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1. INTRODUCTION 

1.1. Obstructive sleep apnea 

The most common form of sleep-related respiratory disorders is obstructive sleep apnea 

(OSA). OSA is characterized by repetitive overnight hypoxic episodes and subsequent 

microarousals caused by a complete or partial collapse of the upper airways. OSA has a 

negative impact on the health-related quality of life the risk of work- and traffic-related 

accidents worldwide and is a highly underdiagnosed and undertreated disease. Its 

importance is based on the fact that it increases the risk of cardiovascular and 

cerebrovascular diseases, hypertension, neuropsychiatric disorders, diabetes mellitus, 

dyslipidemia, mental health problems, personality changes, and daytime sleepiness, 

among others. 

1.1.1. Prevalence 

Prevalence data depend on the definition of OSA, the measurement methodology, and the 

selected population. In general, when defined as repetitive upper airway obstruction 

during sleep, OSA is a very common disorder, with recent data from the United States 

and Europe suggesting that between 14% and 49% of middle-aged men have clinically 

significant OSA. Nonetheless, as mentioned above, it is an underdiagnosed disease 

worldwide, i.e. ~85% of all cases are not diagnosed (1).  

It is important to note that the prevalence of OSA is approximately three to four 

times higher in patients with cardiovascular diseases (CVD) and particularly high in 

patients with hypertension (70-83%), heart failure (> 50%) and stroke. (2).  

1.1.2. Pathogenesis 

In general, any pathological change or normal variant that narrows the upper airway when 

awake will predispose the individual to obstructive apnea or hypopnea when asleep. The 

pharyngeal part of the airways (pharynx) can be considered as a flexible tube whose 

exceptional mobility is essential for speech and swallowing, but its ability to collapse due 

to its structure can disturb breathing. The diameter of this part of the airways depends 

largely on the activity of the dilator muscles in the airway walls that play a key role in 

maintaining the airways open during sleep (3,4).  
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It is well known that during the non-rapid eye movement (NREM) phase of sleep, 

the activity of the pharyngeal muscles decreases while the activity of the intercostal 

muscles increases. In contrast, in rapid eye movement (REM) sleep, the diaphragm 

becomes the main inspiratory muscle - so the activity of the muscles of inspiration 

outweighs the activity of the muscles holding the pharynx wide.  

During inspiration, the air pressure in the pharynx is below atmospheric pressure, 

and the size of the pharyngeal lumen depends on the balance between the narrowing force 

that results from this suction pressure and the dilating force generated by the small 

muscles attached to the upper airway, which contract with each inspiration and normally 

stabilize the floppy walls of the pharynx. At sleep onset, there is a reduction in pharyngeal 

luminal area and a reduction in upper airway muscle activity, both of which are 

exaggerated in OSA. Surface mucosal factors may also influence airway patency, 

especially in subjects with mucosal inflammation from repetitive trauma and resultant 

loss of sensation (3,4). 

All factors that impair the function of the pharyngeal dilatator muscles (fatigue, 

myopathy, neuropathy, anatomical abnormalities narrowing the airway lumen, increased 

amount of peripharyingeal adipose tissue, fluid retention [edema] in tissues due to heart 

failure or end-stage renal disease, changes in respiratory stimulation during sleep 

triggered by changes in partial arterial oxygen tension [PaO2] and/or in partial arterial 

carbon dioxide tension [PaCO2]) act in the direction to narrow the airway lumen. 

Depending on the degree of airway narrowing the process can generate symptoms from 

snoring to severe OSA. 

Due to the factors mentioned above, patients with OSA breathe with increased 

mechanical stress in the upper respiratory tract during sleep. In order to maintain the 

conductivity of the upper respiratory tract, it is necessary to over-activate the neuronal 

compensatory mechanisms, which in turn however leads to the exhaustion of the 

neuromuscular reflex function in the long run. In support of this concept, 

neuropathological studies have described degeneration of pharyngeal mucosal receptors, 

motor and sensory neuropathy, and neuronal cell death in motor nuclei. In the background 

of the process, the role of vibration damage caused by snoring and chronic intermittent 

hypoxia (CIH)-induced airway inflammation can be assumed, which leads to irreversible 

damage and remodeling over time (3) 
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1.1.3. Sleep fragmentation 

As discussed above, in OSA, partial or complete occlusion of the upper airway between 

the soft palate and the larynx occurs during sleep, primarily during inhalation. As a result, 

airflow decreases (hypopnea) or stops (apnea). During an apnea, the patient performs 

gradually more powerful, but ineffective breathing movements, however, breathing 

cannot start until an awakening reaction increases or restores the tone of the upper airway 

muscles. This cycle of apnea, hypopnea and micro-awakenings is repeated several times 

per hour during the night, so the lack of normal breathing is usually accompanied by 

oxygen desaturation and a gradual increase in PaCO2 in repeated, relatively long episodes.  

As a result of a series of micro-awakenings, the sleep structure is fragmented and 

the quality of sleep will be significantly deteriorated leading finally to daytime deficit 

symptoms (5). The main clinical symptoms of OSA include loud snoring, episodes of 

stopped breathing during sleep, frequent nocturnal awakenings, nycturia, morning 

weakness and occasionally headache, dry mouth, excessive daytime sleepiness, 

difficulties in concentration during the day, mood changes, attention and memory deficits, 

and decreased libido.  

1.1.4. Risk factors 

OSA is more common in obese individuals with increased neck circumference (males: 

>42 cm, females: >37cm), even in the absence of other associated risk factors. Recent 

studies have shown that the size of intraabdominal fat mass, which can be estimated by 

abdominal circumference, is strongly correlated with the severity of OSA. This may be 

due to the resistance to leptin, a molecule that is produced by adipocytes and regulates 

appetite and energy release (6). 

In addition to obesity, the main risk factors include age and male gender. There is 

a significant gender-related effect in OSA since the disease is 2-3 times more common in 

men than in women. It has been suggested that female sex hormones may play a protective 

role in the process since the prevalence of OSA after menopause becomes similar to that 

of men. 

OSA can occur at any age, but the incidence of sleep apnea increases with age. 

Typically, men around the age of 50 are diagnosed with the disease, and then the 

prevalence is rising to the age of 65, while there is finally a so-called plateau phase. Age-
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dependent anatomical changes leading to a greater risk of collapse of the upper airways 

may explain, at least in part, the increase in the prevalence of OSA in the elderly 

population (7). 

Other risk factors of OSA include upper airway narrowing due to craniofacial and 

soft tissue abnormalities, genetic predisposition (positive family history), smoking, nasal 

congestion, certain medical conditions (hypertension [HT], diabetes, Marfan syndrome, 

acromegaly, hypothyroidism, end-stage renal disease, congestive heart failure, chronic 

obstructive pulmonary disease [COPD], neurological disorders and pregnancy), 

medications and substances (including alcohol, benzodiazepines, and narcotics) (6). 

1.1.5. Classifications 

The American Academy of Sleep Medicine (AASM) classifies OSA according to the 

apnea-hypopnea index (AHI), a parameter representing the number of 

apnea and hypopnea events per hour of sleep. The AHI values for adults are categorized 

as follows: mild OSA is 5<AHI<15 events/hour; moderate OSA is 15<AHI<30 

events/hour and severe OSA is when AHI is ≥30 events/hour (8). To set up the diagnosis, 

the gold standard method is polysomnography that should be performed in an established 

sleep laboratory. 

1.2. OSA and cardiovascular diseases 

1.2.1. Changes in hemodynamic parameters during an apnea episode  

In OSA, the obstruction of the upper airways results in hypoxia, and as a cardiac response 

to hypoxia reflex bradycardia (diving reflex) occurs instead of lung inflation at the 

beginning of the apnea cycle. Inhalation against obstructed airways results in a significant 

decrease in intrathoracic pressure, an increase in cardiac afterload, and further acute 

changes both in pulmonary arterial pressure and blood flow. Increased venous reflux that 

occurs as a result of the decreased intrathoracic pressure, initially causes increased right 

ventricular diastolic volume and a leftward shift of the intraventricular septum.  

Consequently, the left ventricular volume decreases leading again to adverse 

hemodynamic changes, i.e. lower cardiac output and systemic blood pressure level. 

However, during an apnea episode, the process moves in the opposite direction, when 
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(mainly due to the increasing hypoxemia and hypercapnia) there is a pronounced increase 

in heart rate and blood pressure due to increased sympathetic tone induced by the 

awakening response (9). Thus, the blood pressure decreases at the beginning of an apnea 

episode and then increases until the end of apnea (15-80 mmHg). Similarly, synchronized 

with periods of apnea and hypopnea, a decrease in heart rate is followed by an increase 

in this parameter due to micro-awakenings forming thereby the so-called bradycardia-

tachycardia swing phenomenon (48-150/min fluctuation) (10).  

The episodes of apneas, hypopneas, and micro-awakenings repeat over and over 

during the period of sleep causing thereby a significant hemodynamic load on the whole 

circulation and generating acute heart failures (i.e. brady- and tachyarrhythmias). 

Moreover, it is important to note that the effects of the acute cardiovascular stress 

factors mentioned above accumulate over time that increase the risk for cardiovascular 

diseases in patients with OSA. The homeostatic control mechanisms of the cardiovascular 

system will be overloaded and autonomic dysfunctions will occur when the autonomic 

nervous system does not work properly.  

1.2.2. Effects of OSA on the nervous system 

During physiological sleep the autonomic nervous system exerts a number of important 

regulatory functions in our body: the whole circulatory system takes a rest, the blood 

pressure and the heart rate decrease by 10-15% when compared to the state of 

wakefulness, the parasympathetic activity dominates in the NREM phase of the sleep, 

while the sympathetic activity increases in the REM period. In OSA, sleep fragmentation 

increases the sympathetic activity resulting in the lack of the aforementioned 

physiological changes. Moreover, there is evidence that in patients with OSA, there is an 

increased sensitivity to hypoxemic stimulation in peripheral chemoreceptors (carotid and 

aortic bodies) (9). As a result, vasoconstriction and hypertension may develop. 

Under physiological conditions, pulmonary inhalation and exhalation are 

controlled by the autonomic nervous system via receptors in the lung and chest wall. 

However, this sympatholysis is deficient in the apneas and hypopneas periods of OSA, 

thereby also contributing to increased sympathetic tone and noradrenaline secretion (9). 

In addition, increased sympathetic activation stimulates renin release, leading to increased 

circulating levels of pressor angiotensin II and aldosterone. 
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As a result of all these mechanisms, in patients with OSA, there is an increase in 

sympathetic tone that is coupled with pathological pulse and blood pressure variability, 

which are known to be risk factors for CVD. OSA-induced hypertension typically does 

not show a nocturnal decrease and is often therapy-resistant (this is the so-called non-

dipper type of hypertension).  

In addition, hypoxemia can also act via the chemoreflex to induce vagal activation 

to the heart simultaneously with sympathetic activation to most other vascular beds (the 

diving reflex). Profound vagal activation can take place at the beginning of obstructive 

apnoea in some patients with OSA and can result in bradyarrhythmias ranging from sinus 

bradycardia and atrial ventricular block to asystole. Thus, during apnea, similar to 

sympathetic activation, parasympathetic activity is also increased in patients with OSA 

(6). 

1.2.3. Oxidative stress, inflammation, and endothelial dysfunction 

Accumulating evidence suggests that the repetitive sequences of desaturation-

reoxygenation in OSA lead to endothelial dysfunction, systemic inflammation, and 

increased formation of reactive oxygen species (ROS), which provoke and maintain 

oxidative stress (11). 

Oxidative stress is responsible for initiating several inflammatory cascades. It 

promotes systemic and vascular inflammation, vascular endothelial damage, and vascular 

remodeling, all these processes play a pivotal role in the development and progression of 

atherosclerosis and atherothrombosis (12). Increased systemic inflammation in OSA is 

evident by increased levels of C-reactive protein (CRP), oxidized low-density lipoprotein 

(ox-LDL), and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-a and 

interleukin-6 (IL-6). Furthermore, it has been suggested that ROS produced during CIH 

can also directly activate matrix metalloproteinases (MMPs). Some investigators found a 

positive correlation between serum levels of MMP-9 and IL-6 and TNF-a in patients with 

OSA indicating that inflammation may play a role in the regulation of certain members 

of the MMP family (6,13). 

