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1. INTRODUCTION 

1.1 The advent of machine learning in cardiovascular medicine 

With data-rich technologies and data-heavy areas of biomedical science entering 

the clinical arena, physicians are being inundated with a staggering volume of data 

requiring more sophisticated interpretation while being expected to perform more 

efficiently. In other words, the ever-growing complexity of medicine now exceeds the 

capacity of the human mind (1). A potential solution is machine learning (ML) – a 

subfield of artificial intelligence (AI) – that can support clinical decision-making to 

enhance every stage of patient care, from research to diagnosis and tailoring therapeutic 

strategies (2, 3). 

Originated from the vision of Alan Turing and Marvin Minsky that a machine 

could imitate human intelligence (4, 5), the field of AI research was officially born in 

1956 at the Dartmouth workshop, where it gained its vision, mission, and hype (6, 7). 

Since then, AI has endured a bumpy journey with several hype cycles and survived two 

major droughts of funding and interest in 1974 – 1980 and 1987 – 1993 (often referred to 

as “AI winters”). Emerging from AI, the field of ML was coined by Arthur Samuel in the 

1950s and started to flourish in the 1990s when its focus was shifted from the symbolic 

and less-specified approaches inherited from AI toward methods and models adopted 

from statistics and probability theory to address well-defined tasks (8, 9). Currently, AI 

and ML are attracting increased attention which is attributable to three key factors: (1) 

the increasing ubiquity of large, multifaceted data sets, (2) the availability of relatively 

inexpensive and powerful computational resources, and (3) advances in algorithms that 

allow for efficient training of deep neural networks. 

ML has been woven into the fabric of our everyday life and has sparked 

tremendous innovation in the realms of business, entertainment, and technology. 

Although its application to medicine has been less apparent for many years, the ML 

community has recently been concentrating its efforts on the healthcare sector, and a 

plethora of studies has been published over the past decade exploring the potential utility 

of ML in various clinical scenarios (10). As ML-based algorithms permeate into clinical 

cardiology, they will facilitate the scheduling and protocolling of medical tests and 

appointments, help remote monitoring of patients through wearable devices, enhance the 

interpretation of electrocardiograms (ECGs), enable automated measurements from 
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echocardiograms, computed tomography, and cardiac magnetic resonance scans, perform 

risk stratification using every piece of data available in the patient’s chart, and guide 

therapeutic decisions (10-15). Designed, validated, and implemented appropriately, ML 

models will help us acquire, interpret, and synthesize healthcare data from diverse sources 

and place it at our fingertips (10). Thus, ML holds promise to revolutionize medical 

research and clinical care leading to an optimized day-to-day clinical workflow with 

improved diagnostics, risk assessment, and ultimately outcomes. 

 

1.2 Definition of artificial intelligence and machine learning 

AI is a broad and ambiguous term that describes any computational system 

simulating and mimicking human intelligence. AI can indicate general-purpose AI (often 

referred to as artificial general intelligence), in which the system is self-sufficient and 

possesses cognition comparable to that of humans. Yet, such general AI has not been 

invented, and only the so-called narrow AI – designed for solving single, specific tasks 

(e.g., playing a game or driving a car) – is available currently. 

ML, traditionally considered a branch of AI, is an emerging technology paradigm 

that enables computers to learn sophisticated patterns and insights from the data without 

being explicitly programmed. Thus, ML allows the user to glean knowledge from pre-

existing data and apply it to future predictions. It is essential to highlight that ML does 

not constitute general intelligence as it is designated to tackle well-defined problems that 

are considered overly difficult to solve using rule-based algorithms. Unlike the traditional 

programming paradigm where computer programs perform tasks according to a pre-

defined set of rules created based on human experience and knowledge, ML aims to 

generate a model from the input (and in some cases, the desired output) data to perform 

a given task. 

 

1.3 Machine learning vs. conventional statistics 

Predictive models can be constructed using statistical methods or ML techniques 

(16, 17). Although these two approaches have significant areas of overlap, there are 

fundamental differences in their motivating philosophies. Traditional statistical models 

aim to obtain causal inferences about a population given a data sample and a set of 

assumptions, whereas ML focuses on algorithmically representing data structure and 
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providing more accurate predictions. Nonetheless, as these two ambitions are often 

intertwined, it is impossible to place a definite boundary between conventional statistics 

and ML methods. Instead, we should view them as analogous that are often applied to 

answer different questions. Although statistical modeling does not strictly focus on 

making predictions, it can be used to do so. For instance, logistic regression and linear 

regression are statistical models that are commonly used in ML for predictive purposes, 

and they frequently serve as reference models for the comparison of more sophisticated 

ML algorithms. 

While developing predictive models, there are three major analytic challenges that 

we have to overcome (16): (1) non-linearity – the predictor’s effect on the outcome does 

not change uniformly throughout its range (e.g., age vs. mortality, body mass index [BMI] 

vs. occurrence of several diseases), (2) heterogeneity of effects – the predictor’s 

relationship with the outcome depends on the level of some other variables (e.g., gene-

environmental interactions), and (3) the vast amount of potential, often correlated 

predictors. Not accounting properly for these factors may result in significantly lower 

prediction accuracy. If our goal is to generate a model that provides highly accurate 

predictions, ML algorithms can be advantageous over conventional statistical models as 

they were designed to confront the aforementioned issues at the sacrifice of the 

interpretability of the relationship between risk factors and the outcome of interest. 

 

1.4 The machine learning analysis pipeline 

The ML analysis pipeline comprises discrete steps (Figure 1): (1) data collections, 

(2) data pre-processing, (3) choosing an ML algorithm, and (4) model training, validation, 

and testing. 
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Figure 1 The machine learning analysis pipeline 

The ML analysis pipeline comprises four consecutive steps: (1) data collection, (2) data pre-processing, 

(3) choosing a machine learning algorithm, and (4) model training, validation, and testing. 

ML – machine learning 

 

1.4.1 Data collection and database building 

The power of predictive models heavily depends on having well-curated, 

sufficiently large data sets. ML-based modeling can be performed with only a few 

hundred patients; however, more extensive data sets would significantly enhance the 

predictive power and generalizability. The quality, accuracy, and richness of input 

features will also impact the effectiveness of the predictive models. Provision of 

inappropriate, insufficient, or incorrectly categorized data leads to a data set that does not 

resemble the real world closely enough for ML to create a representative model, resulting 

in poor prediction performance. Researchers should endeavor to capture several different 

domains of variables (e.g., clinical, imaging, and genomic covariates) as holistic models 

incorporating several different features tend to be more robust. When possible, increasing 

the number of data samples often decreases prediction error and improves performance, 

but gathering more data is not always feasible or cost-effective in medical research. 
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Input data can be structured or unstructured. Currently, the majority of medical 

research is done using structured data, which are organized into structured frameworks 

with rows corresponding to subjects (i.e., patients) and columns representing features. On 

the other hand, unstructured data are stored without a well-organized structure. In medical 

research, textual information in electronic health records (EHRs), radiological images, 

audio and visual clips are examples of data that are considered unstructured. The 

emergence of ML (especially deep neural networks) has opened avenues to effectively 

analyze such data, which are thought to contain up to 90% of all potentially usable 

information and to be a massive resource for medical research (18). 

 

1.4.2 Data pre-processing 

Given the number of imperfections that can contaminate medical data sets such as 

missing values, sparsity, presence of outliers, and inter-variable differences in scale, pre-

processing steps – e.g., imputation of missing data and normalization – are necessary 

prerequisites for ML algorithms. 

Clinical data sets often contain missing values; thus, clinicians and data scientists 

must decide how to handle them (e.g., by removing incomplete records or imputing values 

for missing data) while avoiding the excessive loss of data and maximizing both 

applicability and accuracy model. The mechanism of missingness is essential to be 

established in order to determine whether the missingness is ignorable (it is not related to 

the unobserved value, i.e., missing at random) or non-ignorable (it is related to the 

unobserved values). It is always challenging to deal with non-ignorable missing data; 

however, if missingness is ignorable, it can be addressed by imputation. Several 

imputation methods exist, ranging from single-value imputation to more sophisticated 

techniques, such as multiple imputation by chained equations (MICE) (19, 20). 

In many cases, data collection will yield a vast amount of variables, which often 

exceeds the sample size of the cohort used for modeling. Utilizing all features would 

inevitably lead to overfitting (i.e., the mismatch between the complexity of the ML 

algorithm and the size of the provided training data set); therefore, an optimal subset of 

input variables is required to be identified. Numerous strategies are available that can be 

applied to overcome the curse of dimensionality, comprising the full gamut from feature 

selection (pinpointing features that are robust, informative, and non-redundant using 
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filtering, wrapper, and embedded methods) and feature extraction (projecting multi-

dimensional feature vectors to a lower dimensionality subspace allowing for a more 

concise representation of each object) to feature engineering (handcrafting new features 

with unsupervised learning techniques). 

If the range of different continuous features varies widely, scaling transformations 

can be applied to eliminate the possibility of model bias caused by the differing magnitude 

of the numerical values. Scaling is a crucial pre-processing step for ML algorithms like 

support vector machines (SVMs) and k-nearest neighbors (KNN) classifiers, where the 

distance between the data points is of particular importance. The two most frequently 

employed scaling methods are standardization and min-max scaling. Standardization 

(often referred to as Z-score transformation) is a technique that transforms the data so that 

the mean of the observed values is 0 and the standard deviation is 1 (Equation 1).  

𝑧 =
𝑥 − μ

𝜎
 

Equation 1 Standardization (Z-score transformation) 

x – the original value of the given observation, z – the standardized (z-transformed) value of the given 

observation, μ – the mean of the sample, σ – the standard deviation of the sample 

 

In min-max scaling, values are shifted and rescaled so that they end up ranging 

between 0 and 1 (Equation 2). The major drawback of bounding the data to such a small 

fixed range is that the weight of outliers will be suppressed. 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Equation 2 Min-max scaling 

x – the original value of the given observation, x' – the min-max scaled value of the given observation, 

xmin – the minimum of the sample, xmax – the standard deviation of the sample 

 

In many modeling scenarios, normal distribution of input features is desirable. A 

wide variety of transformers exist that can be utilized to map data from any distribution 

to as close to a normal distribution as possible in order to stabilize variance and minimize 

skewness. The most commonly used ones include power transforms such as Box-Cox, 

Yeo-Johnson, log, and quantile transforms. Nevertheless, any function can be converted 

into a transformer to assist in this step of pre-processing. 

 

DOI:10.14753/SE.2022.2607



15 

 

1.4.3 Choosing a machine learning algorithm 

Once the data set is finalized and pre-processed, we can proceed to choose an ML 

algorithm appropriate for the type of problem that we are trying to solve. Different ML 

algorithms are associated with distinct strengths and limitations; therefore, the choice of 

modeling has a definite impact on prediction performance. Multiple-modeling 

implementations are desirable; therefore, a series of experiments with various ML 

algorithms should be performed to determine which algorithm has the highest predictive 

power in the given scenario (16). 

In ML, three basic learning paradigms exist: (1) supervised, (2) unsupervised, and 

(3) reinforcement learning. Within each of these categories, there are numerous ML 

algorithms with different underlying structures aiming to address particular research 

questions based on different data complexities. Of note, the aforementioned approaches 

to ML do not encompass all techniques, and there are methods that do not fit neatly within 

these paradigms, such as active learning and one-shot learning. However, these 

techniques are less frequently used in cardiovascular research. 

While choosing an optimal ML algorithm, we should be aware of the tradeoff 

between accuracy and interpretability. Thus, the question arises: should we use a black-

box algorithm with high accuracy or an easily interpretable algorithm with only modest 

accuracy? The lack of interpretability of ML-based decision-making implies that it can 

be challenging to verify whether the learned rules have truly generalized to real-life 

clinical situations. Conceivable solutions include the substitution of black-box algorithms 

with interpretable models or the utilization of model-agnostic methods to explain the 

decision of the black-box with case- and model-specific explanations (21). 

Although the detailed description of each ML algorithm goes beyond the scope of 

this section, the concepts of the most frequently applied techniques will be briefly 

discussed. 

 

1.4.3.1 Supervised learning 

Supervised ML algorithms attempt to model how independent variables relate to 

a dependent variable (i.e., the label of interest). The reference to supervision indicates 

whether data have been labeled with the true response or outcome (the ground truth), and 

algorithms that use labeled data are termed supervised learning techniques – a collection 
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of ML approaches in which the algorithm learns directly from large quantities of correctly 

labeled examples. 

These algorithms can be applied to tackle both classification and regression tasks. 

In the former case, the goal is to correctly assign a binary or multi-class label, while in 

the latter, it is to accurately predict a real-valued output. Although many algorithms are 

flexible enough to accomplish both types of analysis with only slight modifications, 

constraints such as interpretability, computational cost, and the type of available data need 

to be considered in tailoring the choice of algorithm. 

Besides categorical and continuous labels, many algorithms are applicable to 

time-to-event outcomes as well. Such approaches are particularly useful when there is 

loss to follow-up and censoring. Moreover, such models allow researchers to derive risk 

prediction over multiple time points. Nevertheless, some studies suggest that when we 

aim to predict the risk at a specific time point, binary models perform better, likely due 

to the non-proportionality in predictor effects (22). This is particularly true when 

complete follow-up data is available for all individuals. 

 

1.4.3.1.1 Regularized regression 

If a linear model contains a vast amount of predictor variables or if these predictors 

are strongly correlated, the standard ordinary least squares parameter estimates have large 

variance. Thus, the model is considered unreliable. To tackle these challenges, several 

solutions have been proposed that directly manipulate traditional regression models. The 

simplest amendment to regression is (forward or backward) stepwise feature selection. 

However, as the final fit is based on a regression model, the limitations of regression 

persist, and these models are still prone to overfitting (i.e., the model learns the details 

and noise in the training data to the extent that it hampers the performance of the model 

on new data). 

An extension of selection methods, instead of choosing the optimal subset of 

variables, is to regress an outcome onto all of the predictors. To handle many predictor 

variables, these methods shrink the regression coefficients toward zero. This shrinkage is 

achieved by placing a penalty on the summation of the estimated coefficients. Although 

this shrinkage results in biased regression, it ultimately leads to a more stable model that 

produces better predictions, particularly when applied to external data sets. In other 
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words, variance is reduced at the cost of introducing some bias. This approach is called 

regularization and is almost always beneficial for the predictive performance of the 

model. 

Regularized regression methods differ in the way they perform the 

aforementioned shrinkage. In ridge regression, the loss function is augmented in such a 

way that not only is the sum of squared residuals minimized, but also the size of parameter 

estimates is penalized in order to shrink them toward zero (23, 24). The least absolute 

shrinkage and selection operator (LASSO) regression is relatively similar conceptually to 

ridge regression (25). It also adds a penalty for non-zero coefficients, but unlike ridge 

regression which penalizes the sum of squared coefficients (L2 penalty), LASSO 

penalizes the sum of their absolute values (L1 penalty). Thus, coefficients can be set 

exactly to zero in LASSO, which is never the case in ridge regression. Simply put, 

LASSO regression results in a full shrinkage of a subset of variables, effectively 

performing feature selection. 

LASSO tends to do well if there are only a few significant variables among the 

input features (i.e., only a few predictors actually influence the response). On the other 

hand, ridge regression works well if most predictors impact the response substantially. 

To amalgamate the favorable characteristics of both ridge and LASSO regression, elastic-

net regression was introduced that linearly combines the penalties of these two methods 

(26). Therefore, it performs feature selection and regularization simultaneously, and it is 

the appropriate regression method of choice if myriads of features are included that form 

groups of highly correlated variables. 

 

1.4.3.1.2 Tree-based algorithms 

Tree-based methods represent a widely applied class of powerful but deceptively 

simple algorithms. A decision tree is a flowchart-like structure that can be used to predict 

a categorical (classification tree) or numerical outcome (regression tree) (27, 28). It 

comprises decision nodes, branches, and leaf nodes (Figure 2A). The most superiorly 

located decision node is usually referred to as the root node. Each decision node 

represents a decision criterion and has branches corresponding to the outcomes of that 

decision. The leaf (or terminal) nodes are the final nodes that carry the predicted value or 

class and do not contain any further branches. Classification and regression trees mimic 
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how a physician may approach a patient with a series of subsequent questions based on 

the answers to the preceding ones. 

 

 

Figure 2 Examples of supervised machine learning algorithms 

(A) An example of a decision tree, (B) a schematic illustration of a random forest, (C) a schematic 

illustration of a support vector machine, and (D) a schematic illustration of the k-nearest neighbors 

algorithm, 𝑘 = 6. 

GFR – glomerular filtration rate 

 

To build a classification or regression tree, a search is performed recursively 

among the available predictors to identify the one which best separates the data points 

(i.e., patients) into two groups with the most disparate outcome of interest. Since each 

split is binary, non-linearity can be captured in the data, as multiple splits on the same 

predictor can occur within the same tree. The iterative searching for the optimal predictor 

at each split continues until all groups (i.e., nodes) are homogenous. To create a more 

stable tree, the algorithm then prunes the tree to reduce the complexity and over-

specification of the model. 

Although classification and regression trees are able to handle non-linearity, 

interactions, and an immense number of predictors, they are high-variance learners and 

do not generalize well to external data sets, limiting their utility as stand-alone prediction 

models. Nonetheless, it is possible to improve the overall prediction performance by 

aggregating the results from multiple trees through so-called ensemble methods. One of 

the most common ensemble methods with trees is random forest (Figure 2B), which uses 

the bagging procedure to combine multiple trees (29, 30). The random forest approach 
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also uses another trick to decrease the correlation between the fitted trees: when growing 

each tree, instead of only sampling over the observations in the data set to generate a 

bootstrap sample, sampling is also performed over features and only a randomly selected 

subset of them is kept to build a tree. A major advantage of sampling over the feature 

space is that it makes the model more robust to missing data as observations with missing 

data can still be regressed or classified based on the trees that take into account only 

features where data are available. 

Besides random forest, boosting-based methods (e.g., adaptive boosting and 

gradient boosting) represent another subset of ensemble methods combining multiple 

decision trees (31, 32). Boosting is the concept of fitting models iteratively such that the 

model training at a given step depends on the models fitted at the previous steps (31). 

Unlike bagging-based methods in which weak learners are fitted in parallel 

(independently from each other), boosting-based methods fit weak learners in a sequential 

manner. 

Ensemble methods can be conceptualized as forming a robust overall prediction 

by aggregating the predictions of many simpler and weaker predictive models such as 

decision trees. At testing, predicted results are obtained from each decision tree. Then, 

the class receiving the majority of votes made by each decision tree is selected as the final 

predicted class. In the case of a regression task, where the output class is numerical, the 

mean value of the predicted outputs is used. This is similar to the process of deriving a 

clinical diagnosis for a complex patient by utilizing consultations from many specialists, 

each of which would look at the patient in a slightly different way. Thus, their combined 

decision would often be better than a single physician’s decision alone. 

 

1.4.3.1.3 Support vector machines 

SVMs are widely used algorithms in the cardiovascular domain. These algorithms 

project observations into a higher dimensional space via mappings known as kernels, and 

then they attempt to identify a boundary (i.e., hyperplane) that maximizes the separation 

between the classes (Figure 2C) (33). The term “support vectors” refers to data points that 

are located the closest to the hyperplane and significantly influence the position and 

orientation of the hyperplane. Therefore, they are crucial elements of the data set: these 

are the data points that facilitate the maximization of the classifier’s margin. The SVM 
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kernel is a function that aims to convert a not separable problem to a separable problem 

by taking a low dimensional input space and transforming it to a higher-dimensional 

space. The most commonly used kernel functions include linear, polynomial, and 

Gaussian radial basis function kernels. The last two are mainly useful to solve non-linear 

separation problems. 

Despite their popularity and their ability to capture non-linear relationships, SVMs 

have two major downsides. First, they perform non-probabilistic classification; thus, they 

are better suited for categorical outcomes. Nonetheless, there are secondary methods (e.g., 

Platt scaling or isotonic regression) that can circumvent this limitation by computing 

probabilistic outcomes. Second, the computation of the input observations in a very high-

dimensional space can be difficult or even impossible. 

 

1.4.3.1.4 K-nearest neighbors algorithm 

The KNN algorithm is a simple, easy-to-implement supervised ML algorithm that 

can be used to solve both classification and regression tasks (34). It assumes that similar 

objects exist in close proximity. It compares each data point to others via a distance 

function to identify the 𝑘 nearest (i.e., most similar) data points (Figure 2D). Then, a label 

is assigned by majority voting (in case of classification) or by averaging the labels of the 

identified neighbors (in case of regression). In the medical context, KNN can be thought 

of as predicting the patient’s outcome based on previous patients experiencing similar 

symptoms. The most commonly used distance metric is Euclidean distance; however, 

there are many others, such as the Manhattan or Minkowski distance. 

During model training, emphasis should be placed on the optimization of 𝑘. If 𝑘 

is too small, the model will be more sensitive to outliers. Inversely, with the increasing 

value of 𝑘, predictions become more stable and accurate due to majority voting / 

averaging. However, if 𝑘 is too large, the neighborhood may include too many less 

relevant data points leading to decreased predictive power. 

KNN’s main drawback is that it becomes significantly slower as the volume of 

data increases. Thus, it is an impractical choice in environments where predictions need 

to be made rapidly. 
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1.4.3.1.5 Naïve Bayes classifiers 

Naïve Bayes (NB) classifiers are a set of supervised learning algorithms based on 

the Bayes’ theorem, which describes the probability of an event based on prior knowledge 

of conditions associated with that particular event (35, 36). These algorithms assume 

independence between every pair of input features. This is a very strong (i.e., naïve) 

assumption that is most unlikely in real-world data. Nevertheless, NB classifiers may 

perform surprisingly well on data where this assumption is not met. Although the NB 

learning scheme is primarily designed for classification tasks, there are solutions that 

enable its application for regression tasks as well (37). 

There are different types of NB classifiers, each suited for input features with 

specified distribution, such as Gaussian NB (for real-valued features distributed 

according to Gaussian distribution), multinomial NB (for data exhibiting multinomial 

distribution), or Bernoulli NB (for data distributed according to multivariate Bernoulli 

distribution). Bernoulli and multinomial NB are typically employed for document 

classification, where the input features are the presence of a term (in Bernoulli NB) or the 

probability of a term (in multinomial NB) (38). 

 

1.4.3.2 Unsupervised learning 

As opposed to supervised algorithms, unsupervised learning methods use 

unlabeled data, meaning there are no outcomes or prediction labels assigned to the data 

points. Thus, instead of fitting data to a pre-specified outcome, these algorithms attempt 

to identify any potentially consistent, underlying patterns in the data. 

Common applications of unsupervised algorithms include (1) clustering analysis, 

where data are grouped according to similar characteristics; (2) density estimation, where 

data are analyzed to estimate its probability distribution and to perform anomaly 

detection; and (3) dimensionality reduction, where the number of input variables is 

reduced to a set of core features that capture the essence of the data while reducing 

linearity or redundancy between features. The last of these applications, dimensionality 

reduction, plays an important role in data visualization and circumventing the curse of 

dimensionality. In the following section, the most frequently used clustering algorithms 

will be briefly reviewed. 

 

DOI:10.14753/SE.2022.2607



22 

 

1.4.3.2.1 Clustering algorithms 

Cluster analysis is an unsupervised ML technique utilized to create homogenous 

groups (i.e., clusters) based on hidden patterns in the data without a priori knowledge. It 

can be used as a stand-alone tool for exploration or hypothesis generation. Nevertheless, 

clustering often represents only the first step to group the data before a more insightful 

analysis is performed. The identified clusters can be used to label data points; then, the 

newly labeled data can be exploited by a subsequent supervised learning step. 

 

 

Figure 3 Examples of clustering algorithms 

(A) An example of k-means clustering, (B) an example of Gaussian mixture models, and (C) a dendrogram 

visualizing the process and the result of (agglomerative) hierarchical clustering. 

The figure was created in R (version 3.6.2, R Foundation for Statistical Computing, Vienna, Austria) using 

the iris data set. 

 

Clustering algorithms may enable precision cardiology by synthesizing multiple 

sources of evidence to refine monolithic disease categories (e.g., heart failure [HF]) into 

more stratified and ultimately more personalized disease concepts. This idea is often 

termed precision phenotyping. The generated clusters may lead to novel groups of data 

points that may illuminate novel subtypes of a disease, new biomarkers, or new predictors 

of a clinical outcome of interest. Importantly, clusters that may suggest new groupings of 

disease or other novel insights must be validated clinically, as it can be easy to adjust 

clustering parameters to create subgroups or lump together groups that should be 

separated. 

