while positive q are mainly influenced by large covariances. This deviation 
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from bivariate monofractality can be estimated with a parameter that measures the 

strength of multifractality (68): 

 ΔΗ15 = Η(-15) – Η(15). (5) 

The higher the values of ΔΗ15, the stronger the bivariate multifractality, which captures 

the q-dependent effect of small and large covariances on the long-term cross-correlation 

of the X-Y connection. In summary, bivariate H(2) and  ΔΗ15 are indicators of linear and 

non-linear coupling (73), respectively.  

 

Figure 4: Multifractal time series analysis and its endpoint parameters. On the upper panels, a 

representative pair of 2048 datapoint-long EEG segments is displayed along with the windowing scheme 

for a smaller (s=64, shown in yellow) and larger (s=128, shown in blue) scale, which illustrates the 

calculation of covariance scaling function [SXY(q,s) displayed in the lower panel] according to Eq. 1. The 

Focus (red disk) is used as a reference point when simultaneously fitting linear models in the log-log 

transform of the SXY(q,s) vs s, the essential step of BFMF. The slope of each linear regression line represents 

the generalized bivariate Hurst exponent [H(q)] (shown for q=-15, +2, +15). Bivariate H(2) describes the 

long-term cross-correlation between the signals X and Y, while the degree of multifractality (bivariate ΔH15) 

is captured in the difference between H(q) values at the extreme [i.e. minimal (-15) and maximal (15)] 

statistical moments. The figure originally appeared in Stylianou et al. (74). 

 

DOI:10.14753/SE.2022.2667



18 

3.1.2. Multifractality assessment tests 

BFMF analysis can be applied to any pair of time series, even when no scale-free 

interactions occur; possible causes of spurious multifractality are presented in the next 

pages. Therefore, it is indispensable to assess true bivariate multifractality for every 

connection with an array of qualitative tests, each targeting a different multifractal 

property of the connection.  

 Figure 2A shows the power spectrum of a univariate EEG time series in the 

frequency domain. The slope of the log(spectral power) vs log(frequency) represents the 

spectral index (β) and is proportional to the univariate H(2)  [β=2H(2)-1] (34)6. A similar 

power-law relationship (Figure 2B) can also be derived in the bivariate setting where the 

slope of log(cross-spectral power) vs log(frequency) is proportional to the bivariate H(2) 

[β=2H(2)-1] (51). We can investigate this relationship by modifying the power-law 

presented in Clauset et al. (75). To generate a sufficient population size for a two-tailed 

comparison with α=0.05, 40 surrogate fractal time series are created using the spectral 

synthesis method (73) to investigate every pair of signals. The univariate H(2) of these 

surrogates is equal to the estimated bivariate H(2). A linear regression model is then fitted 

on the log-log transformed power spectrum. The Kolmogorov distance (KD)7 between 

the actual and fitted values is estimated. Calculating KD for each surrogate results in a 

distribution of maximal distances (Duniv
8). Similarly, a single Dbiv for the cross-power 

spectrum of the original connection is computed. If the following inequality holds, the 

coupled dynamics show power-law characteristics in the frequency domain,  

 𝐷𝑏𝑖𝑣 < μ(𝑫𝒖𝒏𝒊𝒗) + 2σ(𝑫𝒖𝒏𝒊𝒗), (6) 

 
6 According to the review of Eke and colleagues (34) β=2H(2)-1 or β=2H(2)+1 depending on the type of 

time series (fractional Gaussian noise or fractional Brownian motion). BFMF and its univariate equivalent 

(70) are based on the signal summation conversion method (67) which is type-agnostic, i.e. β=2H(2)-1 

holds for both types of time series. 
7 If A(i) and B(i) are the power and linear regression estimate for i=1,2,...n, respectively. 𝐾𝐷 =

max (√[𝐴(𝑖) − 𝐵(𝑖)]2).  
8 Bold symbols indicate a vector. 
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with μ(Duniv) and σ(Duniv) indicating the mean and population standard deviation of Duniv, 

respectively. Any future μ() and σ() correspond to the mean and standard deviation of the 

sampled distribution in question, respectively. 

 In 2011, the detrended cross-correlation coefficient9 (ρ) was introduced (76):  

 ρ(𝑠) =
𝑆𝑋𝑌

2 (2,𝑠)

𝑆𝑋(2,𝑠)𝑆𝑌(2,𝑠)
, (7) 

where 𝑆𝑋(2, 𝑠), 𝑆𝑌(2, 𝑠) and 𝑆𝑋𝑌(2, 𝑠) are the scaling function values for scales s and the 

second order statistical moment of time series X, Y and their connection, respectively. 

Initially,  univariate H(2) and univariate ΔΗ15 of the signals creating the connection are 

calculated, using the univariate equivalent of BFMF (70). We continue by generating 100 

pairs10 of surrogate time series (77) of equal L, univariate H(2) and univariate ΔΗ15. Then 

ρ of every surrogate pair is calculated, resulting in a 100-value distribution which is 

compared with the original ρ (ρorig). ρorig is considered significantly different (successful 

test) if it is outside the 1-α confidence interval of the surrogate distribution. Since ρ is 

scale-specific, the same process is repeated for every scale. A coupled dynamics is 

multifractal only when all scales pass the test. To have an overall significance level of 

0.05, α should be set to 0.051/n, where n is the number of scales, as adapted from Blythe 

et al. (78).  

 The tests mentioned so far evaluated only bivariate H(2), but a monofractal and a 

multifractal connection can have the same bivariate H(2). For this reason, we had to 

investigate the multifractal nature of the coupling explicitly. The following test explores 

the non-linear dynamics of the functional coupling, which are closely related to 

multifractality (73, 79)11. Initially, for each original (measured) pair of time series, 40 

surrogate pairs are synthesized. For every iteration, the original pair is Fourier 

 
9 The name detrended cross-correlation coefficient is due to the fact it was first used in detrended cross-

correlation analysis (52). In our analytical pipeline ρ is estimated by focus-based multifractal analysis of 

signals (70) and connections (64). 
10 While usually we use a surrogate population of 40 synthesized signals for a two-tailed test with a 

significance level of 0.05, here we created 10-10 signals and tested all their combination. Notably this 

surrogate test was the least time consuming, compared to others. 
11 The cited papers show a relationship between multifractality and nonlinearity in the univariate setting, 

we extend this concept in the bivariate case. 
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transformed into the frequency domain. The phase of every frequency is randomized, 

followed by inverse Fourier transform. The same permutation order is used for the phase 

randomization of the two signals, ensuring the destruction of non-linear 

interdependencies while the linear relationships are maintained (80). This means that the 

bivariate H(2) of the original and surrogate pairs will be the same, but the bivariate ΔΗ15 

of the surrogates will be diminished. The test is considered successful (i.e., multifractality 

due to non-linear dynamics) when:  

 𝛥𝛨15 >  μ(𝚫𝜢𝟏𝟓,𝒔𝒖𝒓) +  2σ(𝚫𝜢𝟏𝟓,𝒔𝒖𝒓), (8) 

with ΔΗ15 being the single value of the original connection and ΔΗ15,sur being the 

distribution of the surrogates.  

 So far, we have focused only on one type of bivariate multifractality, the long-

term memory multifractality. Bivariate multifractality can also stem from other sources, 

one of them being the joint distribution of the signals (81). A shuffling test allows for 

distinguishing between these two types of multifractality, since shuffling – permutation 

according to a random sequence – the order of datapoints in a pair of signals destroys 

their interdependence without affecting their joint distribution (82). Let us suppose the 

multifractal profile [captured in the bivariate H(2) and ΔΗ15] of a shuffled pair of time 

series is diminished. In that case, the observed multifractality is due to long-term memory. 

In this test, 40 shuffled pairs of time series are generated for each pair of original signals 

by shuffling and the following inequalities are investigated: 

𝐻𝑜𝑟𝑖𝑔(2) > 𝜇[𝑯𝒔𝒉𝒇𝒍(𝟐)] + 2𝜎[𝑯𝒔𝒉𝒇𝒍(𝟐)] 

𝐻𝑜𝑟𝑖𝑔(2) < 𝜇[𝑯𝒔𝒉𝒇𝒍(𝟐)] − 2𝜎[𝑯𝒔𝒉𝒇𝒍(𝟐)] 
(9a) 

𝛥𝛨15,𝑜𝑟𝑖𝑔 >  𝜇(𝜟𝜢𝟏𝟓,𝒔𝒉𝒇𝒍) +  2𝜎(𝜟𝜢𝟏𝟓,𝒔𝒉𝒇𝒍), (9b) 

where subscripts orig and shfl refer to estimated BFMF parameters of the original and 

shuffled signal pairs, respectively. A pair of time series underlying FC expresses bivariate 
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multifractality of long-term memory type only if the two inequalities hold and long-term 

monofractality if only 9a holds. 

 The last test examines whether the bivariate multifractality originates from the 

genuine coupling of the concerned processes or not. Assume two time series X and Y with 

scale-free coupling. The bivariate Hurst exponent [HXY(2)] is lower than the average of 

the univariate HX(2) and HY(2) (83). If HXY(2) is equal or higher than the mean of 

univariate Hurst exponents, then the observed bivariate coupling is due to autocorrelation, 

finite length or non-normal distribution (83–86). Firstly, 40 surrogate pairs of 

independent time series are created using the spectral synthesis method  (87). Every (X, 

Y) couple has the same univariate HX(2) and HY(2) as the original X and Y time series. 

Subsequently, the average of the HX(2) and HY(2) is calculated for every pair of 

surrogates, resulting in a distribution [HXY,gen(2)]. Finally, we evaluate the following 

inequality:  

 𝐻𝑋𝑌(2)  <  μ[𝑯𝑿𝒀,𝒈𝒆𝒏(𝟐)]  − 2σ[𝑯𝑿𝒀,𝒈𝒆𝒏(𝟐)]. (10) 

If it holds, then the observed bivariate multifractality between signals X and Y is true, 

reflecting genuine scale-free coupling. On the other hand, if the original HXY(2) is not 

significantly smaller than HXY,gen(2), the connection's multifractality is spurious. 

3.2. Brain network analysis 

BFMF yields the strength of scale-free coupling for every connection in terms of bivariate 

H(2) and ΔΗ15, from such values either weighted or binary networks can be reconstructed 

(13). In binary networks, a threshold value of FC is determined. Values higher or lower 

than this threshold are converted to 1 or 0, respectively. On the other hand, the weighted 

networks maintain their original FC values. Weighted networks tend to favor the stronger 

(and possibly not spurious) functional connections, making thresholding less essential. 

After constructing the functional connectome, we can proceed with the calculation of 

network measures. A commonly used metric is the weighted node degree (DW), the sum 

of weighted edges of a node. DW shows the importance of a specific node; while the 
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average weighted node degree (𝐷𝑊̅̅ ̅̅̅) shows the general interconnectivity, or wiring cost 

of the network (13). DW and 𝐷𝑊̅̅ ̅̅̅ can be calculated as follows:  

 𝐷𝑊 = ∑ 𝑐𝑖
𝑛
𝑖=1

, (11) 

n represents the number of all possible edges of a node, while ci is the strength of the ith 

connection. 

 
𝐷𝑊̅̅ ̅̅̅ =

∑ 𝐷𝑗
𝑊𝑁

𝑗=1

𝑁

, (12) 

N represents the number all nodes of the network, while Dj
W is the weighted degree of the 

jth node. Other commonly used network metrics are clustering coefficient and efficiency, 

indicators of segregation and integration of the network, respectively. In our previous 

study (88), these two measures were highly correlated with node degree; hence they were 

not included in the current analysis. 

3.3. Validation of BFMF in the resting-state brain 

3.3.1. Data acquisition and participants 

The analyzed dataset was made publicly available by Sockeel et al. (89). 12 right-handed, 

healthy subjects (26.6±2.1 years old, 6 females) took part in the recordings, which 

consisted of 5 minutes of eyes-closed resting state. The participants were lying supine 

during the experiment and listening to audio recordings similar to MRI sounds. The EEG 

system was a 62-channel BrainAmp amplifier (electrodes arranged according to 10-10 

system) with a sampling rate of 5 kHz. Oz and Cz were used as ground and reference 

electrodes12, respectively. Electrode impedance was kept under 10 kΩ. The experiment 

was approved by Comité de Protection des Personnes–Ile-de-France (CPP DGS2007-

0555). Every participant provided written and signed informed consent before the 

measurement.  

 
12 Electrodes positioned along the midsagittal line, O: occipital, C: central 
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3.3.2. EEG preprocessing 

I selected 55 seconds of artifact-free EEG segments through visual inspection. We first 

applied a 0.5-250 Hz band-pass filter followed by notch filters at 50, 100 and 200 Hz and 

then downsampled to 500 Hz. Next,  artifacts not directly related to brain activity (e.g., 

muscle contractions, eye movements, cardiac cycle, noise) were removed using the 

Harvard automated processing pipeline for electroencephalography (HAPPE) (90). 

HAPPE performs a series of automated artifact-removal steps, including wavelet-

enhanced independent component analysis (wICA) and independent component analysis 

with multiple artifact rejection Algorithm (MARA) (91, 92). The purpose of ICA is to 

decompose the signal into independent components based on their statistical properties 

(minimized mutual information and maximized non-Gaussianity), which might reflect 

separate physiological sources.  Finally, the cleaned EEG signals were re-referenced to 

the common average reference.  

3.3.3. Functional connectivity estimation  

Only the first 214 datapoints (approximately 33s) of preprocessed signals were analyzed 

using BFMF; scales ranged from 24 (16 data points) to 29 (512 data points). Upon 

estimation of bivariate H(2) and ΔΗ15, the multifractality assessment tests of section 3.1.2 

were used to validate the true scale-free nature of the brain’s FC. The bivariate-univariate 

Hurst comparison was considered successful in the case of the bivariate Hurst exponent 

being smaller or larger than the mean of the univariate Hurst exponents13. 

3.3.4. Brain parcellation 

Every channel was assigned to one of seven RSNs specified at Yeo et al. (93) according 

to the probabilistic map of Giacometti et al. (94). The limbic system and ventral attention 

networks were combined to a ventral attention-limbic network due to their high overlap 

(Figure 5). The goal of this parcellation was to minimize the effect of multiple 

comparisons while obtaining physiologically meaningful conclusions. As the last step, 

 
13 The description of the bivariate-univariate Hurst comparison in section 3.1.2 describes the final version 

of the test, which was modified after our validation study. The VPR study considers the test successful only 

if it is smaller than the mean of the univariate exponents, as stated in section 3.1.2. 
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the BFMF-derived values of the connections were averaged, resulting in 6 within-RSNs 

and 15 between-RSNs values for each of the bivariate H(2) and ΔΗ15 networks. 

 

Figure 5: Parcellation of EEG channels to resting-state networks (RSNs). Electrodes were grouped to 

represent six RSNs: the visual network (VN, 10 channels), the somatomotor network (SM, 10 channels), 

the dorsal attention network (DA, 9 channels), the combined ventral attention and limbic networks (VAL, 

12 channels), the frontoparietal network (FP, 8 channels) and the default mode network (DMN, 13 

channels). Brain maps were created using the BrainNet Viewer software (95) after electrode positions 

were transformed to match a template head using SPM 12b (96). VN = visual network; 

SM = somatomotor; DA = dorsal attention; VAL = ventral attention and limbic; FP = frontoparietal; 

DMN = default mode network. The figure originally appeared in Racz et al. (97). 

 

3.3.5. Statistical evaluation 

Initially, the agreement between participants was evaluated using Kendall’s coefficient 

of concordance (W). Then, we studied the effect of localization using the Friedman test 

(the level of significance was set to 0.05 for all tests, unless stated otherwise) – since the 

assumptions of ANOVA were not satisfied – followed by a series of paired comparisons 

(paired sample t-test if distributions were normal, Wilcoxon signed-rank test if at least 

one distribution was non-normal, normality was evaluated by Lilliefors test). The 

significance of every individual comparison was assessed by Benjamini-Hochberg (BH) 

correction  (98). 
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 We also investigated the validity of our parcellation scheme with the aid of 100 

surrogate datasets. The original labels were shuffled in every surrogate, corresponding to 

a random grouping of channels to RSNs. For every iteration, we performed Friedman 

tests and Kendall’s W calculations. For our parcellation to be physiologically meaningful, 

the following two conditions should be met: i) the Friedman’s tests p-values do not show 

significance in at least 95 of the 100 iterations and ii) the original W is greater than the 

95th percentile of the surrogate Ws. The entire analytical pipeline was carried out in 

MATLAB 2012 (MA, Natick, USA). 

3.4. Reorganization of multifractal FC during visual pattern recognition 

3.4.1. Data acquisition and participants 

We recruited 58 young colleagues and university students with no history of 

neuropsychiatric illness (24.2±3.4 years old, 28 females, 9 left-handed). The study was 

designed according to the Declaration of Helsinki and was approved by the Regional and 

Institutional Committee of Science and Research Ethics of Semmelweis University 

(approval number: 2020/6). The participants were requested to have a good night’s sleep 

the day before the experiments. 