In OSA, endothelial dysfunction is the result of complex processes. The 

endothelium plays a key role in vascular homeostasis by regulating vasoconstriction, 

vasodilation, intravascular coagulation, and inflammation. A major component of this 
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process is the decreased bioavailability of the vasodilator molecule nitric oxide (NO) 

coupled with increased endothelial production of vasoconstrictor agent endothelin. NO 

mediates various anti-inflammatory, antioxidant, and antithrombotic effects that prevent 

endothelial cell damage, inhibit vascular smooth muscle proliferation and increase 

platelet activation and aggregation (14).  

 

 
Figure 1. Relationship between oxidant production, inflammation, endothelial dysfunction 

and development of cardiovascular complications in OSA 
ROS: reactive oxygen species, NO: nitric oxide, NF-κB: nuclear factor-κB, HIF-1α: hypoxia-
inducible factor-1α, IL-6: interleukin-6, MMP: matrix metalloproteinase, TNF-a: tumor necrosis 
factor-a (adapted from 6) 

1.2.4. Atherosclerosis 

Atherosclerosis involves several interrelated processes such as oxidative stress, vascular 

inflammation, and sympathetic activity (Figure 1) (6). OSA can be considered a 

provocative state of atherosclerosis due to a number of factors: OSA is associated with 

dyslipidemia, elevated inflammatory markers, insulin resistance, hypertension, and 

oxidative stress, all of which cause endothelial dysfunction, intimal arterial cell migration, 
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foam cell formation, and smooth muscle cell migration and proliferation in the 

endothelium (12). 

Accordingly, several studies have reported that OSA is associated with increased 

carotid intima-media thickness and a higher incidence of cervical plaques (early 

atherosclerotic lesions), independently of other cardiovascular and metabolic diseases. In 

line with this view, a correlation has been found between oxygen saturation and the 

intimal-media layer thickness of the common carotid artery (12). Given that 

cardiovascular consequences are primarily induced by CIH, the severity of these 

complications is usually more closely correlated with the oxygen desaturation index 

(ODI) than with the apnea-hypopnea index (AHI). 

Arterial stiffness, an established predictor of late cardiovascular events is 

independently associated with OSA; and a further increase in this parameter can be 

observed when OSA is associated with hypertension or metabolic syndrome (MS) (6). 

1.2.5. OSA as a cardiovascular risk factor 

On one hand, OSA can generate acute cardiac alterations that occur already during one 

sleep cycle. On the other hand, there is evidence that OSA is associated with a number of 

adverse health consequences in the long run including for example the development and 

progression of CVD (15). The acute cardiovascular stress signals that occur during 

recurrent episodes of apnea, hypopnea, and micro-awakening in patients with OSA 

include hypercapnia, hypoxemia, fluctuations in intrathoracic pressure, and the 

awakening response elicited by the central nervous system (arousal). Overall, it is 

believed these factors cause oscillations in hemodynamic parameters including heart rate, 

blood pressure, and other cardiac functions, even within one sleep cycle.  

Moreover, accumulating evidence suggests that these repetitive sequences of 

desaturation-reoxygenation lead to sympathetic hyperreactivity, oxidative stress, 

systemic inflammation, endothelial dysfunction, hypertension, dyslipidemia and insulin 

resistance, which all may contribute to increased cardiovascular morbidity and mortality 

in patients with OSA (11,15). 
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1.2.6. Role of MMPs in OSA-induced atherosclerosis 

In recent years a number of new markers have emerged with the potential to predict 

patients’ risk for CVD including members of the family of MMPs (16,17). MMPs are 

substrate-specific endopeptidases that catalyze the degradation of various structural 

proteins of the extracellular matrix. In health, MMP activity is closely controlled by their 

specific antagonists, the tissue inhibitors of metalloproteinases (TIMPs). An imbalance 

of MMPs and TIMPs has been widely implicated in the development of atherosclerosis 

and its complications (18-21). Disruption of the balance between MMPs and TIMPs can 

lead to smooth muscle cell proliferation, inflammatory cell infiltration, collagen 

deposition, vascular remodeling, and plaque formation.  

Several lines of evidence indicate that MMPs are important mediators in the 

process of accelerated atherosclerosis in the CIH-induced oxidative stress in OSA, as well 

(22). Accordingly, an early study by Ye et al. reported that intermittent 

hypoxia/reoxygenation was a predictor of enhanced circulating MMP-9 in OSA patients 

(23), while Chuang et al. found that MMP-9, but not MMP-1, -2, -3 and TIMP-1 increases 

during sleep in patients with OSA (24). The contribution of MMP-9 to the development 

of CVD in OSA has been suggested in other studies as well (25,26).  

1.3. OSA and metabolic dysregulation 

1.3.1. Dyslipidemia 

Dyslipidemia (alone or as part of MS) is a major contributor to the development of 

cardiovascular diseases in OSA. In general, the condition is characterized by increased 

total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride 

(TG), and decreased high-density lipoprotein cholesterol (HDL-C) levels.  

Several mechanisms are responsible for the development of dyslipidemia in OSA 

as depicted in Figure 2 (27,28). In addition, genetic factors may play a role in the process 

(29). On the one hand, sleep fragmentation per se results in increased appetite which 

directs dietary preferences towards increased fat and carbohydrate intake and reduces 

satiety.  

On the other hand, CIH up-regulates hypoxia-inducible factor-1 (HIF-1) in the 

liver, which activates sterol regulatory element-binding protein-1 (SREBP-1) and stearoyl 
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coenzyme A desaturase-1 (SCD-1). As a result, hepatic steatosis and increased 

lipoprotein secretion occur. Furthermore, there is evidence that CIH increases lipolysis in 

the adipose tissue increasing thereby free fatty acids (FFA) flux to the liver. Additionally, 

CIH may also inhibit lipoprotein clearance. Overall, the increase in lipoprotein secretion 

and the inhibition of lipoprotein clearance lead to dyslipidemia, often with a rise in very-

low-density lipoprotein (VLDL) fraction as well (30-32). 

Additionally, there is a disruption in the regulation of the normal hormonal 

changes associated with sleep/wake cycles in the body (e.g., thyroid and growth 

hormones, etc.) which may also adversely affect lipid metabolism. It appears that these 

hormonal changes in OSA and their metabolic and cardiometabolic consequences are 

more or less reversible (32,33). 

 

 
Figure 2. Dysregulation of lipid metabolism in OSA  

FFA: Free fatty acids, HIF-1: Hypoxia-inducible factor-1, SREBP-1: Sterol regulatory element-

binding protein-1, SCD-1: Stearoyl coenzyme A desaturase-1, VLDL: very low-density 

lipoprotein, LDL: low-density lipoprotein  (adapted from 28) 
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In addition to these regulatory processes, the generation of oxidized and therefore 

dysfunctional lipids as a consequence of increased oxidative stress may be an important 

factor in the development of dyslipidemia in OSA. In support of this concept, ox-LDL is 

produced in patients with OSA due to lipid peroxidation, which is much more atherogenic 

than its non-oxidized form. On the other hand, HDL dysfunction can also be detected in 

OSA, which is manifested in a decreased antiatherogenic effect of HDL: i.e. the inhibitory 

effect of HDL on the oxidative conversation of LDL is reduced. The degree of HDL 

dysfunction correlates with the severity of OSA and the degree of oxidative stress. This 

oxidative stress accelerates the pathogenic processes associated with dyslipidemia in 

OSA and thus leads to the development of progressive atherosclerosis.  

Indeed, recent studies in animal models have identified dyslipidemia as a 

potentially important mediator of accelerated atherosclerosis in OSA patients (34,35). 

Nonetheless, although dyslipidemia is common in patients with OSA (36), the causal 

relationship between OSA and dysregulation of the lipid metabolism remains 

contradictory (30,31). 

1.3.2. Impaired glucose tolerance 

In OSA, impaired glucose tolerance is mainly attributed to increased sympathetic tone. 

CIH reduces glucose uptake in muscles, while the oxidative stress-induced decrease in 

pancreatic B-cell function leads to the development of glucose intolerance, insulin 

resistance, and type 2 diabetes. Diabetes-induced micro- and macroangiopathy, as well 

as OSA-induced dyslipidemia and increased ox-LDL production all promote the 

development and progression of atherosclerosis in patients with OSA (6, 37-39). 

1.3.3. Obesity  

In OSA sleep fragmentation induces changes in leptin-signaling pathways in the 

hypothalamus and thus in appetite regulation which in turn moves dietary preferences 

towards increased fat and carbohydrate intake and a reduced feeling of satiety. As a 

consequence, the desire for energy-boosting foods, and a constant appetite leads to 

obesity (29). The effect of OSA-induced processes on visceral white adipose tissue 

(vWAT) is twofold: while the increased sympathetic activity due to CIH promotes the 

lipolysis in this tissue, the sleep fragmentation causes proliferation of adipocytes (29).  
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According to the traditional view of vWAT, it is defined as an energy store. 

Nonetheless, the role of vWAT is more complex in metabolic regulation than just an 

endocrine organ with a large number of secretory cells and adipocytes. Equally important, 

adipocytes secrete several hormones and cytokines (e.g., adipokines) that play an 

important role in the development of cardiovascular and metabolic complications (i.e. 

metabolic syndrome) in OSA. In addition, it should be noted that the visceral adipose 

tissue contributes to the development of chronic, low-grade systemic inflammation 

independently of OSA as well. (29). Overall, it can be concluded that vWAT is involved 

in the development of both the OSA and metabolic syndrome (a pathologic condition 

characterized by the combination of insulin resistance, dyslipidemia, and hypertension).  

1.4. Therapy of OSA 

1.4.1 Positive airway pressure therapy 

The most effective treatment of severe OSA is positive airway pressure (PAP) therapy 

(40). This treatment aims to provide continuous airway pressure through the upper 

respiratory tract to the lungs through a special mask (non-invasive respiratory support). 

The pressure is measured in centimeters of water pressure (cm H2O). During this type of 

treatment, air flow is introduced into the airways to maintain a continuous pressure to 

constantly stent the airways open in people who are breathing spontaneously. The biggest 

advantage of the treatment is that it acts along the entire length of the pharyngeal section 

that may collapse, thus in contrast to surgical procedures it is not a prerequisite for its 

application to know the exact location of the occlusion.  

When used, PAP eliminates obstructive sleep events by stabilizing the upper 

respiratory tract. Improvements in daytime somnolence, neurocognitive function, and 

quality of life have been shown to be also associated with continuous PAP use through 

the elimination of sleep fragmentation (41). An important societal consequence is that 

improvements in neurocognitive function also reduce the risk of work- and traffic-related 

accidents (6). The fact that PAP can alleviate the adverse cardiovascular consequences of 

OSA and thus can reduce the cardiovascular risk of treated patients is extremely important 

because the majority of patients with OSA are obese and generally have a number of other 

cardiovascular risk factors. 
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1.4.2. Types of PAP therapy 

Several types of PAP therapy can be used such as the continuous positive airway pressure 

(CPAP), the bilevel positive airway pressure (BIPAP), and the auto-titrating continuous 

positive airway pressure (AutoCPAP) therapy. During CPAP treatment, which is the most 

common treatment option for OSA, the device provides a constant pressure during 

exhalation and inhalation.  

BIPAP treatment on the other hand produces higher inspiratory pressure and lower 

expiratory pressure. The difference between the two modalities is the pressure support. 

This improves alveolar ventilation, which may be useful in OSA complicated with COPD, 

but it has not been shown to be more beneficial in the treatment of OSA in general. Higher 

pressure can be generated with this mode.  

Regarding to AutoCPAP, it automatically adjusts pressure values during sleep 

according to the severity of each obstructive breathing event. Using this treatment option 

pressure can be better tolerated by most patients, which can improve the compliance to 

the treatment.  