K-means clustering is one of the simplest and most extensively used unsupervised 

ML algorithms (Figure 3A). It starts with a pre-defined number (𝑘) of randomly selected 
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centroids and then performs iterative calculations to minimize the sum of distances 

between the data points and their respective cluster centroid (39). The algorithm halts 

optimizing clusters when either the centroids have stabilized or the pre-specified number 

of iterations has been achieved. The centroids of the 𝑘 clusters can be used to label new 

data points. Despite its popularity, k-means clustering has several important limitations 

that should be acknowledged. First, it assumes that the clusters are spherical and evenly 

sized. Therefore, if the natural clusters occurring in the data set are non-spherical, k-

means clustering is probably not a good choice. Second, k-means clustering requires prior 

knowledge of 𝑘 (i.e., the number of clusters). Finally, its results are highly dependent on 

the initial position of the centroids. Thus, the results may not be reproducible and may 

lack consistency. 

Gaussian mixture models (GMMs) can also be used to cluster unlabeled data 

(Figure 3B). GMMs are probabilistic models assuming that all the data points are 

generated from a mixture of a finite number of Gaussian distributions with unknown 

parameters (40). They can be thought of as generalizing k-means clustering to incorporate 

information about the covariance structure of the data and the centers of the latent 

Gaussians. Due to this fact, GMMs are expected to mimic the data better than k-means 

clustering. Moreover, as GMMs contain a probabilistic model under the hood, they are 

also capable of providing probabilistic cluster assignments, whereas k-means clustering 

performs a hard classification (i.e., a data point is deterministically assigned to only one 

cluster). 

Hierarchical clustering algorithms represent another frequently used class of 

clustering methods (Figure 3C). This clustering technique has two subtypes: (1) 

agglomerative hierarchical clustering and (2) divisive hierarchical clustering. 

Agglomerative hierarchical clustering is a bottom-up approach: each observation starts in 

a single-point cluster, then pairs of the closest clusters are recursively merged until there 

is only one cluster left. There are several methods to decide which clusters to merge, such 

as the complete linkage method (computes all pairwise dissimilarities between the 

elements of two clusters and considers the largest value of these dissimilarities as the 

distance between the two clusters) or Ward’s minimum variance method (minimizes the 

total within-cluster variance). In contrast to agglomerative hierarchical clustering, 

divisive hierarchical clustering works in a top-down manner. It begins with a single 
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cluster that contains all data points. At each iteration step, the most heterogeneous cluster 

is divided into two. The partitioning is performed recursively until all data points are in 

their own cluster. The process and results of hierarchical clustering are usually visualized 

via dendrogram – a type of tree diagram showing hierarchical relationships within the 

data set (Figure 3C). Importantly, unlike centroid-based clustering algorithms, 

hierarchical clustering cannot be easily used to classify new data points. A solution is to 

create a classifier on top of the labeled data given by hierarchical clustering. 

Besides the aforementioned techniques, there are many other clustering 

algorithms, such as density-based spatial clustering of applications with noise or mean 

shift clustering. 

 

1.4.3.3 Semi-supervised learning 

In the previous two learning paradigms, labels were provided for all observations 

(supervised learning), or no labels were available at all (unsupervised learning). Semi-

supervised algorithms fall in between these two approaches. If labels are absent for the 

majority of observations, semi-supervised algorithms are the methods of choice for model 

creation. These methods exploit the idea that despite the unknown group membership of 

unlabeled data, such observations still bear relevant information about group parameters. 

 

1.4.3.4 Reinforcement learning 

Reinforcement learning algorithms use iterative information about the outcome of 

their predictions in a computationally simulated environment as feedback to improve their 

future predictions (i.e., to maximize the reward or minimize the risk). In the process, the 

algorithm learns from its experience until it explores the full range of possible states. 

Reinforcement learning allows machines and software agents to automatically determine 

the ideal behavior within a specific context to maximize its performance. 

Reinforcement learning has been successfully applied in robotics, gaming, or self-

driving cars (41-46). Moreover, its potentials have been explored in some clinical tasks, 

such as guiding dofetilide dosing or ventilator settings (47, 48). However, reinforcement 

learning may be of limited use in clinical tasks where the goal and the environment’s 

possible responses are much more complex. 
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1.4.3.5 Neural networks and deep learning 

Artificial neural networks (ANN) are computational models consisting of several 

processing elements (i.e., neurons) that receive inputs and deliver outputs based on 

predefined activation functions. They consist of an input layer, one or more hidden 

layer(s), and an output layer, where input and output layers indicate the original data and 

the output of the algorithm, respectively. ANN is often referred to as feed-forward neural 

network as it propagates the weighted and combined activation signals from one layer of 

nodes to the next in one direction without cyclical connections. Based on the number of 

hidden layers, ANNs can be categorized as shallow (1 hidden layer) or deep (>1 hidden 

layer). Deep learning (DL) – emerged in the past decade, in part because of the advent of 

graphics processing unit-based parallel computing – refers to having more than one 

hidden layer between the inputs and outputs of the algorithm, which allows for greater 

abstraction at the cost of speed and computational power. Through multiple hidden layers, 

the raw input is gradually converted into more abstract and essential features that 

represent the original data. As such, DL extracts key features from raw data and returns 

outputs as classification or regression. In many instances, DL techniques offer a powerful 

alternative to conventional ML, enabling the user to perform more complex analyses. 

Two other common forms of DL models for supervised learning are convolutional 

neural networks (CNN) and recurrent neural networks (RNN). CNNs are a class of neural 

networks aptly suited for image analysis. These algorithms require minimal pre-

processing and are generally composed of multiple convolutional layers, where multiple 

filters of shared weights are used to find local patterns in organized data such as images. 

RNNs are designed for processing temporal information or sequential data such as speech 

and language. They reuse the activation functions from other data points in the sequence 

to generate the subsequent output in a series. 

A downside to DL techniques is they often require enormous data sets for training 

and are computationally expensive. Without appropriate tuning and validation, DL 

models often suffer from overfitting, especially when an adequately large data set is not 

available. A potential solution to circumvent this issue is through the implementation of 

transfer learning. In transfer learning, an algorithm is pre-trained on a larger data set 

before being subsequently trained on a separate but related smaller data set (i.e., the data 

set of interest) with the goal of achieving improved prediction performance. For instance, 
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a DL algorithm trained to analyze echocardiograms could first be trained on general 

images, where it could learn to identify common image features such as edges, shapes, 

and patterns and then apply that learning to characterize the echocardiographic data sets 

better. Another drawback of DL is that the resulting models can be more difficult to 

interpret than non-deep methods, as the complexity of the neural networks produces 

relationships that become unrecognizable. Thus, it is often advisable to begin the analysis 

with a more non-deep ML algorithm before moving on to DL. 

Despite its nascence, DL applied to the domain of cardiology exhibits great 

potential (49). Although neural networks and DL have gained limited traction in risk 

prediction, they have been extensively utilized in image processing (13). 

 

1.4.3.6 Topological data analysis 

Topological data analysis (TDA) is a novel technique that uses the shape of data 

to extract meaningful insights and identify subgroups (50). This approach adopts methods 

of topology, a discipline of mathematics that studies robust algorithms of shape analysis, 

to create compact visual representations of high-dimensional data sets (51, 52). It draws 

on the philosophy that all data has an underlying shape and that shape has meaning. TDA 

amalgamates unsupervised pattern detection and network visualization by identifying and 

connecting data points with very similar characteristics in a multi-dimensional space and 

then plotting the data in a lower-dimensional space. Although it harnesses and combines 

several ML algorithms to elucidate the fundamental properties and the shape of complex 

data, TDA should be perceived as a framework for ML rather than an ML algorithm. 

TDA has three key attributes that enable the extraction of pattern via shape (50): 

(1) coordinate freeness – TDA does not depend on the coordinate system chosen as only 

the applied distance function specifies the shape, (2) deformation invariance – topological 

properties are unchanged when the geometric shape is stretched or deformed making 

topology less sensitive to noise, and (3) compression – topological networks encode 

relationships in a simple format. 

Two types of input parameters are required to construct topological models. First 

is the distance metric, which measures the similarity between data points. Commonly 

used metrics include correlation, angle, and cosine distance. Second are lenses, which are 

filter functions describing the distribution of the data. Multi-dimensional scaling, 
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variance, and principal component analysis are lenses frequently encountered in the 

literature. Multiple lenses can be applied in each topological model. For each lens, gain 

and resolution have to be defined before starting the analysis. Adjusting the resolution 

and gain alters the number of bins created within the range of selected lens values and the 

degree of overlap of these bins, respectively. Increasing the resolution will increase the 

number of nodes, whereas increasing the gain will increase the number of edges in the 

map. 

After selecting a metric and one or more lenses, myriads of iterations are 

performed to find the most stable consensus vote for defining a “golden network” for high 

dimensional data shape. The generated network consists of nodes with edges between 

them (Figure 4). Each node represents a collection of similar data points (e.g., patients), 

and two nodes are connected if they have at least one data point in common. The layout 

of a network is chosen using a force-directed layout algorithm, and the coordinates of any 

individual node have no particular meaning, only the connections between them. Hence, 

a network can be freely rotated and translated to different positions without disrupting the 

interpretation of the results. Typical shapes which appear in topological networks are 

loops (continuous circular segments) and flares (long linear segments). Networks can be 

color-coded based on the outcome of interest (i.e., features not utilized during network 

building) to reveal clinically meaningful regions (subgroups) in the map. 

In a sense, TDA is similar to cluster analysis as it also offers an efficient way of 

partitioning data to understand the underlying properties characterizing the subgroups 

within the data. However, most clustering algorithms rely on global optimization 

techniques, which are susceptible to noise since they consider all of the data during the 

optimization, whereas TDA splits data into multiple independent partitions using lens 

functions and runs clustering algorithms within each portion independently. TDA then 

combines these partial clusters into a network representation that gives an overview of 

the similarity between the data points. The multiple local optimizations executed by TDA 

dramatically reduce the effect of noise on the final results, which makes TDA suitable for 

constructing a connected representation of either continuous data sets or data with 

heterogeneous densities. 

DOI:10.14753/SE.2022.2607



28 

 

 

Figure 4 Topological network of heart failure patients who underwent CRT implantation (n = 1,650) 

The topological network was created using eight pre-implantation variables (age, etiology of heart failure, 

type of the implanted device, QRS morphology, NYHA functional class, serum sodium, hemoglobin 

concentration, serum creatinine). The generated network consists of nodes with edges between them. Each 

node represents a collection of similar patients, and two nodes are connected if they have at least one 

patient in common. Typical shapes which appear in topological networks are loops (continuous circular 

segments) and flares (long linear segments). In this network, nodes are color-coded based on 5-year all-

cause mortality. Metric: normalized correlation, lenses: 2 × multi-dimensional scaling (resolution: 20, 

gain: 1.40, equalized). 

CRT – cardiac resynchronization therapy, NYHA – New York Heart Association 

 

1.4.4 Model training, validation, and testing 

The next step in the ML analysis pipeline is model training and evaluation. In this 

section, emphasis is placed on the training process of supervised ML algorithms. 

Before starting the training process, data sets are typically partitioned into training 

and validation sets. The training set, which encompasses the bulk of all available data, is 

used for model derivation, and the validation set is utilized to compare different models 

to select the best one or to fine-tune their hyperparameters. Finally, a statistically 

independent test set – data that is not used in any way during training or validation, ideally 

originated from multiple external medical centers – can be used to assess the model’s 

generalizability once completely optimized.  

Training and validation are commonly combined through techniques such as n-

fold cross-validation or bootstrapping. In these approaches, the original data set is 

repeatedly sampled to create training and validation sets. Then, the created sets are used 

recursively to fit and evaluate models. These methods are more robust than single-split 

validation (i.e., randomly splitting the data into a training and validation set) since they 

reduce the variance more efficiently. The main difference between bootstrapping and 
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cross-validation is that the former resamples the data with replacement (i.e., bootstrapped 

samples may contain multiple instances of the same object and may completely omit some 

of the objects), whereas the latter resamples the data without replacement. The most 

extensively applied form of n-fold cross-validation is 10-fold cross-validation, in which 

the data set is randomly divided into 10 equal folds. Ten validation experiments are then 

performed, with each fold used in rotation as the validation set and the remaining 9 folds 

as the training set. Therefore, each data point is used once for testing and nine times for 

training, resulting in 10 experimental ML models trained on 90% fractions. The average 

of results from the 10 experimental models is calculated to provide a measure of the 

overall performance. 

 

1.4.4.1 The bias-variance tradeoff 

During model development, we search, either stochastically or deterministically, 

for the best fit (i.e., the best configuration of hyperparameters). Although the searching 

process differs across ML techniques, each algorithm attempts to balance two competing 

interests: bias and variance (Figure 5). In the context of ML, bias is defined as the extent 

of difference between the predicted and the true values during the training phase. 

Variance is the sensitivity of the predictions to perturbation in the input data, and it is an 

indicator of generalizability. While our aim is to reduce both bias and variance, these two 

goals are often in conflict: decreased bias may increase variance and vica versa. For 

example, we can create a model that correctly predicts all adverse events in our cohort; 

however, this model may be configured in a way so that it captures the characteristics of 

the data set too specifically (i.e., it has low bias). Thus, the model would perform poorly 

when applied in an independent data set (i.e., it has high variance). This phenomenon is 

often referred to as overfitting, which is one of the most common problems encountered 

when using supervised ML algorithms and the main limitation to their application to real-

life clinical scenarios. Several techniques exist that can reduce overfitting, such as (1) 

increasing the amount of training data, (2) reducing model complexity, (3) limiting the 

number of learning iterations, (4) balancing parameters learned in the model to obtain a 

simpler model that underfits on the training data but generalizes better, or (5) using an 

ensemble of separate models to balance out the overfitting effects of each singular model. 

In contrast to overfitting, underfitting is the phenomenon when the model fails to correctly 
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classify data or make accurate predictions during the training phase as it cannot capture 

the underlying patterns in the data. Techniques to reduce underfitting include (1) 

increasing the model complexity, (2) increasing the number of input features (e.g., by 

performing feature engineering), (3) removing noise from the data, and (4) increasing the 

duration of training to get better results. 

 

 

Figure 5 The bias-variance tradeoff 

While training a machine learning model, our objective is to reduce both bias and variance. However, these 

two goals are often in conflict: decreased bias may increase variance and vica versa. 

 

1.4.4.2 Performance evaluation metrics 

Various evaluation metrics can be utilized to quantify the degree to which the 

constructed model is successfully achieving its designated task. The choice of evaluation 

metrics heavily impacts the ability of the model to learn from the data as it is utilized to 

guide all subsequent adjustments (e.g., gathering more data, fine-tuning-hyperparameters, 

employing regularization, or choosing an entirely different learning algorithm). Hence, 

depending upon the characteristics of the data set and the problem statement, the choice 

of an appropriate evaluation metric is essential. 

 

1.4.4.2.1 Supervised learning – Classification 

Confusion matrix is the most commonly used evaluation tool for ML-based 

classifiers. It is a table summarizing the occurrence of different combinations of predicted 
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and actual class labels, and it can be used to calculate various performance metrics. The 

most intuitive and convenient metric is accuracy which can be defined as the ratio of the 

correctly classified samples to the total number of samples in the data set. However, this 

metric can conceal poor model performance if the class distribution of the utilized data 

set is exceedingly imbalanced (e.g., predicting the occurrence of a rare disease or event). 

In these cases, metrics such as precision, recall, or F-score should be calculated instead. 

The precision for a class is the number of true positives divided by the total number of 

elements labeled by the model as belonging to the positive class (i.e., the sum of true and 

false positives). The recall is defined as the number of true positives divided by the total 

number of elements that actually belong to the positive class (i.e., the sum of true positives 

and false negatives). Simply put, high precision indicates that the model returned 

substantially more relevant results than irrelevant ones, whereas high recall denotes that 

the model returned most of the relevant results. The F-score is the harmonic mean of 

precision and recall and gives a better measure of the incorrectly classified cases than 

accuracy. 

The predictive abilities of ML classifiers are often described with a receiver 

operating characteristic (ROC) curve and the corresponding area under the curve (AUC, 

often referred to as c-statistics in medical literature). As most supervised ML algorithms 

assign class membership probabilities to each test example, they can be used for ranking 

from most likely to least likely to belong to a given class. A ROC curve is created using 

the sensitivity and the 1 − specificity calculated at different cuts in this ranking. Optimal 

cut-offs can be identified using various techniques (e.g., the Youden-index), and the 

corresponding metrics described in the previous paragraph (i.e., accuracy, precision, 

recall, F-score) can be calculated. Although the AUC has become nearly universal in 

evaluating ML classifiers, we must be careful when there is an imbalance between the 

numbers of positive and negative cases, as it may inflate the true predictive capabilities. 

Motivated by this, another measure of performance is the area under the precision-recall 

curve (AUPRC). Although it is used less frequently than the ROC curve, one substantial 

advantage of PRC is that it can assess the model’s performance more reliably when the 

data set is imbalanced (e.g., there is a low number of true positives). 

Several other measures of performance exist for the evaluation of classifiers, such 

as the Matthews correlation coefficient, the logarithmic loss, or the cost curves (53). 
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1.4.4.2.2 Supervised learning – Regression 

Mean squared error (MSE), root mean squared error (RMSE, the square root of 

MSE), and mean absolute error (MAE) are the three error metrics that are used most 

frequently for evaluating and reporting the performance of an ML-based regression 

model. MSE is calculated as the average squared differences between the original and the 

predicted values in a data set, whereas MAE is computed as the average difference 

between the original and the predicted values. Compared to MAE, both MSE and RMSE 

penalize large prediction errors more than MAE does. 

Other metrics for evaluating regression models include the coefficient of 

determination (R2) or adjusted R2. 

 

1.4.4.3 Determining the importance of predictors 

Unlike traditional regression models, most ML models do not estimate an easily 

interpretable metric that relates the predictors to the outcome. Since they capture more 

complex relationships, it is generally not straightforward to summarize the relationship 

into any single parameter. Nevertheless, many ML algorithms attempt to summarize the 

impact of individual variables into metrics referred to as variable importance. The 

variable importance is specific to each algorithm, and its value does not generally have a 

causal or even statistical interpretation. Instead, the measure can often be thought of as a 

rank ordering of which variables are the most important to the fitted model. As each ML 

algorithm fits a different type of model, one would expect that different methods would 

come up with different (but often similar) rank orderings. Although variable importance 

rankings cannot replace targeted hypothesis tests of specified parameters, they can 

facilitate hypothesis generation and help to detect factors worthy of further study. 

 

1.5 The potential role of machine learning in heart failure 

HF is a clinical syndrome characterized by dyspnea, fatigue, and clinical signs of 

pulmonary or systemic congestion leading to frequent hospitalizations, impaired quality 

of life, and decreased life expectancy (54). It represents a global healthcare issue affecting 

1-2% of the adult population in developed countries, rising to above 10% among patients 

>70 years of age (55-57). Despite the continuous advancement and increasing availability 
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of therapeutic agents and medical devices, outcomes still remain unsatisfactory in this 

patient population. 

Due to its favorable attributes described above, ML has a true potential to 

revolutionize HF care and ultimately improve outcomes in these patients (Figure 6). ML 

has been leveraged in an attempt to facilitate the diagnosis of HF, the classification of HF 

patients into subgroups requiring different treatment strategies, and the prognostication 

of HF patients in order to deliver more tailored care (17, 58). ML techniques can be 

applied in other aspects of the management of HF as well. For instance, they can predict 

whether the patient will adhere to the prescribed medications (59, 60) or identify HF 

patients at risk of depression (61). ML can also be employed to predict LV filling 

pressures (62) or to protect implantable devices from cyberattacks (63). Although these 

are only cherry-picked use cases, they make it apparent that ML can be successfully 

applied for countless prediction tasks related to HF. 

 

 

Figure 6 Potential role of ML in heart failure 

LV – left ventricular, ML – machine learning 

 

1.5.1 Diagnosis of heart failure 

Currently, the diagnosis of HF relies upon patients’ history, physical examination, 

and both laboratory and imaging data (56). ML-based methods aim to improve diagnosis 

through leveraging data found from each of these sources, including but not limited to 

ECG, echocardiography, and EHR data (17, 58). The accurate and early diagnosis of HF 
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via ML techniques will allow treatments and interventions to be delivered in a more 

efficient and targeted way and may decrease medical costs as well. 

The importance of ECG in the workup of HF is well established; however, it is 

primarily utilized to identify the underlying etiologies or complicating factors, such as 

arrhythmias (56). As HF-related pathophysiological alterations might be reflected in the 

electrical activity of the heart, many research groups have hypothesized that the ML-

based analysis of ECG signals will enable the accurate detection of HF. Such an approach 

would facilitate screening for HF in an outpatient setting and in the emergency department 

as well. Recently, Attia et al. trained and evaluated a CNN using ECG data to identify 

patients with asymptomatic left ventricular (LV) dysfunction (64). Their ML model 

predicted the presence of systolic dysfunction (defined as ejection fraction [EF] ≤35% by 

echocardiography) with an AUC of 0.93. When the performance of this algorithm was 

validated prospectively, it was able to detect LVEF of ≤35% with an AUC of 0.92 (65). 

Moreover, the algorithm was tested in an external cohort of patients presenting with 

dyspnea to the emergency department and showed an AUC of 0.89 (66). Kwon et al. 

performed a similar but slightly different analysis to detect HF with reduced EF (HFrEF) 

based on ECG features (67). For the detection of HFrEF, their deep neural network 

exhibited AUCs of 0.84 and 0.89 in the internal and external validation sets, respectively, 

and it outperformed both logistic regression and random forest. Importantly, not only 

HFrEF but also HF with preserved EF (HFpEF) or LV diastolic dysfunction can be 

reliably predicted from ECG signals with the help of ML algorithms (68, 69). 

Echocardiography has been the cornerstone of HF characterization and 

management for decades (56). Nevertheless, the interpretation of echocardiograms 

requires a skilled reader, and measurements are subject to inter-reader variability. To 

mitigate the effect of this factor, ML algorithms can be utilized to perform an automatic 

and objective evaluation of echocardiograms. To this end, Zhang et al. implemented a 

CNN which was capable of identifying cardiac views with an accuracy of 84% and 

calculating LVEF and longitudinal strain with median absolute differences of 6.0% and 

1.4% when compared with manual tracings, respectively (70). Ouyang et al. reported 

another interesting approach, in which they trained a CNN on full-length 

echocardiographic videos containing more cardiac cycles instead of manually curated still 

images at end-systole and end-diastole (71). Their model was capable of predicting EF 
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with a mean absolute error of 4.1% and 6.0% (when compared with manual tracings) and 

reliably identifying HFrEF with AUCs of 0.97 and 0.96 in an internal and external test 

set, respectively. Although these two methods have notable differences, both rely on 

image segmentation (i.e., detecting the endocardial border and the LV blood pool). In 

contrast, Asch et al. proposed a DL-based model which estimates EF using still 

echocardiographic images without performing image segmentation and volume 

measurements (72). Their model achieved an accuracy of 92% for the detection LVEF 

≤35%. Of note, instead of raw image data, standard echocardiographic variables or 

velocity, strain, and strain rate traces can also be used to train ML algorithms to diagnose 

HF, including HFpEF (73-75). 

EHR systems are an integral part of everyday clinical practice storing an immense 

and ever-growing amount of data, mainly in an unstructured fashion. By supplying that 

data to ML models, we can substantially improve the identification of patients with HF, 

particularly of those without a prior clinical diagnosis. Blecker et al. employed an L1-

regularization logistic regression model using unstructured (i.e., free-text notes and 

procedure reports) and structured data elements to identify patients with HF while being 

hospitalized (76). With an AUC of 0.97, this model exhibited better performance than the 

one utilizing structured data only, suggesting that also unstructured data contain non-

negligible information. Similar results were reported in another study of the same research 

group, in which L1-regularization logistic regression models utilizing unstructured 

medical notes achieved AUCs of 0.99 to identify hospitalizations with a principal 

discharge diagnosis of acute decompensated HF (77). Besides enhancing the diagnosis of 

HF, ML-based analysis of EHRs can also be used to automatically extract other pieces of 

clinically relevant information from medical notes, such as New York Heart Association 

(NYHA) functional class (78), indicators of LV function, prescribed HF medications, or 

reasons for not prescribing a given medication (79). 

Another potential use case of ML algorithms is to forecast the future onset of HF. 