 The measurement consisted of two resting-states and 30 trials of a computer-based 

pattern recognition task (Figure 6). Initially, the subjects were instructed to stay relaxed 

for 3 minutes of eyes-closed (EC) resting-state, followed by 3 minutes of eyes-open (EO) 

resting-state. After completing the two resting-states, the participants solved 30 pattern 

recognition trials, modified after Racz and colleagues (61). Every trial consisted of an 

active period, followed by an interstimulus (passive) interval. In the active period, the 

volunteer had 10 seconds to recognize and click a subregion of a grayscale image 

presented on a computer screen. After clicking on the grayscale picture, the passive 

interstimulus interval started. A gray background was projected on the computer’s 

monitor for 10 seconds during this section. The subject had maximum 10 seconds to click 

on the image during the active section; if he/she did not, the passive section started. 6 

different images were projected during the task period. Every image was shown 5 times, 

every time with a different subsection to be identified, resulting in 30 (6x5) trials. The 6 

images were divided into 3 categories (2 Easy, 2 Medium and 2 Hard) based on their 
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compressed/uncompressed image ratio (99). The order of the trials was randomized with 

a different permutation before every experiment to prevent fatigue-related bias. The 

following performance metrics were recorded during the pattern recognition task: i) 

success, defined as 1 when the volunteer correctly identified the image during the active 

section and 0 otherwise and ii) reaction time, the time between the beginning of image 

projection and response (mouse click) in the active section. If the volunteer did not 

complete the active section on time (10 seconds or less), the trial was considered a failure 

(success=0) and the reaction time was set to 10 seconds. All measurements took place in 

the facilities of the Department of Physiology of Semmelweis University. The 

measurements were carried out in a quiet and dimly lit room, while the participants were 

comfortably seated in a chair approximately 80 cm from a computer monitor, from where 

they saw the images sharply. I implemented the experimental paradigm in MATLAB 

2012 (MA, Natick, USA). 

 

Figure 6: Measurement protocol for obtaining electroencephalography records during resting states and 

subsequent cognitive stimulations. First, two resting-state recordings were made in 90 seconds periods with 

eyes closed and eyes open, respectively. Then, the participant performed a computer-based visual pattern 
recognition task in a block of 30 trials, each consisting of a 10 second or less active and a 10 second passive 

period. In the active period, participants were presented a large-size image (A) and its cropped sub-region 

(B) and were required to click on A at the position of B if found. The figure originally appeared in Stylianou 

et al. (74). 

 To record EEG signals, we utilized an Emotiv Epoc+ system (Emotiv Systems 

Inc., San Francisco, CA, USA). The electrical impedance between the scalp and the 

device was kept below 20 kΩ, indicated by Emotiv’s software (Emotiv Pro). Brain 

activities from 14 different cortical regions were recorded according to the 10-20 
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international system (Figure 7) at a sampling rate of 128 Hz14. Electrodes at the left and 

right mastoid processes were used as CMS and DRL reference, respectively. Participants 

were instructed to stay still as much as possible and refrain from facial expressions. 

 

Figure 7: Channel layout of Emotiv Epoc+. The layout follows the 10-20 nomenclature: AF3, AF4, F3, F4, 

F7, F8, FC5, FC6, T7, T8, P7, P8, O1 and O2. 

 

3.4.2. EEG preprocessing 

Due to the device’s built-in notch (50 and 60 Hz) and band-pass (0.2-45 Hz, digital 5th 

order Sinc) filters, no further filtering of the dataset was applied. Artifacts were removed 

from every trial separately. As in the previous study, we first cleaned spikes of electrical 

activity using wICA. Because of the short length of the trials (20 seconds or less), we 

could not utilize ICA-MARA; instead, we performed manual independent component 

analysis using built-in functions of EEGLAB (100), our selection criteria were based on 

the morphology of the component time series, localization and power spectrum (tutorial 

found at: https://labeling.ucsd.edu/tutorial/labels).  

 
14 18 recordings were carried out with an Emotiv Epoc+ of 256 Hz sampling rate which was downsampled 

to 128 Hz prior to further preprocessing. 
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3.4.3. Functional connectivity estimation 

Each trial (active session + 10 seconds of passive session) was analyzed individually. 

From the 3 min of EC and EO 9 non-overlapping 20 seconds-long segments were 

analyzed with BFMF to match the trial segments' length. For the BFMF analysis, we use 

dyadic scales ranging from 22 to 28. Upon estimation of bivariate H(2) and ΔΗ15 the 

multifractality assessment tests of section 3.1.2 were used to validate the true scale-free 

nature of the brain’s FC. 

3.4.4. Assessment of functional brain networks 

In total, 48 segments per subject were analyzed (9 EC, 9 EO, 10 Easy, 10 Medium and 

10 Hard). The bivariate H(2) and ΔH15 values for the same state were averaged, yielding 

5 segments (EC, EO, Easy, Medium, Hard) for every BFMF-derived network [bivariate 

H(2) and ΔH15]. To characterize the obtained networks, we calculated DW and 𝐷𝑊̅̅ ̅̅̅ of all 

brain graphs, using either bivariate H(2) or ΔH15 as weights of edges.  

3.4.5. Statistical evaluation 

The first step of our analysis was to capture the between-states (e.g., Medium vs Hard) 

and within-states differences (e.g., AF4 vs AF3 in Easy). In the between-states 

comparisons, we contrasted both global and local node degrees. Due to the non-normal 

nature of the distributions in question (evaluated by Lilliefors test), we used a Friedman 

test followed by a series of paired comparisons. If both distributions were normal, we 

performed a paired sample t-test; in any other case, a Wilcoxon signed-rank test was used. 

To control the false discovery rate for multiple comparisons we used BH correction. In 

the within-state comparisons, we compared the local node degrees of each network by 

using the aforementioned Friedman test followed by paired t-test or Wilcoxon signed-

rank test (depending on Lilliefors test results) followed by BH correction. An extra 

analytical step in our within-state analysis was calculating Kendall’s coefficient of 

concordance of DW.  

 As to the cognitive assessments we evaluated task performance and its correlation 

with the networks’ architecture. Firstly, we compared the average reaction time (RT) and 

average success rate (SR) in the 3 difficulty levels, using the same statistical methods as 
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in the between-states comparisons. Then, to evaluate how network characteristics and 

performance relate, we calculated Spearman’s correlation (r) between SR-𝐷𝑊̅̅ ̅̅̅ and RT-

𝐷𝑊̅̅ ̅̅̅ for every difficulty level, followed by BH correction. The entire analysis was carried 

out in MATLAB 2012 (MA, Natick, USA). 
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4. RESULTS 

4.1. Multifractal neural networks in the resting state 

4.1.1. Presence of true bivariate multifractality during task 

Table 1 summarizes the results of the multifractal tests of BFMF-derived FC in resting-

state. Most of the connections passed the power-law, detrended cross-correlation, phase 

randomization and shuffling tests. On the other hand, the scale-free nature of almost half 

of the connections emerged simply due to the autocorrelation effects (bivariate-univariate 

Hurst comparison).  

Table 1: Success rate of multifractality tests at the subject level (mean±standard deviation). PL: power-

law test, PR: phase randomization test, S-ΔH15: ΔH15 part of the shuffling test, S-H(2): H(2) part of the 

shuffling test, DCCC: detrended cross-correlation coefficient test, Biv-Univ: bivariate-univariate Hurst 

comparison 

Tests 

PL PR S-ΔH15 S-H(2) DCCC Biv-Univ 

86.5±5% 100% 100% 99.7±0.3% 100% 52.4±6.8% 

 

4.1.2. Topological differences in scale-free neural networks 

To compare the networks reconstructed from H(2) and ΔH15 values, we calculated each 

connection's Z score (deviation from the population average). Plotting these networks 

(Figure 8), we saw opposite patterns emerging in each, which was confirmed by 

Pearson’s correlation (r=-0.6609, p<0.01). The higher bivariate H(2) values were found 

mainly in the within-RSNs connections. On the other hand, the bivariate ΔH15 values of 

the between-RSNs connections were much higher than those found within the resting-

state networks.  
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Figure 8: Z-scores of constructed networks using bivariate H(2) and ΔΗ15 as functional connectivity 

estimators. Z-scores represent deviation from the population average and their values are indicated by the 

color bar. The edges serve as the between-RSNs (inner edges) and within-RSNs (outer ring) connections 

with color representing the strength of the connection. The figure originally appeared in Stylianou et al. 

(101). 

 There is also a dichotomous model between bivariate H(2) and ΔH15 in the 

regional and subject variability. Kendall’s W revealed strong between-subject agreement 

in the case of bivariate H(2) networks but only moderate agreement when the ΔH15 

networks were investigated (Table 2). As for the topological differences, only 40% of the 

within-RSNs and between-RSNs paired comparisons of the ΔH15 networks were 

significant, while the H(2) networks showed greater variability (73.3% and 68.6%, 

respectively) (Table 2). As seen in Figure 9, most regional variations were observed 

exclusively in one of the BFMF-derived networks. 

Table 2: Results of Kendall’s W, success rate for individual paired difference tests after correction and 

Friedman test for bivariate H(2) and ΔH15 for between- and within- RSNs. 

  Kendall’s        

W 

Paired difference 

test success rate 

Friedman 

Test  p 

H(2) 
between-RSNs 0.72 68.6% 

< 0.0001 
within-RSNs 0.65 73.3% 

ΔH15 
ΔH15 between-RSNs 0.44 40% 

ΔH15 within-RSNs 0.47 40% 
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Figure 9: Effect of regional variability. Significance of connection-to-connection comparisons of within- 

(Panel A) and between- (Panel B) RSNs after the appropriate correction for bivariate H(2) and ΔH15. Blue: 

Only ΔH15 comparison test was significant. Orange: Only H(2) comparison test was significant. Green: 

Both H(2) and ΔH15 comparison tests were significant. The figure originally appeared in Stylianou et al. 

(101). 

 Finally, we also investigated the physiological relevance of our parcellation 

scheme, using 100 spatially shuffled surrogates. W of the original within-RSNs and 

between-RSNs connections were significantly higher than those of the shuffled data, for 

both bivariate H(2) and ΔH15 networks. Additionally, only 1% of the surrogate datasets 

showed topological differences (p<0.05). 

4.2. Multifractal connectivity during pattern recognition 

4.2.1. Presence of true bivariate multifractality during task 

Once again, most connections showed true multifractal dynamics (Table 3), while a 

distinction between the rest (EC and EO) and task (Easy, Medium and Hard) states was 

observed.  The resting states had lower success rates in the bivariate H(2) part of the 

shuffling test, but a higher percentage of their connections passed the detrended cross-

correlation coefficient test and bivariate-univariate Hurst comparison. These differences 

resulted in more functional connections showing true bivariate multifractality in the 

bivariate H(2) and ΔH15 networks during rest (Table 4).  
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Table 3: Success rate of multifractality tests at the subject level (mean±standard deviation). PL: power-law 

test, PR: phase randomization test, S-ΔH15: ΔH15 part of the shuffling test, S-H(2): H(2) part of the shuffling 

test, DCCC: detrended cross-correlation coefficient test, Biv-Univ: bivariate-univariate Hurst comparison 

State 
Tests 

PL PR S-ΔH15 S-H(2) DCCC Biv-Univ 

EC 92±7% 96±4% 99±2% 70±18% 93±4% 85±18% 

EO 94±3% 96±6% 98±4% 76±16% 93±4% 86±15% 

Easy 93±2% 97±4% 99±2% 90±8% 64±19% 65±17% 

Medium 94±2% 97±4% 99±2% 90±9% 65±16% 68±18% 

Hard 94±2% 97±3% 99±2% 89±9% 62±17% 73±16% 

 

Table 4: Percentage of connections, at the subject level (mean±standard deviation), that passed all 

multifractality assessment tests. 

Network 
State 

EC EO Easy Medium Hard 

H(2) 48±13% 55±12% 31±10% 34±10% 35±9% 

ΔH15 46±13% 53±12% 30±10 % 33±10% 34±9% 

4.2.2. Reorganization of scale-free neural networks during task 

A similar rest vs task distinction was also observed in the node degree 

comparisons since the FC of the task states was higher for both bivariate H(2) and ΔH15 

networks. Figure 10 suggests a negative correlation between the two created networks. 

The Spearman’s correlations validated this by comparing the average of the local node 

degrees of the bivariate H(2) and ΔH15 networks for every state (Table 5). Significant 

negative correlations were found in all states, except Easy. After BH correction only the 

correlation in the EC state remained significant. Additionally, the 𝐷𝑊̅̅ ̅̅̅ of the task states 

was significantly higher compared to rest. Also, the 𝐷𝑊̅̅ ̅̅̅ was higher in the EO compared 

to EC15 (Figure 11). A similar pattern can be seen in the local DW, where most differences 

are observed between rest and task states for both BFMF-derived networks (Figure 12). 

Statistically significant within-state comparisons were found for all 5 states. As it can be 

seen by the color-coding of Figure 13, most pairs of nodes that showed significant 

differences are in the ΔH15 networks (i.e., several blue and green edges but only a few 

 
15 The statistical power of the 𝐷𝑊̅̅ ̅̅̅ tests was: i) 1 for rest vs task comparisons for both BFMF variables ii) 

0.43 and 0.63 for the EC vs EO comparison of bivariate H(2) and ΔH15, respectively and iii) <0.12 for task 

vs task (e.g. Easy vs Medium) comparisons for both BFMF variables.  
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orange). Finally, small subject concordance was observed in the DW of the ΔH15 networks 

(Table 6). 

 

Figure 10 State-dependent weighted node degree topology of H(2) and ΔH15 brain networks. The color 

bars represent the values of the local node degrees. The figure originally appeared in Stylianou et al. (74). 

Table 5: Spearman’s correlation (r) between the node degrees of the H(2) and ΔH15 brain networks and 

their significance levels (p). The correlations that remained significant after Benjamini-Hochberg 

correction are in bold. The figure originally appeared in Stylianou et al. (74). 

Spearman’s 

Correlation 

State 

EC EO Easy Medium Hard 

p <0.01 0.05 0.08 0.02 0.04 

r -0.85 -0.54 -0.48 -0.62 -0.57 

 

 

Figure 11: State-dependent weighted global node degree distribution of H(2) and ΔH15 brain networks.  

Significance marked by *. The figure originally appeared in Stylianou et al. (74). 
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Figure 12: Localization of significantly different weighted node degrees for every between state 

comparison of the H(2) and ΔH15 brain networks. The colormap is based on the absolute difference of the 

node degrees of the states under investigation (e.g.|DW
O2,EC - DW

O2,EO|). Only the significantly different 

nodes are shown. The figure originally appeared in Stylianou et al. (74). 

 

Figure 13: State-dependent paired comparisons of the node degrees of different brain regions. The color 

of the edge corresponds to the significance of the comparison between the two nodes of the edge. Orange: 

only H(2) network comparison was significant, Blue: only ΔH15 network comparison was significant, 

Green: both H(2) and ΔH15 networks comparisons were significant after BH correction.  
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Table 6: State-dependent subject concordance, as captured by Kendall’s W. 

BFMF Output 
State 

EC EO Easy Medium Hard 

H(2) 0.10 0.09 0.09 0.12 0.11 

ΔH15 0.24 0.15 0.25 0.24 0.26 

 

4.2.3. Cognitive performance and its correlation with scale-free functional 

connectivity 

The comparisons of the SR of every level revealed significant differences (p<0.05), with 

the Hard task being the least successful (Figure 14). For the other cognitive performance 

metric, we found that the lowest RT was recorded in the Easy, followed by the Medium 

and finally the Hard trials, which took the longest to solve (p<0.05 in every case) (Figure 

14). Additionally, significant positive correlations (p<0.05) were observed between the 

𝐷𝑊̅̅ ̅̅̅ and RT of the Easy and Hard states of ΔH15 networks (Figure 15). These correlations 

were rendered non-significant after BH correction. 

  

Figure 14: Average success rate and reaction time (seconds) for different difficulty levels. Significant 

differences are marked by *. The figure originally appeared in Stylianou et al. (74). 
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Figure 15: Scatter plots of the reaction time (seconds) vs global node degree for Easy (orange) and Hard 

(blue) task in ΔH15 networks and their Spearman’s correlation (r). The figure originally appeared in 

Stylianou et al. (74). 
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5. DISCUSSION 

This dissertation describes a new method of investigating the brain’s scale-free coupled 

dynamics, which builds on the methodological contributions to fractal physiology by Eke 

and colleagues (29, 64, 67, 70, 97, 102–104). The research underlying my dissertation 

started with validating a novel estimator of functional connectivity by the bivariate 

implementation of focus-based multifractal analysis, whose univariate version had been 

used by our research team in numerous studies (29, 64, 70, 97, 103, 104). Having 

characterized the resting-state FC, we aimed to examine the effect of task and evaluate 

the association between scale-free coupled dynamics and cognitive function measures. 

Our first study extended BFMF analysis by implementing a battery of multifractality 

assessment tests. I demonstrated the efficacy of our methodology in resting-state eyes-

closed EEG recordings for the first time in the literature. As to the results of this work, a 

substantial percentage of connections showed true bivariate multifractality, which 

suggests genuine scale-free coupled dynamics. Subsequently, brain networks were 

constructed using bivariate H(2) or ΔH15 – as estimators of FC. The spatiotemporal 

organization of coupled multifractal dynamics remained consistent across participants 

with substantial topological variability. In the second study, we applied the same 

analytical pipeline to all pairs of simultaneously recorded EEG signals during resting-

state and a visual pattern recognition task. Once again, the bivariate multifractal character 

of a fraction of examined coupled dynamics was validated. Moreover, the scale-free FC 

increased during the task and showed regional variability, an original and novel 

contribution to the human functional neuroimaging field. Finally, the multifractal strength 

of the connections correlated with the participant’s reaction time, which could be a 

signature of the link between large-scale neurophysiological processes and certain 

domains of cognition.  

5.1. Significance of BFMF in Statistical Physics 

In the last few years, statistical physics has infiltrated medical research, allowing 

scientists to recruit statistical tools to reveal complex interactions in biological systems 

(105). One such tool is the scale-free analysis of physiological time series (65, 106, 107). 

The first bivariate fractal methods were initially developed for monofractal (52, 108) and 

then multifractal (81, 109) cases. The novelty of BFMF is twofold. Firstly, by enforcing 
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a Focus point, computational errors can be avoided. This is a direct extension from Mukli 

et al. (70), who showed that univariate focus-based methods are more accurate and robust 

to inconsistencies of the multifractal formalism. Secondly, the introduction of bivariate 

ΔH15 makes the quantification of multifractality easy and straightforward. The current 

studies focused on neuroscience-related questions; nevertheless, BFMF can be applied to 

different kinds of time series [e.g. financial time series (110, 111)].  