1.4.3. Current recommendations with CPAP therapy in Hungary 

Currently, CPAP therapy is recommended for patients with moderate (AHI>15)/severe 

(AHI>30) OSA, and for patients with mild OSA when it is associated with certain other 

conditions (84). BIPAP is recommended for severe OSA, if obstructive symptoms cannot 

be eliminated with CPAP or deterioration in symptoms occurs during proper treatment (40).  

Several lines of evidence indicate that the effect of fixed pressure CPAP and 

AutoCPAP devices on cardiac and/or metabolic parameters is different. It has been 

suggested that AutoCPAP devices may have limitations in their ability to adjust the 

pressure to the actual needs of the patients (42). This can lead to extra sympathetic stimuli, 

which can cause adverse cardiovascular and/or metabolic effects. In fact, for the above 

reasons, AutoCPAP is not recommended in patients with complicated OSA.  

OSA in younger and middle-aged individuals has a different phenotype than in 

the elderly patients, i.e. it is more closely associated with metabolic syndrome in younger 

patients. In elderly patients, due to advanced age airway anatomy and collapsibility play 

a relatively greater role in the pathogenesis of OSA. Taken together, these findings 

suggest that cardiometabolic diseases in the elderly occur independently of OSA, which 
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is worth considering in terms of differential diagnosis, prognosis, and treatment options 

in terms of the expected therapeutic effect of CPAP.  

1.4.4. Effect of CPAP on sleep parameters and lung function 

CPAP treatment improves respiratory mechanics and prevents the repetitive overnight 

hypoxic episodes and subsequent microarousals caused by complete or partial collapse of 

the upper airway. The effectiveness of the therapy is related to a significant reduction in 

AHI and better SaO2 (8). When using CPAP, day and night symptoms of OSA will 

improve, i.e. sleep efficiency will be better, excessive daytime sleepiness will decrease, 

daytime performance and cognitive dysfunction will improve. Many of the beneficial 

effects of CPAP will occur already after a few days of treatment (6).  

The application of CPAP eliminates vibration-related injuries caused by snoring 

and improves the decreased neuromuscular compensatory mechanisms (4). Additionally, 

improvements in lung mechanics result in increased vital capacity, functional residual 

capacity, oxygenation (43), and elimination of the extreme fluctuations in the 

intrathoracic pressure. 

Although CPAP therapy effectively eliminates the collapse of the upper airways 

and improves the symptoms, it does not always have a demonstrable beneficial effect on 

cardiovascular and metabolic parameters (29). 

1.4.5. Effect of CPAP on the cardiovascular effects of OSA 

1.4.5.1. Hypertension  

Several studies including meta-analyses on cardiovascular outcomes have shown that 

CPAP lowers blood pressure and that this improvement is more pronounced in the so-

called OSA-induced non dipper hypertensive patients (29,44). In general, the decrease in 

blood pressure in normotensive patients is modest (~2.5 mmHg per day during treatment) 

while patients already taking hypertensive antihypertensive drugs or those with more 

severe OSA show a more pronounced decrease (>5 mmHg) (14). 

1.4.5.2. Cardiac arrhythmias  

Some studies suggest that CPAP is able to reduce the number of fatal and non-fatal 

cardiovascular events, including arrhythmias, and myocardial infarctions, which are 

predominantly associated with repetitive sympathicotonia (40,44).  
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In other studies, the effect of CPAP on hypertension and cardiovascular events 

was not significant, but in a subgroup of patients who used the device for more than 4 

hours per night, a close association could be demonstrated. Another recent study 

analyzing the long-term effects of CPAP showed a beneficial effect of CPAP treatment 

on blood pressure in those subjects in whom it was combined with weight loss. Indeed, 

several studies failed to show a positive effect of CPAP therapy alone (6). However, 

sympathetic activation and increased blood pressure which are consequences of 

intermittent hypoxia can be improved with CPAP therapy.  

1.4.5.3. Heart failure 

Patients with heart failure also benefit from improved hemodynamic status due to 

increased ejection fraction, reduced afterload, and improved diastolic function (45). The 

function of the right and left ventricles may also improve.  

1.4.6. Effect of CPAP on the metabolic effects of OSA 

Regarding metabolic outcomes, several previous studies suggest that OSA may 

independently contribute to the development of metabolic syndrome (MS). Components 

of MS include systemic arterial hypertension, insulin resistance, dyslipidemia, and 

abdominal obesity. Of note that all of these four diseases are independently associated 

also with increased cardiovascular and cerebrovascular risk and therefore it may be a 

critical point to reduce cardiometabolic risk successfully. 

The effect of CPAP therapy on MS has been studied by several research groups. 

In a randomized, placebo-controlled study of patients with MS and OSA, after 3 months 

of CPAP therapy, 20% of patients do no longer meet the criteria for MS. In contrast, 

another randomized controlled trial with shorter CPAP therapy (only up to 6 weeks) 

showed no effect on this outcome (38). 

In terms of the components of MS, CPAP treatment appears to have the greatest 

effect on arterial blood pressure. Several randomized, placebo-controlled studies showed 

a significant reduction in arterial blood pressure with CPAP therapy in OSA. In another 

study, when CPAP therapy was withdrawn from previously CPAP-treated patients, 

arterial pressure increased significantly.  

The other main component of MS is insulin resistance. The percentage of glycated 

hemoglobin (HbA1c), a marker of long-term glycemic control in diabetic individuals, 
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was positively correlated with the severity of OSA in type 2 diabetes. Several studies 

have shown an improvement in HbA1c level after 3 months of CPAP treatment in patients 

who have used CPAP for more than 4 hours per day. Thus, CPAP treatment may improve 

glucose metabolism in type 2 diabetes, but a good adherence to CPAP treatment is 

essential to achieve this beneficial result. 

With regard to abdominal or visceral obesity, in a randomized, controlled trial in 

which nearly half of participants had both OSA and type 2 diabetes, a significant decrease 

in body mass index (BMI) was observed after 3 months of CPAP therapy along with a 

decrease in visceral and subcutaneous fat. However, in non-diabetic OSA patients, there 

was no evidence of an effect of CPAP therapy on adipose tissue distribution.  

Overall, the adverse effects of OSA on metabolic parameters in adult individuals 

may be masked by the concomitant presence of obesity, which also has a negative impact 

on metabolic health. Long-standing obesity may also inhibit the ability of CPAP 

treatment to reverse OSA-mediated pathology on the basis that obesity can cause similar 

organ dysfunction (46).  

1.4.7. Effect of CPAP on dyslipidemia 

Although regular CPAP therapy relieves patients of the most common symptoms of OSA, 

its effect on lipid profile is inconclusive. For example, a recent meta-analysis concluded 

that CPAP improves dyslipidemia (47), and there is also evidence for a reduction in 

postprandial triglyceride and total cholesterol levels as a result of CPAP treatment (48), 

Campos-Rodriguez et al. reported that 3 months long CPAP therapy had no additive 

beneficial effect on the lipid profile of women with moderate-to-severe OSA compared 

with conservative treatment (49). Likewise, Keenan et al. found no differences in fasting 

lipid levels between CPAP adherent and non-adherent OSA patients (50). Based on meta-

analyses of randomized controlled trials, Lin et al. concluded that CPAP lowers TC, TG, 

and HDL-C levels (51), while Xu et al. argued that only TC, but not TG, HDL-C, and 

LDL-C fractions are significantly modified by CPAP in patients with OSA (52).  

It is important to emphasize that the duration of the trials investigating the effect 

of pressure therapy on lipid profiles mentioned above was generally short, i.e. less than 

12 months. However, OSA is a lifelong condition with several late cardiovascular and 

other complications. The development of dyslipidemia in OSA is also a long process that 
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is affected by numerous factors including the severity of the disease, nocturnal hypoxia, 

obesity, sympathetic activity, diet, and exercise (31,53,54). Thus, it is clear that findings 

obtained in short-term studies cannot be simply extrapolated to subjects treated with 

CPAP for longer periods of time. 

1.4.8. Effect of CPAP on MMPs 

As mentioned above, CPAP treatment results in nearly complete remission of symptoms 

of OSA. However, the effects of CPAP on OSA comorbidities including cardiovascular 

outcomes are much less unambiguous. A number of studies have been published on the 

short-term effects of CPAP on established CVD risk factors, for example on oxidative 

stress (55). Regarding MMPs, it was found that 1-month CPAP treatment significantly 

decreases serum levels of MMP-9 but does not affect TIMP-1 levels in a population of 

patients with mixed severity of OSA (13). 

Nonetheless, the development of OSA-induced CVDs, and in particular atherosclerosis, 

is a long and progressive process that is modulated by numerous OSA independent factors 

such as systemic inflammation, sympathetic activity, obesity, diet, and exercise (56). 

Thus, it would be a mistake to extrapolate findings on the short-term effects of CPAP 

treatment on CVD risk factors and assume that they will be sustained over the long term. 

Indeed, the utility of CPAP in preventing CVDs in OSA has been questioned by a recent 

meta-analysis (57) that generated interesting pro and con arguments in this field (58,59). 

1.4.9. Other therapeutic recommendations 

In addition to CPAP therapy, general recommendations for patients with OSA include 

weight control, healthy eating, avoiding a sedentary lifestyle, and regular exercise. For 

example, it is believed that a 10-15% weight loss can reduce the AHI by 20-30%. 

However, on their own, these factors are usually effective only in mild forms of OSA and 

their effectiveness needs to be confirmed by a subsequent sleep study. Avoidance of drugs 

and stimulants that increase the symptoms of OSA can also be considered. 

1.4.10. CPAP compliance in clinical practice 

It is well known that after discontinuation of CPAP therapy, many symptoms of OSA 

usually return rapidly, thus continuous treatment is necessary from night to night to 
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prevent the adverse consequences of OSA. However, adaptation/compliance to therapy 

is often limited. The minimum expected CPAP usage time per day is 4 hours. According 

to studies investigating compliance to CPAP, patients give up airway therapy in 10-20% 

for various reasons, and many use the instrument less than 4 hours per day. Even patients 

with good therapeutic adherence occasionally discontinue CPAP therapy, such as on 

weekends or holidays, and perhaps during episodes of nasal congestion (60). 

1.4.11. Consequences of CPAP withdrawal in OSA  

As described earlier the pathophysiological mechanisms underlying hypertension and 

heart rate changes in OSA have been associated with intermittent hypoxia, increased 

sympathetic activity, increased oxidative stress, endothelial dysfunction, and changes in 

intrathoracic pressure that exert increased transmural pressure on the heart. These 

processes can generate sudden critical conditions and may result in the long-term 

structural transformation of the cardiovascular system, i.e. vascular remodeling. 

Increased sympathetic activity and autonomic disorders such as OSA-associated 

chemoreflex and baroreflex disorders may show reversibility with CPAP therapy, but the 

structural changes caused by OSA are irreversible.  

Withdrawal of CPAP treatment provides information on acute functional effects 

related to existing structural changes, as the physiological consequences are reactivated 

by CPAP withdrawal. The mechanisms underlying the association between OSA and 

cardiovascular disease are manifold (e.g., the role of obesity-induced low-density 

background inflammation in maintaining OSA symptoms) and are not yet fully 

understood. The short-term CPAP treatment withdrawal allows patients to serve as their 

own "control group", bypassing most of the confounding factors typically associated with 

a multimorbid condition (60,61). 

The CPAP withdrawal model is suitable for the study of the short-term 

physiological effects of OSA, apnea-related repetitive sympathicotonia, changes in blood 

pressure, and arrhythmias induced by changes in microcirculation.  

In several studies, the immediate recurrence of disease-specific abnormal 

respiratory events following CPAP withdrawal was associated with more moderate 

oxygen desaturation compared to baseline, ie. before the initiation of CPAP therapy. 

Possible mechanisms of this effect include benign changes in upper airway anatomy, 
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ventilation (e.g., reduction of upper airway edema), and upper airway control mechanisms 

attributable to CPAP therapy (41). In a study that included 42 patients with severe OSA, 

two nights after CPAP withdrawal, the apnoe index (AI), AHI was 4% lower and was 

accompanied with a moderate oxygen desaturation compared to baseline. In contrast, 

patients with mild to moderate OSA did not exhibit such an improvement. A possible 

explanation is that in patients with mild disease, the tendency of the upper airways to 

collapse is less pronounced at baseline, and CPAP therapy has less room to improve on 

that (41). 