Ambale-Venktesh et al. used a random survival forest algorithm to predict cardiovascular 

outcomes, including incident HF, among patients enrolled in the MESA (Multi-Ethnic 

Study of Atherosclerosis) (80). They identified the most relevant predictors for each 

outcome included in the study, which for the prediction of HF onset resulted in an AUC 

of 0.84, a modest improvement over the Cox proportional hazards model-based MESA-
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HF risk score (AUC of 0.80) (81). Segar et al. sought to predict incident HF 

hospitalization in patients with type 2 diabetes mellitus (82). They trained and validated 

a random survival forest model, which appeared superior to the best performing Cox-

based method. Choi et al. utilized a more sophisticated algorithm – RNN models – to 

leverage temporal relations among time-stamped events for the detection of incident HF 

(83). With observation windows of 12 and 18 months, the AUCs of the RNN models were 

respectively 0.78 and 0.88 for predicting the initial diagnosis of HF, which were notably 

higher compared to the performance of conventional ML methods such as regularized 

logistic regression, SVM, and KNN classifiers. Using longitudinal EHR data, Chen et al. 

assessed the performance of three ML models (L1-regularized logistic regression, random 

forest, and RNN) trained to detect a future diagnosis of HF in primary care patients (84). 

RNN model performance was superior to the other two methods under various conditions, 

including when data were less diverse, the prediction window length decreased, the data 

density increased, or the observation window length increased. The potential utility of 

RNN-based analysis of EHR data sets was also demonstrated by Rasmy et al., whose 

RNN outperformed L2-regularized logistic regression in predicting the risk of HF onset 

(AUC: 0.82 vs. 0.79) (85). 

Beyond the applications mentioned above, ML has been coupled with other less 

usual data sources to improve the diagnosis of HF. Nirschl et al. trained a CNN model 

using hematoxylin and eosin-stained images of cardiac tissue to diagnose HF in 

postmortem patients (86). Interestingly, their model had an AUC of 0.99 and 

outperformed two experienced clinical pathologists as well. Liu et al. analyzed digital 

heart sound recordings to discriminate between HFpEF patients and healthy volunteers 

with no history of cardiovascular disease (87). Although they used a relatively simple 

feed-forward network with a single hidden layer, their model still exhibited an accuracy 

of 96% to identify HFpEF patients. 

 

1.5.2 Identification of heart failure subtypes 

Traditionally, HF patients have been stratified according to LVEF (56). A wide 

variety of effective treatments has been found for patients classified as having HFrEF 

(56), although the same success has evaded researchers investigating the therapeutic 

options for HFpEF (88-91). This is partly attributable to the fact that HFpEF is a 
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heterogeneous clinical syndrome (92, 93). Thus, defining therapeutically homogeneous 

subclasses of HFpEF patients would be essential, which represents an excellent 

opportunity for unsupervised ML algorithms (i.e., clustering) to shine. 

Shah et al. were one of the firsts to apply unsupervised algorithms (namely 

hierarchical and model-based clustering) to cluster patients into three unique HFpEF 

phenogroups that differed markedly in clinical characteristics, cardiac structure/function, 

invasive hemodynamics, and outcomes (94). They also tested the validity of the three 

phenogroups in a separate patient cohort and found similar outcomes after matching 

patients to the newly defined groups. More recently, using data from TOPCAT 

(Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist 

Trial), Cohen et al. performed latent-class analysis to identify HFpEF phenogroups based 

on standard clinical features and assessed differences in multiple plasma biomarkers, 

cardiac and arterial structure/function, prognosis, and response to spironolactone (95). 

The subgrouping of HFpEF has also been attempted by Hedman et al., aiming to gain 

insights into the underlying proteomics profiles of each cluster (96). By performing 

model-based clustering using echocardiographic, clinical, and standard laboratory 

variables collected from stable HFpEF outpatients, they identified six groups with 

significant differences in outcomes and levels of inflammatory and cardiovascular 

proteins. Not only resting but also post-exercise imaging data can be incorporated into 

cluster analysis for the more profound characterization of HFpEF subgroups, as 

demonstrated by Przewlocka-Kosmala and colleagues (97). In their study, they applied 

hierarchical clustering to define two distinct phenotypes of patients with symptomatic 

HFpEF: (1) those with reduced and (2) those with preserved chronotropic and/or diastolic 

reserve, with the latter group showing a lower incidence of cardiovascular hospitalization 

or death during the 2-year follow-up period. 

Similar studies have been performed in patients with HFrEF and acute 

decompensated HF (98, 99). Each of these studies delineated unique subgroups of patients 

with graduated outcomes depending on cluster assignment; nevertheless, the clinical 

utility of these clusters in each instance has yet to be established, and it should also be 

investigated whether changes in outcomes can be achieved by tailoring therapies or 

prevention strategies to individual groups. 
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Although the studies discussed above focused on the phenomapping of either 

HFpEF or HFrEF, clustering can also be conducted using data from HF patients across 

the entire EF spectrum. Motivated by this idea, Ahmad et al. performed k‐means 

clustering using data from the Swedish Heart Failure Registry in order to identify 

subgroups of HF patients with distinct phenotypes and survival independent of LVEF 

(100). Interestingly, in terms of prognostication, assignment to the newly identified 

clusters proved to be superior to the current EF-based stratification of HF patients (AUC 

of 0.68 vs. 0.52). In addition, they reported that response to pharmacotherapies (diuretics, 

angiotensin-converting enzyme inhibitors, β-blockers, and nitrates) differed across 

clusters. These results suggest that it may be possible to apply ML algorithms to pinpoint 

individuals who will benefit from a specific therapy. 

Of note, phenomapping does not have to be restricted to HF patients as it can be 

implemented to explore the entire spectrum of cardiac function, from normal to end-stage 

HF. An excellent example of this concept was provided by Cho et al., who used TDA to 

integrate multiple echocardiographic variables and visualize the distinct phenotypes of 

cardiac function (101). In the generated topological network, four phenogroups (i.e., 

clusters) were identified, which differed significantly in clinical characteristics, cardiac 

structure and function, hemodynamics, and outcomes, and showed meaningful 

correlations with the clinical stages of HF. Finally, a deep neural network was trained 

using the newly identified phenogroups as class labels, and it was able to classify patients 

into one of the four clusters with an AUC of >0.80. 

 

1.5.3 Prognostication of heart failure patients 

In addition to improving the diagnosis and phenogrouping of HF, ML techniques 

can be leveraged to accurately predict different outcomes. 

 

1.5.3.1 Predicting 30-day hospital readmission 

Readmission within 30 days after an HF hospitalization is recognized both as an 

indicator for disease progression and a source of a considerable financial burden to the 

healthcare system. Consequently, the identification of patients at risk for 30-day 

readmission is a key step in meeting the individual needs of a patient while optimizing 

the distribution of healthcare resources among all patients. 
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Using a vast amount of EHR data, Golas et al. trained deep unified networks – a 

new mesh-like network structure of DL designed to avoid over-fitting – to predict 30-day 

all-cause readmission of HF patients (102). In the 10-fold cross-validation procedure, 

deep unified networks were found to be more powerful than both gradient boosting (mean 

AUCs of 0.71 vs. 0.65, respectively) and logistic regression (mean AUCs of 0.71 vs. 0.66, 

respectively). The usefulness of neural networks in this prediction task was demonstrated 

by Awan et al. as well, who implemented a multi-layer perceptron (i.e., a feed-forward 

ANN) to predict 30-day HF readmission (103). Their model showed an improved 

performance to predict 30-day HF readmission compared to logistic regression (AUCs of 

0.62 vs. 0.58, respectively). Another example for the successful application of ANN was 

provided by Liu et al., who achieved an AUC of 0.64 to predict 30-day readmission of 

HF patients using an ANN with medical code embedding (104). 

Besides neural networks, other ML algorithms have also exhibited encouraging 

results in the prediction of 30-day readmission. Mortazavi et al. explored the performance 

of conventional ML algorithms for the prediction of both all-cause and HF-only 

readmissions after hospitalization for HF (105). In the 30-day all-cause readmission 

prediction, random forest exhibited the best performance and provided an 18% 

improvement in discrimination over logistic regression (AUC: 0.63 and 0.53, 

respectively), whereas, for readmissions due to HF, gradient boosting achieved the most 

substantial improvement over logistic regression (AUC: 0.68 and 0.54, respectively). In 

another study, Yu et al. utilized an SVM leveraging patient data acquired at both 

admission and discharge during the index hospitalization to predict 30-day readmission 

due to HF (106). According to their findings, the SVM model was capable of 

outperforming the LACE index for readmission (AUC: 0.65 vs. AUC: 0.56). 

 

1.5.3.2 Predicting mortality 

In the last decades, predicting the mortality of HF patients has attracted increased 

attention, and significant strides have been achieved with the application of ML. 

In a study conducted by Samad et al., a random forest model including a large 

panel of echocardiographic features yielded the highest prediction power among the 

evaluated ML classifiers and outperformed the Seattle Heart Failure Model (SHFM) in 

the 5-year survival prediction (AUC: 0.80 vs. 0.63) (107). In the same year, Adler et al. 
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created an ML-based risk score – the MARKER-HF risk model – to discriminate HF 

patients with high and low mortality risk (108). Their model was found to have a superior 

ability to prognosticate HF patients compared to pre-existing, non-ML-based risk scores 

(AUC: 0.88 vs. 0.78 [the Intermountain Risk Score], 0.74 [the Get With The Guidelines‐

Heart Failure risk score – GWGT-HF], 0.63 [the Acute Decompensated Heart Failure 

Registry score]). For the prediction of 1-year outcomes, Hearn et al. implemented a feed-

forward neural network incorporating breath-by-breath data from cardiopulmonary 

exercise testing (109). Their model achieved an AUC of 0.84 to predict clinical 

deterioration (i.e., initiation of mechanical circulatory support, listing for heart 

transplantation or mortality) within 1-year following cardiopulmonary exercise testing. 

Kwon et al. proposed an echocardiography-based deep learning model which predicted 

in-hospital, 1- and 3-year mortality among acute HF patients with AUCs of 0.88, 0.78, 

and 0.81, respectively (110). In addition, the proposed model outperformed the GWGT-

HF score in the prediction of in-hospital mortality (AUC: 0.88 vs. 0.73), the Meta-

Analysis Global Group in Chronic Heart Failure (MAGGIC) score in the prediction of 1- 

and 3-year mortality (AUC: 0.78 vs. 0.72 and 0.81 vs. 0.73, respectively). Another group 

of researchers developed and validated contrast pattern-aided logistic regression-based 

models to predict 1-, 2-, and 5-year survival in HF using data from EHRs (111). In the 

validation cohort, the model exhibited AUCs of 0.94, 0.83, and 0.79 to predict 1-, 2- and 

5-year, respectively, outperforming random forest, adaptive boosting, SVM, and logistic 

regression. The inspiring results of these studies support the utilization of ML-based 

approaches for the prognostication of patients with HF and in other settings where risk 

prediction has been challenging so far. 

 

1.5.3.3 Predicting response to left ventricular assist device 

LV assist device (LVAD) has rapidly emerged as a durable and safe therapy for 

end-stage HF patients (112). Though originally conceived for bridge-to-transplant 

indication, advancements in medical management and technology with the arrival of 

newer generation devices have significantly improved patient outcomes, leading to its 

increasing use as destination therapy (113, 114). However, the response to LVAD is still 

varying, and conventional statistics-based risk prediction tools for adverse outcomes such 

as right ventricular (RV) failure and survival have limited predictive power. Thus, ML-

DOI:10.14753/SE.2022.2607



41 

 

based solutions to enhance the prognostication of these patients have been investigated 

intensively in the last decade. 

Using multiple pre-LVAD variables of a large patient cohort from the 

INTERMACS (Inter-Agency Registry for Mechanically Assisted Circulatory Support), 

Kanwar et al. implemented NB classifiers to predict 1-, 3-, and 12-month survival 

following LVAD implantation (115). Their models achieved AUCs of 0.70 and 0.71 in 

90-day and 1-year survival prediction, respectively, and outperformed the HeartMate II 

Risk Score (AUC: 0.61 and 0.59, respectively) (116). Moreover, in another study 

conducted by the same group of researchers, the performance of similar ML models was 

evaluated in the prediction of acute (<48h), early (48h-14days), and late (>14days) RV 

failure (117). The AUCs of the constructed NB models were above 0.83, and they 

outperformed the previously published risk scores for RV failure, including the RV 

failure risk score (118) and the Drakos score (119). All these findings imply that ML 

models have the potential to play a considerable role in clinical decision-making while 

screening candidates for LVAD therapy. 

 

1.5.3.4 Predicting response to CRT 

Cardiac resynchronization therapy (CRT) is a key component in the management 

of symptomatic HF with reduced LVEF and wide QRS complex (57). Although CRT 

improves mortality, functional capacity, clinical symptoms, and quality of life in a certain 

patient subpopulation, not everyone benefits equally, and mortality rates remain high 

among these patients (120-124). The recognition of this variability in outcomes has 

prompted efforts in the response prediction and risk stratification of CRT patients based 

on pre‐implantation assessments. However, the currently available, conventional 

statistics-based risk scores have several shortcomings (e.g., lack of generalizability and 

impact analysis, omitting routinely assessed, powerful predictors), which hamper their 

utilization in everyday clinical practice (125). Therefore, more precise and personalized 

methods are required, and ML seems to be a promising tool to meet this compelling 

demand (11). 

To this end, Cikes et al. studied HF patients from the MADIT-CRT (Multicenter 

Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) to 

identify responders to CRT-defibrillator (CRT-D) using multiple kernel learning and k-
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means clustering (126). Four phenogroups were delineated that significantly differed in 

pre-implantation clinical characteristics, biomarker values, measures of LV and RV 

structure and function, and in the extent of volumetric response. In addition, two 

phenogroups were found to be associated with a substantially better treatment effect of 

CRT-D on the primary outcome (all-cause death or non-fatal HF event) than the other 

two clusters. Another group of researchers employed a random forest-based model to 

predict all-cause mortality or HF hospitalization at 12 months following CRT 

implantation using data acquired in the COMPANION (Comparison of Medical Therapy, 

Pacing, and Defibrillation in Heart Failure) trial (127). Their model achieved an AUC of 

0.74, and it also discriminated the risk of the composite endpoint of all-cause death or HF 

hospitalization better than subgroups created based on left bundle branch block (LBBB) 

morphology and QRS duration. 

More recently, the capabilities of ML have also been demonstrated using the data 

of the SMART-AV (SMARTDELAY-determined AV optimization) trial by Howell et 

al., who applied ML to predict short-term CRT response (128). In their series of 

experiments, the best performing model – an adaptive LASSO model – was able to predict 

the composite endpoint (freedom from death / HF hospitalization and a >15% reduction 

in LV end-systolic volume index at 6-month follow-up) with an AUC of 0.76 suggesting 

that ML-based tools may facilitate early post-implantation care planning that will 

ultimately improve long-term CRT outcomes. 

ML has been successfully applied not only on data from multi-centric, prospective 

trials but also in retrospective registries to predict CRT response. Feeny et al. analyzed 

CRT patients using an NB classifier to identify responders to CRT (defined as ≥10% 

increase in LVEF) and predict survival (129). In the test cohort, the implemented NB 

classifier improved both response classification (AUC: 0.70 vs. 0.65) and survival 

prediction (Harrell’s concordance index: 0.61 vs. 0.56) compared to the 2013 American 

College of Cardiology (ACC) / American Heart Association (AHA) HF guidelines (130). 

In another study, the same research group used principal component analysis and k-means 

clustering to analyze the QRS patterns of patients prior to CRT implantation (131). They 

identified two clusters with prominent differences in the risk of reaching the composite 

endpoint (death, LVAD implantation, or heart transplantation) and the extent of mean 

LVEF improvement. Moreover, using the combination of cluster membership and QRS 
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area, they could also pinpoint patients with LBBB and QRS duration <150 milliseconds 

who had similar outcomes to those with LBBB and QRS duration ≥150 milliseconds, and 

identified patients with LBBB having outcomes similar to non-LBBB patients. Thus, the 

ML-based stratification of LBBB may represent an objective method for candidate 

selection without requiring subjective but strict definition for LBBB. 

Cai et al. have also demonstrated that ML might improve upon clinical guidelines 

(132). In their recently published study, the proposed ML model using the combination 

of clinical and ECG features predicted >5% improvement in LVEF at 6-month follow-up 

with an AUC of 0.76, outperforming models using only QRS > 120 ms, LBBB, right 

bundle branch block, and intraventricular conduction delay (AUC: 0.56). Accordingly, 

their risk stratification tool identified responders more efficiently than clinical guidelines, 

suggesting that ML can enhance the care management of HF patients by facilitating the 

identification of high-risk patients. 

ML can also be employed to explore the most important predictors of volumetric 

response and other clinical endpoints in patients undergoing CRT implantation. An 

excellent example was provided by Galli et al., who used a feature selection method called 

the Boruta algorithm to identify the key clinical, echocardiographic, and 

electrocardiographic determinants of volumetric response and outcomes (133). Septal 

flash, apical rocking, and ischemic heart disease were the most important variables 

associated with volumetric response (defined as ≥15% decrease in LV end-systolic 

volume), underscoring the relevance of visual assessment of LV mechanical 

discoordination and ischemic cardiomyopathy. Tricuspid annular plane systolic excursion 

was found to be the most important feature associated with outcomes (i.e., the composite 

of heart transplantation, LVAD implantation, or all-cause death during follow-up), 

followed by LV size, NYHA functional class, renal function, fractional area change, 

LVEF, and RV free wall longitudinal strain. Moreover, the random forest model using 

exclusively the selected features achieved outstanding performance in the prediction of 

both volumetric response (AUC: 0.81) and outcomes (AUC: 0.84). 

Clinical notes represent another important yet often untapped data source that ML 

algorithms can leverage to predict outcomes. Inspired by this idea, Hu et al. trained 

gradient boosting classifiers that utilized structured data (e.g., laboratory results, 

medications, billing codes) and two-word features (i.e., bigrams) extracted from clinical 
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notes via natural language processing (134). Their final model was capable of identifying 

patients who were unlikely to benefit from CRT (<0% improvement in LVEF or death by 

18 months) with an AUC of 0.75. 

As demonstrated by Jing et al., ML can also be utilized to priority-rank HF patients 

based on the predicted degree of benefit from closing care gaps, such as implantation of 

a CRT device or optimization of pharmacotherapy (135). Using a gradient boosting model 

capable of predicting 1-year all-cause mortality with an AUC of 0.77, a subgroup of HF 

patients with high risk of mortality could be delineated who had high benefit (>10% 

reduction in mortality rate) from closing care gaps. However, not all high-risk patients 

were predicted to have high benefit, as evidenced by a subgroup of patients with high 

baseline risk but minimal risk reduction after closing the care gaps. Moreover, prioritizing 

patients for intervention based on the predicted reduction in 1-year mortality risk 

outperformed other priority rankings, such as random selection or the Seattle Heart 

Failure risk score. Thus, in a resource-constrained environment, ML has a potential value 

in optimizing the distribution of healthcare resources and maximizing the total number of 

lives saved. 

Seeing the promising results of these studies, we may deduce that ML has the 

ability to effectively risk-stratify patients undergoing CRT implantation and identify 

responders; thus, it may facilitate candidate selection and optimization of post-

implantation care. Beyond these potential areas of application, ML might be applied for 

various additional CRT-related tasks, such as for protecting cardiovascular implantable 

electronic devices (CIEDs) from cyberattacks (63), for the rapid and automated 

identification of the manufacturer and the model group of CIEDs based on chest 

radiographs (136-138), or for analyzing other data captured by CRT devices such as heart 

rate variability and pulmonary impedance (139, 140).  
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2. OBJECTIVES 

1. Applying topological data analysis to integrate echocardiographic features of left 

ventricular structure and function into a patient similarity network 

In cardiovascular medicine, one of the major research priorities is to prevent 

adverse clinical events and hospitalization by risk factor management and by earlier 

detection of subclinical cardiac dysfunction. This research has led to a plethora of imaging 

approaches with diverse technical underpinnings to assess various and often overlapping 

aspects of cardiac function. A diagnostic imaging protocol can produce numerous 

parameters, each with its strengths and limitations (141). However, due to the lack of 

unanimity on the combination and use of these parameters to depict a single patient or a 

group of patients with similar characteristics, there is a paramount need to develop a 

staging method that can integrate multiple tests and diagnostic variables at the point of 

care. Accordingly, we applied TDA-based network analysis to detect patient similarity 

patterns using a cross-sectional multi-parametric echocardiographic data set. We 

subsequently investigated the prognostic value of the topological network and explored 

whether the longitudinal course of the disease could be tracked along the topological map 

to assess the risk of cardiac events in an index patient. 

2. Designing and evaluating a machine learning-based risk stratification system to 

predict all-cause mortality of patients undergoing CRT implantation 

CRT has been shown to decrease morbidity and mortality in appropriately selected 

patients, yet some patients show limited or no response to therapy (142, 143). Since this 

discovery, interest has spiked in attempting to accurately risk-stratify this patient 

population; however, conventional statistics-based risk scores have achieved only modest 

performance. Therefore, we sought to design and evaluate an ML-based risk stratification 

system to predict 1-, 2-, 3-, 4-, and 5-year mortality from pre-implantation parameters of 

patients undergoing CRT implantation. We hypothesized that ML can capture high-

dimensional, non-linear relationships among clinical features, and a risk stratification 

system can be developed that predicts mortality for individual patients more accurately 

than the currently available risk scores. 
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3. Exploring the sex-specific differences and similarities in the predictors of 

mortality among patients undergoing CRT implantation 

In HFrEF, several studies have highlighted sex-related differences that involve 

multiple aspects of the syndrome, such as epidemiology, pathophysiology, phenotyping, 

and prognosis (144). While women with HFrEF have better survival and lower 

hospitalization rates, they have a greater burden of symptoms and more impaired health-

related quality of life than men (145). Although sex disparities are also remarkable in the 

accessibility to HF device therapy, including CRT (146-148), women are more likely to 

respond favorably and derive a greater survival benefit from CRT implantation (149-152). 

Nonetheless, the sex-related differences in both short- and long-term outcomes and the 

varying importance of different predictors are still scarcely explored in this patient 

population (153). Motivated by this gap in knowledge, we aimed to explore the sex-

specific differences and similarities in the predictors of mortality using advanced ML-

based approaches. 
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3. METHODS 

3.1 Study population and methods of investigating interpatient similarities using 

topological data analysis 

 

3.1.1 Outline of the study protocol 

Our study consisted of two parts. First, we used a primary cohort (including 

patients from a retrospective study and two prospective registries) to create a cross-

sectional representation of patients across different stages of cardiac disease. After we 

developed a topological network from the retrospective study, we added the data from the 

prospective registries to validate the persistence and stability of network topology. 

Second, we tested whether we could perform personalized predictions for a previously 

unseen group of patients (secondary cohort) who had two echocardiographic evaluations. 

As these patients underwent two echocardiographic examinations, the change in their 

location on the network was also monitored to investigate whether the network could 

represent the changes in cardiac disease staging. 

The institutional review board approved the study protocol (approval No. 

1706617714 and 1706632601), and all study participants in the prospective studies 

provided written informed consent. 

 

3.1.2 Study population 

A flowchart of the study population, inclusion and exclusion criteria are provided 

in Figure 7. The retrospective group included a convenience sample of 866 outpatients 

(65 ± 17 years, 44.7% males) in sinus rhythm who were referred for echocardiographic 

assessment of cardiac function between March 2013 and December 2015 at the Icahn 

School of Medicine at Mount Sinai (New York, New York). The prospective groups 

included 468 patients (55 ± 15 years, 41.7% males) enrolled between July 2017 to 

February 2018 in two ongoing patient registries at West Virginia University 

(Morgantown, West Virginia) that followed two prospective trials (Analysis of Surface 

ECG Signals to Identify Myocardial Dysfunction in Patients at Risk for Coronary Artery 

Disease, NCT02560168; and Evaluation of Cardiopulmonary Diseases by Ultrasound, 

NCT02248831). The pooled patients from the retrospective study and the two prospective 
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registries formed the primary cohort, which was used for developing the patient-patient 

similarity network. 

For personalized patient predictions, we tested the topological model in 96 

additional patients (secondary cohort, 58 ± 15 years, 51.0% males) who had two 

consecutive echocardiographic examinations. Follow-up data for this cohort were 

collected after the second echocardiographic assessment. 

 

 

Figure 7 Flowchart of the study protocol (154) 

LV – left ventricular 
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3.1.3 Clinical characteristics 

Hypertension was defined as systolic blood pressure >140 mmHg or diastolic 

blood pressure >90 mmHg, a physician-documented history of high blood pressure, or 

use of any antihypertensive medication. Hyperlipidemia was defined by the presence of 

a physician-documented history of hyperlipidemia, the use of any lipid-lowering agents, 

or an abnormal lipid panel (total cholesterol >200 mg/dL, low-density lipoprotein 

cholesterol >100 mg/dL, triglycerides >150 mg/dL, high-density lipoprotein <40 mg/dL). 