While scale-free dynamics are ubiquitous in nature, (multi)fractal time series 

analysis of non-fractal physiological processes can lead to false interpretation on the 

underlying dynamics (e.g. the blood pressure changes follow a periodic pattern with 

characteristic oscillations due to cardiac, respiratory and other physiological influences). 

Such pitfalls warrant the extensive use of surrogate testing (80, 112). This is especially 

true in the bivariate multifractality of the brain dynamics due to the limited number of 

published studies. It was then crucial that before extrapolating about the origin of these 

scale-free properties, we validated the existence of multifractal FC through a statistical 

framework we devised for this purpose (i.e. a battery of surrogate tests). As seen in Tables 

1 and 3, a significant percentage of the brain’s functional connections displayed true 

multifractal dynamics in rest and task states.  We also divided the observed multifractality 

into intrinsic and extrinsic in the resting-state study based on the bivariate-univariate 

comparison test (section 3.1.2). Extrinsic connections were considered those whose 

multifractal profile was a direct consequence of autocorrelation effects; on the contrary, 

intrinsic multifractal connections were not (at least exclusively) influenced by 

autocorrelations. More than 50% of the connections were intrinsically multifractal. As 

explained in footnote 13, since the publication of the study, we revised our bivariate-

univariate Hurst comparison. The updated version of the test was successful [bivariate 

H(2) smaller than the average of univariate H(2)] for only 7% of the connections. This 

suggests that a large portion of the observed “intrinsic multifractality” (about 45%) was 

caused by the finite-length and non-normal joint distribution of the time series. Even if 

the resting-state study used a much larger number of datapoints than the VPR study 

(16384 vs 2560), the bivariate-univariate Hurst comparison of the VPR was successful in 

at least 65% of the cases. We can then conclude that the non-normal joint distribution of 

the time series is the main reason for the high failure rate of the updated bivariate-

univariate Hurst comparison in the resting-state study.  
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  The novelty of BFMF was also validated in the resting-state study when we 

constructed brain networks based on Pearson’s correlation and mutual information. Since 

these estimators are scale-specific, we used the same scales as in BFMF for the window 

length of the analysis. The architecture of the created networks differed substantially from 

the BFMF networks. This is proof that BFMF can reveal novel aspects of FC that could 

have remained hidden if scale-specific estimators were used. Of course, this does not 

mean that scale-free is superior to scale-specific analysis of FC. Both methodologies are 

valid and complementary to each other. Details of this analysis can be found in the 

supplementary material of Stylianou et al. (101).  

5.2. Neurophysiological Significance of Scale-free Coupled Dynamics 

5.2.1. Origins of Multifractal Functional Connectivity 

Even though no theories exclusively target bivariate scale-free dynamics, we can 

extrapolate from the explanations of univariate scale-free dynamics. The most influential 

and plausible theory comes from studying critical systems and statistical physics. 

According to the concept of self-organized criticality (SOC) (113–115), scale-free 

systems are at the edge of order and chaos, where small perturbations can have major 

repercussions. It is called self-organized because this balance is achieved by intrinsic 

control parameters (116, 117). The true origin of these control parameters in the brain 

remains a question; nevertheless, the circuitry of excitatory and inhibitory feedback loops 

is a good candidate. In the last few years, different research groups have shown that 

disturbance of the balance between excitatory and inhibitory stimuli can lead to deviations 

from criticality (i.e. power-law dynamics) (36, 37, 118). A similar observation has been 

made in the cardiovascular system, where blockage of the autonomic nervous system 

causes disturbance in the multifractal profile of the heart rate variability time series (119, 

120). 

Our work does not provide compelling evidence for the origin of the bivariate 

multifractality in the activities of brain. However, considering the presented results, we 

could establish a hypothesis for future studies. Even proponents of SOC urge us to avoid 

extravagant claims and pitfalls resulting from a superficial understanding of SOC (121, 

122). Nevertheless, the scope of this dissertation is not to provide a thorough explanation 
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of the observed dynamics but instead to introduce them to the neuroscientific community 

and demonstrate the practical applications of the underlying method, BFMF, for 

characterizing complex brain network dynamics.  

5.2.2. Multifractal Coupled Dynamics in Rest and Task 

We observed an increase in the node degrees of the constructed networks during the VPR 

task compared to EC or EO, due to an increase of bivariate H(2) and ΔH15 (Figures 10-

12). The higher values of bivariate H(2) indicate a shift towards higher long-term cross-

correlation between the distant cortical regions during the task. This can result from 

pruning temporally-long connections in rest to conserve energy. Such connections might 

be reestablished in complex mental tasks as the one administered in the current 

experiment. We also noticed higher bivariate H(2) during EO than EC. The transition 

from EC to EO caused increased mental strain since new visual stimuli arrived in the 

occipital cortex when subjects opened their eyes. The mental effort observed during EO 

was not as substantial as the task states (Easy, Medium, Hard); hence differences were 

observed between EO and task as well. Racz and colleagues used a similar experimental 

paradigm and found that the global node degree in the prefrontal cortex increased during 

the task using Pearson’s correlation as FC estimator (61). This could suggest that both 

scale-free [captured by bivariate H(2) and ΔH15] and scale-specific (captured by 

Pearson’s correlation) FC increases during visual pattern recognition. These results 

indicate that the strength of both short-term and long-term connections increases during 

the task. Still, this is only a hypothesis since the two investigations used different imaging 

modalities (EEG vs fNIRS) and different brain regions were studied (whole brain vs 

prefrontal cortex). Concrete conclusions could only be made using the same imaging 

modalities and preprocessing pipelines for both scale-free and scale-specific 

investigations. The observed increase of multifractal FC was not influenced by the 

difficulty level of the task (Figures 10-12), even if significant differences in the success 

rate and reaction time between the three levels (Easy, Medium, Hard) were observed 

(Figure 14). This is reminiscent of our previous n-back study that found no significant 

differences between the global node degree of the 2-back and 3-back tasks (88). 

Nevertheless, in the paper of Káposzta et al., the task was accompanied by decreased 

interconnectivity instead of the increased FC in the current study. Such inconsistencies 
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can emerge because different mental tasks induce unique changes to the architecture of 

functional brain networks (123).  

Higher bivariate H(2) corresponds to a greater slope of cross-spectral index (see 

Methods), i.e. relative shift to lower frequencies. At first glance, this might seem counter-

intuitive since a shift to higher frequencies is expected during eyes opening and mental 

tasks (see Introduction). Nevertheless, this is just another proof that band-specific 

analysis of EEG should not overshadow its broadband counterpart since the two 

methodologies capture different aspects of brain dynamics. Due to the novelty of scale-

free FC studies, the comparison with the literature is limited. Only one more study 

investigated the scale-free FC during task (48), so far. Ciuciu and colleagues used fMRI 

recordings to capture the scale-free dynamics of the brain. They found that the scale-free 

dynamics shift towards faster frequencies during a motor task, i.e. change to the opposite 

directions. Considering that EEG systems have a much higher sampling rate, I can 

postulate that the two studies show convergence of the scale-free coupled dynamics to 

the same frequencies (fast frequencies for fMRI and slow frequencies for EEG 

recordings). A similar increase during task was observed for the ΔH15 networks as well 

(lower panels of Figure 10). Bivariate ΔH15 is an estimator of multifractality, i.e. the 

unequal dependence of covariance on small and large fluctuations. As opposed to the 

linear monofractality [bivariate H(2)], multifractal analysis reveals non-linear dynamics 

(73, 79); hence an increase of bivariate ΔH15 suggests an expansion of non-linear coupling 

during task. Most of our electrodes were positioned over the frontal cortex, a region 

dominated by higher-level association areas. These cortical regions are responsible for 

information integration and are activated during mental tasks (60). Based on our 

hypothesis in section 5.2.1, it is reasonable to assume that the increased 

excitatory/inhibitory feedback loops – caused by the activation of the prefrontal cortex 

during task – resulted in greater long-term cross-correlation and multifractality. 

In the resting-state study, the regional variability of the constructed networks was 

more apparent in the H(2) network (Table 2 and Figure 9). On the other hand, the VPR-

study showed that the local node degrees varied the most within the ΔH15 networks 

(Figure 13). The difference in the channel number of the EEG devices (62 vs 14) could 

explain this inconsistency. From the two outcomes, the higher variability in the ΔH15 
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networks seems to agree with the fact that multifractality is a more complex property 

(124); hence more significant topological differences are expected. Nevertheless, both 

studies have found great heterogeneity in the localization of the multifractal FC, 

suggesting that we should study these dynamics at high spatial resolution. Another 

difference between the two investigations was the subject concordance. In the resting-

state study, Kendall’s W values indicated strong subject agreement in the bivariate H(2) 

and moderate agreement in the bivariate ΔH15 values (Table 2). In contrast, we see the 

opposite pattern in the fractal properties of FC corresponding to our VPR-protocol. We 

found only small concordance in the ΔH15 networks, while the subject agreement in the 

H(2) networks was non-existent. A high subject concordance suggests that our 

methodology is consistent across participants and can draw conclusions and help in the 

clinical setting. The low Kendall’s W values in the VPR study can be attributed to the fact 

that most channels were located above the frontal and parietal cortices, regions whose FC 

has been shown to vary the most from subject to subject in fMRI recordings (125). 

Another reason for this low subject agreement could be that the exact position of the EEG 

channels in the VPR study varied from subject to subject due to the nature of the EEG 

device.  

An interesting byproduct of our recent studies has been the anticorrelated 

relationship between H(2) or ΔH15, as shown in Figure 8 and Table 5. Similar negative 

correlations were observed between univariate H(2) and ΔH15 in resting-state conditions 

but only in the delta band (29). In both of our current studies, 50% of the used scales were 

within the delta band (resting-state study: 128, 256 and 512; VPR-study: 32, 64, 128 and 

256). We can then conclude that both univariate and bivariate H(2) and ΔH15 are 

anticorrelated in the low-frequency range. The physiological relevance of this 

relationship remains unknown. A possible explanation could be that an increase 

(decrease) of non-linear dynamics is followed by a decrease (increase) of linear dynamics 

in an attempt to balance the energy expenditure of the brain.  

5.3. Performance Metrics and its Associations with Multifractal FC 

In the VPR study, we modified an already existing paradigm. In Racz et al. (61), the 

participant was presented with a series of images and was asked to identify subsections 

of them, but his/her response was not recorded. This did not allow for the investigation 
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of possible correlations between the FC and success rate of the task. In the previous study, 

the reaction time could not be estimated either since the active part of the trial was fixed 

and did not depend on the subject’s response. Another major advantage of our current 

version is the inclusion of difficulty levels based on image compression principles. This 

gave us an objective way to classify the images in different levels of difficulty and 

compare how the brain networks organize in each one of them. We decided to include 

only grayscale images so colorblind individuals can participate and because the projection 

of colored images elicits different EEG patterns compared to grayscale images (126, 127). 

Our experiment investigated only the short-term non-verbal memory. Although if our 

participants were well educated (university students or graduates), we intend to expand 

our pool of subjects to other demographics where the inclusion of text and/or numbers 

could impair our findings. For example, the applied paradigm can be easily implemented 

in attention deficit hyperactivity disorder studies, where the onset of the disease starts at 

an age where children might not be able to read or count (around 4 years of age) (128). 

The reaction time within the three difficulty levels was significantly different, 

with Easy having the fastest reaction time and Hard the slowest. Similar patterns were 

observed from the success rate, where Hard trials were the most difficult to solve (Figure 

14). We can then conclude that our image classification process – based on image 

compression ratios (see Methods) – was successful.  

 We also calculated Spearman’s correlation between the global node degree and 

performance metrics. No significant correlations were found between 𝐷𝑊̅̅ ̅̅̅ and success 

rate. This agrees with the independence of node degree on the difficulty level. If the 

success rate (and by extension, difficulty) had any association with 𝐷𝑊̅̅ ̅̅̅ we would have 

seen a difference between the node degrees of the Easy, Medium and Hard networks. We 

also found that the higher multifractal coupled dynamics of the network correspond to 

slower solving of the task (Figure 15), or in other words the 𝐷𝑊̅̅ ̅̅̅ of the ΔH15 networks is 

positively correlated with the reaction time. Considering that feedback loops might 

cause/amplify multifractality, this could mean that excessive feedback can be detrimental 

to the fast solving of a task. Nevertheless, direct conclusions cannot be drawn since these 

correlations were rendered non-significant after BH correction. In future studies, this 

association should be investigated further.  
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5.4. Bivariate vs Univariate Scale-free Dynamics During Task 

While the bivariate scale-free alterations during different states are not well studied, 

similar investigations have been performed using various univariate approaches. Racz et 

al. (129) calculated the global node degree of a 14-node brain network in a sliding window 

manner – using a non-linear FC estimator [synchronization likelihood (130)]. As a result, 

we captured the temporal evolution of FC, obtaining time series during EC and EO. 

Subsequently, the univariate equivalent of BFMF was implemented in those time series. 

The results showed that the univariate H(2) of the global node degrees time series 

increased when the subjects transitioned from EO to EC. Even though the methodologies 

of Racz et al. and the current one might seem similar, there is a fundamental difference. 

In that paper, the FC is defined by a scale-specific (synchronization likelihood) estimator, 

which is then used to construct a time series and calculate the univariate multifractal 

profile of this time series. In this dissertation, I used BFMF to capture the scale-free 

profile of FC, thus revealing the topology of scale-free coupled dynamics. In the same 

fMRI study mentioned earlier by Ciuciu and colleagues (48), the univariate H(2) 

decreased during the task. Similar results were found in an EEG study by He at al. (131), 

where the power-law exponent [hence univariate H(2)] was lower when the subjects 

performed a motor task. These three studies showed that the univariate H(2) decreases 

during increased stimuli, opposing our current findings. This suggests that the brain's 

bivariate and univariate scale-free dynamics do not change in the same direction during 

increased mental workload. Of course, definite conclusions cannot be drawn since each 

study used different methodologies, which could have influenced the results. In future 

projects, it would be worth calculating both univariate and bivariate multifractal measures 

to reveal the actual relationship between them.  

5.5. Limitations 

The 62 EEG channels were grouped in 6 RSNs based on a probabilistic map in the resting-

state study. A more accurate mapping to RSNs could have been achieved using source 

reconstruction (132), where the brain activity recorded from EEG is assigned to a specific 

brain region using magnetic resonance imaging. The study's main objective was to 

demonstrate the applicability of BFMF in EEG datasets; our grouping was only used as a 
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dimensionality reduction tool. Moreover, as stated in section 4.1.2. our parcellation 

scheme was successful as opposed ato random assignments of channels to RSNs.  

In the VPR study, the sample did not represent the general population; all 

participants were university students or graduates. Despite the difficulties of recruiting 

off-campus participants, population-wide conclusions can be made only by including 

more diverse samples. Secondly, only 14 EEG channels were used, which is insufficient 

for RSN-based investigations. 

5.6. Future Perspectives 

In the resting-state study, we used a bimodal version of BFMF in our preliminary analysis. 

In the bimodal BFMF two scaling functions are being fitted, one for small and one for 

large scales. The breaking point between the two scaling ranges was around 0.5 Hz, 

probably due to a filtering artifact. Nevertheless, the univariate version of BFMF can 

capture the bimodal nature of neural dynamics (64, 103). Future investigations could 

include high-pass filters with lower cut-off frequency allowing us to study the possible 

existence of bimodality in the multifractal FC. 

Five of the participants repeated the VPR study about a year later. The success 

rate and reaction time were not significantly different between the two visits. Kendall’s 

W showed moderate agreement for the bivariate H(2) and ΔH15 values obtained from the 

first and second measurements. These findings indicate that our experimental design can 

be used reliably in reproducibility studies and that the multifractal coupled dynamics 

remain consistent. 