Schwarz et. al have investigated the role of OSA as a risk factor for secondary 

systemic hypertension (60). The starting point of their study was based on previous meta-

analyzes showing that CPAP therapy has a modest antihypertensive effect, a decrease of 

2-3 mmHg. Withdrawal of CPAP for 2 weeks resulted in a statistically significant and 

clinically important increase in systolic and diastolic blood pressure values of 9 and 8 

mmHg, respectively. The observed effect of CPAP was much greater than in previous 

studies. Changes in blood pressure after withdrawal were more pronounced in those 

individuals whose baseline blood pressure was lower, suggesting that OSA is a mediator 

of secondary hypertension in these patients.  

Based on 1 and 2 week CPAP withdrawal studies, Phillips et al. found a link 

between increased blood pressure and heart rate and increased urinary catecholamine 

excretion, and progressively impaired endothelial function. However, this was not 

associated with changes in the levels of vascular inflammatory markers (CRP, IL-6, TNF-

a), suggesting that acutely increased sympathetic activity and endothelial dysfunction 

may underlie the observed increases in blood pressure and heart rate (62).  
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2. OBJECTIVES 

Although OSA is a lifelong condition, most previous studies investigating the effect of 

CPAP therapy on various complications of OSA had covered often a limited time frame. 

Therefore, to explore the long-term effects of CPAP on dyslipidemia and cardiovascular 

risk factors, we had initiated a longitudinal study with a 5-year follow-up period in a 

cohort of patients with severe OSA. Additionally, we intended to test the effect of CPAP 

withdrawal in the same cohort.  

Thus, the specific aims of my PhD thesis were: 

 

1. To investigate the short- and long-term effect of CPAP therapy on disturbed lipid 

metabolism in a cohort of patients with newly diagnosed severe OSA by 

measuring levels of fasting lipids such as TC, TG, LDL-C, and HDL-C at various 

time-points between diagnosis and 5 years of CPAP treatment (Study 1). 

 

2. To investigate the short- and long-term effect of CPAP therapy on established 

cardiovascular risk factors in a cohort of patients with newly diagnosed severe 

OSA by measuring the expression of MMPs and TIMPs at various time-points 

between diagnosis and 5 years of CPAP treatment (Study 2). 

 

3. To investigate the effect of a 1-week CPAP withdrawal on sleep and cardiac 

parameters in a cohort of patients receiving 5-year CPAP therapy due to severe 

OSA (Study 3). 
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3. METHODS 

3.1. Study 1 and 2 

All methods were described in detail in the published articles attached to the dissertation. 

3.2. Study 3 

3.2.1. Study patients and design 

Patients from the previous lipid and MMP related studies were approached to participate 

in the CPAP withdrawal study. Inclusion and exclusion criteria are detailed in Figure 3. 

In general, those who refused to take part in this study or had severe symptoms of CVDs, 

or were very high risk for these conditions were not selected. The research protocol was 

approved by the National Ethics Committee (OGYÉI/29037). All subjects gave written 

informed consent to participate in the study. 

Diagnosis of OSA was established by overnight polygraphy at baseline 

(SOMNOscreen RC, SOMNOmedics GmbH, Electro Oxygen Ltd., Hungary) as 

described in detail earlier (63). During the 5-year control visit and after the 1-week CPAP 

withdrawal visit, patients were re-evaluated by overnight polygraphy for sleep and 

cardiac parameters such as AHI, ODI, percentage of time in bed (TIB) with <90% oxygen 

saturation (TIB90%), and the mean and the lowest SaO2. The following morning 

participants were assessed for blood gases, lung function, BMI, smoking habit, 

comorbidities, and Epworth sleepiness scale (ESS).  

3.3.2. Statistical analysis 

Data normality was tested by the Kolmogorov-Smirnov test. Clinical and polygraphic 

variables were analyzed either by the Friedman test followed by the Dunns test (non-

parametric data) or repeated-measures analysis of variance with post hoc test (Newman-

Keuls test) for multiple comparisons (parametric data). Correlation coefficients were 

calculated by Spearman’s method. Calculations were performed by GraphPad Prism 

(GraphPad Software Inc., San Diego, CA, USA). The threshold of significance was set at 

p<0.05. Data are presented as mean±SEM or median with interquartile ranges when 

appropriate.  
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4. RESULTS 

4.1. Study 1 

4.1.1. Enrollment, demographics, and clinical characteristics 

From patients referred to our sleep laboratory at the National Koranyi Institute of 

Pulmonology for suspicion of OSA during the period of recruitment, 62 fulfilled inclusion 

criteria and agreed to participate in Study 1 (Figure 3). During follow-up, 29 patients had 

to be withdrawn during the follow-up period. Demographic and clinical data of the 33 

patients who completed Study 1 are presented in Table 1. 

 

 
Figure 3. Flow chart showing the profile of studies 1, 2 and 3 

OSA: obstructive sleep apnea, CPAP: continuous positive airway pressure, AHI: apnoea-
hypopnoea index, PaCO2: partial arterial carbon dioxide tension (adapted from 63, 83 + 
unpublished data) 
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Table 1. 

Demographic and clinical characteristics of patients who completed the study 

 Study 1 Study 2 Study 3 

 Measure 
    Demographics 
   Subjects (n) 
   Age (years) 
   Sex (male/female, n, %) 

 
33 

54.2 ± 10.3 
27 (82) / 6 (18) 

 
28 

54.0 ± 9.1 
22 (79) / 6 (21) 

 
21 

55.7 ± 1.7 
16 (76) / 5 (24) 

Smoking history (n, %) 
   Smokers    
   Ex-smokers 
   Non-smokers 

 
5 (15.2) 

11 (33.3) 
17 (51.5) 

 
5 (17.9) 
9 (32.1) 

14 (50.0) 

 
1 (4.8) 

7 (33.3) 
13 (61.9) 

Medical history (n, %)# 
   Hypertension 
   GERD 
   CAD 
   Asthma/COPD 
   Diabetes 
   Allergic rhinitis 

 
20 (60.6) 
5 (15.2) 
4 (12.1) 
4 (12.1) 
3 (9.1) 
3 (9.1) 

 
16 (57.1) 
3 (10.7) 
4 (14.3) 
4 (14,3) 
2 (7.1) 

- 

 
13 (61.9) 
4 (19.0) 

- 
- 

2 (9.5) 
- 

Major medication (n, %) 
   Antihypertensives 
   Statins 
   Inhaled bronchodilators / cortico- 
     steroids   
  Antidiabetics 

 
12 (36.4) 
5 (15.2) 

 
4 (12.1) 
3 (9.1) 

 
12 (42.9) 
3 (10.7) 

 
4 (14.3) 
2 (7.1) 

 
8 (38.1) 
3 (14.3) 

 
1 (4.8) 
1 (4.8) 

Pulmonary function 
   FVC (% predicted) 
   FEV1 (% predicted) 
   FEV1/FVC (%) 

 
99.5 ± 13.8 
92.9 ± 18.5 
74.1 ± 8.32 

 
100.7 ± 14.5 
94.6 ± 20.4 
74.7 ± 9.0 

 
100.3 ± 14.3 
93.2 ± 17.3 
73.9 ± 8.5 

Blood gases 
   PaCO2 (kPa) 
   PaO2 (kPa) 

 
5.11 ± 0.36 
9.21 ± 1.27 

 
5.03 ± 0.4 
9.40 ± 1.4 

 
5.13 ± 0.38 
8.90 ± 0.74 

Data are presented as mean±SD unless stated otherwise. CAD: coronary artery disease, GERD: 
gastroesophageal reflux disease, COPD: chronic obstructive pulmonary disease, FVC: forced 
vital capacity, FEV1: forced expiratory volume in 1 second, PaCO2: partial arterial carbon dioxide 
tension, PaO2: partial arterial oxygen tension. #Co-morbidities affecting <3% of study subjects 
were not indicated, (adapted from 63, 83 + unpublished data) 
 

4.1.2. Effect of CPAP therapy on clinical and polygraphic variables 

As expected, initiation of CPAP therapy was associated with an improvement of several 

polygraphic variables recorded at baseline (p<0.0001 for each, Table 2). Likewise, 

subjective sleepiness, as assessed by the ESS score, normalized along with treatment 

(p<0.0001). In contrast, BMI, fasting glucose and CRP levels did not change in CPAP-

treated subjects (p>0.05).  
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With regard to the CPAP adherence of our patients, the mean nightly duration of 

CPAP usage was >4 hours in each subject at the 2- and 6-month and the 5-year visits; 

these data (mean ±SD) for the whole cohort are indicated in Table 2. Moreover, the 

percentage of days when patients used the device >4 hours/day was at least 70% for each 

subject, both at the beginning and at the end of the study. At 2 months and at the final (5-

year) visit this index was 92.4±9.2 and 89.4±9.1%, respectively.  

 

Table 2. 

Effect of CPAP therapy on clinical and polygraphic variables during follow-up in Study 1 

    Baseline visit CPAP 

  2 months 6 months 5 years 

     Polygraphic data 
   AHI (events/h) 
   ODI (events/h) 
   Mean SaO2 (%) 
   Minimal SaO2 (%) 
   TIB90% (%) 
   ESS score 

 

58.0 (50.1-72.5) 
61.1 (47.1-67.5) 

91 (89-92) 
71 (64-77) 

28.0 (14.8-42.5) 
11.0 (7.5-14.5) 

 

1.7 (0.5-3.0)** 
3.0 (1.8-5.4)** 
94 (92-95)** 
87 (85-89)** 
0.1 (0-3.4)* 

4.0 (4.0-5.0)* 

 

0.5 (0-2.1)** 
2.0 (1.0-4.2)** 

93 (92-94)* 
85 (83-88)* 
0 (0-6.4)* 

3.0 (3.0-4.0)* 

 

2.3 (1.4-4.1)** 
2.3 (1.1-4.5)** 
94 (93-95)** 
89 (86-91)** 

0 (0-0.3)* 
4.0 (2.0-7.0)** 

Laboratory data 
   WBC (´109/L) 
   CRP (mg/L) 
   Glucose (mmol/L) 

    

7.1 ± 1.5 6.4 ± 1.3 7.1 ± 3.0 6.9 ± 1.2 

8.0 ± 6.4 6.6 ± 7.1 8.7 ± 7.0 6.2 ± 4.3 

6.6 ± 2.3 6.6 ± 2.4 6.9 ± 2.3 6.0 ± 1.8 

BMI (kg/m2) 35.2 ± 5.5 35.6 ± 5.8 35.1 ± 5.0 35.1 ± 5.8 

CPAP adherence 

(h/night)# 
- 6.21 ± 0.96 6.23 ± 1.14 6.43 ± 1.17 

Data are presented as mean±SD or median (interquartile ranges). CPAP: continuous positive 
airway pressure, AHI: apnea-hypopnea index, ODI: oxygen desaturation index, SaO2: arterial 
oxygen saturation, TIB90%: percentage of time in bed with arterial oxygen saturation less than 
90%, ESS: Epworth sleepiness scale, WBC: white blood cell count, CRP: C-reactive protein, 
BMI: body mass index. #CPAP adherence data for the 2-month, 6-month and 5-year visits 
represent CPAP use in the first two months, months 3-6, and the last 6 months before the end of 
the study, respectively. *p<0.01 and **p<0.0001 vs. baseline visit, (63) 
 

DOI:10.14753/SE.2022.2666



32 
 

4.1.3. Effect of CPAP therapy on lipid profile 

Following 2-month CPAP treatment, both TC and LDL-C levels were significantly 

decreased compared to baseline (TC: 5.62±1.25 vs. 5.18±1.08 mmol/L, p<0.05; LDL-C: 

3.52±1.02 vs. 3.19±1.04 mmol/L, p<0.05; Figure 4). Similarly, 6 months post-treatment 

levels of these lipid fractions were reduced (TC: 4.83±1.2 mmol/L, p<0.01; LDL-C: 

2.89±1.01 mmol/L, p<0.01). In contrast, serum TG and HDL-C levels at 2 and 6 months 

did not change significantly compared to baseline (TG: 2.1±0.7 and 1.97±0.95 vs. 