Diabetes mellitus was defined as the presence of a physician-documented history of 

diabetes, use of any oral hypoglycemic agents or insulin, glycated hemoglobin >6.5%, or 

non-fasting blood glucose level >200 mg/dL. Among the prospectively enrolled patients, 

NYHA functional classification and ACC/AHA HF stages were also assessed. 

 

3.1.4 Echocardiography 

A standard acquisition protocol consisting of loops from parasternal, apical, and 

subxiphoid views was used according to current guidelines (141, 155). After measuring 

the LV posterior wall diameter, ventricular septal diameter, and LV internal diameter in 

end-diastole, LV mass was calculated and indexed to body surface area. On apical two- 

and four-chamber loops, the LV end-diastolic volume, end-systolic volume, and LVEF 

were calculated using the biplane Simpson’s method of discs, and the left atrial volume 

was computed using the biplane area-length method. Early (E) and late (A) diastolic 

transmitral flow velocities were obtained from the apical four-chamber view using 

pulsed-wave Doppler. Spectral pulsed-wave tissue Doppler-derived early diastolic 

relaxation velocity (e') at the septal mitral annular position was acquired in the apical 

four-chamber view. The ratios of E/A and E/e' were calculated as Doppler 

echocardiographic estimates of the LV filling pressure. Continuous-wave Doppler was 

applied on the tricuspid valve in different windows (apical four-chamber, parasternal RV 

inflow, parasternal short-axis views) to record the tricuspid regurgitation signal, and 

tricuspid regurgitation peak velocity (TRV) was measured as the highest value recorded 

from all views. All measurements were obtained in at least three consecutive cardiac 

cycles, and average values were used in the final analysis. 
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3.1.5 Topological data analysis 

We applied TDA to detect patterns in multi-dimensional echocardiographic 

parameters by studying the geometrical structure obtained from the network that signified 

a compressed representation of high-dimensional data for patient similarity analysis (50). 

The notion of expressing the shape of data using TDA was extensively validated and 

successfully applied to different areas of health sciences (156-162). In the created 

topological network, each node represented a cluster of patients, whereas edges connected 

nodes that had at least one patient in common. Nodes were color-coded based on the 

average value of the parameter of interest (e.g., LVEF or LV mass). The nodes were 

colored red for the most extreme abnormal values, whereas they were colored blue for 

the maximum normal value. There was a gamut of colors for the average values in 

between. 

TDA was performed using the cloud-based Ayasdi Workbench (version 7.4, 

Ayasdi Inc., Menlo Park, CA). Nine echocardiographic parameters were used to create 

the topological network, namely, LVEF, LV mass index, E, A, E/A ratio, e', E/ e' ratio, 

left atrial volume index, and TRV. The steps in generating the TDA network are provided 

in Figure 8. Data were analyzed using a normalized correlation metric (Equations 3 and 

4) with two multi-dimensional scaling lenses (resolution: 66, gain: 2.7, equalized). 

𝑁𝑜𝑟𝑚𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 1 − 𝑟(𝑋′, 𝑌′) 

where 𝑋′, 𝑌′ are the mean-centered and variance-normalized 𝑋 and 𝑌: 

𝑟(𝑋, 𝑌) =
𝑁 ∑ 𝑋𝑖𝑌𝑖 −  ∑ 𝑋𝑖 ∑ 𝑌𝑖

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

√𝑁 ∑ 𝑋𝑖
2 − (∑ 𝑋𝑖 𝑖 )2

𝑖  √𝑁 ∑ 𝑌𝑖
2 −  (∑ 𝑌𝑖𝑖 )2

𝑖

 

Equations 3 and 4 Normalized correlation 

Once the TDA-based loop structure was created, we divided the loop into four 

regions for further analyses. To this end, we calculated the multi-dimensional Euclidean 

distance (Equation 5) of the input features from the guideline-defined cut-off values for 

each patient. The distances were then used in the network for generating auto-groups 

using agglomerative hierarchical clustering, which identified 40 clusters of nodes within 

the loop. The mean distance for each cluster was calculated, and the smallest distance was 

identified. Subsequently, 9 clusters adjacent to this cluster were selected to create the first 
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region in the loop, and the remaining 30 clusters were divided into three regions 

containing 10 adjacent clusters of nodes each. 

𝑑𝑥,𝑦 =  √∑(𝑥𝑗 − 𝑦𝑗)
2

𝐽

𝑗=1

 

Equation 5 Euclidean distance formula generalized to higher-order dimensions 

𝑥 and 𝑦 are two 𝐽 dimensional vectors 

After the network was created in the primary cohort (containing retrospective and 

prospective cohorts), we trained a random forest-based classifier using the 

echocardiographic data of the primary cohort to predict the region that each patient from 

the secondary cohort might belong to. This allowed us to predict the characteristics of the 

patients and the outcomes that a given patient might have experienced. 

 

 

Figure 8 Steps of topological data analysis (154) 

(A) Our data set containing echocardiographic features was analyzed using TDA from a bivariate 

correlation matrix. (B) Data were processed with two multi-dimensional scaling lenses to generate the 

disease space. TDA resamples the disease space multiple times to identify similar patients and links them 

to nodes (red and blue circles). (C) The patient-patient network was created to provide a simple visual 

representation of the data. 

A – late diastolic transmitral flow velocity, e' – early diastolic relaxation velocity at septal mitral annular 

position, E – early diastolic transmitral flow velocity, E/A – early to late diastolic transmitral flow velocity 

ratio, E/e' – early diastolic transmitral flow to annular velocity ratio, EF – ejection fraction, LAVi – left 

atrial volume index, LVMi – left ventricular mass index, TDA – topological data analysis, TRV – tricuspid 

regurgitation peak volume 
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3.1.6 Clinical outcomes, endpoints, and staging 

Patient electronic medical records were reviewed for post-echocardiographic 

follow-up. Hospitalizations were classified based on the International Classification of 

Diseases-10th Revision coding. Endpoints were death from a major adverse cardiac event 

(MACE, defined as myocardial infarction, acute coronary syndrome, acute 

decompensated HF, cardiac arrest, or arrhythmia) and first MACE-related 

rehospitalization. The time to each endpoint was measured from the date of the 

echocardiographic examination used in the study. Clinical cardiac disease staging was 

performed using NYHA functional class assessment, ACC/AHA HF staging, and the 

MAGGIC risk score. The ability of the MAGGIC score to predict death and 

cardiovascular hospitalization events related to MACE was well-validated (163, 164). 

 

3.1.7 Statistical analysis 

Continuous variables are expressed as median (interquartile range), while 

categorical variables are reported as frequencies and percentages. Between-group 

comparisons were performed using Chi-squared test or Fisher’s exact tes (for categorical 

variables), and analysis of variance (ANOVA), Kruskal-Wallis test, or Kolmogorov-

Smirnov test (for continuous variables). Correlations between categorical variables were 

computed using Goodman and Kruskal’s γ coefficient. The rates of rehospitalization and 

mortality were analyzed with Cox proportional hazard models, Kaplan-Meier curves, and 

Log-rank tests. Cox proportional hazard models were constructed to elucidate 

independent prognostic values of region information after adjustment for ACC/AHA HF 

stage, NYHA functional class, and the MAGGIC risk score. Furthermore, to evaluate the 

improvement of Cox proportional hazard models by adding region information to these 

risk predictors, integrated discrimination improvement, net reclassification improvement, 

and median improvement in risk score were calculated using R package survIDINRI 

(version 1.1-1). 

A 2-sided p-value of <0.05 was considered statistically significant. We used R 

(version 3.4.0, R Foundation for Statistical Computing, Vienna, Austria) for all statistical 

analyses (165). 
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3.2 Study population and methods of machine learning-based mortality prediction 

among patients undergoing CRT implantation 

 

3.2.1 Study population and protocol 

We identified 2,282 patients who underwent successful CRT implantation at the 

Heart and Vascular Center of Semmelweis University (Budapest, Hungary) between 

September 2000 and December 2017. For each patient, pre-implantation clinical 

characteristics such as demographics, medical history, physical status, and vitals, 

currently applied medical therapy, ECG, echocardiographic, and laboratory parameters 

were extracted retrospectively from electronic medical records and entered into our 

structured database. 

An additional prospective database of patients undergoing CRT implantation 

between January 2009 and December 2011 was also utilized. Patients included in both 

the retrospective and the prospective databases were removed from the retrospective 

database. In this way, the two cohorts were completely independent, and they could be 

used as training and test cohorts for ML algorithms. 

The study protocol (Figure 9) complies with the Declaration of Helsinki, and it 

was approved by the Regional and Institutional Committee of Science and Research 

Ethics (approval No. 161/2019). 

 

3.2.2 Feature selection and data pre-processing 

Our structured database initially comprised over 100 easily obtainable pre-

implantation clinical variables. Firstly, features included in both the retrospective and the 

prospective databases were identified (n = 49). Then, features missing for >40% of cases 

(n = 16) were excluded. The final set of input features included 33 pre-implantation 

clinical variables (Table 1). 

Missing values were imputed using the mean imputation method, which replaces 

the missing values of a certain variable with the mean of the available cases. As the range 

of different features varied widely and some of the utilized algorithms required the data 

to be normalized, Z-score transformation was performed after imputation. 
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Figure 9 Outline of the study protocol (166) 

CRT – cardiac resynchronization therapy, ML – machine learning, ROC – receiver operating characteristic 
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Table 1 Pre-implantation clinical features included in the analysis 

Demographics and clinical 

characteristics 
Comorbidities ECG 

Laboratory 

results 
Medications 

age at CRT implantation 

gender 

height 

weight 

systolic blood pressure 

NYHA functional class 

etiology of heart failure 

LVEF 

type of implanted device 

hypertension 

diabetes mellitus 

atrial fibrillation 

QRS duration 

QRS morphology 

hemoglobin 

lymphocyte 

serum sodium 

total cholesterol 

serum creatinine 

GFR 

serum uric acid 

serum urea 

NT-proBNP 

ACE-I/ARB 

beta-blockers 

furosemide 

other loop diuretics 

thiazide diuretics 

MRA 

statin 

amiodarone 

digitalis 

allopurinol 

ACE-I – angiotensin-converting enzyme inhibitors, ARB - angiotensin II receptor blockers, CRT – cardiac 

resynchronization therapy, GFR – glomerular filtration rate, LVEF – left ventricular ejection fraction, 

MRA – mineralocorticoid receptor antagonists, NT-proBNP – N-terminal pro-brain natriuretic peptide, 

NYHA – New York Heart Association 

 

3.2.3 Model development 

We used the follow-up data to generate six classes of possible outcomes: death 

during the 1st (class 1), the 2nd (class 2), the 3rd (class 3), the 4th (class 4), the 5th year 

after CRT implantation (class 5), and no death during the first 5 years following the 

implantation (class 6). The task of ML algorithms was to predict the probability 

distribution (i.e., class membership probabilities) of each patient over these classes based 

on the pre-implantation clinical features. 

Model development included trials of several ML classifiers such as logistic 

regression, ridge regression, SVM, KNN classifier, gradient boosting classifier, 

traditional random forest (TRF), conditional inference random forest (CIRF), and multi-

layer perceptron. Models were trained with stratified 10-fold cross-validation on the 

training cohort, and a grid search approach was used to tune the hyper-parameters of each 

ML algorithm. 

The outputs of each model were series of six values representing the previously 

defined class membership probabilities (Figure 10A). The sum of these probabilities is 

equal to one in each patient. To create binary classifiers, we calculated cumulative class 

membership probabilities by summing these values until the given year of follow-up 

(Figure 10B). The computed cumulative probabilities were then calibrated using Platt’s 

scaling, and the survival curve could be plotted for each patient (Figure 10C). The 

calibration of the model was evaluated using the Brier score (ranging from 0 to 1, with 0 

representing the best possible calibration), which is defined as the mean squared 
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difference between the observed and the predicted outcome. Expected survival was also 

calculated from the annual calibrated cumulative probabilities (Figure 10D). 

 

Figure 10 Computation of survival probabilities in a representative patient (166) 

(A) The outputs of each model were series of class membership probabilities. (B) Cumulative probabilities 

were calculated by summing these values until the given year of follow-up. (C) To calibrate the cumulative 

probabilities, Platt’s scaling was performed. Using these calibrated cumulative probabilities, the survival 

curve could be plotted for each patient. (D) Then, the expected survival time of each patient was estimated 

from the annual survival probabilities. 

𝑃𝑖  – the calibrated cumulative probability of all-cause mortality at year 𝑖  

 

To quantify the model’s discriminative capabilities in each year, ROC curve 

analysis was performed, and AUC was calculated. The mean AUC of 1-, 2-, 3-, 4-, and 

5-year calibrated cumulative probabilities was computed, and it served as the major 

metric to assess a model’s performance. 
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3.2.4 Model testing 

The model with the highest mean AUC was selected for further evaluation, and it 

is referenced as the SEMMELWEIS-CRT (perSonalizEd assessMent of estiMatEd risk 

of mortaLity With machinE learnIng in patientS undergoing CRT implantation) score 

throughout the entire thesis. To determine whether the model remains accurate when new 

data are fed into it, we tested it on the patients of the test cohort. 

For each patient in the test cohort, we also computed pre-existing risk scores 

(SHFM, VALID-CRT, EAARN, ScREEN, and CRT-score) (167-171). Their prediction 

capabilities were quantified annually with AUCs, and they were compared with 

SEMMELWEIS-CRT score using the DeLong test. 

 

3.2.5 Feature importances 

To determine the major predictors of all-cause mortality in our patient population, 

permutation feature importances were computed from the final model. Permutation 

feature importance measures the importance of an input feature by calculating the 

increase in the model’s prediction error after permuting its values. A feature is considered 

important if shuffling its values decreases the model’s discriminative capability as the 

model relies heavily on that feature for the prediction. A feature is unimportant if 

shuffling its values leaves the AUC unchanged, as in this case, the model ignores the 

feature for the prediction. 

 

3.2.6 Statistical analysis 

Continuous variables are expressed as median (interquartile range), while 

categorical variables are reported as frequencies and percentages. The baseline clinical 

characteristics of patients alive and dead were compared with unpaired Student’s t-test or 

Mann-Whitney U test for continuous variables and Chi-squared or Fisher’s exact test for 

categorical variables, as appropriate. The survival of subgroups was visualized on 

Kaplan-Meier curves, and Log-rank tests were performed for comparison. Cox 

proportional hazards models were used to compute hazard rations (HRs) with 95% 

confidence intervals (CIs). A 2-sided p-value of <0.05 was considered statistically 

significant. 
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3.2.7 Software packages 

ML algorithms were implemented in Python (version 3.6.7, Python Software 

Foundation, Wilmington, Delaware, U.S.A.) using the scikit-learn library (version 0.20.2) 

(172). Statistical analysis, including group comparisons and survival analysis, was 

performed in R (version 3.4.2, R Foundation for Statistical Computing, Vienna, Austria) 

(165). 

 

3.3 Study population and methods of exploring sex-specific patterns of mortality 

predictors among patients undergoing CRT implantation 

 

3.3.1 Study population and protocol 

We identified 2,412 patients with chronic HFrEF (NYHA functional class II-IV) 

who underwent successful CRT implantation at the Heart and Vascular Center of 

Semmelweis University (Budapest, Hungary) between September 2000 and September 

2018. For each patient, pre-implantation clinical characteristics (demographics, medical 

history, physical status, vitals, currently applied medical therapy, ECG, 

echocardiographic and laboratory parameters) and procedural parameters (type of the 

implanted device, LV lead position) were collected retrospectively from paper-based or 

electronic medical records and entered to our structured database. 

The study protocol complies with the Declaration of Helsinki, and it was approved 

by the Regional and Institutional Committee of Science and Research Ethics (Approval 

No. 161/2019). 

 

3.3.2 Study outcomes 

Follow-up data (status [dead or alive], date of death) was obtained for all patients 

by querying the National Health Insurance Database of Hungary in September 2019. 

Accordingly, all patients included in our database were followed for at least 1 year or died 

within 1 year. In the entire study population, 2,116 patients also had 3-year outcome data 

available. The primary endpoint of our study was all-cause mortality. 
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3.3.3 Feature selection and data pre-processing 

The data analysis pipeline, including feature selection, data pre-processing, ML 

model development and evaluation, is illustrated in Figure 11. 

Feature selection included two consecutive steps. First, any feature with ≥40% 

missing data was removed. Second, collinear variables (Spearman correlation coefficient 

≥ 0.3 or ≤-0.3) were also excluded as variables containing redundant information might 

bias the further steps of the analysis. The excluded features due to collinearity were serum 

urea (r = 0.748 vs. serum creatinine), glomerular filtration rate (r = -0.849 vs. serum 

creatinine), history of myocardial infarction (r = 0.803 vs. etiology of HF), history of 

percutaneous coronary intervention (r = 0.675 vs. etiology of HF), history of coronary 

artery bypass grafting (r = 0.383 vs. etiology of HF), history of ventricular arrhythmia (r 

= 0.313 vs. amiodarone), and oral anticoagulants (r = 0.364 vs. type of atrial fibrillation 

[AF]). As body weight and height also correlated moderately (r = 0.582), we used BMI 

instead. The final set of input features comprised 30 pre-implantation and procedural 

variables: baseline demographics and clinical characteristics (n = 10), comorbidities (n = 

6), ECG- (n = 1), laboratory parameters (n = 3), and currently applied medications (n = 

10). The list of candidate variables and the feature selection procedure are presented in 

Table 2. 

Patients with more than 30% of missing values were excluded from further 

analyses. Missing values of continuous variables were imputed using MICE. This method 

models each feature with missing values as a function of other features in a round-robin 

fashion. As opposed to single imputations methods (e.g., mean imputation), it involves 

multiple imputations in order to mitigate the statistical uncertainty associated with 

imputations. Missing values of categorical variables were replaced with -1. As the range 

of different continuous features varied widely, Z-score transformation was applied after 

imputation to eliminate the possibility of model bias caused by the differing magnitude 

of the numerical values. 
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Figure 11 The schematic outline of the data analysis pipeline (173) 

The data analysis pipeline included three major steps: (1) data pre-processing, (2) machine learning model 

development and evaluation, and (3) the calculation of feature importances. During data pre-processing, 

feature selection was performed, patients with a high proportion of missing data were excluded, missing 

values were imputed using MICE, and z-transformation was performed. Then, machine learning models 

were implemented in different subsets of patients. Before model training, each patient subset was split into 

training and test cohorts (80:20 ratio). Hyperparameter tuning was performed with 10-fold CV in each 

training cohort. Models' discriminatory power was estimated using the AUC. Each model was retrained in 

the given training cohort, and its performance was evaluated in the corresponding test cohort. Finally, to 

identify the most important predictors of mortality in each subset, permutation feature importances were 

computed from each of the final models. 

AUC – area under the receiver operating characteristic curve, CRT – cardiac resynchronization therapy, 

CV – cross-validation, MICE – multiple imputation by chained equations. 
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Table 2 Steps of feature selection and the list of clinical features included in the final models 

 Demographics and clinical 

characteristics 
Comorbidities ECG 

Laboratory 

parameters 
Medications 

In
cl

u
d

ed
 i

n
 t

h
e 

M
L

 

m
o

d
el

s 

age at CRT implantation 

sex 

body mass index 

NYHA functional class 

HF duration >18 months 

etiology of heart failure 

left ventricular EF 

LV end-diastolic diameter 

type of implanted device 

LV lead position 

hypertension 

diabetes mellitus 

type of AF 

COPD 

smoking status 

valvular heart 

disease 

 

QRS 

morphology 

hemoglobin 

serum sodium 

serum 

creatinine 

ACE-I/ARB 

beta-blockers 

CCB 

loop diuretics 

thiazide diuretics 

MRA 

digitalis 

amiodarone 

statin 

allopurinol 

E
x

cl
u

d
ed

 d
u

e 

to
 c

o
ll

in
ea

ri
ty

 

height 

weight 

history of MI 

history of CABG 

and/or PCI 

 
serum urea 

GFR 

oral 

anticoagulants 

E
x

cl
u

d
ed

 d
u

e 
to

 ≥
4

0
%

 

m
is

si
n

g
 v

a
lu

es
 

systolic blood pressure 

diastolic blood pressure 

heart rate 

LV end-diastolic volume 

LV end-systolic volume 

 

QRS 

duration 

PR interval 

lymphocyte 

total 

cholesterol 

serum uric 

acid 

NT-proBNP 

 

Feature selection included two consecutive steps. Firstly, features missing for more than 40% of patients 

were excluded. Then, collinear variables (Spearman correlation coefficient ≥0.3 or ≤-0.3) were also 

eliminated as highly correlated variables might bias the further steps of the analysis. The final set of 

features included 30 clinical variables: age at CRT implantation, sex, body mass index, New York Heart 

Association functional class, heart failure duration >18 months, etiology of heart failure (ischemic or non-

ischemic), left ventricular ejection fraction and end-diastolic diameter assessed with two-dimensional 

echocardiography, type of the implanted device (CRT-P or CRT-D), left ventricular lead position (anterior, 

lateral or posterior), hypertension, diabetes mellitus, type of atrial fibrillation (paroxysmal, persistent, 

permanent), chronic obstructive pulmonary disease, smoking status, valvular heart disease (moderate to 

severe aortic valve disease, moderate to severe mitral valve disease, severe tricuspid regurgitation), QRS 

morphology (non-LBBB or LBBB), hemoglobin concentration, serum sodium and creatinine, medical 

treatment with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, beta-

blockers, calcium channel blockers, loop diuretics, thiazide diuretics, mineralocorticoid receptor 

antagonists, digitalis, amiodarone, statins and allopurinol. 

ACE-I – angiotensin-converting enzyme inhibitors, AF – atrial fibrillation, ARB - angiotensin II receptor 

blockers, CABG – coronary artery bypass grafting, CCB – calcium channel blockers, COPD – chronic 

obstructive pulmonary disease, CRT – cardiac resynchronization therapy, ECG – electrocardiogram, EF 

– ejection fraction, GFR – glomerular filtration rate, HF – heart failure, LV – left ventricular, MI – 

myocardial infarction, ML – machine learning, NYHA – New York Heart Association, NT-proBNP – N-

terminal pro-brain natriuretic peptide, MRA – mineralocorticoid receptor antagonists, PCI – percutaneous 

coronary intervention 
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3.3.4 Model development and evaluation 

We developed ML models to predict two separate outcomes: (1) 1-year all-cause 

mortality, and (2) 3-year all-cause mortality in the entire cohort, in males and females 

separately (a total of 6 separate binary classification tasks). To quantify a model's 

discriminatory power, ROC curve analysis was performed, and the AUC was calculated. 

Model development included trials of several binary classifiers such as logistic 

regression, SVM, KNN, Gradient Boosting classifier, TRF, CIRF, and multi-layer 

perceptron. 

As the first step of model derivation, 20% of the given patient subset (all patients, 

males or females) was randomly selected as the holdout (test cohort). This split was 

performed in a stratified manner to ensure that the original ratio of outcomes was 

preserved in the training and test cohorts. Hyperparameter tuning was performed with 

stratified 10-fold cross-validation in the remaining data (80%, training cohort). The 

algorithm (with fine-tuned hyperparameters) exhibiting the highest AUC was then 

retrained in the entire training cohort, and its performance was evaluated in the test cohort 

in a statistically independent way. Finally, calibration of the ML models was assessed in 

the test cohort using Brier score (ranging from 0 to 1, with 0 representing the best possible 

calibration), which is defined as the mean squared difference between the observed 

outcomes and the predicted probabilities. 

 

3.3.5 Feature importances 

To determine the major predictors of 1- and 3-year all-cause mortality in each 

patient subset, permutation feature importances were computed from each of the 6 final 

models. Briefly, the importance of an input feature is measured by calculating the increase 

in the model's prediction error after permuting its values while keeping other features the 

same as before. In the current study, permutation was performed 10 times for each feature. 

A feature is considered important if shuffling its values decreases the model's 

discriminatory power (AUC) as the model relies heavily on that feature for the prediction. 

On the other hand, a feature is unimportant if shuffling its values leaves the AUC 

unchanged because, in this case, the model ignores the feature while predicting the 

outcome. After calculating the importance of each feature, we divided it by the AUC 
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measured in the data set before shuffling any of its features to enable the comparison of 

feature importances between different models. 

 

3.3.6 Statistical analysis 

Continuous variables are expressed as median (interquartile range), while 

categorical variables are reported as frequencies and percentages. The baseline clinical 

characteristics of patient subsets were compared with unpaired Student’s t-test or Mann-

Whitney U test for continuous variables and Chi-squared or Fisher’s exact test for 

categorical variables, as appropriate. The survival of subgroups is presented using 

Kaplan-Meier curves. Cox proportional hazards models were used to compute HRs with 

95% CIs. A 2-sided p-value of <0.05 was considered as statistically significant. 