 To demonstrate the effect of task on the multifractal FC, we used only a visual 

pattern recognition task. Previous investigations have suggested that the architecture of 

brain networks varies depending on the nature of the administered task (123). Although 

certain publications indicate that learning a task can influence the brain's interconnectivity 

(133, 134), the effect of learning is not widely investigated in FC studies. Future 

investigations of multifractal FC should focus on diverse mental tasks that are repeated, 

so both effects mentioned above can be examined. 
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Finally, our current experiments targeted only the young, healthy population. EEG 

of diseased populations has been studied only in a univariate multifractal manner (41–

44).  Recently we showed that the observed EEG changes in schizophrenic subjects are 

solely caused by a shift of the scale-free component of the signal (135). Additionally, 

schizophrenia is widely considered as a disconnection syndrome (21, 22), meaning that 

there is a great disruption in the structure of the functional networks. It is then logical to 

extend our multifractal FC studies by including schizophrenic patients. Epilepsy research 

can also be benefitted from the investigation of bivariate scale-free dynamics. The scale-

free profile of the EEG signals is altered during epileptic attacks (136), while antiepileptic 

(36)  and central nervous system suppressants (37) can also affect the fractal character of 

the EEG tracing. Alterations in the fractal coupled dynamics of the EEG have already 

been demonstrated during aging (50), but only in the monofractal setting. In an ongoing 

study, we repeat our VPR task using two different age groups (young and elderly). Such 

comparison could give us information for the multifractal FC changes as we age and how 

our short-term memory is affected by getting older. So far, we have focused on population 

inference to increase our understanding of the underlying coupled dynamics. The increase 

in computational power allows us to construct predictive models, capable of classifying 

participants in different groups. For example, we could extend the analytical pipeline 

presented in Racz et al. (104), in order to identify schizophrenic subjects based on their 

multifractal FC. Such machine learning algorithms could be implemented in the day-to-

day clinical diagnosis of neuropsychiatric patients, where there is dire need of objective 

measurement protocols and easily interpretable, straightforward analytical frameworks.  
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6. CONCLUSION 

The dissertation elaborated the application of bivariate focus-based multifractal analysis, 

which turned out to be a robust estimator of multifractal functional connectivity in EEG 

recordings. The novel multifractality assessment tests could validate the true scale-free 

nature of several connections both during rest and task. The multifractal coupled 

dynamics were found to vary across the brain cortex, suggesting that the scale-free 

coupling of the brain is region-specific. Additionally, the long-term memory and 

multifractality of the brain networks increased during a complex visual pattern 

recognition task. Finally, the high degree of multifractality was associated with slow task 

solving. In conclusion, our analytical pipeline is a viable and accurate candidate for 

bivariate multifractal analysis of neurophysiological time series, which could facilitate 

future research on complex brain dynamics in healthy and diseased populations.  
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7. SUMMARY 

Imaging of complex brain function became possible with the advent of neuroimaging 

modalities and statistical physical methods that revealed the spatiotemporal organization 

of neural activity. Bivariate methods allowed us to construct networks that represent the 

brain's functional connectivity (FC). The assessment of FC can be achieved by estimating 

of the statistical relationship between the different brain regions. A plethora of estimators 

has been recruited for such a task, with most of them focusing on the scale-specific neural 

coupling. The scale-wise coupling assumes that FC is concentrated in distinct peaks of 

the connection’s cross-power spectrum. On the contrary, scale-free (or fractal) 

approaches study the whole range of cross-power spectrum for the construction of brain 

networks. The presented work leverages fractal analytical methods to investigate the 

bivariate multifractal patterns of electroencephalogram (EEG), which have been 

investigated inadequately so far. My dissertation elaborates a complete pipeline for 

estimating and validating bivariate scale-free FC. It begins with the bivariate focus-based 

multifractal (BFMF) analysis, whose outputs indicate the long-term cross-correlation 

[bivariate H(2)] and multifractality (bivariate ΔΗ15) of the connection. The real nature of 

these properties is further investigated by a battery of newly developed multifractality 

assessment tests. The first study introduced this analytical pipeline by estimating the 

multifractal FC in resting-state EEG. The results suggest that a substantial percentage of 

the resting-state coupled dynamics are scale-free. Additionally, the distribution of 

multifractal FC varied across the cortex, indicating that BFMF can capture functionally 

relevant information. In the second study, we analyzed the EEG tracings of participants 

during a visual pattern recognition task preceded by a resting-state. The findings indicate 

that the multifractal character of FC found in the resting-state coupled dynamics is 

maintained even during cognitive stimuli. We also observed that the multifractal profile 

was more pronounced in the task states, yet differences between the three difficulty levels 

were not registered. These two studies pave the way for the introduction of BFMF to 

clinical research, where the scale-free coupled dynamics have not been investigated yet. 
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8. ÖSSZEFOGLALÁS 

A komplex humán agyműködés tér- és időbeli szerveződésének megértéséhez döntő 

mértékben járul hozzá a funkcionális képalkotó módszerek és a statisztikai fizikai 

módszerek fejlődése. A szimultán idősorpárokat elemző algoritmusok – melyek a 

statisztikai kapcsolatot mérik – segítségével rekonstruált funkcionális konnektivitás (FC) 

jellemzi az agyi funkcionális hálózatok topológiáját és dinamikáját és ezáltal az agyi 

régiók együttműködését. E célból számos paramétert vezettek be, melyek túlnyomó 

többsége az idegi működés időskála-specifikus kooperációját számszerűsítik. A 

disszertációban a skálafüggetlen együttműködést karakterizáló idősorelemző módszer 

alkalmazását mutatom be. Ezt a kétváltozós fókusz-alapú multifraktális analízist (BFMF), 

a skálafüggetlen FC rekonstruálására alkalmaztam, melyhez elektroencefalogram (EEG)  

adatokat használtam. A BFMF kimeneti paraméterei jellemzik a funkcionális kapcsolat 

memóriáját hosszú távú keresztkorreláció, mérőszáma: kétváltozós H(2)] és a 

multifraktalitást (nem-lineáris csatolás, kétváltozós ΔΗ15). Ezen tulajdonságok valódi 

természetét az újonnan kifejlesztett multifraktalitási tesztek sora vizsgálja tovább, mely a 

BFMF módszerrel együtt a munka egyik új aspektusa. További újdonság, hogy a 

nyugalmi állapotban gyűjtött adatokon történt validálást követően (első tanulmány), a 

kognitív terhelés agyi hálózati tevékenységre gyakorolt hatását igazoltuk (második 

tanulmány). Az első vizsgálatban ezt az analitikai protokollt alkalmaztuk a multifraktális 

FC nyugalmi állapotú EEG-ben történő becsléséhez. Eredményeink alapján a nyugalmi 

állapothoz tartozó funkcionális kapcsolatok dinamikája jelentős részben skálafüggetlen. 

Ezenkívül a multifraktális FC eloszlása a kéregben jellegzetes, a nyugalmi agyi 

hálózatokat megközelítő topológia szerint oszlik el, mely bizonyítja, hogy a BFMF képes 

funkcionálisan releváns hálózati szerveződést kimutatni. A második vizsgálatban a 

résztvevők EEG adatait regisztráltuk egy vizuális mintafelismerési feladat és nyugalmi 

állapot során, amelyet követően BFMF analízist végeztünk. Az eredmények azt mutatják, 

hogy az FC nyugalmi állapotban kapcsolt dinamikában talált multifraktális jellege a 

kognitív stimulus során is megmarad és annak jellege kifejezettebb. 
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While most connectivity studies investigate functional connectivity (FC) in a scale-
dependent manner, coupled neural processes may also exhibit broadband dynamics,
manifesting as power-law scaling of their measures of interdependence. Here we
introduce the bivariate focus-based multifractal (BFMF) analysis as a robust tool for
capturing such scale-free relations and use resting-state electroencephalography (EEG)
recordings of 12 subjects to demonstrate its performance in reconstructing physiological
networks. BFMF was employed to characterize broadband FC between 62 cortical
regions in a pairwise manner, with all investigated connections being tested for true
bivariate multifractality. EEG channels were also grouped to represent the activity of
six resting-state networks (RSNs) in the brain, thus allowing for the analysis of within-
and between- RSNs connectivity, separately. Most connections featured true bivariate
multifractality, which could be attributed to the genuine scale-free coupling of neural
dynamics. Bivariate multifractality showed a characteristic topology over the cortex that
was highly concordant among subjects. Long-term autocorrelation was higher in within-
RSNs, while the degree of multifractality was generally found stronger in between-RSNs
connections. These results offer statistical evidence of the bivariate multifractal nature of
functional coupling in the brain and validate BFMF as a robust method to capture such
scale-independent coupled dynamics.

Keywords: scale-free, bivariate, multifractal, functional connectivity, network physiology,
electroencephalography

INTRODUCTION

Physiological systems are integrated through a series of intricate connections giving rise to
networks of dynamically interacting elements. These may emerge at various scales from molecular
pathways (Covert, 2006; Prentki et al., 2020) to the brain connectome (Sporns, 2011) and even
at the level of the entire organism (Bashan et al., 2012; Bartsch et al., 2015). The universality
of this organizing principle gave birth to the field of network physiology (Bashan et al., 2012;
Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al., 2016), aiming at unfolding the
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mechanisms through which diverse physiological systems
interact. This goal may be achieved through characterizing
various aspects of the temporal coupling between such systems
and processes. Novel bivariate analytical methods (Bashan et al.,
2012; Schulz et al., 2013; Jalili, 2016) kept advancing the research
in this field. Even though many of these methodologies have
been proven invaluable for the investigation of scale-specific
interactions, they largely neglect the plausible broadband nature
of the functional coupling itself (i.e. coupling that spans across
a wide range of frequencies). This may, however, become
relevant, as many biological processes have been shown to express
broadband, scale-free dynamics; examples include the variability
of heart rate (Ivanov et al., 1999, 2004; Nunes Amaral et al., 2001;
Bartsch et al., 2005), spontaneous brain activity (Ivanov et al.,
2009; Lin et al., 2020) or gait variability (Bartsch et al., 2007),
to name a few. While these biological functions may contain
narrowband components that can also be of interest, their
broadband dynamics indicate scale-free (or fractal) behavior (Eke
et al., 2000). Scale-free features may reveal fundamental aspects of
complex systems – such as the human organism – that otherwise
remain hidden from traditional methods of analysis. The ubiquity
of the univariate fractal dynamics in physiological processes
warrants the application of bivariate scale-free time series analysis
to study the complexity of coupling between such processes.

Among fields where the human organism (or subsystems
thereof) is modeled as a network of functionally coupled
elements, brain functional connectivity (FC) studies probably
gained the most momentum in past decades (Friston et al.,
1993; Biswal et al., 1995; Rubinov and Sporns, 2010; Sporns,
2011; Finn et al., 2015; Lowe et al., 2016; Preti et al., 2017).
In that, the network theoretical approach has been shown by
many studies to be a powerful tool for the analysis of neural
activity patterns (Bullmore and Sporns, 2009; Stam, 2014).
According to this framework, the investigated brain regions are
considered as nodes of the reconstructed network, while its
edges represent the statistically estimated functional coupling
between these regions (Rubinov and Sporns, 2010). However, a
‘static’ assessment of FC poses a limitation since the strength
of functional coupling between neuronal assemblies has been
shown to change over time (Chang and Glover, 2010; Hutchison
et al., 2013). Therefore, characterizing the temporal organization
of brain network topology requires a model that can account for
these time-dependent aspects of FC. This led to the introduction
of various tools capable of capturing the dynamic characteristics
of brain networks (Dimitriadis et al., 2010; Tagliazucchi et al.,
2012; Yu et al., 2015; Preti et al., 2017). Additionally, the
ubiquitous presence of scale-free dynamics in the resting-state
brain (Werner, 2010; Fraiman and Chialvo, 2012), – especially
in the electroencephalogram (EEG) (Lutzenberger et al., 1992;
Preißl et al., 1997; Gong et al., 2003; Stam and de Bruin,
2004; Racz et al., 2018b) – encouraged the investigation of
power-law scaling in time-varying network properties. Utilizing
a combination of dynamic graph theoretical analysis and
multifractal time series analysis, we recently revealed that both
global (Racz et al., 2018a,b) and local (Racz et al., 2019) properties
of functional brain networks fluctuate according to a multifractal
pattern, which may also be affected in pathological conditions

(Racz et al., 2020). However, a different aspect of connectivity
dynamics, namely the scale-free nature of the inter-regional
coupling itself, remained inaccessible to these approaches, which
mainly utilized a sliding window technique. In contrast to
the univariate approach, bivariate multifractal methods – such
as detrended cross-correlation analysis (Podobnik and Stanley,
2008) or wavelet-based analysis (Abry et al., 2019; Jaffard et al.,
2019a,b)– characterize fractal properties of the coupling between
dynamic processes; therefore, they would be able to capture
these aspects of functional connections. Furthermore, such
approaches could be adapted to the graph-theoretical framework
of FC analysis, where edge weights in the network would be
assigned as the fractal characteristics of the functional coupling
between the investigated brain regions. Networks reconstructed
by this approach would inherently represent the fluctuating
nature of the connections, in contrast to the traditional way of
reconstructing dynamic connections by calculating static indices
of interdependence in a sliding window approach. Despite this, to
date only a handful of studies investigated the scale-free aspects
of functional brain connectivity (Achard et al., 2008; Wang
and Zhao, 2012; Ciuciu et al., 2014; La Rocca et al., 2021). In
this present work, we set out to address this issue by applying
multifractal covariance analysis – introduced earlier by Mukli
et al. (2018) – for assessing resting-state functional connectivity
reconstructed from EEG measurements.

Some precautions must be addressed, however, when assessing
the scale-free properties of empirical signals. In the case of
univariate multifractal analysis, it is critical to verify that
the obtained indices indeed characterize an inherent property
of the observed process, and they not only represent noise
or numerical instabilities of the analysis itself (Kantelhardt
et al., 2002; Kwapień et al., 2005; Grech and Pamuła, 2012;
Rak and Grech, 2018). Similar considerations must be made
in the case of bivariate multifractal analysis. Therefore, it is
indispensable to verify the presence of true bivariate scale-
free coupling by carrying out appropriate statistical tests
of power-law cross-coherence (Kristoufek, 2014) and cross-
correlation (Wendt et al., 2009; Podobnik et al., 2011; Blythe
et al., 2016). Although true multifractality can be confirmed
with statistical certainty by extending the testing framework
applied for univariate analytical tools (Kantelhardt et al., 2002;
Clauset et al., 2009; Roux et al., 2009; Racz et al., 2019,
2020), these methods do not provide much insight into the
generating mechanism of bivariate multifractality. Depending
on the mechanism, bivariate multifractality could be considered
as a consequence of independent univariate dynamics (Wendt
et al., 2009; Jaffard et al., 2019a). On the other hand, an
appropriate testing framework may identify the genuine scale-
free nature of the coupling. This type of bivariate multifractality
corresponds to an inherent aspect of the relationship between
the processes that otherwise remains undetectable to univariate
fractal analysis. For this purpose – namely, to confirm the source
of bivariate multifractality –, we devise a testing procedure
building on previous studies (Wendt et al., 2009; Kristoufek,
2011) that compares the bivariate fractal measures with their
univariate equivalents obtained from the investigated time series
to reveal their origin.

Frontiers in Physiology | www.frontiersin.org 2 February 2021 | Volume 11 | Article 615961

DOI:10.14753/SE.2022.2667

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-615961 January 29, 2021 Time: 16:7 # 3

Stylianou et al. Bivariate Multifractal Analysis of Electroencephalogram

So far, the majority of bivariate fractal studies has focused on
the analysis of financial time series (Podobnik and Stanley, 2008;
Oświęcimka et al., 2014; Pal et al., 2014; Kwapień et al., 2015),
while only a few studies applied these tools on physiological
datasets (Wang and Zhao, 2012; Ciuciu et al., 2014; La Rocca
et al., 2021). Moreover, to the best of our knowledge there
have been no studies statistically validating the existence of
bivariate multifractality in coupled processes in the human brain
or body. Here we apply a novel bivariate method – exploiting
the focus-based regression scheme of Mukli et al. (2015) –
to investigate if functional connectivity, as reconstructed from
EEG recordings, may exhibit a coupled multifractal nature.
First, we design and perform a series of statistical tests to
confirm true scale invariance and multifractality of individual
connections. Second, we assess between-subject and within-
subject (i.e., regional) variability of bivariate multifractal indices
in order to explore the consistency and discriminatory power
of the presented method. Third, we explore whether scale-free
coupling displays a topology at the level of large-scale functional
networks in the brain. By confirming the plausible bivariate
multifractal nature of neural interactions, the present study may
not only enhance our understanding of how neural activity
is organized in time and space but also provide an efficient
analytical pipeline for capturing long-term interdependencies of
physiological processes even outside the human brain, on the
level of the entire organism.

MATERIALS AND METHODS

Data and Participants
The EEG database analyzed in this study was made publicly
available by Sockeel et al. (2016) and consisted of recordings from
12 right-handed, healthy participants (aged 26.6 ± 2.1 years, six
females). Each recording contained a 5-minute long segment of
resting-state, eyes closed neural activity in which the subjects
were lying supine and were listening to an audio recording
equivalent to the sounds of an MRI system. EEG tracing was
carried out using a 62-channel BrainAmp amplifier, in which
the electrodes were arranged according to the international
10–10 system. The sampling rate was set to 5 kHz with
the ground and reference electrodes placed at Oz and Cz
positions, respectively. Electrode impedance was kept under
10 k� during the recordings. The original study was approved
by the local ethics committee (Comité de Protection des
Personnes–Ile-de-France under the number CPP DGS2007-
0555), with measurements being carried out in accordance with
the Declaration of Helsinki. All participants provided written
informed consent before the measurement. For further details
on participants and data collection the reader is referred to the
original article of Sockeel et al. (2016).

Preprocessing
All preprocessing was carried out using Matlab (The Mathworks,
Natick, MA, United States). The procedure followed steps of
the Batch Electroencephalography Automated Preprocessing
Platform (Levin et al., 2018), which uses functions of the

EEGLAB toolbox (Delorme and Makeig, 2004) along with
custom functions and scripts. First, the data was visually
inspected; artifact-free segments of length approximately 55 s
long were selected and band-pass filtered with lower and upper
cut-off frequencies of 0.5 and 250 Hz, respectively. Additional
notch filters at 50, 100, and 200 Hz were applied for line noise
removal. Subsequently, the signals were downsampled from
5 kHz to 500 Hz. Further artifact removal was performed
using the Harvard Automated Processing Pipeline for
Electroencephalography (HAPPE) (Gabard-Durnam et al.,
2018). HAPPE implements a series of steps, including wavelet-
enhanced independent component analysis followed by
independent component analysis with Multiple Artifact
Rejection Algorithm (Winkler et al., 2011, 2014). Thus, signal
components that likely originate from sources other than neural
activity, such as eye movements or scalp muscle contractions,
were excluded. Finally, the pruned data was re-referenced to the
common average reference. Subsequently, the first 214 datapoints
(approximately 33 s) were selected from every preprocessed
dataset for further analysis.

Bivariate Focus-Based Multifractal
Analysis
The focus-based multifractal (FMF) analysis framework was
introduced by Mukli et al. (2015) in order to provide a robust
and efficient way of multifractal time series analysis. Originally,
FMF was put forward as a univariate method, i.e., to analyze
a single time series. The concept of FMF was then extended
to the bivariate domain in a later study (Mukli et al., 2018),
with the new method termed bivariate focus-based multifractal
analysis (BFMF). Such modification (as detailed below) made the
analysis of the multifractal aspect of coupled dynamics feasible
and robust, and constitutes the main advantage of BFMF over
other bivariate multifractal tools.