2.13±1.05 mmol/L, p>0.05; HDL-C: 1.07±0.27 and 1.1±0.26 vs. 1.13±0.26 mmol/L, 

p>0.05). 

Five year long CPAP treatment was associated with reduced levels of TC and 

LDL-C levels (TC: 5.1±1.02 mmol/L and LDL-C: 2.86±0.91 mmol/L, p<0.01 for each 

when compared to baseline). Additionally, there was some tendency towards increased 

HDL-C levels in these subjects (1.23±0.26 mmol/L, p>0.05). TG levels, on the other 

hand, still did not change (2.22±1.43 mmol/L, p>0.05). Mean changes in lipid fractions 

were similar following the different CPAP treatment periods (data not shown). 

 
Figure 4. Effect of CPAP therapy on serum lipid profile of patients with OSA during 

follow-up 

OSA: obstructive sleep apnea, BV: baseline visit, CPAP: continuous positive airway pressure, 
HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, TC: 
total cholesterol, TG: triglyceride. Error bars represent SD. *p < 0.05 and **p < 0.01 versus 
baseline visit, (63) 
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4.1.4. Subgroup analysis 

First, we investigated whether the outcome of the study is affected when the analysis is 

restricted to patients not using lipid-lowering (i.e. statins) medications. Such restriction 

had no effect on the outcome, this subgroup of patients (n=28) was not different from the 

whole cohort (i.e. both short- and long-term CPAP therapy lowered their serum TC and 

LDL-C, but not TG and HDL-C levels) (Table 3).  

 

Table 3.  

Effect of CPAP therapy on lipid levels in patients (n=28) not using lipid-lowering 

medications 

   Lipids 
(mmol/L) 

Baseline visit CPAP 

  2 months 6 months 5 years 
     TC 5.82 ± 1.17 5.22 ± 1.17** 5.06 ± 1.16* 5.17 ± 1.05** 
HDL-C 1.14 ± 0.26 1.09 ± 0.27 1.13 ± 0.25 1.25 ± 0.27 
LDL-C 3.7 ± 0.95 3.25 ± 1.1* 3.11 ± 0.94* 2.96 ± 0.86** 
TG 2.14 ± 1.09 2.04 ± 0.73 1.93 ± 0.85 2.11 ± 1.14 

Data are presented as mean±SD. CPAP: continuous positive airway pressure, TC: total 
cholesterol, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density lipoprotein 
cholesterol, TG: triglyceride. *p<0.05 and **p<0.01 vs. baseline visit, (63) 
 

To further explore the effect of CPAP treatment, changes in lipid levels were analyzed in 

patients stratified by median age and BMI (Table 4). We found that 5 years past treatment 

initiation, the mean difference in change in TC and LDL-C levels was greater in younger 

patients (n=17) and those with higher BMI (n=17) (p<0.05 for each). In contrast at 2 or 6 

months of CPAP treatment no such differences between the subgroups could be detected 

(data not shown). 
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Table 4. 

Mean changes (compared to baseline) in lipid fractions in patients stratified by the median 

age and BMI after 5 years of CPAP treatment 

  Clinical variables Lipids 
 TC HDL-C LDL-C TG 
 mmol/L 

     Age 
   <56 years old 
(n=17) 
   >56 years old 
(n=16) 

 
-0.94 (-1.55, -
0.32) 
-0.08 (-0.45, 
0.29)* 

 
0.07 (-0.04, 
0.17) 
0.14 (0.01, 0.27) 

 
-1.0 (-1.48, -0.52) 
 
-0.29 (-0.65, 
0.07)* 

 
0.01 (-0.79, 0.8) 
 
0.17 (-0.72, 1.1) 

BMI 
   <35 kg/m2 (n=16) 
   
    >35 kg/m2 (n=17) 

 
-0.14 (-0.51, 0.24) 
 
-0.88 (-1.5, -
0.24)# 

 
0.12 (-0.01, 
0.26) 
0.08 (-0.03, 
0.19) 

 
-0.33 (-0.7, 0.04) 
 
-0.97 (-1.5, -
0.48)# 

 
0.16 (-0.78, 1.1) 
 
0.02 (-0.74, 
0.77) 

Data are presented as mean (95% confidence intervals [CI]). CPAP: continuous positive airway 
pressure, TC: total cholesterol, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density 
lipoprotein cholesterol, TG: triglyceride, BMI: body mass index. *p<0.05 vs. patients <56 years 
old, #p<0.05 vs. patients with BMI <35 kg/m2, (63) 
 

4.1.5. Correlations 

At baseline, significant positive correlations were found between BMI and AHI (r=0.436, 

p<0.05), ODI (r=0.458, p<0.01) or TIB90% (r=0.345, p<0.05). In addition, BMI showed 

a weak negative association with HDL-C (BMI: r=-0.263, p<0.05), but not with other 

lipid fractions. No correlations were found between polygraphic variables and lipid levels 

or other clinical variables (data not shown). As expected, the above correlations 

disappeared upon CPAP treatment, and during the follow-up visits no clinically important 

associations emerged (data not shown). 

4.2. Study 2 

4.2.1. Enrollment, demographics, and clinical characteristics 

From patients referred to our sleep laboratory for suspicion of OSA during the period of 

recruitment, 55 fulfilled inclusion criteria and agreed to participate in Study 2 (Figure 3). 

During follow-up, 27 patients had to be withdrawn for various reasons during the follow-

up period. Demographic and clinical data of the remaining 28 patients who completed 

Study 2 are presented in Table 1. 
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Table 5. 

Effect of CPAP therapy on clinical and polygraphic variables during follow-up in Study 2 

    Baseline visit CPAP 

  2 months 6 months 5 years 

     Polygraphic data 
   AHI (events/h) 
   ODI (events/h) 
   Mean SaO2 (%) 
   Minimal SaO2 (%) 
   TIB90% (%) 
   ESS score 

 

57.9 (51.3-72.5) 
61.1 (50-67.5) 

90 (88-94) 
73 (65-77) 

27.0 (14.8-45.0) 
12.0 (7.2-14.1) 

 

1.6 (0.5-2.95)** 
3.0 (2-5.35)** 
93 (92-95)** 
86 (82-88)** 
0.2 (0-4.2)* 

3.7 (3.5-5.8)* 

 

0.6 (0-2.1)** 
1.8 (0.9-4.5)** 

94 (91-95)* 
85 (82-89)* 
0.1 (0-6.4)* 

2.9 (2.9-4.2)* 

 

2.3 (1-4.0)** 
2.3 (1.1-4.5)** 
93 (92-95)** 
87 (85-92)** 
0 (0-0.25)* 

3.8 (1.8-7.1)** 
Laboratory data 
   WBC (´109/L) 
   CRP (mg/L) 
   Glucose (mmol/L) 

    

7.3 ± 0.3 6.5 ± 0.3 7.3 ± 0.7 7.0 ± 0.2 

8.6 ± 1.3 6.4 ± 1.6 9.4 ± 1.6 6.4 ± 0.9 

6.6 ± 0.4 6.8 ± 0.5 6.5 ± 0.4 5.8 ± 0.3 

BMI (kg/m2) 35.7 ± 1.1 35.8 ± 1.2 35.1 ± 1.8 35.7 ± 1.2 

CPAP adherence 

(h/night)# 
- 6.07 ± 0.18 6.09 ± 0.22 6.47 ± 0.24 

Data are presented as mean±SD or median (interquartile ranges). CPAP: continuous positive 
airway pressure, AHI: apnea-hypopnea index, ODI: oxygen desaturation index, SaO2: arterial 
oxygen saturation, TIB90%: percentage of time in bed with arterial oxygen saturation less than 
90%, ESS: Epworth sleepiness scale, WBC: white blood cell count, CRP: C-reactive protein, 
BMI: body mass index. #CPAP adherence data for the 2-month, 6-month, and 5-year visits 
represent CPAP use in the first two months, months 3-6, and the last 6 months before the end of 
the study, respectively. *p<0.01 and **p<0.0001 vs. baseline visit, (83) 
 

4.2.2. Effect of CPAP therapy on sleep and clinical variables 

Compared to baseline, initiation of CPAP therapy resulted in marked improvements in 

sleep parameters such as AHI, ODI, SaO2, TIB90% (p<0.01 or better for each, Table 5). 

According to the ESS score, CPAP therapy normalized subjective sleepiness as well 

(p<0.0001). BMI and CRP levels on the other hand did not change significantly during 

the 5-year follow-up period (p>0.05). 

The mean nightly duration of CPAP usage was >4 hours in each subject at 2 and 

6 months and the 5-year visit (Table 5). Each subject used the CPAP device >4 hours/day 

DOI:10.14753/SE.2022.2666



36 
 

in at least 70% of days throughout the study with 89.6±9.2%.in the last 6 months 

preceding the final visit.  

4.2.3. Early effects of CPAP therapy on serum MMP profile 

Using undiluted serum, all analytes but MMP-13 fell within the detection range of the 

protein array. Serum levels of MMP-8 and MMP-9 markedly decreased at the 2-month 

control visit as compared to those at the time of OSA diagnosis (146 (79-237 [95% CI 

85-217]) vs. 287 (170-560 [95% CI 226-403]) pg/mL at baseline, p=0.028 and 10.1 (7.1-

14.1 [95% CI 7.8-13.2]) vs. 12.7 (10.4-15.6 [95% CI 10.8-15.0]) ng/mL at baseline, 

p=0.029, respectively; Figure 5), while the level of the remaining analytes did not 

markedly change during this early period of CPAP treatment. At 6 months only MMP-8 

was significantly below the level observed at OSA diagnosis, but a similar tendency for 

a decrease could be observed for MMP-9 as well (146 (54-276 [95% CI 54-276]) vs. 287 

(170-560 [95% CI 226-403]) pg/mL at baseline, p=0.018 and 8.1 (4.7-13.6 [95% CI 4.7-

13.6]) vs. 12.7 (10.4-15.6 [95% CI 10.8-15.0]) ng/mL at baseline, p=0.083, respectively).  

4.2.4. Serum MMP profile after 5 years of CPAP therapy 

Despite uninterrupted CPAP therapy, at the 5-year control visit increased levels of MMP-

8, MMP-9 and TIMP-4 were detected compared to those at the time of OSA diagnosis 

(578 (255-1167 [95% CI 295-1070]) vs. 287 (170-560 [95% CI 226-403]) pg/mL at 

baseline, p=0.017; 15.0 (12.4-24.2 [95% CI 12.9-22.7]) vs. 12.7 (10.4-15.6 (95% CI 10.8-

15.0]) ng/mL at baseline, p=0.014 and 893 (496-1542 [95% CI 586-1428]) vs. 828 (387-

1211 [95% CI 482-1047]) pg/mL at baseline, p=0.023, respectively; Figure 5). The 5-

year change in the level of other MMPs did not reach statistical significance compared to 

baseline but some, such as MMP-2 and MMP-10 when compared to early time-points 

following initiation of CPAP treatment also significantly increased by the end of the study 

(Figure 5).   
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Figure 5. Serum MMP (Panel A–F) and TIMP (Panel G–I) levels of study subjects 

during the 5-year follow-up 

Marker levels were assessed at the time of diagnosis (OSA), at 2 and 6 months (2M and 6M), and 
5 years of CPAP therapy (5Y). OSAS: obstructive sleep apnea syndrome (baseline visit), CPAP: 
continuous positive airway pressure, MMP: matrix metalloproteinase, TIMP: tissue inhibitor of 
matrix metalloproteinase. Standard box plots with median (25th and 75th percentiles) and whiskers 
(at the minimum and maximum values) are shown. *p < 0.05 vs. baseline visit; #p < 0.05 and ###p 
< 0.001 vs. 2-month visit; °p < 0.05 and °°°p < 0.001 vs. 6-month visit, (Simon et al., Sci Rep, 
10: 8609), (83) 
 

4.2.5. Subgroup analysis 

To explore the possibility that short- and long-term changes in serum MMP-8,  MMP-9, 

and TIMP-4 levels were affected by patient characteristics, data were reanalyzed after 

stratifying patients by median age, BMI, and whether or not they have been taking 

medication for hypertension at the time of OSA diagnosis. However, both at 2 months 

and 5 years past CPAP treatment initiation the mean difference in change between these 

subgroups was similar (Table 6). 
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Table 6. 