 

3.3.7 Software packages 

Data pre-processing, feature selection, and ML algorithms were implemented in 

Python (version 3.6.8, Python Software Foundation, Wilmington, Delaware, U.S.A.) 

using the scikit-learn module (versions 0.21.3 and 0.23.dev0) (172). Statistical analyses, 

including group comparisons and survival analyses, were performed in R (version 3.6.1, 

R Foundation for Statistical Computing, Vienna, Austria) (165). 
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4. RESULTS 

4.1 Applying topological data analysis to integrate echocardiographic features of left 

ventricular structure and function into a patient similarity network 

 

4.1.1 The continuum of cardiac function 

The use of TDA to create a patient-patient similarity network in the retrospective 

data set resulted in the formation of a looped structure. After the addition of cases from 

the prospective data set, the loop was persistent, which validated that the loop structure 

of the network model was intrinsic to the data and not an artifact. The combined network 

was used for discovering feature distributions and developing associations with clinical 

and outcome data. We noted that echocardiographic variables followed a gradually 

changing pattern throughout the loop (Figure 12). Moving counterclockwise, starting 

from the top of the loop, we observed gradually decreasing EF and e' values and 

increasing LV mass index, E/e' ratio, left atrial volume index, and TRV values. In addition 

to the echocardiographic features, cardiovascular risk factors, MACE-related 

rehospitalization, and death also showed accumulation in distinct sections of the loop 

(Table 3). 

Upon seeing the gradations of echocardiographic variables, and to create clinically 

useful categories, we measured multi-dimensional Euclidean distance of nodes using 9 

echocardiographic parameters that were used to create the network. The distance was 

used to create the groups – which was correlated with the gradation of the variables – on 

the network and subsequently collated based on clinical characteristics into 4 regions 

(Figure 13). Patients in each region showed differences in clinical characteristics (Figure 

13, Tables 3 and 4). Notably, with progressing from the first to the fourth region, an 

increasing trend was seen in age and the prevalence of underlying risk factors and 

comorbidities. LVEF remained preserved in the first to third regions; however, it was 

significantly reduced in the fourth region (p < 0.001). LV mass progressively increased, 

and diastolic function parameters progressively worsened from region I to IV. We found 

a correlation between the regions and both NYHA functional classes (γ = 0.47; p < 0.001) 

and ACC/AHA stages (γ = 0.52; p < 0.001) in the prospective cohort, which showed more 

symptomatic patients in the third and fourth regions than in the first region (Figure 14A).  
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Table 3 Clinical and echocardiographic characteristics of the retrospective cohort 

Values are n (%) or median (interquartile range) for continuous variables. 

‡p < 0.001; †p < 0.01; *p < 0.05 between the given region and the remaining regions, Kolmogorov-

Smirnov test. Overall p-values are calculated using analysis of variance (ANOVA) or Kruskal-Wallis test. 

A – late diastolic transmitral flow velocity, BMI – body mass index, CKD – chronic kidney disease, COPD 

– chronic obstructive pulmonary disease, E – early diastolic transmitral flow velocity, e' – early diastolic 

relaxation velocity at septal mitral annular position, LAVi – left atrial volume index, LVEF – left ventricular 

ejection fraction, LVMi – left ventricular mass index, MACE – major adverse cardiovascular event, TRV – 

tricuspid regurgitation peak velocity 

 Retrospective cohort 

(n = 866) 

Region I 

(n = 177) 

Region II 

(n = 138) 

Region III 

(n = 286) 

Region IV 

(n = 212) 
p-value 

Demographics and clinical characteristics 

Male, n (%) 387 (45) 73 (41) 39 (28)‡ 102 (36)‡ 142 (67)‡ <0.001 

Age, years 66 (54-79) 49 (37-59)‡ 64 (58-72)‡ 78 (67-86)‡ 66 (55-80) <0.001 

BMI, kg/m2 26.8 (23.6-30.4) 25.9 (23.0-29.8) 25.7 (22.5-29.4) 27.0 (23.8-30.3) 27.5 (24.3-31.4) 0.013 

Hypertension 441 (51) 48 (27)‡ 54 (39)† 189 (66)‡ 126 (59)† <0.001 

Hyperlipidemia 358 (41) 37 (21)‡ 45 (33)* 153 (53)‡ 99 (47) <0.001 

Diabetes 178 (21) 16 (9)‡ 14 (10)† 79 (28)‡ 60 (28)† <0.001 

COPD 61 (7) 4 (2)† 14 (10) 25 (9) 15 (7) 0.012 

Tobacco abuse 377 (44) 76 (43) 50 (36) 122 (43) 105 (50) 0.282 

History of CKD 214 (25) 18 (10)‡ 18 (13)‡ 96 (34)‡ 62 (29)* <0.001 

Clinical outcomes 

MACE rehosp. 147 (17) 8 (5)‡ 10 (7)‡ 77 (27)‡ 45 (21) <0.001 

MACE death 10 (1) 0 (0) 0 (0) 3 (1) 5 (2)* 0.083 

Echocardiography 

LVEF, % 62 (57-67) 63 (59-66)† 65 (61-68)‡ 64 (60-68)‡ 56 (45-74)‡ <0.001 

LVMi, g/m2 85 (67-106) 66 (58-77)‡ 64 (58-76)‡ 93 (78-115)‡ 105 (87-129)‡ <0.001 

E, m/s 0.79 (0.60-0.90) 0.73 (0.63-0.88)† 0.70 (0.60-0.80)‡ 0.80 (0.70-1.00)‡ 0.80 (0.60-1.00)† <0.001 

A, m/s 0.76 (0.60-1.00) 0.58 (0.50-0.67)‡ 0.86 (0.72-0.93)‡ 1.11 (0.91-1.25)‡ 0.61 (0.49-0.75)‡ <0.001 

E/A 0.90 (0.80-1.20) 1.30 (1.10-1.50)‡ 0.80 (0.70-0.90)‡ 0.80 (0.70-0.90)‡ 1.25 (1.00-1.90)‡ <0.001 

e', cm/s 6.0 (4.4-7.6) 9.0 (8.0-11.0)‡ 6.7 (6.0-7.0)‡ 4.3 (4.0-5.0)‡ 5.7 (4.5-7.0)† <0.001 

E/ e' 12.5 (9.2-17.9) 8.3 (7.1-9.9)‡ 10.4 (8.5-12.0)‡ 18.2 (14.5-24.5)‡ 13.8 (10.4-19.5)† <0.001 

LAVi, mL/m2 34 (27-43) 28 (22-34)‡ 27 (22-33)‡ 38 (31-48)‡ 42 (33-55)‡ <0.001 

TRV, m/s 2.30 (2.00-2.70) 2.10 (1.90-2.30)‡ 2.20 (2.00-2.50)* 2.50 (2.20-2.80)‡ 2.40 (2.10-2.84)† <0.001 
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Table 4 Clinical and echocardiographic characteristics of the prospective cohort 

Values are n (%) or median (interquartile range) for continuous variables. 

‡p < 0.001; †p < 0.01; *p < 0.05 between the given region and the remaining regions, Kolmogorov-

Smirnov test. Overall p-values are calculated using analysis of variance (ANOVA) or Kruskal-Wallis test. 

#data available only for 274 patients  

A – late diastolic transmitral flow velocity, ACC/AHA – American College of Cardiology / American Heart 

Association heart failure classification, BMI – body mass index, CAD – coronary artery disease, CKD – 

chronic kidney disease, COPD – chronic obstructive pulmonary disease, CVA – cerebrovascular accident, 

DBP – diastolic blood pressure, E – early diastolic transmitral flow velocity, e' – early diastolic relaxation 

velocity at septal mitral annular position, HF – heart failure, MACE – major adverse cardiovascular event, 

LAVi – left atrial volume index, LVEF – left ventricular ejection fraction, LVMi – left ventricular mass 

index, MACE – major adverse cardiovascular event, MAGGIC – Meta-Analysis Global Group in Chronic 

Heart Failure, NYHA – New York Heart Association functional classification of heart failure, SBP – 

systolic blood pressure, TRV – tricuspid regurgitation peak velocity 

  

 Prospective cohort 

(n = 468) 

Region I 

(n = 165) 

Region II 

(n = 113) 

Region III 

(n = 59) 

Region IV 

(n = 112) 
p-value 

Demographics and clinical characteristics 

Male, n (%) 195 (42) 72 (44) 33 (29)† 12 (20)‡ 68 (61)‡ <0.001 

Age, years 57 (47-66) 46 (36-56)‡ 60 (53-66)‡ 66 (58-75)‡ 63 (53-71)† <0.001 

BMI, kg/m2 30.7 (25.7-36.5) 29.5 (25.1-37.1) 31.5 (25.1-37.8) 28.6 (24.4-36.3) 31.0 (27.3-34.9) 0.509 

SBP, mmHg 126 (114-140) 122 (110-135)* 124 (115-140) 135 (122-147)† 127 (111-147) <0.001 

DBP, mmHg 75 (68-82) 75 (69-83) 76 (68-81) 72 (68-80) 73 (66-79) 0.252 

Hypertension 318 (68) 88 (53)‡ 79 (70) 45 (76) 91 (81)‡ <0.001 

Hyperlipidemia 337 (72) 101 (61)‡ 89 (79) 47 (80) 84 (75) 0.003 

Diabetes 115 (25) 22 (13)‡ 26 (23) 16 (27) 43 (38)‡ <0.001 

COPD 53 (19) 13 (8) 7 (6)* 4 (7) 28 (25)‡ <0.001 

Tobacco abuse 206 (44) 63 (38)* 53 (47) 26 (44) 58 (52) 0.131 

History of CAD 114 (24) 12 (7)‡ 22 (19) 19 (32) 55 (49)‡ <0.001 

History of CVA# 31 (11) 7 (7) 4 (6) 3 (12) 15 (21)† 0.026 

History of CKD 81 (17) 5 (3)‡ 12 (11) 16 (27)* 41 (37)‡ <0.001 

HF diagnosed 

≥ 18 months 
68 (14) 1 (1)‡ 2 (2)‡ 10 (17) 53 (47)‡ <0.001 

Clinical outcomes 

NYHA class, 

I/II/III/IV 
268/123/62/15 123/32/9/1‡ 63/44/6/0‡ 25/25/9/0* 44/19/35/14‡ <0.001 

ACC/AHA stage, 

A/B/C/D 
122/168/171/7 80/43/42/0‡ 26/37/50/0 4/28/26/1† 8/48/50/6‡ <0.001 

MAGGIC score 11 (7-16) 9 (5-12)‡ 12 (9-15)† 14 (11-20)‡ 18 (9-26)‡ <0.001 

MACE rehosp. 147 (17) 8 (5)‡ 10 (7)‡ 77 (27)‡ 45 (21) <0.001 

MACE death 10 (1) 0 (0) 0 (0) 3 (1) 5 (2)* 0.083 

Echocardiography 

LVEF, % 62 (57-66) 62 (59-65)† 65 (62-68)‡ 63 (59-67) 54 (39-60)‡ <0.001 

LVMi, g/m2 74 (60-95) 64 (55-75)‡ 64 (56-76)‡ 83 (71-102)† 108 (89-136)‡ <0.001 

E, m/s 0.79 (0.65-0.94) 0.81 (0.69-0.92)* 0.69 (0.60-0.82)‡ 0.81 (0.63-0.94) 0.90 (0.69-1.11)‡ <0.001 

A, m/s 0.71 (0.57-0.87) 0.62 (0.52-0.72)‡ 0.86 (0.75-0.94)‡ 0.99 (0.85-1.16)‡ 0.58 (0.42-0.70)‡ <0.001 

E/A 1.10 (0.82-1.40) 1.28 (1.10-1.50)‡ 0.82 (0.73-0.91)‡ 0.79 (0.70-0.93)‡ 1.43 (1.10-2.10)‡ <0.001 

e', cm/s 7.0 (5.3-9.0) 9.1 (8.0-11.0)‡ 7.0 (6.0-8.0)‡ 5.0 (4.0-5.6)‡ 5.0 (4.0-6.5)‡ <0.001 

E/ e' 10.5 (8.4-14.4) 8.4 (6.9-10.1)‡ 10.2 (9.0-11.9)‡ 15.5 (13.4-19.4)‡ 16.5 (11.2-25.0)‡ <0.001 

LAVi, mL/m2 29 (22-37) 25 (21-31)‡ 24 (19-29)‡ 36 (28-43)‡ 42 (34-56)‡ <0.001 

TRV, m/s 2.19 (1.90-2.50) 2.01 (1.70-2.30)‡ 2.10 (1.81-2.35) 2.40 (2.10-2.63)* 2.42 (2.11-2.90)‡ <0.001 
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Figure 12 Gradation of echocardiographic features on the topological network (154) 

The echocardiographic variables follow a gradually changing pattern while moving counterclockwise on 

the loop. 

A – late diastolic transmitral flow velocity, E – early diastolic transmitral flow velocity, e' – early diastolic 

relaxation velocity at septal mitral annular position, LAVi – left atrial volume index, EF – ejection fraction, 

LVMi – left ventricular mass index, TRV – tricuspid regurgitation peak velocity 
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Figure 13 The looped network of cardiac dysfunction (154) 

Multi-parametric echocardiographic data sets were used to develop a patient-patient similarity network 

using topological data analysis. Nodes indicate one or more patient(s) who have similar echocardiographic 

characteristics, and nodes having at least one patient in common are connected by edges. Nodes were 

color-coded according to the mean EF of the patients in the given node. Moving counterclockwise along 

the gray arrow, 4 regions were identified with different clinical presentations and outcomes. Region I 

mainly consisted of patients with risk factors but no obvious symptoms or disease. Patients in region II had 

more cardiac risk factors (especially HTN) with impaired LV relaxation. In region III, patients had 

advanced diastolic dysfunction, heart failure with pEF, and pulmonary HTN more frequently, whereas 

region IV included patients dominantly with reduced EF, increased LVMi, LAVi, and TRV. Although the 

map was developed using cross-sectional data, distinct regions of the networks correspond to distinct 

stages of the disease, along which patients can move on the map, signaling progression, treatment, and 

recovery of the disease. 

A – late diastolic transmitral flow velocity, DM – diabetes mellitus, E – early diastolic transmitral flow 

velocity, e' – early diastolic relaxation velocity at septal mitral annular position, EF – ejection fraction, 

HLD – hyperlipidemia, HTN – hypertension, LAVi – left atrial volume index, pEF – preserved left 

ventricular ejection fraction, LVMi – left ventricular mass index, TRV – tricuspid regurgitation peak 

velocity 
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Figure 14 Heart failure stages and classification by the four regions of the topological network (154) 

NYHA functional classes, ACC/AHA heart failure stages, and MAGGIC scores in the four regions of the 

(A) primary and (B) secondary cohort. 

ACC – American College of Cardiology, AHA – American Heart Association. MAGGIC – Meta-Analysis 

Global Group in Chronic Heart Failure, NYHA – New York Heart Association 
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4.1.2 The association of regions with major adverse cardiac events 

The median follow-up time in the primary cohort was 309 (100 – 531) days. A 

total of 207 (16%) patients were observed to have MACE-related hospitalizations, and 19 

(1%) patients died due to MACE during follow-up. The number of MACE-related 

hospitalizations increased progressively from regions I to IV (p < 0.001), with MACE-

related deaths seen only in the third and fourth regions (p < 0.001). The Kaplan-Meier 

curves for MACE-related rehospitalization in the regions differed significantly (p < 

0.001) (Figure 15A). Patients in the fourth region had a >5-fold increased risk of re-

hospitalization (HR: 5.89; 95% CI: 3.39 – 10.24; p < 0.001), whereas patients in the third 

region had a >6-fold increased risk of rehospitalization (HR: 6.88; 95% CI: 3.98 – 11.90; 

p < 0.001) compared with the first region. Subjects in the second region did not have a 

significantly increased risk of hospital admission due to MACE (HR: 1.45; 95% CI: 0.72 

– 2.93; p = 0.301) compared with those in the first region. The number of MACE-related 

deaths was low in the first and second regions, whereas the probability of death was 

significantly higher in the third and fourth regions than in the first region (p < 0.001) 

(Figure 15B). 

 

 

Figure 15 Kaplan-Meier curves for MACE-related outcomes by regions (154) 

Kaplan-Meier curves of the four regions: (A) MACE-related rehospitalization in the primary cohort, (B) 

MACE-related death in the primary cohort, and (C) MACE-related rehospitalization in the secondary 

cohort. 

MACE – major adverse cardiovascular event 
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4.1.3 Individualized patient predictions 

Individualized patient predictions for clinical stages, severity, and future adverse 

events were tested in a secondary cohort analysis. Detailed demographics and between-

region comparisons in this cohort are shown in Table 5. After predicting the region 

membership of patients of the secondary cohort using a random forest classifier, the same 

tendency was observed for the probability of MACE-related rehospitalization in the 

regions as in the primary cohort (Figure 15C). Subjects predicted to be in the fourth region 

had a >2-fold increased risk of MACE-related rehospitalization (HR: 2.75; 95% CI: 1.27 

– 45.95; p = 0.010), whereas patients belonging to the third and second regions were not 

associated with a significantly increased risk compared with those in the first region. 

Patients in the first region were free of any MACE. A correlation between NYHA 

functional classes and ACC/AHA stages with regions was also observed (γ = 0.56 and γ 

= 0.67; both p < 0.001, respectively), which indicated that more symptomatic patients 

were found in the fourth region than in other regions (Figure 14B). 

We also wanted to demonstrate whether changing the location of a patient on the 

loop was associated with worsening or improvement of cardiac function. To illustrate the 

motion of patients on the loop, the predicted regions of the first and second 

echocardiograms were compared (Figure 16). Both echocardiograms in 13 patients were 

in low-risk regions (region I or II), whereas those in 63 patients were in the high-risk 

region (region III or IV). Fifteen patients showed improvement (moved from region III 

and/or IV to region I and/or II) in echocardiographic results, and 5 patients showed 

worsening (moved from region I and/or II to region II and/or IV) echocardiographic 

results. Improvement or staying in the low-risk regions was associated with lower 

MACE-related rehospitalization rates following the second echocardiogram than 

worsening or staying in high-risk regions (3% vs. 37%, p < 0.001). 
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Table 5 Clinical and echocardiographic characteristics of the longitudinal cohort 

Values are n (%) or median (interquartile range) for continuous variables. 

‡p < 0.001; †p < 0.01; *p < 0.05 between the given region and the remaining regions, Kolmogorov-

Smirnov test. Overall p-values are calculated using analysis of variance (ANOVA) or Kruskal-Wallis test. 

A – late diastolic transmitral flow velocity, ACC/AHA – American College of Cardiology / American Heart 

Association heart failure classification, BMI – body mass index, CAD – coronary artery disease, CKD – 

chronic kidney disease, COPD – chronic obstructive pulmonary disease, CVA – cerebrovascular accident, 

DBP – diastolic blood pressure, E – early diastolic transmitral flow velocity, e' – early diastolic relaxation 

velocity at septal mitral annular position, HF – heart failure, MACE – major adverse cardiovascular event, 

LAVi – left atrial volume index, LVEF – left ventricular ejection fraction, LVMi – left ventricular mass 

index, MACE – major adverse cardiovascular event, MAGGIC – Meta-Analysis Global Group in Chronic 

Heart Failure, NYHA – New York Heart Association functional classification of heart failure, SBP – 

systolic blood pressure, TRV – tricuspid regurgitation peak velocity 

  

 Longitud. cohort 

(n = 96) 

Region I 

(n = 7) 

Region II 

(n = 13) 

Region III 

(n = 26) 

Region IV 

(n = 50) 
p-value 

Demographics and clinical characteristics 

Male, n (%) 47 (49) 3 (43) 4 (31) 7 (27)* 33 (66)‡ 0.004 

Age, years 59 (50-67) 53 (30-59)* 55 (46-59) 65 (57-72)* 57 (49-66) 0.005 

BMI, kg/m2 31.0 (27.4-34.7) 24.2 (22.2-27.9)† 29.3 (28.3-34.7) 31.4 (27.6-34.6) 31.6 (28.2-35.1) 0.020 

SBP, mmHg 131 (117-147) 117 (111-134) 126 (120-142) 145 (123-151) 130 (112-149) 0.100 

DBP, mmHg 79 (72-84) 77 (71-84) 82 (72-86) 77 (73-80) 80 (72-84) 0.684 

Hypertension 83 (86) 3 (43)† 12 (92) 26 (100)* 42 (84) 0.002 

Hyperlipidemia 75 (78) 4 (57) 9 (69) 23 (88) 39 (78) 0.219 

Diabetes 38 (40) 0 (0)* 4 (31) 15 (58)* 19 (38) 0.029 

COPD 27 (28) 3 (43) 2 (15) 7 (27) 15 (30) 0.620 

Tobacco abuse 49 (51) 4 (57) 6 (46) 11 (42) 28 (56) 0.681 

History of CAD 57 (59) 2 (29) 6 (46) 16 (62) 33 (66) 0.203 

History of CVA 21 (22) 1 (14) 5 (38) 4 (15) 11 (22) 0.430 

History of CKD 23 (24) 0 (0) 0 (0)* 8 (31) 15 (30) 0.034 

HF diagnosed ≥18 

months 
37 (39) 0 (0)* 0 (0)† 10 (38) 27 (54)† <0.001 

Clinical outcomes 

NYHA class, 

I/II/III/IV 
37/28/25/6 4/3/0/0 9/3/1/0 12/5/9/0 12/17/15/6† 0.026 

ACC/AHA stage, 

A/B/C/D 
24/22/46/4 6/1/0/0† 8/4/1/0† 5/7/13/1 5/10/32/3† <0.001 

MAGGIC score 15 (9-22) 11 (10-13) 9 (6-13)* 17 (12-22) 17 (9-26) 0.009 

MACE rehosp. 32 (33) 0 (0) 1 (8) 8 (30) 23 (46)† 0.009 

MACE death 4 (4) 0 (0) 0 (0) 0 (0) 4 (8) 0.525 

Echocardiography 

LVEF, % 56 (47-62) 55 (54-59) 63 (60-69)† 59 (54-64) 50 (33-58)‡ <0.001 

LVMi, g/m2 96 (75-117) 54 (48-62)‡ 60 (40-73)‡ 94 (85-112) 103 (94-126)‡ <0.001 

E, m/s 0.79 (0.67-1.01) 0.67 (0.62-0.87) 0.72 (0.67-0.79) 0.78 (0.69-1.08) 0.83 (0.69-1.08) 0.221 

A, m/s 0.75 (0.54-0.94) 0.64 (0.48-0.65)* 0.89 (0.79-0.91) 1.02 (0.91-1.19)‡ 0.60 (0.42-0.75)‡ <0.001 

E/A 1.06 (0.80-1.67) 1.30 (1.26-1.52) 0.88 (0.79-0.92)* 0.77 (0.68-0.91)‡ 1.64 (1.07-2.18)‡ <0.001 

e', cm/s 6.0 (5.0-8.0) 10.0 (8.5-10.5)* 8.0 (6.0-8.0) 6.0 (4.0-7.0) 6.0 (4.0-8.0) 0.002 

E/ e' 12.6 (9.5-17.1) 8.2 (6.2-10.7)* 9.8 (8.6-13.2)* 15.0 (11.6-18.0) 13.1 (9.9-21.2) 0.001 

LAVi, mL/m2 31 (22-41) 20 (16-22)† 22 (19-25)† 32 (28-36) 39 (28-48)‡ <0.001 

TRV, m/s 2.33 (1.88-2.69) 1.86 (1.35-2.20) 2.10 (1.95-2.21)* 2.11 (1.76-2.69) 2.55 (2.06-2.94)† 0.016 
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Figure 16 Inter-region motion of secondary cohort patients on the topological network (154) 

(A) Pre- and post-operative position of a representative patient (74 years old, female) who underwent 

coronary artery bypass grafting. (B) Inter-region motion of patients in the secondary cohort. 

A – late diastolic transmitral flow velocity, DD – diastolic dysfunction, E – early diastolic transmitral flow 

velocity, e' – early diastolic relaxation velocity at septal mitral annular position, LAVi – left atrial volume 

index, LVEF – left ventricular ejection fraction, MACE – major adverse cardiovascular event, NYHA – 

New York Heart Association functional class, TRV – tricuspid regurgitation peak velocity 
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4.1.4 Discrimination and reclassification 

The incremental value of the topological regions was assessed in the prospective 

cohort. Even after adjustment for NYHA functional class, ACC/AHA HF stages, and 

MAGGIC scores, the predictive value of being in region IV remained significant with an 

8- to 10-fold risk (Table 6). Net reclassification improvement, integrated discrimination 

improvement, and median improvement in risk score showed that adding region 

information to NYHA functional class, ACC/AHA stage, and MAGGIC score 

significantly improved the prediction of MACE-related events (Table 6). A combination 

of NYHA functional class (symptoms) and region information (cardiac function) 

performed better than that of the ACC/AHA stage, which also accounted for symptoms 

and cardiac function (AUC: 0.819 vs. 0.720). 