Specifically, BFMF is implemented in the time domain using
statistical moments (of order q) of the scale-wise covariance of
sampled time series X and Y (covxy) calculated at various window
sizes. In that, the scaling function, SXY , is defined according to

SXY
(
q, s
)
=

(
1

Ns

Ns∑
v=1

|covXY |(v, s)q

)1/q

(1)

with Ns being the number of non-overlapping windows of size
s indexed by v and L = 214 the length of the time series in data
points. The cumulatively summed signal is bridge-detrended in
each temporal window prior to calculating the covariance. Values
of q are set to range from −15 to 15 with increments of 1, as
this selection of moment orders is sufficient to reliably capture
multifractality (Grech and Pamuła, 2012). Scales are defined
according to a dyadic scale, i.e., as 2n with n ranging from 4 to
9; higher scales were excluded to avoid artifacts due to band-
pass filtering. Setting the scale s equal to the total signal length
L renders the sum in (1) independent of q. Consequently, in
the limit of s = L, values of S(q,s) converge to one point termed
the Focus (Figure 1). The Focus serves as an iterated reference
point in the regression model – based on the equations (18–21) of
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FIGURE 1 | End-point parameters of bivariate focus-based multifractal
analysis. Log-log transform of the scaling function [SXY (q,s)] vs. scale (s)
relationship is plotted. The generalized Hurst exponent [H(q)], for several
statistical moments (q), is acquired via linear regression with the Focus (solid
red circle) used as a reference point. H(2) expresses the long-term correlation
between the two time series. At the same time, the degree of multifractality
(1H15) is captured by the difference between H(q) at the minimal (–15) and
maximal (15) statistical moments.

Mukli et al. (2015) – that simultaneously estimates the best-fitting
linear function of log(s) to obtain log(S(q, s)) for all values of q.
The fitting procedure yields a set of power-law exponents (i.e.,
the slopes of the fitted linear functions), the generalized Hurst
exponent function (Barunik and Kristoufek, 2010):

SXY
(
q, s
)
∝ sH(q) (2)

From the estimated H(q), the ones of particular interest in this
study are H(2), H(−15), and H(15). H(2) is a measure of global
long-term interdependence between X and Y with the particular
case of H(2) = 0.5, indicating uncoupled dynamics. H(2) < 0.5
shows long-term anticorrelation while H(2) > 0.5 positive long-
term correlation of the two processes. Since multifractality
refers to the temporally altering nature of long-term (cross-)
correlations, the degree (or strength) of multifractality can be
considered as to what extent this property might change in the
process. Since positive and negative moment orders emphasize
the contributions of large and small covariance, respectively,
a measure characterizing the degree of multifractality can be
obtained by calculating the difference between the scaling
exponent obtained at the minimal and maximal moments
(Grech and Pamuła, 2012; Mukli et al., 2015). Therefore, in our
study multifractal strength was captured in 1H15 = H(-15) –
H(15), which provides a good and robust approximation of the
theoretical limit lim

q→∞
H
(
−q
)
−H(q) (Grech and Pamuła, 2012;

Mukli et al., 2015).

Assessing Multifractality
In order to verify the true multifractal nature1 of the functional
connections, an array of tests was utilized. The purpose of
these tests was to differentiate the true, time-varying scale-free
nature of these connections, emerging from the presence of
long-term cross-correlations, from those appearing as spurious
multifractality (Kantelhardt et al., 2002). First, we tested the
power-law dependence of the cross-spectral power on the scale,
based on the work of Clauset et al. (2009). In the case of a fractal
process, the spectral index (β) of its power spectrum represents
the slope of the fitted linear regression of the logarithmic
amplitude vs. frequency plot and is proportional to its univariate
Hurst exponent, Huniv(2) [β = 2Huniv(2)-1] (Eke et al., 2002).
This relationship also holds in the bivariate case, as the spectral
index of the cross-power spectrum of two processes expressing
fractal coupling is equivalent to β = 2Hbiv(2) −1 (Kristoufek,
2014), where Hbiv(2) is the bivariate Hurst exponent. Therefore,
the cross-power spectrum of the two processes is suitable for
identifying the plausible power-law dependence in their coupling.
For each pair of time series, 40 surrogates were generated whose
value of Huniv(2) was equal to that of Hbiv(2), according to
the spectral synthesis method (Saupe, 1988). Then, a linear
regression model was fitted to the log-log transformed power-
spectrum and a Kolmogorov distance was calculated for every
generated time series denoting its maximal distance from its
power-spectrum (Duniv). The distribution of Duniv was compared
with the maximal distance of the linear function fitted to
the log-log transformed cross-power spectrum of the original
connection (Dbiv). The original connection was considered scale-
free (successful test), if

Dbiv < µ(Duniv)+ 2σ(Duniv) (3)

where µ(Duniv) and σ(Duniv) are mean and standard deviation
obtained from the Duniv distribution. Onward, µ() represents
the mean and σ() indicates the standard deviation of the
distribution in question.

In addition, we examined the detrended cross-correlation
coefficients (ρ) calculated for each scale by adopting a method
proposed by Podobnik et al. (2011):

ρ (s) =
S2

XY (2, s)
SX (2, s) SY (2, s)

(4)

where SX(2, s), SY(2, s), and SXY(2, s) are the scaling function
values for scales s and the 2nd order statistical moment
of time series X, Y and their connection, respectively. We
used a stochastic binomial cascade algorithm (Schumann and
Kantelhardt, 2011) to generate a population (100 pairs) of
multifractal signals with L, H(2) and 1H15 adjusted to the
univariate time series concerned. In line with the refinement of
Blythe et al. (2016), all coefficients were tested simultaneously
for every scale. Thus, the null hypothesis was only rejected
if statistical analysis confirmed that the original ρ(s) exceeded

1The multifractal nature of the coupling was based on the dichotomus model
of fractional Gaussian noise and fractional Brownian motion (Eke et al., 2000)
extended to the multivariate setting (Lavancier et al., 2009).
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that of the surrogate population of cross-correlation coefficients
for each scale, yielding an overall p < 0.05. Accordingly, the
individual significance levels were set to (0.05)1/6. Connections
that passed the test were considered to have genuine long-term
interdependence.

To test if the observed multifractality was due to non-
linearities, the following phase randomization scheme was
applied. Forty surrogates for each time series were generated
by: (i) Fourier transforming the data of all channels and
(ii) randomly permutating the phases before inverse Fourier
transformation of the spectrum (Prichard and Theiler, 1994).
Since the same permutation was carried out to randomize the
phases of data from all channels, this procedure destroyed the
non-linear interdependencies between the signals while the linear
dependencies remained intact. If the original 1H15 (1H15,orig)
did not satisfy the inequality

1H15,orig > µ(1H15,sur)+ 2σ(1H15,sur) (5)

true multifractality due to non-linearity could
not be confirmed.

Shuffling of time series is necessary to distinguish between
correlation- and distribution-type bivariate multifractality
(Wang et al., 2012). Since shuffling destroys all long-term
correlations within (Kantelhardt et al., 2002) and between
(Louis et al., 2010) the signals, the shuffled time series are
expected to show diminished multifractal profile if their bivariate
multifractality is due to long-term correlations. Forty shuffled
surrogates were generated from every original signal that resulted
in a distribution of H(2) and 1H15 values for every connection.
Consequently, the following inequalities between the original
and shuffled datasets were investigated:

Horig (2) > µ(Hshfl (2))+ 2σ(Hshfl (2)) . . .

Horig (2) < µ(Hshfl (2))− 2σ(Hshfl (2)) (6a)

1H15,orig > µ(1H15,shfl)+ 2σ(1H15,shfl) (6b)

If inequalities (6a) and (6b) hold, then the multifractal
character of the connection can be attributed to long-term cross-
correlations.

The final assessment was the bivariate-univariate Hurst
exponent relationship test, which investigated if further
information could be retrieved from bivariate multifractal
analysis compared to univariate multifractal analysis. Assume
two time series X and Y with HXY (2), HX(2), and HY (2) being
their bivariate and univariate Hurst exponents, respectively. If
HXY (2) does not differ significantly from the arithmetic mean
of HX(2) and HY (2), then the bivariate exponent refers to a
scale-free coupling whose Hurst exponent can be predicted
from its univariate equivalents (Kristoufek, 2011). In this test,
40 datasets were generated for each time series with the same
univariate H(2) as that of the original signal, according to the
spectral synthesis method (Saupe, 1988). Afterward, the true
scale-free nature of the EEG signal was evaluated by performing a
univariate power-law test [for details see Racz et al. (2018b)]. For

every pair of time series that passed the univariate power-law test,
the average of their Hurst exponents, HXY,gen(2), was calculated
in each of the 40 generated datasets resulting in a distribution.
The original HXY(2) was then compared in the following fashion:

HXY (2) > µ(HXY, gen (2))+ 2σ(HXY, gen(2)) (7a)

HXY (2) < µ(HXY,gen(2)) − 2σ(HXY,gen(2)) (7b)

If any of the two inequalities was met, then the pair of
time series passed the test and their bivariate multifractality was
considered intrinsic to the connection. Conversely, a connection
failing the bivariate-univariate test was viewed as a case of
extrinsic multifractality. This extrinsic multifractality possibly
belongs to a functionally non-significant type of bivariate
multifractality due to autocorrelation effects (Kristoufek, 2011;
Arbabshirani et al., 2014).

Brain Parcelation and Graph
Construction
To reduce the dimensionality of data while also providing a
basis for physiological interpretation, a brain parcelation scheme
proposed by Giacometti et al. (2014) was applied. The 62
EEG electrodes were grouped based on electrode proximity to
seven – functional magnetic imaging (fMRI) labeled – resting-
state networks (RSNs) as specified by Thomas Yeo et al. (2011)2.
Due to the great degree of overlap in electrode locations between

2Note that the optimal method of matching EEG channels to RSNs (or more
correctly to regions of interest) is by source-reconstruction (Michel and Brunet,
2019) and subsequent generation of time-series for each RSN. Our parcelation
targeted mainly the dimensionality reduction and hence no strong conclusions
about RSNs should be made based on this. For a source-reconstructed scale-free
functional connectivity study we suggest reading (La Rocca et al., 2021).

FIGURE 2 | Resting-state networks (RSNs). Electrodes were grouped to
represent six RSNs: the visual network (VN, 10 channels), the somatomotor
network (SM, 10 channels), the dorsal attention network (DA, 9 channels), the
combined ventral attention and limbic networks (VAL, 12 channels), the
frontoparietal network (FP, 8 channels) and the default mode network (DMN,
13 channels). Brain maps were created using the BrainNet Viewer software
(Xia et al., 2013) after electrode positions were transformed to match a
template head using SPM 12b (Penny et al., 2007). The figure originally
appeared in Racz et al. (2019).
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the ventral attention and limbic system networks, these were
combined into a ventral attention-limbic network (Figure 2),
as in Racz et al. (2019). This parcelation thus resulted in 6
RSNs and 15 RSN-to-RSN connections, whose indices were
obtained by averaging the obtained values [H(2) and 1H15] of
corresponding connections. We examined connections within
each RSN (within-RSNs) and connections between different
RSNs (between-RSNs) separately.

Statistical Analyses
Following the previously described analytical pipeline and brain
parcelation scheme, the obtained results were organized into a
12 × 6 within-RSNs matrix (12 subjects, 6 RSNs) and a 12 × 15
between-RSNs matrix (12 subjects, 15 RSN-to-RSN connections)
for H(2) and 1H15, separately. To evaluate the consistency of
results among subjects, Kendall’s coefficient of concordance (W)
was calculated in every matrix. As to verify if cortical localization
affected multifractal connection dynamics (i.e., to investigate if
multifractal properties of functional connections vary according
to various brain regions), we performed the Friedman test
with level αs = 0.05 and pairwise comparisons (paired sample
t-test if distributions were normal, Wilcoxon signed-rank if at
least one distribution was non-normal, normality was evaluated
by Lilliefors test) followed by Benjamini–Hochberg correction
(αs = 0.05) (Yekutieli and Benjamini, 2001).

Finally, to further confirm the significant effect of spatial
localization, 100 surrogate datasets were generated, where in
every iteration the labels of the channels were randomly
permuted before performing the brain parcelation. Subsequently,
the Friedman tests were carried out and Kendall’s coefficient
of concordance was calculated. The effect of localization was
considered statistically significant if the p-value obtained from
the Friedman test failed to reach significance (i.e., p > 0.05) in
at least 95 out of 100 cases. W values of the original dataset were
validated as statistically significant only if they were above the
95th percentile of the W resulted from the distribution of the 100
generated datasets.

RESULTS

Verifying Bivariate Multifractality
The results of the bivariate multifractality assessment tests
are summarized in Table 1. At the subject level, 86.5 ± 5%
(mean ± standard deviation) of the total connections
passed the power-law test, validating their scale-free

TABLE 1 | Success rate of the different scale-free assessing tests at the subject
level (mean ± standard deviation).

Performed Test Success Rate

Power-Law Test 86.5 ± 5%

Detrended Cross-Correlation Coefficient Test 100%

Phase Randomization Test 100%

Shuffling Test – H(2) 99.7 ± 0.3%

Shuffling Test – 1H15 100%

nature. The detrended cross-correlation coefficients of all
links were found to be significantly higher than those of
the surrogate datasets, validating the existence of long-
term cross-correlations. All connections passed the phase
randomization test, which verified true multifractal coupling
due to non-linear interactions. The shuffling test revealed
that inequalities (6a) and (6b) held for 99.7 ± 0.3% and
100% of all connections, respectively. These results confirm
that the observed multifractality was attributed to long-term
cross-correlations.

Intrinsic vs. Extrinsic Multifractality of
Connections
We considered bivariate multifractality as having extrinsic origin
if it failed the bivariate-univariate Hurst exponent relation
test (equations 7a and 7b) and intrinsic otherwise. The results
revealed that a relevant proportion (52.4± 6.9%) of the observed
functional connections had intrinsic scale-free characteristics.
Group-averaged H(2) networks separately reconstructed
from intrinsic and extrinsic multifractal connections are
shown in Figure 3. There is a clear distinction between
the two networks [the correlation between the bivariate
H(2) values consisting of the two networks expressed in
Pearson’s r = −0.98, p < 0.001]. Specifically, within-RSNs
connections tend to have stronger intrinsic multifractality,
while the between-RSNs links show a higher degree of extrinsic
multifractality.

To further illustrate these results, for every connection
we calculated its averaged probability of expressing intrinsic
multifractality when compared to the distribution of surrogates

FIGURE 3 | Z-scores of intrinsic and extrinsic H(2) network connections. The
intrinsic network consisted of the H(2) values of connections that passed the
bivariate-univariate Hurst exponent relationship test, connections that failed
were represented as 0. The extrinsic network consisted of the H(2) values of
connections that failed the bivariate-univariate Hurst exponent relationship
test, connections that passed were represented as 0. Subsequently, the
Z-scores of the connections were calculated. Z-scores represent deviation
from the population average and their values are indicated by the color bar.
The edges serve as the between-RSNs connections with color representing
the strength of the connection. The outer ring comprises of the 6 RSNs with
the color indicating the Z-score of within-RSN connections.
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FIGURE 4 | Probabilistic network of intrinsic multifractality. The probability was
obtained through the Z-score of the original bivariate Hurst exponent of the
connection compared to the surrogate distribution created in the
bivariate-univariate Hurst exponent relationship test. The edges serve as the
between-RSNs connections with color representing the population average
probability of the connection showing intrinsic multifractality. The outer ring
comprises of the 6 RSNs with the color indicating the population average
probability of within-RSNs connections being intrinsically multifractal.

characterized only by extrinsic multifractality (Figure 4). Two
RSNs stood out from the rest, namely the default mode
network (DMN) and the dorsal attention network (DA).
Not only connections within these RSNs showed a higher
probability of intrinsic multifractality when compared to other
RSNs, but also the same could be observed for connections
linking these to RSNs in comparison to other between-
RSNs connections.

Network Comparison
Two networks were constructed from the results obtained by
BFMF analysis, one from H(2) and one from 1H15 values of
functional connections (Figure 5). The two networks showed
markedly different patterns (the correlation between the two
networks expressed in Pearson’s r = −0.6609, p < 0.01).

FIGURE 5 | Z-scores of constructed networks using H(2) and 1H15 as
functional connectivity estimators. Z-scores represent deviation from the
population average and their values are indicated by the color bar. The edges
serve as the between-RSNs connections with color representing the strength
of the connection. The outer ring comprises of the 6 RSNs with the color
indicating the population average strength of the within-RSNs connections.

Specifically, it appeared that H(2) and 1H15 of functional
connections were inversely related, as within-RSNs connections
expressing higher H(2) values could be characterized with lower
1H15, and vice versa. The same inverse relationship could
be observed for the multifractal properties of between-RSNs
connections, although less prominently.

Effect of Subject and Regional Variability
The between- and within-subject variability of connections in
both network types were analyzed using Kendall’s W, Friedman
tests and paired difference tests. For the H(2) network, Kendall’s
W values of 0.72 and 0.65 were obtained for between- and within-
RSNs connections, respectively, indicating strong concordance
among subjects. Friedman tests revealed a significant main effect

FIGURE 6 | Effect of regional variability. Significance of connection-to-connection comparisons of within- (A) and between- (B) RSNs after the appropriate correction
for H(2) and 1H15. Blue: Only 1H15 comparison test was significant. Orange: Only H(2) comparison test was significant. Green: Both H(2) and 1H15 comparison
tests were significant.
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TABLE 2 | Results of Kendall’s W, success rate for individual paired difference
tests after correction and Friedman test for H(2) and 1H15 for between-
and within- RSNs.