Mean changes in MMP-8 and MMP-9 and TIMP-4 levels after 2 months and 5 years of 
CPAP treatment in patients stratified by the median age and body mass index and 

whether or not they have been taking medication for hypertension at the time of OSA 
diagnosis. 

 
Data are presented as mean (95% confidence intervals [CI]). OSA: obstructive sleep apnea, 
CPAP: continuous positive airway pressure, MMP: matrix metalloproteinase, TIMP: tissue 
inhibitor of matrix metalloproteinase, 2M: 2 months of CPAP treatment, 5Y: 5 years of CPAP 
treatment, BL: baseline, HT: hypertension, BMI: body mass index, (83 suppl. inf.) 
 

4.2.6. Correlations between MMPs and sleep parameters  

No correlations were found between MMPs, TIMPs, and main polygraphic variables such 

as AHI, ODI, and TIB90% at the time of OSA diagnosis (Figure 7). 

4.2.7. Correlations between MMPs and clinical variables 

At baseline, a strong positive association was found between MMP-8 and white blood 

cell count (WBC) (r=0.62, p<0.001; for neutrophils: r=0.76, p<0.001) and a weaker one 

for CRP (r=0.47, p=0.019). Notably, both of these correlations disappeared after 2 months 

of CPAP treatment (r=-0.02, p=0.933 for WBC; r=-0.04, p=0.855 for CRP). MMP-3 and 

MMP-9 showed a weak positive correlation with WBC only at OSA diagnosis (r=0.40, 

p=0.033 and r=0.43, p=0.021; respectively). Another potentially important, albeit weak 

negative correlation was observed between MMP-1 and BMI (r=-0.37, p=0.049). No 

other clinically important correlations were detected (Figure 8). 
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Figure 7. Correlations between MMPs/TIMPs and main polygraphic variables and heart 

rate at OSA diagnosis 

P-values of Spearman correlations are indicated in the cell for each pair and gray scale coded 
according to the label at right. OSA: obstructive sleep apnea, MMP: matrix metalloproteinase, 
TIMP: tissue inhibitor of matrix metalloproteinase, ESS: Epworth sleepiness scale, AHI: apnea-
hypopnea index, ODI: oxygen desaturation index, TIB90%: percentage of time in bed with arterial 
oxygen saturation less than 90%, HR: heart rate, avg: average, (83 suppl. inf.) 
 

 
Figure 8. Correlations between MMPs/TIMPs and clinical variables at OSA diagnosis 

(Panel A) and after 5 years of CPAP treatment (Panel B) 

P-values of Spearman correlations are indicated in the cell for each pair and gray scale coded 
according to the label at right. OSA: obstructive sleep apnea, CPAP: continuous positive airway 
pressure, MMP: matrix metalloproteinase, TIMP: tissue inhibitor of matrix metalloproteinase, 
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HDL- C: high-density lipoprotein cholesterol, FVC: forced vital capacity, FEV1: forced 
expiratory volume in 1 second, CRP: C-reactive protein, WBC: white blood cell count, PaCO2: 
partial arterial carbon dioxide tension, PaO2: partial arterial oxygen tension, BMI: body mass 
index, (83 suppl. inf.) 
 

4.3. Study 3 

4.3.1. Sleep physiological parameters  

At the time of diagnosis (baseline), the sleep diagnostic parameters of participating 

patients were in the pathological range (AHI: 57.6±3.9 events/h, ODI: 57.9±4.0 events/h, 

min SaO2: 72.2±2.1%, mean SaO2: 90.9±0.6%, TIB90%: 26.7±4.5%). Following the 

initiation of CPAP therapy, all the above parameters quickly improved, reaching normal 

values already in the short-term (2-6 months) that remained so in the long-term (5 years) 

(Figure 9).  

However, at 1 week after CPAP withdrawal, all sleep parameters except AI and 

ODI (41.2±4.4 vs. 32.4±4.4 and 57.0±4.0 vs. 44.3±4.6 events/h, at baseline and after 1-

week CPAP withdrawal, respectively; p<0.01) deteriorated close to the value measured 

at the time of OSA diagnosis (p>0.05). Interestingly, 1-week CPAP withdrawal had no 

effect on the ESS score.  

4.3.2. Cardiovascular parameters 

Long-term CPAP treatment also improved several cardiac parameters such as maximum 

and mean heart rate (HR), acceleration (AC), deceleration (DC) and arrhythmia indices 

compared with those at the time of OSA diagnosis (all with p <0.001) (Figure 10). After 

1 week of CPAP withdrawal, mean HR values and the DC capacity significantly 

deteriorated compared to the 5-year CPAP control visit (63.0±1.8 vs. 67.4±1.8; p<0.01 

and 6.7±3.0 vs. 12.7±3.4 p<0.05, respectively), while the arrhythmia index and the AC 

capacity (5.9±2.5 vs. 10.0±3.7 and 6.8±3.0 vs. 12.8±3.4; p>0.05, respectively) hardly 

changed. 

Compared to the 5-year control values, 1 week CPAP withdrawal resulted in mild but 

significant increase of morning systolic blood pressure values (127.6±3.6 vs. 135.0±4.5 

mmHg; p=0.02), while it only led to a trend level deterioration of morning diastolic blood 

pressure (79.5±2.0 vs. 83.9±2.4 mmHg; p=0.064) and blood gas values (9.7±0.15 vs. 

9.3±0.26 kPa: p=0.072 for PaO2 and 5.2±0.09 vs. 5.5±0.23 kPa for PaCO2: p=0.058).  
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Figure 9. Changes of sleep parameters and ESS scores after 1 week of CPAP withdrawal 

Horizontal lines indicate mean. OSA: obstructive sleep apnea, AHI: apnea-hypopnea index, ODI: 
oxygen desaturation index, SaO2: oxygen saturation, CPAP: continuous positive airway pressure, 
ESS: Epworth sleepiness scale, ns: non-significant. *p< 0.05, **p< 0.01, ***p<0.001, ****p<0.0001, 
(unpublished figure) 
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Figure 10. Changes of cardiovascular parameters after 1 week of CPAP withdrawal 

Horizontal lines indicate mean. OSA: obstructive sleep apnea, BP: blood pressure, HR: heart rate, 
HR STD: heart rate standard deviation, acc: hearth rate acceleration, dec: hearth rate deceleration, 
CPAP: continuous positive airway pressure, ns: non-significant. *p< 0.05, **p< 0.01, ***p<0.001, 
****p<0.0001, (unpublished figure) 
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Figure 11. P-values of correlations between sleep and cardiovascular parameters at 

the time of OSA diagnosis, after 5 years of CPAP use and after 1 week of CPAP 

withdrawal 

OSA: obstructive sleep apnea, AHI: apnea-hypopnea index, ODI: oxygen desaturation index, 
SaO2: oxygen saturation, CPAP: continuous positive airway pressure, BP: blood pressure, HR: 
heart rate, HR STD: heart rate standard deviation, (unpublished figure) 
 

4.3.3. Correlations 

Initiation of CPAP therapy led to the disruption of all correlations between sleep and 

cardiac parameters that existed at the time of OSA diagnosis. The changes induced by 1 

week CPAP withdrawal resulted in the appearance of correlations between AHI, ODI, 

and the arrhythmia index, correlations that did not exist at baseline. All correlations are 

shown in Figure 11 
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5. DISCUSSION 

5.1. Study 1 

In this study, we demonstrated that the application of CPAP therapy for as short as 2 

months reduced fasting TC and LDL-C levels in a cohort of patients with severe OSA. 

Importantly, the beneficial effect of CPAP was not transient, and sustained even after 5 

years of therapy, indicating that CPAP improves the lipid profile of patients with OSA 

over the long-term, potentially ameliorating the risk of cardiovascular disease associated 

with OSA. 

Although the effect of CPAP treatment on dyslipidemia has been extensively 

investigated in recent years, previous studies had covered a limited time frame. To the 

best of our knowledge, our study exploring the effect of CPAP on fasting lipids over 5 

years has to date the longest duration. Randomized controlled trials that followed changes 

in lipid profile as a result of CPAP treatment were limited to a maximum of 24 months 

(51,52), while the longest observational study had a 2-year follow-up period (50). In the 

latter study, no effect of CPAP use on lipid profile was observed. Similarly, in a small, 

but relatively long, observational study (mean duration of treatment: 13.9 months) a 

negative outcome was reported as well (64). In contrast, in the PREDICT trial, as one of 

the longest randomized trials, CPAP reduced the levels of TC and LDL-C at 3 months, 

but the effect was not sustained at 12 months (65). 

Differences between the findings of these studies and the one presented here may, 

at least in part, be explained by differences in study populations: our study was restricted 

to patients with severe OSA (AHI>30), while in all aforementioned trials (50,64,65) 

patients with moderate disease (15<AHI<30) were also included. CPAP therapy has been 

reported to be more effective in OSA patients with severe disease (66,67). Animal studies 

suggest that the more severe the hypoxic stimulus is, the higher the degree of dyslipidemia 

that it triggers, and also, the effect of pressure therapy will be more likely beneficial in 

severe OSA (68). A further difference between the study populations is the age. For 

example, the PREDICT trial (65) was conducted in elderly patients (>65 years), where 

CPAP may be less effective. Indeed, as noted already, early favorable effects of CPAP 

on lipids were not sustained until the end of that study. 
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Contradictory data on the effects of CPAP therapy on the lipid profile may also 

be due to the consequence of using different CPAP modalities (auto-adjusting vs. fixed-

pressure) in the clinical trials as these may have different effects on cardiac/metabolic 

parameters AutoCPAP devices may have limitations in their ability to properly adjust the 

pressure to actual requirements which may lead to extra sympathetic stimulations causing 

disadvantageous cardiac and/or metabolic effects (42). However, our results were not 

confounded by this factor since all our patients received fixed-pressure CPAP therapy. 

Large cohort studies using for example data from the European Sleep Apnea 

Database indicate that OSA severity is independently associated with both TC and TG 

concentrations in patients with OSA (69). However, lipid levels in OSA are often 

confounded by the effects of comorbid obesity. In line with this theory, BMI but not AHI 

showed an inverse relationship with HDL-C in our study, in agreement with findings of 

others (70). Similarly, correlations between AHI and serum lipid levels recently observed 

both in the REM and non-REM sleep phases were lost after adjustment for BMI (71).  

Changes in BMI during therapy may also influence the lipid profile of subjects as 

there is evidence that weight loss intervention alone can lead to a reduction in serum lipid 

levels (72). Earlier studies have reported disparate results in terms of BMI: in some cases, 

BMI increased (50,73), in another, it decreased (74) or in several cases, it remained 

unchanged (48,64,65) in subjects receiving CPAP therapy. In our study not only the 

cohort-wide average BMI did not change along with CPAP treatment, but the change of 

BMI over the 5 years was very small for individual subjects as well (the mean of the 

absolute values of change of BMI was 0.9 kg/m2 while the SD of the change was only 

1.55, with over 80% of patients having less than 5% change in BMI). This suggests that 

in our study cohort the observed changes in lipid profile cannot be attributed to changes 

in body weight. 

The role of CPAP in disturbed glucose metabolism in OSA is again controversial. 

Some studies documented an improvement (75), while others saw no effect of pressure 

treatment on the glycaemic profile of patients with OSA (49,76). In our study we did not 

observe changes in fasting glucose, however, other possible measures (HbA1c, insulin 

resistance, etc.) had not been investigated. 

Fifteen percent of our patients (n=5) used lipid-lowering agents (i.e. statins) at 

baseline (use of such medication was not an exclusion criterion). This policy likely had 
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some impact on our lipid data; however, in participants not using statins a similar 

beneficial effect of CPAP on the lipid status was demonstrated. Importantly, subjects in 

whom lipid-lowering medication was initiated during the follow-up were excluded from 

our study; thus, the effect of these agents could not be responsible for the improvements 

in lipids. 