 

Table 6 Independency and incremental value of regions upon clinical risk predictors 

Adjusted HR*  Model improvement† 

 HR 95% CI p-value   Estimate 95% CI p-value 

Model with NYHA functional class + regions: 

AUC of 0.819 vs. 0.749 for model without regions 

Region II 2.20 0.53-9.21 0.280  IDI 0.079 0.017-0.166 0.007 

Region III 3.90 0.92-16.46 0.064  NRI 0.775 0.077-0.899 0.027 

Region IV 8.87 2.53-31.05 <0.001  MIRS 0.058 0.002-0.245 0.020 

Model with ACC/AHA stage + regions: 

AUC of 0.815 vs. 0.720 for model without regions 

Region II 1.91 0.45-8.00 0.380  IDI 0.187 0.105-0.288 0.007 

Region III 3.72 0.88-15.77 0.074  NRI 0.737 0.268-0.903 0.007 

Region IV 12.39 3.71-41.35 <0.001  MIRS 0.275 0.118-0.386 0.013 

Model with MAGGIC score + regions: 

AUC of 0.815 vs. 0.775 for model without regions 

Region II 2.01 0.48-8.43 0.340  IDI 0.098 0.033-0.192 0.007 

Region III 2.92 0.67-12.76 0.160  NRI 0.437 0.071-0.821 0.020 

Region IV 8.16 2,25-29.58 0.001  MIRS 0.146 0.025-0.250 0.013 

*HR for each region adjusted for NYHA functional class, ACC/AHA stage, and MAGGIC score, 

respectively. 

†Model improvement by adding region information upon each risk predictor. 

ACC/AHA – American College of Cardiology / American Heart Association heart failure classification, 

AUC – area under the receiver operating characteristic curve, CI – confidence interval, HR – hazard ratio, 

IDI – integrated discrimination improvement, MAGGIC – Meta-Analysis Global Group in Chronic Heart 

Failure, MIRS – median improvement in risk score, NRI – net reclassification improvement, NYHA – New 

York Heart Association functional classification 
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4.2 Designing and evaluating a machine learning-based risk stratification system to 

predict all-cause mortality of patients undergoing CRT implantation 

 

4.2.1 Baseline clinical characteristics 

The final training cohort included 1,510 patients (75.6% males, 45.6% CRT-D) 

who underwent CRT implantation. A total of 158 CRT patients (80.4% males, 20.3% 

CRT-D) were prospectively enrolled and entered into the test database. During the 5-year 

follow-up period, 805 (53.3%) patients died in the training cohort, and there were 80 

(50.6%) deaths in the test cohort. Table 7 shows the baseline characteristics of both 

cohorts and the comparisons between patients who were dead and alive at 5-year follow-

up. 

 

4.2.2 Prediction of all-cause mortality 

Among the evaluated ML classifiers, random forest (i.e., the SEMMELWEIS-

CRT score) yielded the highest AUCs for predicting all-cause mortality at 1-, 2-, 3-, 4-, 

and 5-year follow-up in the test cohort (Figure 17 and Table 8). Calibration improved the 

Brier scores of the final model (Table 9). The leading predictors of all-cause mortality are 

presented in Figure 18. 

 

4.2.3 Comparing the SEMMELWEIS-CRT score with pre-existing scores 

When compared with the pre-existing risk scores, the SEMMELWEIS-CRT score 

demonstrated significantly better response prediction and greater discrimination of 

mortality (Table 8). The CRT-score exhibited the best performance among the pre-

existing risk scores; however, our random forest-based classifier was still superior to it 

for the prediction of 5-year outcomes. Regarding the rest of the risk scores, the 

SEMMELWEIS-CRT score significantly outperformed them at all of the investigated 

time points. 
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Table 7 Pre-implantation clinical characteristics of the training and test cohorts 

 Training cohort Test cohort 

 
All 

(n = 1,510) 

Alive 

(n = 705) 

Dead 

(n = 805) 

All 

(n = 158) 

Alive 

(n = 78) 

Dead 

(n = 80) 

Demographics and clinical characteristics 

Age, years 66 (60-74) 65 (58-71) 69 (62-76)‡ 68 (61-74) 67 (60-71) 70 (63-75)* 

Male 1,141 (75.6) 483 (68.5) 658 (81.7)‡ 127 (80.4) 59 (75.6) 68 (85.0) 

Weight, kg 80 (70-91) 80 (72-92) 80 (69-90) 80 (72-92) 80 (73-92) 80 (71-90) 

Height, cm 
172 

(165-176) 
171 

(165-176) 
172 

(165-177) 
172 

(167-176) 
172 

(167-176) 
172 

(165-176) 

SBP, mmHg 
121 

(110-134) 

120 

(111-136) 

122 

(110-133) 

119 

(109-134) 

120 

(110-135) 

117 

(108-134) 

NYHA IV 274 (18.1) 137 (19.4) 137 (17.0) 15 (9.5) 9 (11.5) 6 (7.5) 

CRT-D 688 (45.6) 310 (44.0) 378 (47.0) 32 (20.3) 14 (17.9) 18 (22.5) 

QRS duration, ms 
160 

(141-180) 
160 

(140-172) 
160 

(148-190) 
160 

(150-180) 
160 

(160-180) 
160 

(140-180) 

LBBB morphology 1,054 (69.8) 528 (74.9) 526 (65.3)‡ 128 (81.0) 71 (91.0) 57 (71.3)† 

Ischemic etiology 767 (50.8) 296 (42.0) 471 (58.5)‡ 95 (60.1) 41 (52.6) 54 (67.5) 

Atrial fibrillation 584 (38.7) 240 (34.0) 344 (42.7)‡ 48 (30.4) 15 (19.2) 33 (41.3)† 

Hypertension 1,055 (69.9) 480 (68.1) 575 (71.4) 97 (61.4) 43 (55.1) 54 (67.5)* 

Diabetes mellitus 560 (37.1) 235 (33.3) 325 (40.4)† 64 (40.5) 26 (33.3) 38 (47.5) 

Laboratory and echocardiographic parameters 

Hemoglobin, g/dL 
13.6 

(12.3-14.8) 
13.9 

(12.8-14.9) 
13.3 

(12.1-14.7)‡ 
14.0 

(13.0-15.0) 
14.0 

(13.0-15.0) 
13.9 

(12.0-14.7)† 

Lymphocyte, % 
20.5 

(15.5-26.0) 

23.8 

(18.4-28.6) 

19.4 

(14.1-24.9)† 

23.0 

(18.0-27.0) 

24.0 

(22.0-30.0) 

21.0 

(14.9-24.8)‡ 

Serum sodium, 

mmol/L 

138 

(136-141) 

139 

(137-141) 

138 

(135-140)‡ 

138 

(136-140) 

138 

(137-141) 

137 

(135-139)† 

Total cholesterol, 

mmol/L 
4.1 (3.3-5.0) 4.3 (3.6-5.3) 3.8 (3.2-4.7)‡ 4.0 (4.0-5.0) 4.5 (4.0-5.0) 4.0 (3.9-5.0) 

Serum creatinine, 

µmol/L 

103 

(84-133) 

95 

(80-122) 

110 

(88-147)4‡ 

110 

(80-136) 

92 

(74-118) 

118 

(94-156)‡ 

GFR, 

mL/min/1.73m2 
59 (43-74) 60 (47-77) 55 (40-70)‡ 62 (46-85) 72 (55-92) 56 (40-68)‡ 

Urea, mmol/L 
8.6 

(6.7-12.0) 
7.9 

(6.3-10.6) 
9.3 

(7.2-13.3)‡ 
8.8 

(6.6-11.9) 
7.6 

(5.6-9.4) 
10.6 

(7.7-13.8)‡ 

Uric acid, µmol/L 
399 

(320-493) 

379 

(321-457) 

426 

(318-515)† 

435 

(334-510) 

392 

(329-467) 

462 

(385-549)† 

NT-proBNP, pg/mL 
1832 

(763-3945) 

891 

(290-1521) 

3608 

(1688-6088)‡ 

2608 

(1377-5087) 

2013 

(1004-3551) 

4025 

(2164-6475)‡ 

LVEF, % 28 (23-33) 30 (25-34) 27 (22-32)‡ 28 (24-33) 28 (23-32) 29 (24-33) 

Medications 

ACE-I / ARB 1,197 (79.3) 551 (78.2) 646 (80.2) 146 (92.4) 76 (97.4) 70 (87.5)* 

Beta-blocker 1,165 (77.1) 540 (76.6) 625 (77.6) 143 (90.5) 74 (94.9) 69 (86.3) 

Furosemide 1,057 (70.0) 450 (63.8) 607 (75.4)‡ 124 (78.5) 54 (69.2) 70 (87.5)† 

Other loop diuretics 4 (0.3) 0 (0.0) 4 (0.5) 3 (1.9) 2 (2.6) 1 (1.3) 

Thiazide diuretics 314 (20.8) 148 (21.0) 166 (20.6) 25 (15.8) 11 (14.1) 14 (17.5) 

MRA 845 (56.0) 355 (50.4) 490 (60.9)‡ 110 (69.6) 58 (74.4) 52 (65.0) 

Digitalis 369 (24.4) 152 (21.6) 217 (27.0)* 46 (29.1) 19 (24.4) 27 (33.8) 

Amiodarone 394 (26.1) 168 (23.8) 226 (28.1) 47 (29.7) 19 (24.4) 28 (35.0) 

Statin 772 (51.1) 331 (47.0) 441 (54.8)† 97 (61.4) 49 (62.8) 48 (60.0) 

Allopurinol 361 (23.9) 113 (16.0) 248 (30.8)‡ 34 (21.5) 16 (20.5) 18 (22.5) 

Continuous variables are presented as median (interquartile range), categorical variables as n (%). 

*p < 0.05; †p < 0.01; ‡p < 0.001 vs. patients alive at 5-year follow-up within the same cohort, unpaired 

Student’s t-test or Mann-Whitney U test for continuous variables, Chi-squared or Fisher’s exact test for 

categorical variables. 

ACE-I – angiotensin-converting enzyme inhibitor, ARB – angiotensin II receptor blocker, CRT-D – cardiac 

resynchronization therapy-defibrillator, GFR – glomerular filtration rate, LBBB – left bundle branch block, 

LVEF – left ventricular ejection fraction, MRA – mineralocorticoid receptor antagonists, NT-proBNP – N-

terminal pro-brain natriuretic peptide, NYHA – New York Heart Association functional class, SBP – 

systolic blood pressure  
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Figure 17 Receiver operating characteristic curve analysis of the evaluated risk scores (166) 

Calibrated cumulative probabilities were used in the receiver operating characteristic curve analysis. 

 

Table 8 Area under the receiver operating characteristic curve of the different scores 

*p < 0.05 vs. SEMMELWEIS-CRT, DeLong test. Cell contents are areas under the receiver operating 

characteristic curves with 95% confidence intervals. 

SHFM – Seattle Heart Failure Model 

  

 
1-year 2-year 3-year 4-year 5-year Mean 

SEMMELWEIS-CRT 
0.768 

(0.674-0.861) 

0.793 

(0.718-0.867) 

0.785 

(0.711-0.859) 

0.776 

(0.703-0.849) 

0.803 

(0.733-0.872) 
0.785 

SHFM 
0.537 

(0.426-0.647)* 

0.543 

(0.445-0.642)* 

0.539 

(0.447-0.632)* 

0.544 

(0.453-0.635)* 

0.544 

(0.454-0.634)* 
0.541 

EAARN 
0.602 

(0.505-0.699)* 

0.627 

(0.539-0.714)* 

0.653 

(0.570-0.736)* 

0.649 

(0.566-0.731)* 

0.643 

(0.560-0.726)* 
0.635 

VALID-CRT 
0.529 

(0.416-0.643)* 

0.618 

(0.523-0.713)* 

0.638 

(0.552-0.725)* 

0.637 

(0.550-0.724)* 

0.650 

(0.564-0.737)* 
0.614 

CRT-score 
0.722 

(0.637-0.806) 

0.743 

(0.667-0.818) 

0.732 

(0.657-0.807) 

0.720 

(0.644-0.795) 

0.693 

(0.615-0.771)* 
0.722 

ScREEN 
0.595 

(0.516-0.673)* 

0.555 

(0.477-0.633)* 

0.536 

(0.460-0.612)* 

0.525 

(0.449-0.601)* 

0.549 

(0.474-0.624)* 
0.552 
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Table 9 Brier scores of the final model before and after calibration with Platt’s scaling 

 1-year 2-year 3-year 4-year 5-year Mean 

Uncalibrated 0.178 0.186 0.215 0.267 0.335 0.236 

Calibrated 0.164 0.180 0.201 0.208 0.207 0.192 

Cell contents are Brier scores. Brier score is defined as the mean squared difference between the observed 

and predicted outcome. It ranges from 0 to 1, with values closer to 0 indicating better calibration. 

 

 

 

Figure 18 The 12 most important predictors of all-cause mortality as assessed by the SEMMELWEIS-CRT 

score (166) 

The importance of each feature was quantified by calculating the decrease in the model’s performance 

(area under the receiver operating characteristic curve) after permuting its values (permutation feature 

importances method). The higher its value, the more important the feature is. As the values of feature 

importances were spread over a wide range (more orders of magnitude), base-10 logarithmic 

transformation was performed to facilitate plotting. 

AF – atrial fibrillation, GFR – glomerular filtration rate, LBBB – left bundle branch block, LVEF – left 

ventricular ejection fraction, NYHA – New York Heart Failure Association functional class 
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4.2.4 Machine learning-based risk stratification 

Based on the predicted probability of death, patients were split into four quartiles 

at each year of follow-up. As depicted by Kaplan–Meier curves, there was a significant 

difference in the distribution of events across the quartiles at all years, and a graded 

increase in event rates could be observed while moving from the 2nd quartile through the 

4th quartile (Figure 19). At 1-year follow-up, being categorized to the 4th quartile was 

associated with a more than 7-fold increased risk of death compared with those in the 1st 

quartile (Table 10). At 2-, 3-, 4-, and 5-year follow-up, patients in the 3rd and 4th quartiles 

exhibited a significantly increased risk of mortality compared with those in the 1st quartile 

(Table 10). The expected survival of patients was monotonously decreasing from the 1st 

through the 4th quartile in each year (Table 11). 

 

 

Figure 19 Survival analysis of the quartiles (166) 

Based on the predicted probability of death, patients were split into four quartiles at each year of follow-

up. The survival of the quartiles was visualized on Kaplan–Meier curves, and log-rank tests were performed 

for comparison. 
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Table 10 Hazard ratios of all-cause mortality in different quartiles 

 1-year 2-year 3-year 4-year 5-year 

2nd vs. 1st quartile 

1.89 

(0.55-6.45) 

p=0.301 

5.55 

(1.22-25.35) 

p=0.010 

2.18 

(0.44-3.36) 

p=0.142 

1.81 

(0.717-4.60) 

p=0.203 

1.40 

(0.59-3.33) 

p=0.439 

3rd vs. 1st quartile 

1.56 

(0.44-5.52) 

p=0.487 

7.30 

(1.65-32.37) 

p<0.001 

4.18 

(1.55-11.28) 

p=0.002 

2.88 

(1.20-6.90) 

p=0.012 

3.75 

(1.75-8.04) 

p<0.001 

4th vs. 1st quartile 

7.92 

(2.72-23.07) 

p<0.001 

21.55 

(5.10-91.06) 

p<0.001 

10.59 

(4.07-27.56) 

p<0.001 

8.16 

(3.56-18.72) 

p<0.001 

6.71 

(3.17-14.21) 

p<0.001 

Patients were split (repeatedly) into four quartiles based on the predicted probability of death in each year. 

As the quartiles in each year might contain a different set of patients, row-wise evaluation of hazard ratios 

should be avoided. Cell contents are hazard ratios (95% confidence interval) with p-values calculated using 

Cox proportional hazards models. 

 

 

 

Table 11 The average expected survival time in each quartile 

 1-year 2-year 3-year 4-year 5-year 

1st quartile 3.47 ± 0.42 3.50 ± 0.41 3.50 ± 0.43 3.53 ± 0.38 3.50 ± 0.41 

2nd quartile 2.86 ± 0.37 2.86 ± 0.27 2.88 ± 0.23 2.85 ± 0.22 2.83 ± 0.29 

3rd quartile 2.39 ± 0.29 2.39 ± 0.26 2.36 ± 0.23 2.33 ± 0.26 2.30 ± 0.33 

4th quartile 1.78 ± 0.32 1.74 ± 0.28 1.76 ± 0.30 1.79 ± 0.34 1.86 ± 0.43 

Cell contents are mean ± standard deviation of the expected survival (years). 

 

  

DOI:10.14753/SE.2022.2607



81 

 

4.3 Exploring the sex-specific differences and similarities in the predictors of 

mortality among patients undergoing CRT implantation 

 

4.3.1 Baseline clinical characteristics and all-cause mortality 

The final 1- and 3-year cohorts included 2,191 (74.7% males, 56.7% CRT-D) and 

1,900 patients (75.0% males, 54.1% CRT-D), respectively (Figure 20). In the 1-year 

cohort, 50.4% of the patients had ischemic etiology of HF, 57.8% had NYHA functional 

class III/IV, and the median LVEF was 28 (24 – 32) %. In the 3-year cohort, ischemic 

etiology was reported in 51.5% of the patients, 61.0% presented with NYHA functional 

class III/IV, and the median LVEF was 28 (24 – 32) %. The baseline clinical 

characteristics of the patients are summarized in Tables 12 and 13. 

In the 1-year cohort, 203 (12.4%) men and 49 (8.8%) women died during the 1-

year follow-up period. Univariable Cox regression analysis revealed a significantly lower 

risk of all-cause mortality in women compared to men (HR: 0.698, 95% CI: 0.511 – 0.954; 

p = 0.024); however, after adjusting for age, etiology of HF, QRS morphology, type of 

the implanted device, and type of AF (history of or current), we could not observe a 

significant difference between sexes (HR: 0.803, 95% CI: 0.581 – 1.110; p = 0.183) 

(Figure 21A). 

As observed in the 1-year cohort, males exhibited significantly higher mortality 

rates compared to females in the 3-year cohort as well (502 [35.2%] vs. 113 [23.8%]; p < 

0.001). The univariable Cox regression analysis also confirmed this finding as it showed 

a significantly lower risk of all-cause mortality in females compared to males (HR: 0.625, 

95% CI: 0.510 – 0.767; p < 0.001) (Figure 21B). Moreover, this difference remained 

significant even after adjusting for the previously listed covariates (HR: 0.686, 95% CI: 

0.555 – 0.848; p < 0.001).  
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Figure 20 Flowchart illustrating the steps of patient selection (173) 

For each patient who underwent successful CRT implantation at our center, pre-implantation clinical 

characteristics and procedural parameters were collected retrospectively from paper-based or electronic 

medical records and entered into our structured database. After excluding patients with ≥30% missing 

values, machine learning models were implemented to predict 1- and 3-year all-cause mortality in the 

entire cohort, in males and females separately (altogether 6 separate binary classification tasks). 

CRT – cardiac resynchronization therapy 
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Table 12 Clinical characteristics of the 1-year cohort 

 
All patients 

(n=2,191) 

Males 

(n=1,637) 

Females 

(n=554) 
p-value 

Demographics, vitals, and key electrophysiological characteristics 

Age, years* 68 (61-74) 68 (60-74) 69 (63-75) <0.001 

Weight, kg (1423) 80 (70-91) 84 (75-95) 70 (60-80) <0.001 

Height, cm (1413) 172 (165-177) 175 (170-179) 162 (157-167) <0.001 

BMI, kg/m2 (1413)* 27.4 (24.5-30.7) 27.6 (24.8-30.8) 26.7 (23.4-30.5) <0.001 

SBP, mmHg (807) 125 (111-136) 125 (111-136) 124 (110-136) 0.403 

DBP, mmHg (807) 73 (65-80) 74 (65-80) 71 (64-80) 0.089 

NYHA III/IV (1803)* 1,043 (57.8) 781 (57.9) 262 (57.7) 0.945 

CRT-D* 1,239 (56.5) 1,005 (61.4) 234 (42.2) <0.001 

QRS duration, ms (754) 160 (140-180) 160 (140-180) 160 (140-170) 0.068 

QRS morphology, LBBB* 1,572 (71.7) 1,127 (68.8) 445 (80.3) <0.001 

LV lead position (1890)*     

    Anterior 84 (4.4) 62 (4.4) 22 (4.7)  

    Lateral 1,227 (64.9) 932 (65.7) 295 (62.5)  

    Posterior 579 (30.6) 424 (25.9) 155 (32.8) 0.442 

Medical history 

Ischemic etiology of HF* 1,104 (50.4) 902 (55.1) 202 (36.5) <0.001 

History of MI 868 (39.6) 713 (43.6) 155 (28.0) <0.001 

HF duration >18 months* 680 (31.0) 519 (31.7) 161 (29.1) 0.245 

History of or current AF*     

    No AF 1,394 (63.6) 998 (61.0)  396 (71.5)  

    Paroxysmal 342 (15.6) 257 (15.7) 85 (15.3)  

    Persistent 59 (2.7) 51 (3.1) 8 (1.4)  

    Permanent 396 (18.1) 331 (20.2) 65 (11.7) <0.001 

Valvular heart disease* 135 (6.2) 99 (6.0) 36 (6.5) 0.780 

Hypertension* 1,618 (73.8) 1,216 (74.3) 402 (72.6) 0.459 

Diabetes mellitus* 813 (37.1) 624 (38.1) 189 (34.1) 0.092 

COPD* 325 (14.8) 239 (14.6) 86 (15.5) 0.597 

Current smoker* 131 (6.0) 103 (6.3) 28 (5.1) 0.288 

Laboratory parameters 

Hemoglobin, g/L (1440)* 136 (123-148) 139 (126-150) 130 (120-140) <0.001 

Serum sodium, mmol/L (1374)* 138 (136-141) 138 (136-140) 139 (136-141) 0.019 

Total cholesterol, mmol/L (956) 4.1 (3.4-5.1) 4.0 (3.3-4.9) 4.7 (3.6-5.5) <0.001 

Serum creatinine, µmol/L (1473)* 101 (82-131) 105 (87-134) 86 (71-112) <0.001 

Urea, mmol/L (1445) 8.3 (6.4-11.7) 8.6 (6.6-11.8) 7.5 (6.0-10.9) <0.001 

Uric acid, µmol/L (766) 405 (322-492) 412 (330-494) 383 (307-474) 0.020 

NT-proBNP, pg/mL (309) 2640 (1262–3699) 2490 (1367–3473) 2680 (1250–3710) 0.938 

Echocardiographic parameters 

LV ejection fraction, % (1610)* 28 (24-32) 28 (23-32) 28 (25-33) 0.046 

LVEDD, mL (1610)* 64 (58-70) 65 (59-71) 61 (55-66) <0.001 

Medications 

ACE-I / ARB* 2,014 (91.9) 1,509 (92.2) 505 (91.2) 0.499 

Beta-blocker* 1,951 (89.0) 1,457 (89.0) 494 (89.2) 0.914 

Ca-channel blocker* 127 (5.8) 99 (6.0) 28 (5.1) 0.387 

Loop diuretics* 1,757 (80.2) 1,315 (80.3) 442 (79.8) 0.780 

Thiazide diuretics* 516 (23.6) 402 (24.6) 114 (20.6) 0.056 

MRA* 1,497 (68.3) 1,115 (68.1) 382 (69.0) 0.713 

Digitalis* 464 (21.2) 359 (21.9) 105 (19.0) 0.138 

Amiodarone* 593 (27.1) 466 (28.5) 127 (22.9) 0.011 

Statin* 1,314 (60.0) 995 (60.8) 319 (57.6) 0.184 

Allopurinol* 591 (27.0) 475 (29.0) 116 (20.9) <0.001 

Oral anticoagulants 729 (33.3) 598 (36.5) 131 (23.6) <0.001 

1-year all-cause mortality 252 (11.5) 203 (12.4) 49 (8.8) 0.028 

*Features included in the machine learning models. 

The value (in parenthesis) after a feature’s name indicates the number of patients with available data. If 

there is no value reported, the given feature was available for all patients. 
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Table 12 (continued) 

Continuous variables are presented as median (interquartile range), categorical variables as n (%). The 

comparison between males and females was performed using unpaired Student’s t-test or Mann-Whitney 

U test for continuous variables, Chi-squared or Fisher’s exact test for categorical variables, as 

appropriate. 