Kendall’s W Paired difference
test success rate

Friedman Test p

H(2) Between-RSNs 0.72 68.6% <0.0001

H(2) Within-RSNs 0.65 73.3% <0.0001

1H15 Between-RSNs 0.44 40% <0.0001

1H15 Within-RSNs 0.47 40% <0.0001

of localization (p < 0.0001). 68.6% of the between-RSNs and
73.3% of the within-RSNs of the pairwise post hoc tests were
found significant. The W values of the 1H15 network were 0.44
and 0.47 for between- and within- RSNs connections, suggesting
moderate subject agreement. Friedman test again indicated a
significant main effect of localization for the 1H15 values of
functional connections (p < 0.0001), while 40% of the paired tests
of between- and within-RSNs connections indicated a significant
difference. Moreover, the two different networks displayed mostly
different connections as statistically different (Figure 6). Table 2
summarizes the results of the statistical tests performed on H(2)
and 1H15 networks.

To further validate that cortical localization significantly
impacted connection dynamics, the parcelation scheme was
evaluated against n = 100 spatially shuffled surrogates (see
section “Materials and Methods”). In that, only 1% of the
generated datasets showed p-values smaller than 0.05 after
shuffling the channel labels. Moreover, Kendall’s W values for
between-RSNs and within-RSNs for both H(2) and 1H15 were
found significantly higher than those obtained from randomized
data. These results further confirm that functional connections
linking various regions of the brain express different scale-free
characteristics.

DISCUSSION

In this study, we present a novel bivariate adaptation of focus-
based multifractal time series analysis and show its applicability
for studying the spatiotemporal organization of functional brain
networks. The main contribution of this work, therefore, lies
with the utilization of the BFMF method and its associated
statistical framework for the reconstruction of brain networks
based on scale-free coupled dynamics. In that, using detrended
covariance as a time-domain measure for BFMF, we examined
the fractal connectivity by calculating bivariate H(2) and 1H15
for each pair of processes, thereby assessing linear and non-linear
aspects of their scale-free dynamics, respectively. The applied
tests were essential in validating our findings and confirming
that most of the connections were indeed multifractal. Moreover,
with a combined application of bivariate and univariate focus-
based multifractal analysis, we revealed whether the observed
cross-regional temporal dynamics emerged from genuine scale-
free interactions intrinsic to the connection, or were simply
a consequence of long-term autocorrelation present in both
processes. The reconstructed networks and their topology were

highly consistent among subjects, while significant regional
variability over the cortex was also observed. Our findings
demonstrate that BFMF is an analytical tool capable of capturing
scale-free coupled dynamics of physiological networks, a feature
that may otherwise remain undetected by univariate fractal
analytical methods.

Bivariate Multifractality in the Brain
Despite the ubiquity of scale-free characteristics in neural
dynamics (He et al., 2010), only a limited number of studies
investigated the fractal nature of the functional coupling between
these processes. Ciuciu et al. (2014) assessed scale-free coupling
of neural dynamics from fMRI datasets using frequency-
and wavelet-based measures, thereby having to resort to an
inherently low temporal sampling rate limiting both the precision
and possible interpretation of their results. Other functional
connectivity studies verified the presence of scale-free coupling
in magnetoencephalography recordings using wavelet coherence
function (La Rocca et al., 2021). The only bivariate scale-free
study of EEG datasets was an exploratory investigation reporting
significant differences in the bivariate multifractal profiles
between young and elderly populations (Wang and Zhao, 2012).

Although these works reported on relevant aspects of neural
dynamics, they did not provide statistical tests for the validation
of the true multifractal nature of the investigated connections.
This study aimed to rectify this limitation by adapting univariate
scale-free assessment tests in the bivariate setting, as well as
improving already-existing bivariate equivalents. Most of the
analyzed connections in our study showed genuine multifractal
coupling due to long-range cross-correlations, as indicated by
the high success rates in the power-law, detrended cross-
correlation, phase randomization and shuffling tests. It was
indispensable to examine the presence of power-law relationship
since coupled oscillatory dynamics confined to a specific time
scale/frequency range might be present in our dataset. Robust
detection of this feature was ensured by a statistical framework
implemented in the frequency domain (Clauset et al., 2009).
Moreover, the detrended cross-correlation coefficients of the
original connections were significantly different from those of
surrogate data at every scale, directly indicating the presence
of scale-free long-term cross-correlations in the time domain
(Podobnik et al., 2011). The purpose of phase randomization
was to yield a population of surrogate data with abolished
non-linearity (Prichard and Theiler, 1994). Comparing the
multifractal characteristics of the surrogate population with those
of the original data revealed that multifractality was indeed a
consequence of the non-linear nature of the coupling between
processes. The shuffling test, which distinguished between
correlation- and distribution-type multifractality (Kantelhardt
et al., 2002), indicated that most of our connections were of
the former type. However, the bivariate multifractality of EEG-
signals observed in this study can be attributed only partly
to long-term cross-correlations, since the finite size effect will
always contribute to the observed multifractality (Grech and
Pamuła, 2012). To the best of our knowledge, our study is
the first to statistically validate the existence of multifractality
between elements of a physiological network, in this case the
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brain. However, our findings may also open the way for the
investigation of other networks of the human organism, whose
constituents also express scale-free dynamics [such as heart rate
variability (Ivanov et al., 1999, 2004; Nunes Amaral et al., 2001;
Bartsch et al., 2005), gait variability (Bartsch et al., 2007), muscle
activity (Santuz and Akay, 2020), breathing (Fadel et al., 2004),
or blood glucose level fluctuations (Weissman and Binah, 2014)].
By applying BFMF to assess the coupling in such systems, novel
aspects of their interactions could be revealed that have not yet
been accounted for.

An essential aspect of scale-free interactions is whether
the observed multifractality is an intrinsic property of the
relationship. Considering the fact that covariance estimation is
influenced by the autocorrelation of the signals (Arbabshirani
et al., 2014), we can safely assume that the intrinsic multifractality
of a connection represents true statistical interdependence
between the different brain regions while a large part of
extrinsic multifractality could be ascribed to autocorrelation
effects (Kristoufek, 2011). According to Figures 3, 4, while
the between-RSNs connections showed a mostly extrinsic
type of multifractality, the within-RSNs connections mainly
featured intrinsic multifractality. This finding to some extent
can be evident since a higher number of intrinsic (i.e., true)
multifractal connections could be expected to exist within
functionally cohesive neural populations, such as RSNs (van
den Heuvel et al., 2010), as opposed to the links between
them. These results may further support the notion that
cortical regions that are considered to form RSNs are: (i)
indeed functionally coupled and (ii) segregated from the rest
of the brain (to some extent). Another noteworthy finding
illustrated by Figure 4 is that the default mode network,
dorsal attention network and the connections between them
showed the highest probability of intrinsic multifractality.
DMN comprises of brain regions with increased FC during
idling (Chen et al., 2008), and considering that the analyzed
datasets were obtained in the resting-state, we can expect
strong within-DMN connectivity. On the other hand, DA has
increased FC during tasks that require attention (Vossel et al.,
2014), making the high probability of intrinsic multifractality
of connections both within DA and between DA and DMN
unexpected. A recent study (Murphy et al., 2020) indicated an
indirect functional connection between DMN and DA mediated
by the frontoparietal network, providing partial support for
our findings of a high chance of intrinsic multifractality in
the DMN-DA connections. Although our parcelation scheme
prevents us from drawing stronger conclusions on the activities
of RSNs, our findings still allow a clear demonstration
of the regional variability of scale-free coupling in large-
scale brain networks.

The origin of scale-free/multifractal nature in brain activity
is still an active field of research, which yet remains to be
fully resolved. One plausible explanation may be provided from
the study of critical systems. Accordingly, the brain can be
considered as a complex system that exists at the brink of order
and chaos (Weil, 1994; Beggs and Timme, 2012; Hesse and
Gross, 2014), with its fine-tuned equilibrium and 1/f -dynamics
indicating the presence of self-organized criticality (SOC) (Bak

et al., 1987; Buzsáki, 2006). The concept of SOC emphasizes that
the brain tends to operate in a critical state (Bonachela et al.,
2010; Hesse and Gross, 2014), where even a local perturbation
can elicit a global response. In SOC-based interpretations of
neural dynamics, criticality is achieved by fine-tuning a control
parameter inherent to the brain. Despite options emerging
from electrophysiological experiments (Freeman, 2004; Buzsáki,
2006), the identity of this control parameter remains elusive,
sustaining a dispute within the neuroscience community over the
relevance of SOC in explaining the observed dynamics (Beggs
and Timme, 2012; Hesse and Gross, 2014). A likely candidate is
a balance between incoming excitatory and inhibitory signaling
of the neuronal populations. It has already been demonstrated
that power-law scaling at local field potentials and global
electromagnetic brain signals (Beggs and Timme, 2012; Poil
et al., 2012) can emerge through such equilibrium of incoming
excitatory and inhibitory stimuli. A similar model, attributed
to the balance between the two divisions of the autonomic
nervous system, has been suggested as the source of the scale-
free fluctuations of the heart rate variability (Ivanov et al., 1998;
Nunes Amaral et al., 2001). In line with these considerations, the
stochastic influx of excitatory/inhibitory signals may be a possible
source of bivariate multifractality of the brain networks, however
this hypothesis requires further research.

Aspects of Functional Coupling
Captured by BFMF
In this study, BFMF was used as a functional connectivity
estimator, from which two brain networks were reconstructed.
A network was defined by assigning the bivariate H(2) values
as edge weights, reflecting the topology of long-term cross-
correlation. Similarly, bivariate 1H15 values were assigned to
all connections forming a network that displays the topology
of the multifractal strength. It should be emphasized that
the obtained scale-free pattern of functional connections
appeared highly consistent among subjects, in agreement with
previous studies (Gong et al., 2003). Moreover, our results
indicated significant regional variability for both within- and
between- RSNs connections. This regional variation was notably
different between the H(2) and 1H15 networks (Figure 6),
emphasizing that these two measures of scale-free dynamics
are complementary to each other also in the bivariate setting.
The complementary nature of H(2) and 1H15 has already
been demonstrated in the univariate fractal analysis (Mukli
et al., 2015; Racz et al., 2018b). Furthermore, the two networks
yielded opposite patterns regarding their topologies, i.e., those
connections with high H(2) values were found to express low
1H15 values and vice versa (Figure 5). A similar relationship
between univariate H(2) and 1H15 was found in an earlier
study; however, only for delta band connections (Racz et al.,
2018b). In that work, synchronization likelihood was used as
a dynamic functional connectivity estimator and multifractal
properties of time-varying synchronization levels (i.e., dynamic
functional connections) were estimated using the univariate FMF
method. Since three out of the six scales (128, 256, 512 data
points) used in the current analysis fall within the delta band
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(0.5–4 Hz), this may explain the observed similarities with the
study discussed above.

A source of inconsistency among FC studies may emerge
from the application of various thresholding schemes. In that,
most studies use some form of pruning procedure to exclude
connections from the reconstructed networks that may be
spurious or originating from noise (Rubinov and Sporns, 2010;
van den Heuvel et al., 2017). Given that the primary goal
of the study was to demonstrate the existence of multifractal
coupling in brain networks as well as the introduction of a
new method for its assessment, our main analytical pipeline
did not contain a thresholding step. Nevertheless, in order
to explore the plausible effect of thresholding on scale-free
network topology we applied a parallel pipeline, which included
thresholding as follows. The 1H15 networks only included
connections that passed all four multifractality assessment
tests. H(2) networks consisted of links that successfully passed
the power-law, detrended-cross correlation and shuffling tests.
Further details about this parallel analysis are provided in the
Supplementary Material. Notably, the localization of intrinsic
multifractality and the H(2) and 1H15 networks architectures
were highly similar to the unthresholded case, while the regional
variability and subject concordance was found diminished
(Supplementary Figures S1–S3 and Supplementary Table S1).
The inference of this comparison is that intrinsic multifractality
only marginally depends on the thresholding procedures while
between- and within-subject variability of H(2) and 1H15
networks is clearly influenced.

Comparison of BFMF With
Scale-Dependent FC Estimators
Given the novelty of our method, it is important to compare
our results to those obtained by other FC methods commonly
used in the literature (van den Heuvel and Fornito, 2014). For
this purpose, we also reconstructed brain networks with the aid
of Pearson correlation (r) and Mutual Information (MI) (details
found in Supplementary Material). The purpose of this testing
was to investigate if BFMF could reveal network architectures
different from those obtained with scale-dependent linear or
non-linear methods, thus implying its utility in capturing novel
aspects of spatio-temporal neural dynamics. Since r and MI
are indeed scale-dependent, we analyzed our signals at the
same six scales as in BFMF analysis (16, 32, 64, 128, 256,
and 512 data points) in a non-overlapping windowed manner.
While the r networks showed a similar distribution of FC as
the H(2) network (Figure 5 and Supplementary Figure S4),
the MI networks did not resemble any of the two BFMF
networks (Figure 5 and Supplementary Figure S5). Moreover,
regional variability was more significant in the r and MI
networks (Supplementary Table S2), suggesting the influence of
oscillatory dynamics. These oscillatory dynamics, despite their
physiological correlates, cannot capture the scale-independent
network connectivity evaluated by BFMF. To conclude, these
results call for the careful interpretation of observed functional
connectivity patterns pertinent to the estimator used for their

assessment, while also highlight the fact that BFMF captured
patterns of neural dynamics that remained undetected by r or MI.

Limitations and Future Perspectives
Finally, the limitations of this study should also be addressed.
The 5-minute eyes-closed resting-state EEG recordings did not
allow for a comparison of networks under different mental states,
which have been shown to influence the fractal properties of
neural dynamics (Ciuciu, 2012; Ciuciu et al., 2014). Nevertheless,
as the primary objective of this study was to demonstrate
the applicability of BFMF as a novel tool for reconstructing
physiological networks of functional significance. For that
purpose, a homogenous resting-state EEG dataset was sufficient,
while subsequent research should indeed consider more elaborate
experimental paradigms. Even though more than half of the
connections showed intrinsic multifractality in every subject,
at the population level there was only a tendency (maximal
probability was 0.91) of localization of intrinsically multifractal
connections within the resting-state networks (Figure 4).
A possible explanation of this could be the low sample size of the
study. It is reasonable to assume that future studies with a larger
subject cohort could further confirm enhances the significance
of this dichotomous model. Due to limitations of the applied
parcelation scheme in demonstrating RSN-dependent contrast
of bivariate multifractal measures, more elaborate experimental
paradigms are needed for a thorough investigation of the origin
of the scale-free character between and within the different
RSNs via source-reconstruction (La Rocca et al., 2021). Infra-
slow neural activity (<0.5 Hz) was not considered in this study
since our preliminary investigations showed that breakpoints of
the scaling function appear around 0.5 Hz (for further details
in bimodal multifractal analysis, see Nagy et al., 2017). In
future investigations, low-frequency EEG could be examined by
a scaling-range adaptive, bimodal extension of BFMF, which
appears as a reasonable next step considering recent advances
in the analysis of multimodal fractal time series (Nagy et al.,
2017; Mukli et al., 2018). These investigations should include
high-pass filtering with a much lower cut-off frequency, which
however will also require appropriate measurement length and
sampling rate. The relevance of this consideration is supported by
findings from fMRI recordings indicating that frequencies closer
to 0.01 Hz contribute to multifractal functional connections to
a greater extent (Ciuciu et al., 2014). Our study investigated
only one exemplary case of physiological networks, namely
functional networks of the human brain. In general, investigation
of any biological process observed for a sufficiently long period
of time and sampled at adequate temporal resolution could
benefit from this method, as the BFMF framework enriches
the analytical repertoire suitable for investigating dynamic
physiological networks. In fact, multifractal covariance analysis
has revealed a genuine scale-free coupling between oxy- and
deoxyhemoglobin fluctuations (Mukli et al., 2018) that could be
ascribed to mechanisms of neurovascular coupling. A certainly
important direction of further research should be to implement
this methodology in clinical studies, especially in psychiatry,
where new biomarkers with good performance and reliability
in individualized treatment are much needed (Topol, 2019).
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Finally, even though BFMF was developed for the study of
physiological networks, it can still be applied in a variety of other
disciplines, like in the field of economics on which the bivariate
multifractal analysis has been focusing so far (Oświęcimka et al.,
2014; Pal et al., 2014).

CONCLUSION

Here we introduced the bivariate focus-based multifractal
analysis for the dynamic investigation of physiological networks
and showed that it captures novel features of resting-state brain
network dynamics. Namely, supported by statistical testing,
BFMF could reveal true multifractality in most of the functional
connections estimated from EEG signals. Moreover, topological
patterns identified with BFMF appeared robust, as indicated by
high subject concordance and strong regional variability. Our
results could facilitate further research on brain networks under
different experimental conditions using bivariate multifractal
analysis, as well as on extended physiological networks at the level
of the entire organism.
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The human brain consists of anatomically distant neuronal assemblies that are
interconnected via a myriad of synapses. This anatomical network provides the
neurophysiological wiring framework for functional connectivity (FC), which is essential
for higher-order brain functions. While several studies have explored the scale-specific
FC, the scale-free (i.e., multifractal) aspect of brain connectivity remains largely
neglected. Here we examined the brain reorganization during a visual pattern recognition
paradigm, using bivariate focus-based multifractal (BFMF) analysis. For this study, 58
young, healthy volunteers were recruited. Before the task, 3-3 min of resting EEG was
recorded in eyes-closed (EC) and eyes-open (EO) states, respectively. The subsequent
part of the measurement protocol consisted of 30 visual pattern recognition trials of 3
difficulty levels graded as Easy, Medium, and Hard. Multifractal FC was estimated with
BFMF analysis of preprocessed EEG signals yielding two generalized Hurst exponent-
based multifractal connectivity endpoint parameters, H(2) and 1H15; with the former
indicating the long-term cross-correlation between two brain regions, while the latter
captures the degree of multifractality of their functional coupling. Accordingly, H(2)
and 1H15 networks were constructed for every participant and state, and they were
characterized by their weighted local and global node degrees. Then, we investigated
the between- and within-state variability of multifractal FC, as well as the relationship
between global node degree and task performance captured in average success
rate and reaction time. Multifractal FC increased when visual pattern recognition
was administered with no differences regarding difficulty level. The observed regional
heterogeneity was greater for 1H15 networks compared to H(2) networks. These results
show that reorganization of scale-free coupled dynamics takes place during visual
pattern recognition independent of difficulty level. Additionally, the observed regional
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variability illustrates that multifractal FC is region-specific both during rest and task. Our
findings indicate that investigating multifractal FC under various conditions – such as
mental workload in healthy and potentially in diseased populations – is a promising
direction for future research.