Our findings in subgroup analysis corroborated the results of a recent meta-

analysis indicating that the effect of CPAP on lipids is more pronounced in patients who 

are younger and more obese (52). However, this relationship was detectable only after 5 

years of treatment.  

It is important to note that patients with poor CPAP adherence and those who 

discontinued CPAP therapy were excluded from our study. As a consequence, the nightly 

average duration of CPAP use (>6.4 h/night at 5 years) was much higher in our cohort 

than in many clinical trials published to date, where this parameter was found to be a 

critical determinant of the study outcome. We hypothesize that the excellent CPAP 

adherence might have significantly contributed to our favorable long-term findings. 

The mechanism by which CPAP improves lipid metabolism is unclear. It can be 

speculated that a decrease in oxidative stress or elimination of intermittent hypoxia, 

sympathetic hyperreactivity, and sleep fragmentation are indirectly involved in the 

process (11,51). 

Theoretically, CPAP independent factors could also explain the observed 

improvements in lipid profile. Although increasing daytime physical activity and 

switching to a healthier diet is routinely recommended to our patients during ambulatory 

visits, a limitation of our study is that such lifestyle factors were not directly controlled 

during follow-up. In retrospect, however, it is not likely that these factors played a 

significant role in our study, otherwise BMI, which can be considered as a surrogate 

marker of lifestyle (51), would be expected to improve as well. Since the BMI of most 

study participants did not change during the 5 years of the follow-up, no fundamental 

alterations in patients’ diet and/or physical activity could be suspected.  

Nonetheless, to gain at least some information on the current lifestyle of our 

patients, we made a short, post-trial survey among our patients using the so-called Simple 

Lifestyle Indicator Questionnaire (SLIQ) (provided in the Supplementary Appendix). It 

is a validated health-measurement scale suitable for the assessment of various individual 
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lifestyle components such as (i) diet, (ii) exercise, (iii) alcohol consumption, (iv) smoking, 

and (v) life stress (77,78). Since each component is equally weighted and can have a 

category score of 0, 1, or 2, the overall SLIQ scores, which are based on the five category 

scores, can range from 0 to 10. In general, a higher score represents a healthier lifestyle. 

During the survey, we were able to reach 30 study participants by phone. Their mean 

SLIQ score was 5.167±1.262, indicative of an average, moderately healthy lifestyle. 

Thus, it appears that our patients do not pay extra attention to lifestyle factors. 

Some antihypertensives, including angiotensin-converting enzyme (ACE)-

inhibitors and beta-blockers, are not lipid neutral; however, during the study, these drugs 

were initiated only for 18% (n=6) of the patients. When we repeated the TC and LDL-C 

analysis using data from the remaining 27 subjects (i.e. excluding data for the above-

mentioned 6 patients), we found that the significance of the changes was not lost for either 

TC or LDL-C. Therefore, we can reasonably assume that the effect of newly prescribed 

antihypertensives, if any, did not play a significant role in the study outcome. 

Polygraphy was a suitable method for the diagnosis of severe OSA in our cohort 

as the diagnosis was established as part of a comprehensive sleep study in patients with a 

high pretest likelihood of the disease. Polysomnography may yield a more accurate AHI 

and could more accurately distinguish between mild, moderate, and severe OSA cases. 

However, we can exclude the possibility that our patients were misclassified since at the 

time of diagnosis their median AHI was significantly higher (58 events/h) than the cut-

off value used for the inclusion (30 events/h).  

5.2. Study 2 

Our study has demonstrated that CPAP therapy in patients with severe OSA results in a 

marked reduction in the serum levels of MMP-8 and MMP-9 in the short-term, while at 

the same time it has lesser or no effect on the concentration of several other members of 

the MMPs and TIMPs. The most striking finding of our study was that the beneficial 

effect of CPAP on key MMPs implicated in the progression of atherosclerosis was not 

sustained over the long-term as by the end of the 5 year follow-up period, the levels of 

MMP-8, MMP-9, and TIMP-4 increased beyond even those detected at the time of OSA 

diagnosis. 
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OSA is considered an independent risk factor for CVD. In support of this concept, 

a very recent study demonstrated marked coronary plaque formation in patients with OSA 

using coronary computed tomography angiography (79). As discussed earlier, MMPs 

have been associated with both oxidative stress and cardiovascular diseases, and hypoxic 

conditions were shown to influence MMP expression, secretion, and activity making 

these markers potentially important mediators in the process of accelerated 

atherosclerosis in OSA (23-26,80). 

Notably, it was found that initiation of CPAP treatment of OSA significantly 

decreases serum levels of MMP-9, but does not affect TIMP-1 levels within 1 month. Our 

data regarding the short-term effect of CPAP treatment on MMP-9 and TIMP-1 not only 

reiterates these observations but also adds new information about the behavior of several 

other MMPs and TIMPs. Taken together, this is consistent with a scenario where the 

effects of OSA-induced CIH on CVDs are mediated by only a subset of MMPs, including 

MMP-8 and MMP-9, and that CPAP therapy alleviates this aspect of CVD risk in the 

short-term by eliminating the burden of CIH. 

Little is known about the long-term effect of OSA on CVD, particularly the impact 

of CPAP treatment on MMP levels. In our study by the end of the follow-up period, 

increased levels of MMP-8, MMP-9, and TIMP-4 were measured compared to the time 

of OSA diagnosis. Our original study design had also called for the inclusion of control 

subjects, i.e. severe OSA patients who for any reason discontinued CPAP therapy during 

the follow-up period. However, despite our best efforts, for the final visit, we were unable 

to recruit such patients in sufficient numbers required for statistical analysis. 

Nevertheless, the reappearance of CIH can be excluded as a reason behind the elevated 

MMP-8, MMP-9, and TIMP-4 levels, since the initial strong association of MMP-8 and 

MMP-9 with markers of systemic inflammation had not reappeared at 5 years, consistent 

with the high adherence of our patients to CPAP.  

Our subgroup analysis was carried out to see if independent CVD risk factors such 

as age, BMI, and a history of hypertension exerted significant influence on the extent of 

change in the levels of MMP-8, MMP-9, and TIMP-4 during the 5-year follow-up period. 

Stratification of the subjects based on the above parameters did not uncover differences 

between the subgroups suggesting that at least in this cohort of patients, age, BMI and 

hypertension did not play a major role in the short and long-term changes of these 
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analytes. It must be noted, however, that every single member in our cohort of patients 

was obese at the time of OSA diagnosis, and initiation of CPAP therapy did not prompt 

a change in their lifestyle. Moreover, by the end of the 5-year follow-up period, the 

cohort-wide mean change of BMI was 0.9 kg/m2, while the SD of the change was only 

2.14, with over 80% of the patients having less than 5% change in their BMI. Obesity as 

a constant comorbid condition could explain why the initial beneficial effect of CPAP 

could not be sustained in this cohort.  

It was shown that obesity and an associated low-grade systemic inflammation 

modulate MMP-9 levels in children with OSA, independently from OSA severity (56). 

The authors found that BMI and CRP levels correlate with MMP-9 levels and speculated 

that a more severe CIH may be responsible for the higher prevalence of systemic 

inflammation in adults with OSA. On the other hand, there is evidence that exercise and 

diet lower MMP-9 levels within 2 weeks as was shown in a cohort of overweight children 

(81). The expression and activity of MMPs are regulated by various hormones and growth 

factors, including insulin, leptin, and adiponectin, factors involved in adipose tissue 

expansion (82). It is therefore conceivable that the lack of exercise and diet that led to 

invariable BMI in our cohort of severe OSA patients may be responsible for the increased 

levels of a number of MMPs by perpetuating a low-grade systemic inflammation, 

independent of OSA.  

One of the strengths of our study is the simultaneous measurement of 7 MMPs 

and 3 TIMPs in a single serum sample by means of a multiplexed antibody array. This 

has effectively minimized the possibility of errors due to variations between samples 

and/or conditions, and thus greatly facilitated comparisons between analytes.  

We detected positive correlations of MMP-8 with neutrophils and CRP and 

between MMP-9 and neutrophils at the time of OSA diagnosis. Associations between 

MMPs and markers of systemic inflammation are not unprecedented; increased serum 

levels of CRP and MMP-9 in OSA had been reported before (24). The fact that all these 

correlations disappeared after only 2 months of CPAP treatment is another strong 

indication that MMP-8 and MMP-9 are central in mediating the systemic effects of CIH.  
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5.3. Study 3 

We demonstrated that in patients diagnosed with severe OSA who were characterized 

with high adherence to CPAP usage, a well-adjusted CPAP therapy quickly leads to 

normalized sleep parameters that remain in the normal range provided CPAP use is 

continuous. However, despite prolonged CPAP treatment, even a short, 1-week long 

CPAP withdrawal in a deterioration of most sleep parameters close to the abnormal values 

observed at diagnosis.  

The AI and ODI levels were the exceptions that, although increasing after 

withdrawal, were still significantly lower compared to the values measured at the time of 

diagnosis. Consistent with the literature, our results suggest that the reduction in the 

number of apnea events associated with complete airway obstruction during withdrawal 

may be due in part to the upper airway stabilizing effect of CPAP treatment. Prolonged 

CPAP use allows for the regenerative process of reversible damage to pharyngeal tissues. 

CPAP treatment also eliminates the vibrational trauma caused by snoring and may 

contribute to the reduction of inflammatory and cardiac edema that in turn improves the 

parapharyngeal tissue tone, muscle tone, and reflex muscle activity. This reduced 

tendency to collapse leads to fewer and less severe respiratory events like apnea and 

remains so even upon withdrawal of CPAP. A decrease in the number of apnea events 

may partly explain the improvement in ODI as apnea is associated with more pronounced 

oxygen desaturation (41). 

Another possible explanation for the improved AI and ODI upon CPAP 

withdrawal compared to baseline values could be a change in sleep structure. In a 2-night 

withdrawal study in severe OSA patients, Young et al. registered fewer apnea, more 

hypopnea/respiratory effort related arousal (RERA) events paralleled by more moderate 

O2 desaturation. Changes in sleep architecture were found to be significant in terms of 

SDB severity, EEG analysis showing a lower REM (15.6% vs. 12.9%, p=0.009) at CPAP 

withdrawal compared to baseline. As the REM phase is associated with more severe and 

more frequent abnormal respiratory episodes, it is plausible that less REM phase leads to 

less apnea and more favorable O2 desaturation values (41). In the absence of 

electroencephalography measurements in our cohort, we could not draw any conclusions 

in this regard. 
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In a few patients, AHI remained in the normal range even after CPAP withdrawal 

but that does not mean that these patients were cured of OSA. According to current 

guidelines, CPAP therapy can only be permanently suspended if a control sleep study 

after three months of CPAP withdrawal yields favorable results. This is because although 

the AHI value may be normal, the exacerbation of mechanical damage and airway 

inflammation caused by vibration trauma due to snoring may result in a recurrence of 

OSA. Patients in our study insisted on using the CPAP device and did not take advantage 

of the proposed 3-month therapy suspension. 

One week after CPAP withdrawal, morning systolic blood pressure showed a 

modest but significant, clinically relevant increase, and the morning diastolic blood 

pressure showed a non-significant increase compared to 5-year CPAP control values. 

Morning blood pressure is a function of nocturnal hypoxia/hypercapnia associated with 

OSA, changes in intrathoracic pressure, increased sympathetic nervous system activity 

induced by micro-awakenings, and acute peripheral vasoconstriction (activation of the 

renin-angiotensin system). Dominantly, the increase in sympathetic baseline induced by 

repetitive apnea is transmitted to daytime wakefulness resulting in abnormal levels of 

pulse and blood pressure variability. Morning systolic blood pressure values showed a 

significant average increase of 7 mmHg (p=0.02) after 1 week of CPAP withdrawal 

compared to the 5-year CPAP control values, while the average increase in diastolic blood 

pressure was 4 mmHg (p=0.06). The evening blood pressure value is largely a function 

of daytime activity and no change was observed upon CPAP withdrawal (data not shown). 