ACE-I – angiotensin-converting enzyme inhibitors, AF – atrial fibrillation, ARB – angiotensin receptor 

blockers, BMI – body mass index, COPD – chronic obstructive pulmonary disease, CRT-D – cardiac 

resynchronization therapy defibrillator; DBP – diastolic blood pressure, DM, diabetes mellitus; HF – heart 

failure, LBBB – left bundle branch block, LVEDD – left ventricular end-diastolic diameter, MI – 

myocardial infarction, MRA – mineralocorticoid receptor antagonists, NT-proBNP – N-terminal pro-brain 

natriuretic peptide, NYHA – New York Heart Association functional class, SBP – systolic blood pressure 

 

 

 

 

Figure 21 Kaplan-Meier curves for males and females in the 1- (A) and 3-year (B) cohorts (173) 

Kaplan-Meier curve analysis illustrates the difference in the survival of male and female CRT patients 

during 1- and 3-year follow-up. Cox proportional hazards models were used to compute hazard ratios with 

95% confidence intervals. Hazard ratios were adjusted for age (at implantation), QRS morphology, 

etiology of heart failure, the type of the implanted device, and the type of atrial fibrillation. 

CI – confidence interval, CRT – cardiac resynchronization therapy, HR – hazard ratio 

  

DOI:10.14753/SE.2022.2607



85 

 

Table 13 Clinical characteristics of the 3-year cohort 

 
All patients 

(n=1,900) 

Males 

(n=1,425) 

Females 

(n=475) 
p-value 

Demographics, vitals, and key electrophysiological characteristics 

Age, years* 68 (61-74) 68 (60-74) 69 (63-75) <0.001 

Weight, kg (1280) 80 (70-90) 84 (75-95) 70 (60-80) <0.001 

Height, cm (1270) 172 (165-177) 175 (170-179) 161 (157-167) <0.001 

BMI, kg/m2 (1270)* 27.3 (24.3-30.5) 27.5 (24.7-30.5) 26.5 (23.3-30.5) <0.001 

SBP, mmHg (660) 123 (110-136) 124 (111-136) 122 (110-135) 0.463 

DBP, mmHg (660) 72 (65-80) 72 (65-80) 71 (64-80) 0.292 

NYHA III/IV (1568)* 956 (61.0) 719 (61.0) 237 (60.9) 0.984 

CRT-D* 1027 (54.1) 839 (58.9) 188 (39.6) <0.001 

QRS duration, ms (718) 160 (140-180) 160 (142-180) 160 (140-170) 0.035 

QRS morphology, LBBB* 1,385 (72.9) 1,000 (70.2) 385 (81.1) <0.001 

LV lead position (1630)*     

    Anterior 75 (4.6) 54 (4.4) 21 (5.2)  

    Lateral 1072 (65.8) 814 (66.3) 258 (64.0)  

    Posterior 483 (29.6) 359 (29.3) 124 (30.8) 0.633 

Medical history 

Ischemic etiology* 979 (51.5) 802 (56.3) 177 (37.3) <0.001 

History of MI 793 (41.7) 655 (46.0) 138 (29.1) <0.001 

HF duration >18 months* 616 (32.4) 477 (33.5) 139 (29.3) 0.090 

History of or current AF*     

    No AF 1,181 (62.2) 850 (59.6) 331 (69.7)  

    Paroxysmal 306 (16.1) 227 (15.9) 79 (16.6)  

    Persistent 49 (2.6) 43 (3.0) 6 (1.3)  

    Permanent 364 (19.2) 305 (21.4) 59 (12.4) <0.001 

Valvular heart disease* 131 (6.9) 97 (6.8) 34 (7.2) 0.875 

Hypertension* 1,417 (74.6) 1,067 (74.9) 350 (73.7) 0.648 

Diabetes mellitus* 704 (37.1) 542 (38.0) 162 (34.1) 0.125 

COPD* 288 (15.2) 213 (14.9) 75 (15.8) 0.658 

Current smoker* 110 (5.8) 89 (6.2) 21 (4.4) 0.140 

Laboratory parameters 

Hemoglobin, g/L (1254)* 136 (123-148) 139 (125-150) 131 (120-140) <0.001 

Serum sodium, mmol/L (1180)* 138 (136-141) 138 (136-140) 139 (136-141) 0.020 

Total cholesterol, mmol/L (827) 4.1 (3.4-5.1) 4 (3.3-4.9) 4.7 (3.6-5.5) <0.001 

Serum creatinine, µmol/L (1278)* 102 (82-132) 106 (87-135) 87 (71-113) <0.001 

Urea, mmol/L (1254) 8.5 (6.4-11.7) 8.8 (6.6-12.0) 7.7 (6.1-10.9) <0.001 

Uric acid, µmol/L (655) 406 (323-494) 409 (329-495) 386 (313-479) 0.082 

NT-proBNP, pg/mL (237) 2758 (1398–3570) 2610 (1496–3376) 2804 (1290–3616) 0.931 

Echocardiographic parameters 

LV ejection fraction, % (1378)*  28 (24-32) 28 (23-32) 28 (25-32) 0.185 

LVEDD, mL (1378)* 64 (58-70) 65 (59-71) 61 (56-67) <0.001 

Medications 

ACE-I / ARB* 1,731 (91.1) 1,303 (91.4) 428 (90.1) 0.429 

Beta-blocker* 1,691 (89.0) 1,264 (88.7) 427 (89.9) 0.472 

Ca-channel blocker* 106 (5.6) 81 (5.7) 25 (5.3) 0.729 

Loop diuretics* 1,526 (80.3) 1,153 (80.9) 373 (78.5) 0.257 

Thiazide diuretics* 456 (24.0) 354 (24.8) 102 (21.5) 0.137 

MRA* 1,270 (66.8) 953 (66.9) 317 (66.7) 0.955 

Digitalis* 442 (23.3) 341 (23.9) 101 (21.3) 0.234 

Amiodarone* 528 (27.8) 415 (29.1) 113 (23.8) 0.025 

Statin* 1,134 (59.7) 862 (60.5) 272 (57.3) 0.214 

Allopurinol* 521 (27.4) 422 (29.6) 99 (20.8) <0.001 

Oral anticoagulants 627 (33.0) 510 (35.8) 117 (24.6) <0.001 

3-year all-cause mortality 615 (32.4) 502 (35.2) 113 (23.8) <0.001 

*Features included in the machine learning models. 

The value (in parenthesis) after a feature’s name indicates the number of patients with available data. If 

there is no value reported, the given feature was available for all patients. 
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Table 13 (continued) 

Continuous variables are presented as median (interquartile range), categorical variables as n (%). The 

comparison between males and females was performed using unpaired Student’s t-test or Mann-Whitney 

U test for continuous variables, Chi-squared or Fisher’s exact test for categorical variables, as 

appropriate. 

ACE-I – angiotensin-converting enzyme inhibitors, AF – atrial fibrillation, ARB – angiotensin receptor 

blockers, BMI – body mass index, COPD – chronic obstructive pulmonary disease, CRT-D – cardiac 

resynchronization therapy defibrillator; DBP – diastolic blood pressure, DM, diabetes mellitus; HF – heart 

failure, LBBB – left bundle branch block, LVEDD – left ventricular end-diastolic diameter, MI – 

myocardial infarction, MRA – mineralocorticoid receptor antagonists, NT-proBNP – N-terminal pro-brain 

natriuretic peptide, NYHA – New York Heart Association functional class, SBP – systolic blood pressure 

 

 

4.3.2 Machine learning for the prediction of 1- and 3-year all-cause mortality 

Among the evaluated ML classifiers, CIRF exhibited the best performance for 

discrimination between survival/all-cause death with an AUC of 0.717 (95% CI: 0.676 – 

0.758) and 0.739 (95% CI: 0.715 – 0.762) in the 1- and 3-year training cohorts, 

respectively. When evaluating the models' discriminatory power in the test cohorts, we 

observed an AUC of 0.728 (95% CI: 0.645 – 0.802) and 0.732 (95% CI: 0.681 – 0.784) 

for the prediction of 1- and 3-year mortality, respectively. Models were also trained and 

tested separately in the female and male subsets of the 1- and 3-year cohorts. The AUCs 

ranged from 0.712 to 0.748 in the training sets and from 0.681 to 0.798 in the test sets 

suggesting a modest variability in the models' predictive capabilities across the different 

subsets of patients (Tables 14 and 15). 

After sorting the patients in ascending order based on the predicted probability of 

death and plotting the distribution of probability values, the accumulation of patients who 

died during the given follow-up period could be observed in the higher risk regions of the 

plots (Figure 22). These findings suggest that our models can perform risk stratification 

effectively. 

The Brier score – measuring the accuracy of the probabilistic predictions – for the 

1- and 3-year models were 0.197 and 0.201, indicating a sufficiently good calibration of 

our models. Table 16 summarizes the Brier scores for the remainder of the CIRF models. 
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Table 14 Training and testing of the conditional inference random forest models in the entire 1-year cohort 

(n=2,191), males (n=1,637), and females (n=554) 

 
Hyperparameter space 

Best combination 

of hyperparameters 

AUC in the training 

cohort (10-fold CV) 

AUC in the test 

cohort 

Entire 1-

year 

cohort 

('alpha': [0.05, 0.1], 
'max_depth': [-1, 2, 16], 

'min_samples_split': [2, 4, 10], 

'n_estimators': 
[10, 25, 50, 100, 200, 400], 

'n_permutations': [50, 100, 150]) 

('alpha': 0.1, 
'max_depth': -1, 

'min_samples_split': 2, 

'n_estimators': 100, 
'n_permutations': 50) 

0.717 

(0.676-0.758) 

0.728 

(0.654-0.802) 

Female 

('alpha': 0.1, 

'max_depth': -1, 
'min_samples_split': 2, 

'n_estimators': 50, 
'n_permutations': 50) 

0.748 

(0.684-0.812) 

0.798 

(0.691-0.905) 

Male 

('alpha': 0.1, 

'max_depth': -1, 
'min_samples_split': 

10, 'n_estimators': 200, 

'n_permutations': 50) 

0.712 

(0.690-0.735) 

0.697 

(0.610-0.783) 

Hyperparameters not listed in the table were set to default values predefined in the scikit-learn module 

(version 0.21.3). Hyperparameter tuning was performed with grid search. Models with each combination 

of hyperparameters were trained with stratified 10-fold cross-validation in the training cohorts, and the 

average AUC was calculated. Using the best performing combination of hyperparameters (3rd and 4th 

columns), models were evaluated in the test cohorts of each subset as well (5th column). 

AUC – area under the receiver operating characteristic curve, CV – cross-validation 

 

 

 

Table 15 Training and testing of the conditional inference random forest models in the entire 3-year cohort 

(n=1,900), males (n=1,425), and females (n=475) 

Hyperparameters not listed in the table were set to default values predefined in the scikit-learn module 

(version 0.21.3). Hyperparameter tuning was performed with grid search. Models with each combination 

of hyperparameters were trained with stratified 10-fold cross-validation in the training cohorts, and the 

average AUC was calculated. Using the best performing combination of hyperparameters (3rd and 4th 

columns), models were evaluated in the test cohorts of each subset as well (5th column). 

AUC – area under the receiver operating characteristic curve, CV – cross-validation 

 

 
Hyperparameter space 

Best combination 

of hyperparameters 

AUC in the training 

cohort (10-fold CV) 

AUC in the test 

cohort 

Entire 3-

year 

cohort 

('alpha': [0.05, 0.1], 

'max_depth': [-1, 2, 16], 

'min_samples_split': [2, 4, 10], 
'n_estimators': 

[10, 25, 50, 100, 200, 400], 

'n_permutations': [50, 100, 150]) 

('alpha': 0.1, 
'max_depth': -1, 

'min_samples_split': 4, 

'n_estimators': 400, 
'n_permutations': 100) 

0.739 

(0.715-0.762) 

0.732 

(0.681-0.784) 

Female 

('alpha': 0.1, 
'max_depth': -1, 

'min_samples_split': 

10, 'n_estimators': 400, 

'n_permutations': 150) 

0.719 

(0.678-0.760) 

0.777 

(0.678-0.876) 

Male 

('alpha': 0.1, 
'max_depth': -1, 

'min_samples_split': 4, 

'n_estimators': 200, 
'n_permutations': 150) 

0.740 

(0.717-0.763) 

0.681 

(0.617-0.745) 
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Figure 22 Distribution of the predicted probabilities in the 1- and 3-year test cohorts (173) 

Patients were sorted in ascending order based on the predicted probability of death, and the distribution 

of probability values was plotted. The accumulation of patients who died during the given follow-up period 

could be observed in the higher risk regions of the plots in the 1- and 3-year cohorts as well. 

CRT – cardiac resynchronization therapy 

 

Table 16 Brier scores of the final machine learning models 

 1-year test cohorts 3-year test cohorts 

All 0.197 0.201 

Females 0.193 0.203 

Males 0.199 0.211 

Cell contents are Brier scores (calculated using the probabilities of the test cohorts). Brier score is defined 

as the mean squared difference between the observed and predicted outcome. It ranges from 0 to 1, with 

values closer to 0 indicating better calibration. 

 

4.3.3 Most important predictors of mortality as assessed using machine learning 

Leading predictors of all-cause mortality are illustrated in Figure 23, and the 

comprehensive list of feature importances is provided in Tables 17 and 18.  
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Figure 23 The most important predictors of 1- and 3-year all-cause mortality in patients undergoing CRT 

implantation (173) 

The importance of each feature was quantified with the permutation feature importances method, which 

measures the importance of a feature by calculating the mean decrease in the model's performance (area 

under the receiver operating characteristic curve) after permuting its values 10 times (see text for further 

details). To keep the data comparable between the different models, we identified the top 5 predictors in 

each model and took the union of these features; then, we plotted the results on radar charts. 

AF – atrial fibrillation, LBBB – left bundle branch block, LVEF – left ventricular ejection fraction, NYHA 

– New York Heart Association 
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Table 17 Permutation feature importances of the input variables calculated in the 1-year training cohorts 

 

The importance of each feature was quantified with the permutation feature importances method, which 

measures the importance of a feature by calculating the mean decrease in the model’s performance (area 

under the ROC curve) after permuting its values 10 times. Features are sorted according to permutation 

importance. 

ACE-I – angiotensin-converting enzyme inhibitors, AF – atrial fibrillation, ARB - angiotensin II receptor 

blockers, COPD– chronic obstructive pulmonary disease, CRT – cardiac resynchronization therapy, HF – 

heart failure, LBBB – left bundle branch block, LV – left ventricular, MRA – mineralocorticoid receptor 

antagonists, NYHA – New York Heart Association functional class, ROC – receiver operating 

characteristic 

  

Feature Importance Feature Importance Feature Importance

Serum Sodium 0.0531 Hemoglobin 0.0496 Serum Sodium 0.0495

Serum Creatinine 0.0449 Serum Sodium 0.0438 Etiology of HF 0.0445

Hemoglobin 0.0422 Serum Creatinine 0.0369 LV ejection fraction 0.0380

Age at CRT implantation 0.0368 QRS morphology - LBBB 0.0224 Age at CRT implantation 0.0366

Etiology of HF 0.0269 Age at CRT implantation 0.0189 Serum Creatinine 0.0329

Body Mass Index 0.0236 Allopurinol 0.0163 LV end-diastolic diameter 0.0216

LV ejection fraction 0.0221 Type of device (CRT-P or CRT-D) 0.0146 Body Mass Index 0.0197

QRS morphology - LBBB 0.0177 Body Mass Index 0.0141 QRS morphology - LBBB 0.0172

LV end-diastolic diameter 0.0175 LV ejection fraction 0.0141 NYHA functional class 0.0167

Loop diuretics 0.0173 Etiology of HF 0.0138 Amiodarone 0.0157

Type of device (CRT-P or CRT-D) 0.0166 LV end-diastolic diameter 0.0114 Hemoglobin 0.0149

NYHA functional class 0.0147 Diabetes 0.0096 Statin 0.0132

Statin 0.0132 Beta blockers 0.0094 MRA 0.0100

Allopurinol 0.0126 Loop diuretics 0.0094 Diabetes 0.0100

MRA 0.0124 NYHA functional class 0.0092 Thiazide diuretics 0.0098

COPD 0.0119 MRA 0.0084 Allopurinol 0.0095

HF duration >18 months 0.0109 Valvular heart disease 0.0082 Loop diuretics 0.0094

LV lead position 0.0103 Thiazide diuretics 0.0082 LV lead position 0.0083

Gender 0.0098 Amiodarone 0.0077 Valvular heart disease 0.0079

Amiodarone 0.0096 COPD 0.0071 Hypertension 0.0075

Digitalis 0.0088 Type of AF 0.0067 HF duration >18 months 0.0074

Diabetes 0.0088 HF duration >18 months 0.0063 Digitalis 0.0074

Thiazide diuretics 0.0081 Statin 0.0061 Type of AF 0.0066

Type of AF 0.0065 LV lead position 0.0055 COPD 0.0060

Beta blockers 0.0064 Hypertension 0.0053 ACE-I / ARB 0.0059

Hypertension 0.0057 Digitalis 0.0048 Type of device (CRT-P or CRT-D) 0.0047

Valvular heart disease 0.0053 Smoking status 0.0031 Beta blockers 0.0038

ACE-I / ARB 0.0051 ACE-I / ARB 0.0021 Smoking status 0.0003

Smoking status 0.0019 Calcium channel blockers 0.0008 Calcium channel blockers 0.0003

Calcium channel blockers 0.0013

All FemalesMales
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Table 18 Permutation feature importances of the input variables calculated in the 3-year training cohorts

 

The importance of each feature was quantified with the permutation feature importances method, which 

measures the importance of a feature by calculating the mean decrease in the model’s performance (area 

under the ROC curve) after permuting its values 10 times. Features are sorted according to permutation 

importance. 

ACE-I – angiotensin-converting enzyme inhibitors, AF – atrial fibrillation, ARB - angiotensin II receptor 

blockers, COPD– chronic obstructive pulmonary disease, CRT – cardiac resynchronization therapy, HF – 

heart failure, LBBB –  left bundle branch block, LV – left ventricular, MRA – mineralocorticoid receptor 

antagonists, NYHA – New York Heart Association functional class, ROC – receiver operating 

characteristic 

 

 

4.3.3.1 Top predictors of mortality in the 1- and 3-year cohorts 

In the overall study population (including both sexes), the most important 

predictor of 1-year mortality was serum sodium, which was followed by serum creatinine, 

hemoglobin concentration, age, and etiology of HF (Figure 23). These features were also 

found among the strongest predictors of 3-year mortality, however, in different order of 

importance (serum sodium, age at implantation, hemoglobin concentration, serum 

creatinine, and etiology). Digitalis and the type of AF were found to show the most 

prominent change in their importance from 1 to 3 years (both p < 0.001). 

  

Feature Importance Feature Importance Feature Importance

Serum Sodium 0.0596 Serum Sodium 0.0667 Serum Sodium 0.0583

Age at CRT implantation 0.0568 Hemoglobin 0.0544 Age at CRT implantation 0.0538

Hemoglobin 0.0391 Age at CRT implantation 0.0431 Type of AF 0.0516

Serum Creatinine 0.0387 Serum Creatinine 0.0270 NYHA functional class 0.0495

Etiology of HF 0.0217 Allopurinol 0.0255 Etiology of HF 0.0374

QRS morphology - LBBB 0.0212 NYHA functional class 0.0208 LV ejection fraction 0.0341

Body Mass Index 0.0208 QRS morphology - LBBB 0.0207 MRA 0.0238

LV ejection fraction 0.0207 Etiology of HF 0.0206 Hypertension 0.0216

NYHA functional class 0.0202 LV ejection fraction 0.0185 Body Mass Index 0.0193

Digitalis 0.0187 Diabetes 0.0169 Serum Creatinine 0.0166

Allopurinol 0.0183 LV end-diastolic diameter 0.0166 Thiazide diuretics 0.0144

LV end-diastolic diameter 0.0182 Body Mass Index 0.0166 Digitalis 0.0127

Gender 0.0175 MRA 0.0160 LV end-diastolic diameter 0.0093

Type of AF 0.0175 Type of AF 0.0156 Type of device (CRT-P or CRT-D) 0.0084

Loop diuretics 0.0150 Loop diuretics 0.0156 COPD 0.0075

Type of device (CRT-P or CRT-D) 0.0118 Digitalis 0.0154 Hemoglobin 0.0075

MRA 0.0111 Type of device (CRT-P or CRT-D) 0.0149 QRS morphology - LBBB 0.0075

HF duration >18 months 0.0106 Hypertension 0.0134 Statin 0.0071

Diabetes 0.0102 LV lead position 0.0113 Allopurinol 0.0045

Statin 0.0096 Statin 0.0102 HF duration >18 months 0.0043

LV lead position 0.0095 HF duration >18 months 0.0098 LV lead position 0.0040

Thiazide diuretics 0.0091 Thiazide diuretics 0.0095 Diabetes 0.0036

COPD 0.0082 Amiodarone 0.0074 Amiodarone 0.0035

Hypertension 0.0066 COPD 0.0062 ACE-I / ARB 0.0029

Amiodarone 0.0059 ACE-I / ARB 0.0035 Loop diuretics 0.0017

ACE-I / ARB 0.0039 Beta blockers 0.0033 Valvular heart disease 0.0016

Beta blockers 0.0034 Smoking status 0.0029 Beta blockers 0.0001

Valvular heart disease 0.0025 Valvular heart disease 0.0027 Smoking status 0.0001

Calcium channel blockers 0.0017 Calcium channel blockers 0.0016 Calcium channel blockers 0.0001

Smoking status 0.0010

All Males Females
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4.3.3.2 Sex-specific patterns of mortality predictors at 1-year follow-up 

We observed several sex-specific differences during the subgroup analysis. In 

males, the top predictors of 1-year mortality were hemoglobin concentration, serum 

sodium, serum creatinine, LBBB morphology, and age, whereas, in females, the most 

important predictors were serum sodium, etiology, LVEF, age, and serum creatinine 

(Figure 23). 

The comparison of predictors by sex at 1-year revealed that etiology (p < 0.001), 

LVEF (p < 0.001), and treatment with amiodarone (p < 0.01) were at least twice as 

important in females as in males. Moreover, age at implantation and NYHA functional 

class were also significantly more predictive for 1-year mortality in women compared to 

men (both p < 0.001). Whereas, in males, hemoglobin concentration, type of the 

implanted device, treatment with allopurinol had significantly higher predictive power 

than in females (all p < 0.001). 

 

4.3.3.3 Sex-specific patterns of mortality predictors at 3-year follow-up 

In males, the strongest determinants of 3-year mortality were serum sodium, 

hemoglobin concentration, age at implantation, serum creatinine, and allopurinol, 

whereas, in females, these features were serum sodium, age at implantation, type of AF, 

NYHA functional class, and etiology in decreasing order (Figure 23). 

Regarding females, NYHA functional class, etiology, LVEF, and type of AF 

exhibited significantly higher predictive power than in men (all p < 0.001). In males, 

features with at least a 2-fold higher importance were loop diuretics (p < 0.001), 

hemoglobin concentration (p = 0.021), allopurinol (p < 0.001), diabetes (p < 0.001), LV 

lead position (p < 0.001) and LBBB morphology (p < 0.001). 

 

4.3.3.4 Longitudinal changes in the sex-specific patterns of predictors 

We also identified features with the most notable changes in importance from 1 

to 3 years of follow-up. 

Among males, the most prominent increase of feature importance occurred in LV 

lead position, NYHA class, age, type of AF, hypertension, and digitalis (all p < 0.001). 

The importance of serum creatinine declined significantly (p = 0.026). 
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In females, we observed the greatest increase in the importance of NYHA 

functional class (p < 0.001), type of AF (p < 0.001), hypertension (p < 0.001), and age at 

implantation (p < 0.014). Among the top 10 predictors, the most considerable decrease 

from 1- to 3-year in feature importance was noted in the following factors: serum 

creatinine, LV end-diastolic diameter, QRS morphology, and amiodarone (all p < 0.001). 

 

4.3.3.5 In-depth analysis of the associations between predictors and outcomes 

The association between the most important predictors and the predicted outcome 

is visually presented in Figures 24 and 25. Older age, higher serum levels of creatinine, 

lower values of LVEF, serum sodium, hemoglobin concentration, ischemic etiology, non-

LBBB morphology, higher NYHA classes, and the history of or current paroxysmal, 

persistent or permanent AF were associated with a higher predicted probability of 1- and 

3-year all-cause mortality. Males exhibited higher values of predicted probability of all-

cause death in all examined features compared to females. However, as ML models 

capture complex, high-level interactions among a multitude of variables, it is challenging 

to determine the effect of a single feature on the predicted probability of mortality, and 

the results of univariable analyses should be interpreted with caution. 
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Figure 24 Effect of the most important features on the predicted probability of 1-year all-cause mortality 

in the training cohorts (173) 

The probability of death was calculated for each patient in the training cohort with 10-fold cross-validation. 