Keywords: multifractal, functional connectivity, brain networks, electroencephalography, visual pattern
recognition

INTRODUCTION

The human brain is a complex system encompassing spatially
distinct neuronal populations interconnected via an intricate
axonal grid. Functional brain networks emerge within this
anatomical circuitry, which provides the neurophysiological
basis for higher-order brain functions (Van Hoesen, 1993).
For instance, visual pattern recognition requires coordinated
interactions among disparate brain regions such as the visual
cortex, where primary processing, and the association areas
in the parietal and frontal cortices, where high-level cognitive
evaluation takes place (Van Hoesen, 1993; Kandel et al.,
2012). Based on the hypothesis that regions that exhibit
statistically similar dynamics are functionally coupled, functional
neuroimaging methods allowed the reconstruction of functional
connectivity (FC) in the brain under cognitive (Friston et al.,
1993) and motor (Biswal et al., 1995) tasks. A paradigm shift
regarding resting-state studies occurred after discovering that
even in the absence of external stimuli the brain is organized in
resting-state networks (RSNs) (Raichle et al., 2001). This resting-
state neural architecture is altered during task through a series of
activations and deactivations of brain regions (Fox et al., 2005).
Accordingly, we believe that studying the brain under mental
workload could reveal valuable information.

Due to its high spatial resolution, functional magnetic
resonance imaging (fMRI) has been commonly favored as
the gold standard imaging technique for detecting task-related
changes of FC (Fox et al., 2005; Krienen et al., 2014; Di et al., 2015;
Elton and Gao, 2015; Kaufmann et al., 2017). Nevertheless, the
low sampling frequency and the physical constraints of the fMRI
systems present themselves as limitations when more elaborate
experimental paradigms are designed. Albeit at the cost of a
lower anatomical resolution, these limitations can be overcome
using electroencephalography (EEG) owing to its high sampling
rate and easy-to-use instrumentation. This led to numerous task-
related EEG studies, ranging from traditional tasks like n-back
(Hou et al., 2018; Kaposzta et al., 2021) and face perception
(Yang et al., 2015) to more complex designs like urban navigation
(Skroumpelou et al., 2015). By using a visual pattern recognition
paradigm, Racz et al. demonstrated an increase in scale-specific
FC during task (Racz et al., 2017); though, in that study the scale-
free aspect of the connections was not taken into consideration.

Various statistical approaches have been applied and/or
developed for characterizing the linear and nonlinear aspects
of the coupled neural activities (Bastos and Schoffelen, 2016).
A common limitation of these methods is that they capture
interdependence on a single scale, despite the fact that the scale-
free (or fractal) nature of the connections has already been
demonstrated in various modalities such as EEG (Wang and

Zhao, 2012; Stylianou et al., 2021), fMRI (Ciuciu et al., 2014) and
magnetoencephalography (Achard et al., 2008). The univariate
scale-free behavior of neural dynamics has already been shown
both regionally (Popivanov et al., 2006) and globally (Stam and
de Bruin, 2004). While estimating FC at a given time scale reflect
the coupling between oscillatory (narrowband) components
at specific cross-spectrum frequencies, our current approach
assumes a significant scale-free (broadband) component of the
cross-spectrum; a signature of statistical dependency spanning
a broad range of frequencies (scales). Moreover, the true
multifractal nature of coupled dynamics was recently validated
in resting-state EEG (Stylianou et al., 2021). Scale-free FC
estimators allow for capturing how the long-term memory and
multifractality of the coupled dynamics are spatially distributed
across brain networks; topological aspects that otherwise would
remain obscured. Visual pattern recognition requires sustained
interaction between brain regions involved in the processing of
the visual information, which can be captured as increased cross-
correlations (long-term memory) in the functional connections.
Furthermore, cognitive stimulation implies a shift in FC that is
typically governed by complex nonlinear dynamics (Rabinovich
and Muezzinoglu, 2010; Werner, 2010), which might alter the
multifractal profile of FC. To the best of our knowledge, this is the
first study investigating the task-related network reorganization
using multifractal connectivity analysis.

In the current study, we examined the task-related
reorganization of FC by applying a bivariate, focus-based
adaptation of multifractal analysis on EEG records. The task of
choice was a complex pattern recognition paradigm, which has
previously shown its utility in increasing FC in the prefrontal
cortex (Racz et al., 2017). Our primary objectives were: (i) to test
the hypothesis that shifts in scale-free coupled dynamics would
occur during the transition from rest to task; and (ii) to examine
the localization of multifractal FC within each mental state. Our
secondary aim was to assess the relationship between cognitive
performance and brain network measures reconstructed from
scale-free FC estimators.

MATERIALS AND METHODS

Participants
Fifty-eight young, healthy volunteers (24.2 ± 3.4 years
of age, 28 females, 9 left-handed) with no history of
psychiatric/neurological illness were recruited for the study.
Participants were instructed to have a good night’s sleep before
the day of the experiment. All subjects provided written informed
consent prior to the measurement. The study was designed and
carried out in accordance with the Declaration of Helsinki and
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FIGURE 1 | Measurement protocol for obtaining electroencephalography
records during resting states and subsequent visual pattern recognition. First,
resting-state recordings were made in 180 s periods with eyes closed and
eyes open, respectively. Then, the subject performed a pattern recognition
task in a block of 30 trials, each consisting of a 10 s or less of active period
and a 10 s passive period. In the active period, participants were presented a
large-size image (A) and its cropped sub-region (B) and were required to click
on (A) at the position of (B) if found (The picture of Figure 1 was taken from
https://alphacoders.com/users/profile/97828).

was approved by the Regional and Institutional Committee of
Science and Research Ethics of Semmelweis University (approval
number: 2020/6).

Measurement Protocol
All measurements took place in the Department of Physiology at
Semmelweis University in a quiet room under subdued ambient
illumination. During the measurement, participants were seated
comfortably in a chair in front of a computer monitor at
an approximate distance of 0.8 m from the screen and were
instructed to refrain from moving and facial expressions as
much as possible. The measurement protocol was designed and
implemented in MATLAB (version 2012, Mathworks, Natick,
MA, United States) according to a pattern recognition paradigm
modified after Racz et al. (2017). The session started with a
3-min eyes-closed (EC) period serving as a baseline, followed
by a 3-min eyes-open (EO) resting-state period, as a control
for the task state. Then, participants were engaged in a visual
pattern recognition paradigm consisting of a block of 30 trials
with active and passive periods (Figure 1). Specifically, in the
active period of a trial, the subject was allowed a maximum of
10 s to identify a sub-region of a grayscale image by clicking on its
assumed location; at that point, the active period was terminated.
The active period was immediately followed by a passive (task-
free) period, during which a gray background was displayed for
10 s. In this stimulation paradigm, a pool of 6 different grayscale
images was permutated. Each of them was shown 5 times in
total – with a different sub-region to be identified in each case –
thus yielding a total of 6 × 5 = 30 trials. To investigate the
impact of difficulty level, images were sorted into Easy, Medium
and Hard categories with 2 images in each. Their classification

was based on their complexity, defined as the file size ratio of
compressed/uncompressed images [cf. Equation 1 in Yu and
Winkler (2013)]. The order of the 30 trials was randomized
with a different permutation sequence for each participant. The
following metrics characterized the performance during pattern
recognition: (i) reaction time, defined as the time between the
beginning of the image presentation and response (left mouse
click on the image) and (ii) success, defined as 1 if the participant
correctly identified the sub-region’s location and 0 otherwise.
When the subject did not respond, the trial was considered a
failure (success = 0) and the reaction time was set to 10 s.

Data Acquisition
EEG signals were recorded by a wireless Emotive Epoc+ device
and its corresponding EmotivPRO software (Emotiv Systems
Inc., San Francisco, CA, United States). After ensuring low
electrical impedance (<20 k�), EEG signals from 14 brain
regions (10–20 standard montage locations: AF3, AF4, F3, F4, F7,
F8, FC5, FC6, T7, T8, P7, P8, O1, and O2) were recorded, at a
128 Hz sampling rate1. CMS and DRL electrodes at left and right
mastoid processes were used as reference.

Preprocessing
The EEG device applied built-in band-pass (0.2–45 Hz, digital
5th order Sinc) and notch (50 and 60 Hz) filters to the raw
data. To maximize the artifact-detection capacity of independent
component analysis (ICA), first we performed wavelet-enhanced
ICA (wICA) (Rong-Yi and Zhong, 2005; Gabard-Durnam et al.,
2018). The purpose of wICA was to exclude wavelet components
with coefficients higher than a certain threshold, resulting in the
removal of high amplitude spikes. Subsequently, we manually
excluded non-brain components, as ICA isolated them. wICA
was performed in an automated manner, while the EEGLAB
toolbox (Delorme and Makeig, 2004) was used for manual ICA.

Estimation of Multifractal Functional
Connectivity
The scale-free coupled dynamics were estimated with bivariate
focus-based multifractal analysis (BFMF), introduced by Mukli
and colleagues (Mukli et al., 2018). The applicability of BFMF
for multifractal FC estimation was demonstrated previously
(Stylianou et al., 2021). Here we only provide a summary of
the method, while further details are found in the references
mentioned above. The scaling function SXY (Figure 2) of two
EEG time series (X and Y) of length L datapoints can be
calculated as:

SXY
(
q, s
)
=

(
1
Ns

Ns∑
v = 1

|covXY (v, s) |q
)1/q

, (1)

where Ns denotes the number of bridge-detrended, non-
overlapping windows of size s (s = 2n with n being integers
ranging from 2 to 8) indexed by v. The statistical moment order

118 recordings were carried out at 256 Hz sampling rate which were downsampled
to 128 Hz prior to further preprocessing.
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FIGURE 2 | Multifractal time series analysis and its endpoint parameters. On the upper panels, a representative pair of 2048 datapoint-long EEG segments (from
Subject01) is displayed along with the windowing scheme for a smaller (s = 64, shown in yellow) and larger (s = 128, shown in purple) scale, which illustrates the
calculation of covariance scaling function [SXY (q,s) displayed in the lower panel] according to Eq. 1. The Focus (red disk) is used as a reference point when
simultaneously fitting linear models in the log-log transform of the SXY (q,s) vs s, the essential step of BFMF. The slope of each linear regression line represents the
generalized Hurst exponent [H(q)] (shown for q = –15, +2, +15). H(2) describes the long-term cross-correlation between the signals X and Y, while the degree of
multifractality (1H15) is captured in the difference between H(q) values at the extreme [i.e., minimal (–15) and maximal (15)] statistical moments.

(q) ranges from−15 to 15 with increments of 1 and the window-
wise covariance between simultaneous s-size segments of X and Y
is denoted by covXY (v, s). When q = 0, the scaling function takes
the form:

SXY (0, s) = e[
1

2Ns
∑Ns

v = 1 ln(|covXY (v,s)|)] (2)

In the special case when the whole segment is used for
obtaining the scaling function [SXY (q,L)], the sum in Eq. 1
becomes independent of q and thus, the scaling function
values of all moments converge to a so-called Focus. This
Focus serves as a reference point when regressing for the
log[SXY (q,s)] vs log[s] relationship for every q simultaneously.
In contrast with the standard approach where separate q-wise
assessments of the power-law relationship are applied, fitting
all statistical moments simultaneously results in a more robust
analysis (Mukli et al., 2015). This is achieved by enforcing
the monotonous decay of regression slopes, which represent
the generalized, q-dependent bivariate Hurst-exponent function
H(q). The special case of H(2) depicts the global long-term cross-
correlation in the coupled dynamics underlying the functional

connection. If this bivariate H(2) is greater than 0.5, then
there is functional coupling exhibiting long-term memory.
H(2) = 0.5 indicates uncorrelated, uncoupled dynamics, while
H(2) < 0.5 demonstrates anticorrelated coupling (Eke et al.,
2002; Kristoufek, 2014). 1H15, calculated as H(-15)-H(15),
captures the degree of multifractality, an indicator of the
q-wise dependence of the scaling function on large and small
covariances. The whole segment of each trial (active section +
10 s of passive period) was analyzed with BFMF. As for the
resting-state conditions, 9 non-overlapping segments of 20 s for
each of the EC and EO states were analyzed. To remove the
effect of different time lengths due to various response times, we
also performed analyses adjusted to the length of time series (see
Supplementary Material).

Assessing Multifractality
A series of statistical tests evaluated the true scale-free nature
of the connections. In short, the purpose of these tests was
to: (i) validate the power-law relationship of the connection
both in the frequency and time domains (spectral slope
and detrended cross-correlation coefficient tests, respectively),
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(ii) distinguish true from spurious multifractality (phase
randomization and shuffling tests), and (iii) determine if the
emerging coupling between the two processes is genuine or
only reflects a mere autocorrelation within each EEG signal
(bivariate-univariate Hurst comparison). This series of tests
reveal the qualitative nature of bivariate multifractality, which
is assessed independently from its quantitative changes in this
study. The complete account of the testing procedure followed
in this study was reported elsewhere (Stylianou et al., 2021).
We expanded the test yielding a distinction between extrinsic
and intrinsic multifractality referred to as bivariate-univariate
Hurst comparison. In our previous paper, only the inequality
between the bivariate Hurst exponent and the mean of the
univariate Hurst exponents comprising the connection was tested
(Stylianou et al., 2021). In the present study, we considered a
bivariate-univariate Hurst comparison test successful only when
the bivariate H(2) was lower than the mean of its univariate H(2).
This choice was made based on the fact that bivariate H(2) can
exceed the mean of univariate H(2) only due to the finite length
or non-normal distribution of the time series (Kristoufek, 2015a,
2016).

Brain Network Construction
We then proceeded with reconstructing functional networks
and analyzing their architecture. For each subject, we isolated
48 different EEG segments (9 EC, 9 EO, 10 Easy, 10 Medium
and 10 Hard). For each connection, the H(2) and 1H15 values
obtained in the 5 different states were averaged, resulting in 5
different values per subject. Altogether, 5-5 (i.e., fully connected)
networks (EC, EO, Easy, Medium, Hard) were reconstructed
for every subject, based on either their H(2) or 1H15 values.
In these analyses, we used untresholded networks as we did in
our previous studies of EEG-based functional connectivity (Racz
et al., 2018, 2019, 2020; Kaposzta et al., 2021). We characterized
network topology via the local (D) and global (D) weighted node
degrees from the H(2) and 1H15 values of each connection, since
earlier we found that in small networks, clustering coefficient
and efficiency were highly correlated with node degree (Kaposzta
et al., 2021). D represents the total connection strength of a
node, while D (the average of all D) is an indicator of the
network’s interconnectivity2. The calculations of D and D were
carried out using functions of the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Statistical Evaluation
We evaluated between-states (e.g., Hard vs EC) and within-
states (e.g., O1 vs O2 in EO) differences for both H(2) and
1H15 networks. To rule out that the observed differences
could be attributed to opening of the eyes, we included both
resting-state periods in the statistical evaluation. Therefore, the
between-states comparisons consisted of global D and local D
comparisons of the 5 different states (EC, EO, Easy, Medium,
Hard). Since the normality assumption (Lilliefors test) was

2D
∑n

i = 1 ci where n represents all possible edges of a node, while ci is the strength

[either H(2) or 1H15] of the ith connection. D =
∑N

j = 1 Dj
N where N represents all

nodes of the network, while Dj
W is the weighted degree of the jth node.

not satisfied for all distributions, we used the non-parametric
Friedman test. Subsequently, paired comparisons were used to
identify specific pairwise differences. If any of the two populations
under investigation were non-normally distributed, Wilcoxon
signed-rank test was carried out. If both distributions were
normal, a paired sample t-test was used. Benjamini-Hochberg
(BH) correction (with α = 0.05) (Benjamini and Hochberg, 1995)
was used to adjust for multiple testing. Then, we investigated
the regional differences within every state’s local D (i.e., 91
comparisons for each of the 5 states). The same statistical tests
as in the between-states comparisons were utilized. Moreover, we
estimated Kendall’s coefficient of concordance (W) of D for both
H(2) and 1H15 networks for each state.

We also contrasted the average success rate (SR) and average
reaction time (RT) between the 3 difficulty levels, applying the
same statistical pipeline as described above. Then we investigated
the plausible relationships between performance metrics and
network architecture since scale-free FC and behavioral variables
have already been shown to correlate (Ciuciu et al., 2014). In that,
we examined the effect of FC on task performance by calculating
the Spearman’s rank correlation (r) between SR-D and RT-D for
each difficulty level. Every step of our analytical pipeline was
implemented in MATLAB (version 2012, Mathworks, Natick,
MA, United States).

RESULTS

Qualitative Assessment of Bivariate
Multifractal Character
Table 1 summarizes the percentage of connections passing each
multifractal test. The 5 different states showed similar success
rates in the spectral slope, phase randomization and 1H15 part
of shuffling tests (the latter comparing the original 1H15 with
that of shuffled surrogates). On the other hand, the rest states
exhibited higher success rates in the bivariate-univariate Hurst
comparison test and passed the detrended cross-correlation
coefficient tests more frequently. Finally, comparing the original
H(2) with that of shuffled surrogates had a higher success rate in
the task states. As a result, more connections showed scale-free
characteristics in the rest states (Table 2).