Our results suggest that OSA is an important mediator of secondary hypertension.  

CPAP withdrawal also leads to a rapid deterioration of most cardiac parameters, 

although the AC that measures the activity of the autonomic nervous system remains 

significantly lower after withdrawal compared to the value at OSA diagnosis.  

The autonomic nervous system modulates the physiological activity of the heart 

through sympathetic and parasympathetic activity.  During vasoconstriction, the 

sympathetic nervous system modulates several cardiovascular parameters that result in 

increased heart rate, increased cardiac contractility, decreased venous capacity, and 

increased peripheral vascular resistance. The cardiovascular effects of the 

parasympathetic nervous system (vagus nerve) include reduction of heart rate by 

inhibition of the sympathetic nervous system and direct hyperpolarization of the sinus 
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node. The real-time activity of the parasympathetic and sympathetic nervous systems on 

the heart is reflected in the electrophysiology of the heart. Heart rate variability, a 

physiological phenomenon of changes in the interval between heartbeats over time and 

frequency, are considered promising markers to characterize autonomic nervous system 

activity. The heart rate decelerates upon parasympathetic activity and accelerates upon 

sympathetic activity. Pulse acceleration is characterized by the Acceleration index and 

deceleration by the Deceleration index. 

OSA causes the heart rate to move toward bradycardia through the activation of 

vagotonia and diving reflex at the beginning of apnea events. Sympathetic activation 

induced by micro-awakenings, intermittent hypoxia, oxidative stress, and increased 

intrathoracic pressure fluctuations together result in tachycardia and induce electrical 

instability in the heart muscle (10). 

Our observation regarding the acceleration index suggests that our patients had a 

more pronounced sympathetic effect due to repetitive sympathicotonia at diagnosis 

compared to the 1-week CPAP withdrawal after 5 years of continuous CPAP use.  

Despite the deterioration of objective sleep and cardiac parameters, the subjective 

ESS scores did not change after CPAP withdrawal suggesting that the physiological 

effects of short-term withdrawal do not translate to changes in the patient’s sense of 

condition. 

Our analysis of possible correlations between sleep and cardiac parameters 

demonstrated that the correlations existing at the time of OSA diagnosis are eliminated 

by CPAP treatment, and upon CPAP withdrawal a different pattern appears. To determine 

if these correlations are scientifically and clinically relevant could be the subject of further 

research and in-depth analysis.  
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6. CONCLUSIONS 

6.1. Study 1 

In this study, we investigated the effect of long-term CPAP treatment on the lipid profile 

of patients with severe OSA. Our data suggest that the beneficial effects of CPAP 

treatment on fasting TC and LDL-C levels, already achieved with short-term treatment 

periods, could be sustained in the long term. An improved lipid profile may contribute to 

reducing cardiovascular risk in patients with severe OSA.  

6.2. Study 2 

In this study, we investigated the effect of CPAP therapy, both short- and long-term, on 

the MMP profile of patients with severe OSA. We observed that CPAP therapy in the 

short term lowers the serum concentration of MMPs formerly implicated as CVD risk 

factors, but these potentially beneficial effects were not sustained over the long term. 

CPAP treatment may only eliminate some but not all MMP associated cardiovascular risk 

in obese patients with severe OSA. 

6.3. Study 3 

Our results indicate that the symptoms of OSA return in a less severe form following a 1-

week CPAP withdrawal in patients with severe OSA who have been using the CPAP 

device for 5 years with high adherence, corroborating data published earlier. The process 

is dominated by the re-emergence of apnea-related repetitive sympathicotonia. We 

observed that hypertension associated with OSA is reduced by CPAP; however, 

withdrawal of CPAP significantly increases the systolic blood pressure. CPAP 

withdrawal also results in a rapid deterioration of cardiac parameters, suggesting 

increased sympathicotonia. In conclusion, even a 1-week CPAP withdrawal involves 

serious health risks.  
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7. SUMMARY 

Obstructive sleep apnea (OSA), is the most common form of sleep-related breathing 

disorder and is characterized by recurrent episodes of complete or partial obstruction of 

the upper airways during sleep. As a result of untreated OSA, severe cardiovascular and 

metabolic complications, mental dysfunction and depression, may develop.  

Continuous positive airway pressure (CPAP) therapy provides a well-documented 

symptomatic relief for most patients with OSA; however, its effect on dyslipidemia, an 

important mediator of accelerated atherosclerosis in OSA, remains contradictory. 

Therefore, in the first part of our work, we investigated the effects of CPAP treatment on 

the lipid profile of patients with severe OSA. We found that the beneficial effects of this 

therapy on fasting total cholesterol and low-density lipoprotein cholesterol levels, already 

achieved with short-term treatment periods, could be sustained even up to 5 years. The 

reduction in lipid levels was more pronounced in younger patients and in those who had 

a higher body mass index.  

Besides dyslipidemia, several other factors including members of the family of 

matrix metalloproteinases (MMPs) and their specific antagonists, the tissue inhibitors of 

matrix metalloproteinases (TIMPs) may play an important role in the development of 

OSA-induced atherosclerosis. In the second part of our work, the effects of CPAP therapy 

on these cardiovascular risk factors were investigated in the same cohort of patients with 

OSA. We found that initiation of CPAP leads to a decrease in the level of key MMPs in 

the short-term; however, this effect was not sustained over the long-term, and levels of 

MMP-8, MMP-9, and TIMPs significantly increased at 5 years.  

Finally, in the third part of our experiments, we analyzed the effect of CPAP with-

drawal on sleep and cardiac parameters in the same patients. Our data demonstrate that in 

patients using the CPAP device already for a long time with high adherence, sleep para-

meters deteriorate significantly even after 1 week of CPAP withdrawal. Withdrawal also 

results in rapid deterioration of cardiac parameters suggesting increased sympathetic activity. 

In summary, while the lipid-lowering effect of CPAP treatment was long-lasting, 

the beneficial effect on members of the MMP/TIMP protein family could only be 

demonstrated in the short term what may play a role in the development of late 

cardiovascular complications of the disease. Discontinuation of CPAP therapy, even for 

a short period, may increase the cardiovascular risk in patients with OSA.  
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9. SUPPLEMENTARY APPENDIX 

ÉTREND: A kérdések megválaszolásához gondoljon az étkezési szokásaira az elmúlt évben. Jelölje 
meg, hogy milyen gyakran eszi a következő ételeket. Minden étkezést vegyen figyelembe. 

E1: Saláta vagy zöld saláta, más zöldségekkel vagy anélkül 
☐ kevesebb, 
mint heti 1-

szer 

☐ heti 1-szer ☐ heti 2-3-
szor 

☐ heti 4-6-szor ☐ naponta 1-
szer 

☐ naponta 2-
szer vagy 
többször 

0 1 2 3 4 5 
E2: Gyümölcs (beleértve a friss, konzerv vagy fagyasztott gyümölcsöt ), a gyümölcslevek 
kivételével 
☐ kevesebb, 
mint heti 1-

szer 

☐ heti 1-szer ☐ heti 2-3-
szor 

☐ heti 4-6-szor ☐ naponta 1-
szer 

☐ naponta 2-
szer vagy 
többször 

0 1 2 3 4 5 
E3: Barna kenyér, teljes kiörlésű kenyér, müzli.-magas rosttartalmú gabonapehely. 
☐ kevesebb, 
mint heti 1-

szer 

☐ heti 1-szer ☐ heti 2-3-
szor 

☐ heti 4-6-szor ☐ naponta 1-
szer 

☐ naponta 2-
szer vagy 
többször 

0 1 2 3 4 5 

Étrend nyers pontszám 
(E1+E2+E3):  

______ 

Étrend kategória 
pontszám: 

______ 

0: 0-5 nyers pontszám 
között 
1: 6-10 nyers pontszám 
között 
2: 11-15 nyers pontszám 
között 

E4: Az alábbiak közül melyik húsféleségből eszi a legtöbbet? (1 aláhútandó)    Hal / csirke / marha / 
sertés 

E5: Tart-e diétát? (1 aláhútandó) Nem, Speciális (húsmentes,paleo, kaloriaszegény), orvosi 
(diabeteses, gluténmentes) 

TESTMOZGÁS:  
T1:nyugdijas/aktivan dolgozó-ülőmunka, könnyű fizikai munka,nehéz fizikai munka 
Ülőmunka estén: 
1h,2h,3h,4h,5h,6h,több,mint6H 
T2: Naponta hány órát tölt ülőtevékenységgel (tévézéssel, számítógép előtt)? (aláhúzandó) 
       Soha,  1h,  2h,  3h,  4h,  5h,  6h,  több,mint 6h 

Az alábbi kérdések megválaszolásához kérjük, jelezze, hogy hetente hányszor vesz részt a következő 
tevékenységekben legalább 30 percig: 

T3: Könnyű testmozgás, mint például az alábbiak: 
       • könnyű kertészkedés és könnyű házimunka (pl. portörlés, söprés, porszívózás) 
       • kényelmes sétálás (pl. kutyasétáltatás) 
       • bowling, horgászás, asztaloskodás, hangszeres zene 

☐ 0-szor hetente 
 

☐ hetente 1-3-szor 
 

☐ hetente 4-7-szer ☐ hetente 8-szor 
vagy többször 

0 2 3 4 
T4: Mérsékelt testmozgás, mint például az alábbiak: 
       • tempós séta 
       • kerékpározás, korcsolyázás, úszás, curling 
       • kertészkedés (pl. gereblyézés, gyomlálás, ásás) 
       • tánc, Tai Chi, vagy mérsékelt testgyakorlat 

☐ 0-szor hetente 
 

☐ hetente 1-3-szor 
 

☐ hetente 4-7-szer ☐ hetente 8-szor 
vagy többször 

0 4 6 8 
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T5: Erőteljes testmozgás, mint például az alábbiak: 
       • futás, kerékpározás, sífutás, úszás, aerobik 
       • nehéz kerti munka 
       • súlyzós edzés 
       • labdarúgás, kosárlabda vagy egyéb csapatsport 

☐ 0-szor hetente 
 

☐ hetente 1-3-szor 
 

☐ hetente 4-7-szer ☐ hetente 8-szor 
vagy többször 

0 6 9 12 

Testmozgás nyers 
pontszám 

(T3+T4+T5):  

______ 

Testmozgás 
kategória 
pontszám: 

______ 

0: csak könnyű testmozgás 
esetén 
1: bármely mérsékelt testmozgás 
esetén 
2: bármely erőteljes testmozgás 
esetén 

 
ALKOHOLFOGYASZTÁS: Kérjük, adja meg, hogy az alábbi alkoholos italfajták közül hányat fogyaszt 
egy átlagos héten. 
 
A1: Bor (1dl-1,5dl-es adag): 
A2: Sör (3dl-es adag vagy pohár): 
A3: Tömény (3cl-5cl-es adag): 
 
Alkohol nyers pontszám (A1+A2+A3): 
Alkohol kategória pontszám: 
0: 14 és a fölötti nyers pontszám esetén 
1: 8-13 nyers pontszám között 
2: 0-7 nyers pontszám között 
 
---------------- 
 
DOHÁNYZÁS: Kérjük, adja meg a dohányzási szokásait. 
 
D1: Dohányzik Ön jelenleg? 
0, Igen 
D2: Ha nem, akkor dohányzott Ön valaha? 
1, Igen 
2, Nem 
 
Dohányzás nyers pontszám (D1+D2): 
Dohányzás kategória pontszám: ugyanaz, mint a nyers pontszám: 
 
---------------- 
 
STRESSZ: A kérdés megválaszolásához karikázza be a mindennapi életben lévő stressz szintjéhez 
leginkább megfelelő számot. 
 
6, egyáltalán nem stresszes 
... 
1, nagyon stresszes 
 
Stress nyers pontszám (S1): a bejelölt érték 
Stressz kategória pontszám: 
0: 1-2 nyers pontszám között 
1: 3-4 nyers pontszám között 
2: 5-6 nyers pontszám között 
 
---------------- 
SLIQ pontszám: az összes kategória pontszám összege.  
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