TABLE 1 | Success rate of multifractality tests at the subject level
(mean ± standard deviation).

Tests

PL PR S1H15 S-H(2) DCCC Biv-Univ

EC 92 ± 7% 96 ± 4% 99 ± 2% 70 ± 18% 93 ± 4% 85 ± 18%

EO 94 ± 3% 96 ± 6% 98 ± 4% 76 ± 16% 93 ± 4% 86 ± 15%

Easy 93 ± 2% 97 ± 4% 99 ± 2% 90 ± 8% 64 ± 19% 65 ± 17%

Medium 94 ± 2% 97 ± 4% 99 ± 2% 90 ± 9% 65 ± 16% 68 ± 18%

Hard 94 ± 2% 97 ± 3% 99 ± 2% 89 ± 9% 62 ± 17% 73 ± 16%

PL, power-law test; PR, phase randomization test; S-1H15, 1H15 part of the
shuffling test; S-H(2), H(2) part of the shuffling test; DCCC, detrended cross-
correlation coefficient test; Biv-Univ, bivariate-univariate Hurst comparison.
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TABLE 2 | Percentage of connections, at the subject level (mean ± standard
deviation), that passed all multifractality assessment tests.

State

EC EO Easy Medium Hard

H(2) 48 ± 13% 55 ± 12% 31 ± 10% 34 ± 10% 35 ± 9%

1H15 46 ± 13% 53 ± 12% 30 ± 10 % 33 ± 10% 34 ± 9%

Effect of Brain State on Multifractal
Connectivity
The Friedman tests indicated a significant effect of state
(p < 0.01), and post hoc pairwise comparisons revealed that the
rest states (EC, EO) were characterized by lower D compared to
the task states (Easy, Medium, Hard) (Figures 3, 4). Additionally,
we found higher D during EO compared to EC, for both H(2)
and 1H15 networks. A similar motif emerged in the local level

comparisons, with the D of several nodes being significantly
different between the rest and task states, as well as between EC
and EO for both networks (Figure 5).

As seen in Figure 3, the H(2) networks had higher FC
in the frontal regions, while higher values of 1H15 were
observed in the occipital cortex. This regional variability was
statistically validated by the within-state comparisons, which
showed significant differences within all 5 tasks, for both H(2)
and 1H15 networks. We also observed that if the D of two nodes
in the 1H15 network were statistically different, there was a
high chance of the equivalent nodes being statistically different
in the H(2) network as well, while the opposite did not occur.
This can be easily visualized by the abundance of blue [both
H(2) and 1H15 significant] and orange (only 1H15 significant),
in contrast to the sparse red [only H(2) significant] boxes in
Figure 6. Moreover, small subject concordance appeared only in
the 1H15 networks; on the contrary, no subject agreement was
found in the H(2) networks (Table 3).

FIGURE 3 | State-dependent weighted node degree topology of H(2) and 1H15 brain networks. The color bars represent the values of the local node degrees.

FIGURE 4 | State-dependent weighted global node degree distribution of H(2) and 1H15 brain networks. Significance marked by asterisk (*). Figure was created
using Gramm (Morel, 2018).
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FIGURE 5 | Localization of significantly different weighted node degrees for every between state comparison of the H(2) and 1H15 brain networks. The colormap is
based on the absolute difference of the node degrees of the states under investigation (e.g., | DO2,EC - DO2,EO |). Only the significantly different nodes are shown.

Cognitive Performance and Its
Correlates With Functional Connectivity
The comparison of difficulty levels indicated a significant
decrease of SR in the Hard state. RT was also statistically different
between the 3 difficulty levels, with Easy having the fastest
response and Hard having the slowest (Figure 7). Furthermore,
significant (p < 0.05) positive correlations were found between
RT and D of the 1H15 networks during Easy and Hard
(Figure 8). After BH correction, these correlations were rendered
not significant.

DISCUSSION

This study investigated the scale-free coupled dynamics of brain
activity in resting state and during a visual pattern recognition
task of various difficulty levels. We employed two FC estimators
derived from bivariate focused-based multifractal analysis,
namely H(2) and 1H15. They were used for constructing brain
networks based on their multifractal connectivity for both rest
and task conditions. Our findings show that: (i) the local and
global functional connectivity measures increased during task

when compared to resting conditions, indicating a reorganization
of brain networks, and (ii) there was a substantial regional
variability within the 5 different states. However, significant
correlations were found only between the global node degree
and average reaction time during Easy and Hard tasks in the
1H15-networks.

After acquiring the BFMF measures, H(2) and 1H15, it
was essential to perform an array of multifractality assessment
tests since by default not all functional connections – or in
general, not all dynamic processes – can be assumed to have
multifractal character. Our tests showed that a considerable
fraction of the connections had true multifractal characteristics
(Table 1). Similar success rates have been found in the resting
state previously (Stylianou et al., 2021). Despite the different
channel density of the EEG devices and the different sampling
populations, similar results were obtained in these studies,
concluding that coupled dynamics between cortical regions are
indeed multifractal during rest. The extent of multifractality
decreased during task, as indicated by the lower number
of connections passing our multifractality assessment tests
(Table 2). To the best of our knowledge, this is the first study
demonstrating the true multifractal nature of coupled dynamics
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FIGURE 6 | Within-state differences of node degrees in every state. Red: only H(2) network comparison was significant, Orange: only 1H15 network comparison
was significant, Blue: both H(2) and 1H15 networks comparisons were significant.

TABLE 3 | State-dependent subject concordance, as captured by Kendall’s W.

State

EC EO Easy Medium Hard

H(2) 0.10 0.09 0.09 0.12 0.11

1H15 0.24 0.15 0.25 0.24 0.26

during complex mental tasks. This provides an opportunity
to reveal novel aspects of rest and task states using BFMF
by obtaining information that would have remained hidden
otherwise [for a demonstration, see the Supplementary Material
in Stylianou et al. (2021)].

The higher node degree in the fully connected (i.e.,
unthresholded) H(2) and 1H15 networks during task
corresponds to increased H(2) and 1H15 values of the
connections. The high values of H(2) indicate a relative shift of
the coupled dynamics toward lower frequency components. This
greater long-term memory reflects a stronger coupling between
the probed regions of the brain cortex. Conversely, Ciuciu
and colleagues found a shift of scale-free coupled fluctuations
in fMRI-BOLD signals toward the higher frequencies (i.e.,
decreasing Hurst-exponent), accompanied by a decrease in
connectivity between resting-state networks during a motor task
(Ciuciu et al., 2014). While the signs of changes were opposite,
both studies showed a positive association between H(2) and FC
change during task. This difference could possibly be attributed
to the differences in imaging modality and stimulation paradigm,

which should be further investigated in future studies. Moreover,
based on the elevated 1H15 values of the connections, we
can conclude that the coupling between recorded EEG signals
transitioned into a state with increased multifractal strength
suggesting increased nonlinearity (Ashkenazy et al., 2003).
Multifractal dynamics are characterized by increased dependency
between different time scales. As time scale relates to frequency,
one such model is formulated by assuming a relationship
between the phase of lower frequencies and the amplitude of
higher frequencies (He et al., 2010). In that, a stronger phase-
amplitude coupling is associated with higher nonlinearity as
captured by increased 1H15 (Ashkenazy et al., 2003). Taken
together, BFMF reveals that task induces a redistribution of the
long-term cross-correlation in coupled dynamics as indicated by
higher Hurst exponent and renders them more interdependent
across different time scales as manifested by increased 1H15. The
more pronounced multifractal character of the connections can
possibly be attributed to the recruitment of excitatory/inhibitory
feedback loops (Poil et al., 2012) during task, whose transient is
typically characterized by nonlinear dynamics (Rabinovich and
Muezzinoglu, 2010). The elevated coupling [increased H(2)] and
feedback loops (increased 1H15) that take place in this visual
pattern recognition paradigm can be ascribed to the enhanced
cooperation of distant brain areas involved in various aspects
of visual processing, such as recalling short-term memory and
making visual comparisons.

Both H(2) and 1H15 networks showed a significantly
increased connectivity in task states compared to EO and
EC, captured in their global and local weighted node degrees
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FIGURE 7 | Average success rate and reaction time for different difficulty levels. Significant differences are marked by asterisk (*). Figure was created using Gramm
(Morel, 2018).

FIGURE 8 | Scatter plots of the reaction time vs global node degree for Easy
(orange) and Hard (blue) task in 1H15 networks and their Spearman’s
correlation (r). Figure was created using Gramm (Morel, 2018).

(Figures 3–5). Our results agree with the findings of a previous
functional near-infrared spectroscopy study using a very similar
cognitive paradigm. Racz et al. found global weighted node
degree increased in the prefrontal cortex during task (Racz
et al., 2017), using the scale-specific Pearson’s correlation as
FC estimator. Based on these two studies, it appears that
both the scale-free and scale-specific connectivity of the brain
increases during visual pattern recognition. This indicates that
a significant reorganization of functional brain networks takes
place in response to increased mental workload. Nevertheless,
definite conclusions cannot be drawn due to the different
modalities (EEG vs functional near-infrared spectroscopy). It is
also noteworthy that FC increased during the transition from
EC to EO. Since considerable brain capacity is devoted to
visual processing, opening the eyes should substantially increase
brain network activity. Thus, the observed higher node degrees

during EO are consistent with the manifestation of increased
mental workload. It should be recalled that a shift to higher
frequencies characterizes cortical desynchronization during EO,
contrasting with the earlier interpretation of increased H(2) (i.e.,
shift to lower frequencies). We speculate that scale-free and
oscillatory components of coupled electrophysiological activity
have different origins and could be affected by the opening
of the eyes differently. Previously, we have demonstrated that
the global multifractal dynamics of FC are affected by the EC-
EO transition (Racz et al., 2018), our present study extends
these findings by revealing the local alterations in scale-free
coupled dynamics (Figure 5). Still, the mental workload of
EO was not as substantial as that of the pattern recognition
task, since the node degrees of the EO networks differed
significantly from those of the task states. On the other hand,
the 3 task states (Easy, Medium and Hard) had statistically
similar node degrees (Figures 3–5), even though the cognitive
stimulation paradigm showed a lower success rate for more
complex images (Figure 7). Similar results were found in
an n-back EEG study (Kaposzta et al., 2021), in which
there was no significant difference in the density, clustering
coefficient and efficiency of the 2-back and 3-back brain
networks. In this n-back study, the network measures decreased
during task, which is in contrast with the current findings
of increased FC. This apparent controversy in FC alterations
between tasks has already been noticed, with n-back being the
most different from the rest of the studied task conditions
(Krienen et al., 2014). The use of different FC estimators
could have impacted the reported results as well. Moreover,
for both BFMF measures, the within-state comparisons showed
apparent regional variability (Figure 6), similarly to our previous
results (Stylianou et al., 2021). In that, we saw that the
degree of multifractality (1H15) varied more than the long-
term cross-correlation [H(2)] across the brain, in all states.
Additionally, significant differences in the long-term cross-
correlation were accompanied by changes in the degree of
multifractality, in most cases. A possible explanation could
be that multifractality results from more complex dynamics
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(Tel, 1988) which tend to vary more from region to region. On
the other hand, this contradicts the findings of our previous
resting-state study, where H(2) values varied the most [cf.
Table 2 in Stylianou et al. (2021)]. The different electrode
densities of the EEG system used in these two studies (62 vs
14 channels) could well account for the observed differences.
Nonetheless, these two studies indicate that scale-free coupled
dynamics do not emerge homogenously in the brain, neither
in rest nor in task states, which is a motivation for further
studying the multifractal properties of FC at higher spatial
resolution. Furthermore, small subject concordance within the
different states was observed only for the 1H15 network
(Table 3). This agrees with a previous study (Mueller et al.,
2013), which found inter-subject FC variation localized mainly
in the high-order association cortices in the frontal and
parietal lobes, i.e., regions strongly overlapping with those we
recorded EEG from.

As to the performance metrics, the Easy state was associated
with faster RT than the Medium and Hard states, while significant
differences in the SR were observed only between Easy-Hard and
Medium-Hard (Figure 7). Even though no significant differences
in the SR were observed between Easy-Medium, the RT during
the Medium task was longer. We believe that a significant
difference in the SR between Easy-Medium could be found by
including a larger or more diverse population sample in future
studies. Furthermore, no significant associations were found
between the global node degrees and performance metrics (SR
and RT), with the exception of positive correlations between
RT and D in the Easy and Hard states of the 1H15 networks.
Similarly, in another EEG n-back study, network measures
were found significantly correlated only with RT, and not with
SR (Dai et al., 2017). This suggests that lower multifractality
corresponds to faster pattern recognition, while the subject’s
SR remains independent of scale-free coupled dynamics. These
correlations did not remain significant after BH correction,
suggesting that a larger, more representative sample of the
population could potentially reveal significant correlations even
after BH correction.

Our results derived from the main analytical pipeline are
supported by further analysis accounting for the slightly different
length of analyzed signals from the task states (Supplementary
Material). Because the multifractal profile of a time series is
influenced by its length (Grech and Pamuła, 2012; Rak and
Grech, 2018), we anticipated a similar effect on our bivariate
multifractal analysis (Kristoufek, 2015b); thus, we re-analyzed
our dataset in a pipeline adjusted to the different lengths of
analyzed pair of time series based on the different response
times. The results agree with our primary analysis, indicating that
the slightly varying signal length had no effect on the observed
patterns. We also compared the D of every state after excluding
connections that did not pass our multifractality assessment
tests. While significant differences were found between rest
and task states, they were of the opposite direction, i.e.,
D decreased during task (Supplementary Figure 1), which
can be explained by the larger number of connections that
passed our tests during rest (Table 2). However, there was
great inconsistency among the multifractality assessment tests

for every connection and task (e.g., out of the 10 Hard
segments, the connection AF4-AF3 might have passed the test
in only 4 of them). In order to avoid any bias, our main
analysis focused on unthresholded networks. Additionally, the
thresholded analysis showed significant positive correlations
between D-RT in the Easy and Medium states for both
H(2) and 1H15 networks, warranting further investigation in
future studies (Supplementary Figure 2). While a growing
number of publications investigates the FC-related differences
between the two sexes (Zhang et al., 2018; Ýçer et al., 2020),
we found no significant sex-related differences in network
architecture. Since the studies mentioned above had higher
spatial resolution (higher density EEG or fMRI recordings),
we believe that future experiments with higher number of
EEG channels might be able to reveal such differences. As
to the effect of handedness, no significant differences in D
were identified between the left- and right-handed participants
in any state (EC, EO, Easy, Medium, Hard) or network
[H(2) and 1H15]. To assess the test-retest reliability, 5 of
our subjects repeated the same experiment a few months
later. No significant differences were found in the SR and RT
between the two sessions, suggesting that our experimental
paradigm can be used in further reproducibility studies.
Finally, we found a moderate concordance between H(2)
and 1H15 values for every subject (Supplementary Table 1),
indicating a relatively constant multifractal character of the
connections. Further details of these analyses can be found in the
Supplementary Material.

Future developments based on this study should consider
the following shortcomings. Despite its sample size, the subject
cohort of our study might not have been representative of
the general population, thus limiting us in drawing more
general conclusions. All participants were young, healthy and
educated, university students or graduates. Differences observed
in the multifractal FC during task could be augmented or
attenuated if a larger cohort of volunteers participated. The
recorded EEG signals might be affected by scalp muscle
contraction (especially at the frontal and temporal sites), as
shown previously (Goncharova et al., 2003). Since the spectral
characteristics of electromyographic signals considerably overlap
with EEG, part of the results could be attributed to activity
of motor units rather than changes in local field potentials in
the brain cortex. Nonetheless, independent component analysis
can remove a significant part of these electromyographic
contaminations (Yilmaz et al., 2019). Additionally, task-related
EEG changes are not greatly affected by muscle contractions
(Boytsova et al., 2016). Because during diverse tasks different
brain network architectures emerge (Krienen et al., 2014), the
construction of more extensive cognitive stimuli with several
different paradigms should be considered. Studies found that
FC changed as subjects repeated and thus learned a task
(Lewis et al., 2009; Bassett et al., 2011), which warrants
that our future experiments investigate the effect of learning.
Additionally, the bimodality phenomenon observed in univariate
focus-based multifractal analysis (Nagy et al., 2017) can be
extended to the multifractal covariance scaling function with
multiple scaling ranges.
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As to future perspectives, it will be interesting to see
the discriminatory power of multifractal FC between rest
and task states at the individual level, which was beyond
the scope of this study. In future studies, we intend to
investigate the rest-state classification performance of BFMF
compared to other measures of brain network dynamics (Racz
et al., 2020). To reveal mechanistic background of scale-free
coupled dynamics, further clinical trials and animal models
are needed using anesthetics, antipsychotics, antiparkinsonian
and other medications (Nasrallah et al., 2017). On a final
note, a promising field where such visual pattern recognition
task could be advantageous is in attention deficit hyperactivity
disorder (ADHD) research, where brain network alterations
during spatial working memory tasks have already been revealed
(Jang et al., 2020).

CONCLUSION

In the present study, we reconstructed brain networks from
measures of scale-free coupled dynamics in resting states and
during a visual pattern recognition task estimated by our
novel bivariate multifractal analytical algorithm. Initially, we
showed that our method could capture true multifractal coupled
dynamics that varied across different brain regions. Additionally,
we saw an increase in functional connectivity during the
transition from rest (EC and EO) to task states, which was
however, independent of task difficulty. We also found higher
functional connectivity when the participants transitioned from
EC to EO. These findings could well facilitate future research
of scale-free functional connectivity studies with complex
experimental designs in healthy and diseased populations.
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