The predicted probability is plotted for each patient, and second-order polynomial trendlines are fitted to 

their values. *p < 0.05 vs. non-ischemic/non-LBBB morphology/NYHA class II/no AF, unpaired Student's 

t-test or Mann-Whitney U test. 

AF – atrial fibrillation, LBBB – left bundle branch block, LV – left ventricular, NYHA – New York Heart 

Association  
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Figure 25 Effect of the most important features on the predicted probability of 3-year all-cause mortality 

in the training cohorts (173) 

The probability of death was calculated for each patient in the training cohort with 10-fold cross-validation. 

The predicted probabilities are plotted for each patient, and second-order polynomial trendlines are fitted 

to their values. *p < 0.05 vs. non-ischemic/non-LBBB morphology/ NYHA class II/no AF, unpaired 

Student's t-test or Mann-Whitney U test. 

AF – atrial fibrillation, LBBB – left bundle branch block, LV – left ventricular, NYHA – New York Heart 

Association  
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5. DISCUSSION 

5.1 Applying topological data analysis to integrate echocardiographic features of left 

ventricular structure and function into a patient similarity network 

 

The notion of patient similarity is a growing idea in personalized predictive 

analytics to support clinical assessment (157, 174-177). Patient similarity is a method that 

can empower precision medicine to stratify patients into clinically relevant subgroups 

(174). Such subgroup identification generally involves the use of unsupervised ML 

methods for clustering patients (15). However, most clustering techniques discretize the 

continuous patient data to develop discrete groups, using arbitrary thresholds. In contrast, 

TDA refers to a collection of powerful geometric approaches that integrate complex high-

dimensional data to develop a patient-patient similarity network. TDA involves the 

generation of partially overlapping clusters and illustrates the entire study population as 

a continuous network of similar patients. This method can allow us to capture the notion 

of connectivity and continuum to describe the different stages of a disease. 

Using retrospectively and prospectively collected echocardiographic data from 

1,334 patients, we illustrated, for the first time, the potential role of a patient-patient 

similarity network for mapping cardiac dysfunction without the constraint of any a priori 

diagnostic system in varying degrees of LV structural and functional remodeling. 

Specifically, the TDA model in our analysis clustered the multi-parametric data without 

using a hierarchical structure or a branching tree but rather meaningfully represented the 

geometry of the data based on the similarity of the patients (50). Remarkably, the nodes 

clustered to produce a network in the form of a loop. Moreover, this loop demonstrated 

the relationships with the outcome of interest, which suggested a valid method of risk 

stratification for patients. We further illustrated the potential value of this loop for 

individualized predictions. Using a group of patients with longitudinally collected 

echocardiographic studies in which the patients were sampled in different stages of 

cardiac dysfunction, our analysis suggested that this looped space might also represent 

the periodic or recurrent behavior of the disease, thereby tracing the path that patients 

traveled through cycles of worsening cardiac function and recovery. 
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5.1.1 Patient similarity vs. an average patient 

Echocardiography remains the most versatile tool in clinical practice, offering an 

ever-increasing array of measurements. Although novel multivariable data-driven 

analytic approaches to stratifying cardiac dysfunction have been recently made available 

(178), the integration of clinical and echocardiographic data for precision phenotyping 

has been arduous using traditional techniques. 

Classically, studies and results are based on meticulous experimental designs and 

statistical analyses to produce exhaustive results for an average patient. However, no two 

patients are alike, making it difficult to generalize study results for average patients to 

actual patients with cardiac dysfunction. To this end, novel bioinformatics and machine-

learning approaches have been suggested to support the integration of high-dimensional 

data for rapid medical decision-making (14, 179, 180). 

The concept of the patient similarity network using TDA has been shown in well-

known studies, such as those aiming to subgroup patients with diabetes (157), to identify 

individuals being resistant to malaria infections (160), and to uncover distinct phenotypes 

of aortic stenosis severity (181, 182). TDA has specifically enabled real-time exploration 

of the concept of disease space. For example, Torres et al. demonstrated a similar loop in 

analyzing disease tolerance to malaria in mice and humans and stratified the resilience of 

patients based on the size of the loop through the disease space (160). Similarly, we 

demonstrated a gradual change in echocardiographic variables throughout the disease 

cycle that outlined similarity among patients and described different phenotypes of 

cardiac functions in the disease space. Despite the abundance and complexity of 

echocardiographic features, distinct paths emerged for the patients with cardiac 

dysfunction in clockwise or counterclockwise directions on the loop based on the 

progression, treatment, and recovery of the disease. 

 

5.1.2 Clinical implications 

There are several pathophysiological and clinical implications for our study. First, 

the continuity of our patient similarity network suggested that the pathophysiological 

classification of cardiac dysfunction should be viewed as a continuum rather than as 

arbitrary divisions of the patient population into discrete subgroups as HF with reduced, 

mid-range, or preserved EF. Measures of LV systolic and diastolic function did not 
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exhibit abrupt changes at any level of cardiac function, but they covered a gradual and 

continuous spectrum, creating an overlapping and interconnected spectrum of disease 

phenotypes that was previously suggested but not shown (183). Second, the 4 regions of 

the loop showed incremental value over NYHA functional class, ACC/AHA stages, and 

commonly used risk scores (e.g., MAGGIC risk score), which suggested the clinical 

usefulness of this approach in patient risk stratification. Finally, unlike the consensus-

driven algorithms (e.g., NYHA functional class and ACC/AHA stage) that first use expert 

knowledge and then develop the stages and decision pathways, the computational 

technique described in this study learns automatically and requires no a priori knowledge 

or training to develop meaningful disease representation. This ability to integrate multiple 

parameters pragmatically to define patient phenotypes and reproduce known clinical 

knowledge provides a strong foundation for why a provider could rely on this simplified 

staging scheme. Moreover, the TDA characterization system enables the identification of 

patients on a disease map much like the Global Positioning System; thus, it can facilitate 

automated classification, risk stratification, prognostication, or monitoring response to 

therapies. Such decision support systems are critically needed not only for clinical care 

but also for clinical trials in which heterogeneity of disease presentation affects patient 

matching and the discovery of novel therapies. 

 

5.1.3 Validation in additional cohorts 

Since the publication of this study (154), tremendous effort has been made to 

validate the prognostic power of our topological network in additional cohorts (184). To 

this end, we assigned each patient a low-risk (regions I and II) or high-risk (regions III 

and IV) label depending on their location on the TDA network loop structure, and we 

trained a deep neural network to predict the high- and low-risk phenogroups (184). In two 

external cohorts, the deep neural network model showed higher AUC than the 2016 

American Society of Echocardiography guideline grades for predicting elevated LV 

filling pressure, and the high-risk phenogroup showed higher rates of HF hospitalization 

and/or death compared to the low-risk phenogroup (184). Similarly, in the TOPCAT trial 

cohort (90), the high-risk phenogroup showed higher rates of HF hospitalization or 

cardiac death and higher event-free survival with spironolactone therapy. Lastly, in the 

pooled RELAX-HF (Phosphodiesterase-5 Inhibition to Improve Clinical Status and 
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Exercise Capacity in Diastolic Heart Failure) /NEAT-HFpEF (Nitrate’s Effect on Activity 

Tolerance in Heart Failure With Preserved Ejection Fraction) cohort (185, 186), the high-

risk phenogroup had a higher burden of chronic myocardial injury, neurohormonal 

activation, and lower exercise capacity than the low-risk phenogroup (184). These 

findings imply that our topological network can be applied to reliably prognosticate 

patients with varying degrees of systolic and diastolic dysfunction. 

 

5.2 Designing and evaluating a machine learning-based risk stratification system to 

predict all-cause mortality of patients undergoing CRT implantation 

 

In our second study, we developed and tested an ML-based risk stratification tool 

to predict all-cause mortality of CRT patients during a 5-year follow-up period. Among 

the evaluated ML classifiers, random forest demonstrated the best performance; therefore, 

this algorithm was used to create the SEMMELWEIS-CRT score. With an average AUC 

over 0.700, the SEMMELWEIS-CRT score significantly outperformed the other 

currently available risk scores. We also developed an online calculator (available at 

semmelweiscrtscore.com) to enable a convenient, interactive, and personalized 

calculation of predicted mortality in patients undergoing CRT implantation. 

 

5.2.1 Importance of risk assessment in patients undergoing CRT implantation 

CRT induces reverse LV remodeling and improves outcomes in a certain 

subgroup of HF patients (143, 187). Despite these well-known beneficial effects, 

individual outcomes vary substantially. In the past years, several studies have investigated 

predictors that contribute to this variation, and numerous prognostic models have been 

developed by combining multiple risk factors (167-170). However, these currently 

available risk scores have shortcomings, and physicians are still reluctant to use them in 

daily clinical practice (125). 

The major limitation is the insufficient reliability and ineffectiveness for risk 

assessment at the individual patient level, as outcome estimates have been extrapolated 

from large clinical trials. Although these scores offer general guidance and are effective 

at predicting outcomes at the population level, there remains a significant gap in the 

capability to predict outcomes for an individual patient (188). On the other hand, 
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individual prognostication remains essential to develop personalized treatment plans and 

make critical medical decisions based on life expectancy. These facts emphasize the need 

for more precise assessment through capturing the complex underlying interactions of 

predictors. With the SEMMELWEIS-CRT score, we intended to develop a more 

personalized approach for the risk assessment of patients undergoing CRT implantation. 

 

5.2.2 Risk stratification with machine learning 

Simultaneously interpreting the myriad risk predictors in an individual patient is 

challenging for clinicians. As a vast number of clinical variables associated with mortality 

is needed to be considered, the complexity of assessment increases, making it more 

difficult for clinicians to draw an overall conclusion regarding risk in an individual 

patient. Moreover, the potential influence of complex and hidden interactions between 

several weaker predictors is often overlooked. In this study, we demonstrated that ML is 

capable of overcoming these challenges by leveraging complex higher-level interactions 

among a multitude of clinical features. Accordingly, our model exhibited improved 

discrimination and predictive range with respect to all-cause mortality compared with the 

pre-existing risk scores. Moreover, the SEMMELWEIS-CRT score was capable of 

identifying patients with robustly increased risk of all-cause mortality (4th quartile) 

during the entire follow-up period. 

With the increasing availability of enormous electronic data sets, ML algorithms 

have emerged as highly effective methods for medical prediction problems, with the 

potential to augment risk stratification (11). By making no a priori assumptions about 

causative factors, ML enables an agnostic exploration of all available data for non-linear 

patterns that may predict a particular individual’s risk. 

Our evaluation of ML algorithms was rigorous, including trials of numerous 

different classifiers within a wide hyper-parameter space. Among the evaluated 

algorithms, the best performing model was the random forest classifier which is 

consistent with previous studies using ML to predict clinical endpoints (127, 189-191). 

There are various risk models available for the risk assessment of patients from 

the entire HF spectrum (171, 192). However, in our analysis, we focused exclusively on 

CRT recipients, and we generated models that recognize patterns in the clinical 

characteristics of this specific subset of HF patients. Moreover, many of the pre-existing 
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scores provide risk estimates for only a distinct time interval. In contrast, our goal was to 

build a model that could assess the risk of mortality annually from 1 to 5 years. Recently, 

Kalscheur et al. have developed an ML-based risk assessment tool, and their model 

exhibited comparable discriminative capabilities to ours (127). However, their model was 

limited to predicting 1-year outcomes, while the SEMMELWEIS-CRT score offers the 

prediction of mortality risk at 1-, 2-, 3-, 4-, and 5-year follow-up. 

Ideally, ML models, such as the one developed in the present study, will be 

integrated into electronic medical record systems, and they will operate in the background 

providing real-time, personalized risk assessment based on the electronically available 

clinical features. Consequently, clinicians do not have to calculate a patient’s risk 

manually, which may enhance the model’s feasibility in clinical practice. Another 

potential benefit of ML algorithms is the capability to assimilate new data in real-time to 

continuously improve its own predictive accuracy. 

The SEMMELWEIS-CRT score uses 33 clinical variables. The majority of them 

are routinely assessed during the management of HF; therefore, they are readily available 

from electronic medical records. 

 

5.2.3 Future perspectives 

The observed high efficacy of our random forest model suggests that ML should 

be integrated into the individual risk assessment of patients undergoing CRT 

implantation. We foresee that the role of ML-based prognostic risk scores will become 

increasingly relevant in the near future, and structured, dense databases in combination 

with state-of-the-art analytic approaches will pave the way to precision cardiovascular 

medicine. 
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5.3 Exploring the sex-specific differences and similarities in the predictors of 

mortality among patients undergoing CRT implantation 

 

Using data from a single-center cohort of HF patients undergoing CRT 

implantation, we developed and evaluated ML-based algorithms for the prediction of 1- 

and 3-year all-cause mortality. The resulting CIRF models demonstrated good 

discriminatory power in assessing the risk of mortality with an AUC over 0.700 at 1- and 

3-year follow-up. Moreover, ML performed substantially well across patient subsets 

containing exclusively males or females (AUCs ranging from 0.681 to 0.798). Serum 

sodium, creatinine, hemoglobin, age, and HF etiology were among the most important 

determinants of short- and mid-term mortality; however, their relative importance varied 

over time. As expected, female sex was associated with significantly better survival rates 

in our cohort as well. Sex-specific patterns were also identified in the predictors of 

mortality. The role of HF etiology (ischemic or non-ischemic), NYHA functional class, 

and LVEF were more pronounced in females, whereas hemoglobin concentration, QRS 

morphology, and treatment with allopurinol were notably more predictive for all-cause 

mortality in males. 

 

5.3.1 Risk stratification of heart failure patients using machine learning 

The personalized prediction of prognosis is fundamental to patient-centered care, 

both in optimizing treatment strategies and informing patients as part of shared decision-

making. For this purpose, an abundance of prediction models has been developed; 

however, most of them had achieved only modest success, particularly when they were 

applied in HF populations other than those from which the scores were derived (125, 

193). The unsatisfactory results of previous HF risk scores are likely due to multiple 

causes, including the fact that most of them were created using conventional statistical 

methods that failed to capture high-dimensional interactions among predictors that bear 

relevant prognostic information. 

In contrast to traditional statistics, ML was explicitly designed to reveal and 

harness these correlations. Several studies have proved that these advanced data analytic 

approaches can leverage the complex, higher-level interplay between predictors and 

outcomes to achieve better discrimination. ML can improve the care of HF patients in 
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various ways, e.g., by augmenting the prediction of readmission after HF hospitalization 

or by predicting the risk of mortality (105, 108, 194). In HF patients undergoing CRT 

implantation, our research group has confirmed the superiority of ML over pre-existing 

risk scores in the previously presented study (166), and similar results have been reported 

by others as well (127, 129). Underpinning these findings, we were able to predict the 1- 

and 3-year mortality of CRT patients with good discrimination and excellent calibration, 

even in subsets of patients divided by sex. In light of the promising results of our single-

center study, we will endeavor to validate our models in external cohorts in a multi-centric 

manner. 

In our analysis, CIRF exhibited the best discriminative ability for predicting both 

1- and 3-year mortality. To understand the outstanding performance of tree-based 

approaches such as CIRF in outcome prediction, an important difference between 

conventional regression models and tree-based methods should be highlighted. The 

former favors variables that have a uniform effect across the entire patient population, 

whereas the latter can uncover variables that might act differently in different patient 

subgroups. This is essential for personalized prognostication as in an individual patient, 

the discriminatory power of a given feature may be significantly enhanced or 

overshadowed by others. Due to this attribute, tree-based methods such as TRF and CIRF 

are extremely suitable for application as clinical decision-making tools (195). 

Similar to TRF, CIRF is also an ensemble of individual decision trees; however, 

there is a major difference between the two algorithms: CIRF uses statistical theory (i.e., 

permutation test) based covariate selection scheme during the training process, whereas 

TRF creates its trees by selecting the feature that maximizes an information measure (e.g., 

Gini coefficient) at each split (30, 196). Accordingly, the method used in TRF tends to 

select features that have many possible splits (e.g., continuous or high-cardinality 

categorical variables); however, CIRF avoids this potential bias and enables the more 

appropriate calculation of feature importances. 

 

5.3.2 Sex-specific differences in outcomes following CRT implantation 

Sex is increasingly recognized as an important modulator of outcomes in CRT 

patients, and several studies such as the MADIT-CRT (149), the RAFT 

(Resynchronization-Defibrillation for Ambulatory Heart Failure Trial) (197), and the 
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MASCOT (Management of Atrial Fibrillation Suppression in AF-HF Comorbidity 

Therapy) (198) trials have suggested a greater CRT benefit in women. Despite the 

expanding knowledge about sex-related differences in HFrEF, the reason women benefit 

more than men from CRT remains unclear (153). Numerous plausible explanations have 

been proposed, such as the dissimilarities between sexes in the frequency of ischemic 

cardiomyopathy (199), AF, and comorbidities (148), or the sex-related differences in 

body height, LV size, and QRS duration (200, 201). In addition, the impact of sex 

hormones on the pathophysiology of HF or the sex-specific characteristics of 

pharmacodynamics and pharmacokinetics are also considerable factors (144, 202). 

The sex-specific effects of QRS prolongation and morphology on outcomes have 

been intensively investigated in CRT patients (199, 201, 203-206). Thus, the findings of 

these studies have prompted calls for sex-specific guideline recommendations regarding 

the selection of CRT recipients. As women have shorter QRS durations than men in the 

absence of any conduction delay, they are more likely to exhibit a true LBBB compared 

to men at shorter QRS duration (207, 208). It has also been reported that among patients 

with LBBB and non-ischemic etiology, women have electrical dyssynchrony more 

frequently compared to men at any given QRS duration, and consequently, they would 

exhibit a better response to CRT (204). According to the study conducted by Beela et al., 

the interaction between HF etiology and mechanical dyssynchrony seems to represent 

another important aspect: due to the lower rate of ischemic etiology and the lower extent 

of scarred myocardium, women have more frequently uncomplicated patterns of LBBB-

like mechanical dyssynchrony which is better amendable by CRT (199). 

The beneficial effects of CRT also depend on device programming and the 

percentage of effective biventricular pacing. Notably, the latter significantly varies by 

sex, and therefore, sex-specific CRT programming has attracted increased attention (209). 

According to the results of the SMART-AV trial, the optimization of atrioventricular 

delay intervals is associated with improved outcomes in women but not in men (210), 

which might be attributable to the inherent sex-related differences in atrial geometry and 

PR intervals. A higher percentage of biventricular pacing has also been reported in 

women (198, 210, 211), most probably due to the lower rate of AF compared to men (212, 

213). This could also contribute to the observed differences in mortality between sexes 

as even a small increment in the biventricular pacing rate may improve outcomes (214). 
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Although there are still many open questions, it is clear that multiple 

intercorrelated factors contribute to this phenomenon. Therefore, during the search for 

answers, ML-based approaches may come in handy, as they are particularly helpful in 

uncovering hidden patterns in large data sets by simultaneously interpreting predictors 

even in the presence of complex, non-linear interactions. 

 

5.3.3 Sex-specific patterns in mortality predictors 

Given the sex-related differences in the anatomy and physiology of the 

cardiovascular system, encountering dissimilarities in the importance of prognostic 

predictors between males and females is to be expected in CRT patients. Nevertheless, 

there is only a limited number of publications dedicated to the thorough exploration of 

this topic. To the best of our knowledge, our study is the first that evaluated the sex-

related differences and similarities in mortality predictors of CRT patients using ML. In 

our analysis, we observed significant variations in the importance of several predictors 

such as HF etiology, NYHA functional class, LVEF, and AF between sexes, to name a 

few. 

Utilizing the tools of conventional statistics, the sex-specific prognostic value of 

HF etiology has been previously investigated in large cohorts of HFrEF patients. In the 

MAGGIC meta-analysis, the ischemic etiology appeared to attenuate the protective effect 

of female sex on prognosis (215). In addition, ischemic cardiomyopathy and the extent of 

myocardial scar were found to be significant predictors of mortality in females but not in 

males among CRT patients (199). In line with this evidence, the paramount importance 

of HF etiology in women was proved in our study as well. 

When analyzing the interaction between sex and different covariates in the 

prediction of survival after CRT implantation, Beela et al. reported that NYHA class was 

a significant predictor in males only (199). Moreover, among HFrEF patients, NYHA 

class had a more prominent prognostic value in men than in women (216). Contrary to 

these findings, a stronger association of NYHA functional class with outcomes was 

observed in females in our current analysis and the BEST (Beta-Blocker Evaluation in 

Survival Trial) as well (217). 

Another well-established prognostic factor is LVEF, whose interaction with sex 

in the prediction of all-cause death has been demonstrated in CRT patients (199). 
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Complementing these findings and the results of the BEST trial (217), we have also 

demonstrated that LVEF is a stronger predictor of prognosis in women than in men. 

In HFrEF patients, most studies agree on the prognostic value of AF; however, 

there is some inconsistency regarding its exact role as some investigations attribute more 

prognostic impact to AF in females (217), whereas others observed comparable predictive 

power in males and females (199, 216). Our results support the former as we found AF 

to have a more prominent effect on outcomes in females. 

According to our analysis, the prognostic relevance of hyponatremia and renal 

function should also be emphasized in CRT patients. Our results are in accordance with 

the findings of Zusterzeel et al., who reported that despite being significant determinants 

in both sexes, serum creatinine and hyponatremia appeared to be stronger predictors in 

women than in men (203). 

Lately, the interplay between sex and diabetes in HFrEF patients has attracted 

increased attention among researchers. Confirming the findings of the MAGGIC (215), 

the recently published analysis of the ASIAN-HF (Asian Sudden Cardiac Death in Heart 

Failure) registry demonstrated that diabetes is coupled with a greater risk of adverse 

outcomes in women than in men (218). In contrast, diabetes was associated with a higher 

risk of all-cause death or HF hospitalization in males in the Swedish Heart Failure 

Registry (216), and it was proven to be a significant predictor only in men in the BEST 

trial (217). Interestingly, in our study, diabetes was not ranked among the top five 

predictors in any of the analyzed patient subsets, and we detected inter-sex differences in 

its importance only at 3-year follow-up. 

Some of our findings coincide with those of previous studies, whereas some others 

may not. These apparent discrepancies might be partly attributable to the fact that most 

studies applied Cox proportional hazards regression, whereas we utilized an entirely 

different methodology that captures other aspects of associations between risk factors and 

outcomes. Although the exact reasons behind these contradicting results should be 

clarified in further investigations, our findings underscore the necessity of sex-specific 

approaches in the management of HFrEF patients. 
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5.4 Limitations 

Despite the highlighted strengths of the presented studies, each of them has 

limitations to be acknowledged.  

In the first study, the follow-up duration and sample size for patients with reduced 

EF were modest and potentially averted us from capturing a greater number of cardiac 

events to test the applicability, disease trajectory over time, and ability of our model to 

predict measurable isolated endpoints. Furthermore, specific therapeutic interventions 

that targeted any specific region on the loop or types of therapies that could change the 

patients’ prognoses were not included in the study. This represents a logical next step that 

would be required to address in future studies. The addition of biomarkers and novel 

echocardiographic parameters, such as strain and strain rate, could provide an added 

benefit to the model and should also be investigated in the future. 

As the second and third studies have similar design and methodology, they have 

some limitations in common. First, both studies represent results from a single center. As 

we were aware of this limitation, we performed hyperparameter tuning with 10-fold cross-

validation in the training cohorts, and we also tested our models in statistically 

independent test cohorts to enhance generalizability. Nonetheless, as the next step, the 

robustness of our models should be tested in external populations as well. Second, the 

utilized databases bear the inherent limitations of retrospective data collection, such as 

the higher proportion of missing data (compared to prospective trials) and the 

heterogeneity partly attributable to the changes in guideline recommendations over the 

years. However, the use of such real-world data holds the potential for better 

generalizability. Third, our models use baseline (pre-implantation and procedural) 

variables without incorporating the time-varying values of these parameters. Although a 

dynamic model integrating values of the same parameter from multiple time points may 

be superior, in the present studies, we aimed to predict all-cause mortality using clinical 

data that could be acquired at the time of device implantation. Finally, there may remain 

additional domains of variables (e.g., imaging data, novel biomarkers, genetics, or quality 

of life questionnaires) that could further improve the predictive capability of our models. 

Future work should explore the addition of such features to enhance the models proposed 

in the presented studies.  
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6. CONCLUSIONS 

1. Based on our first study, in which we applied TDA to analyze the retrospectively and 

prospectively collected echocardiographic data of a large patient cohort with varying 

degrees of LV structural and functional remodeling, we reached the following 

conclusions: 

1.1 TDA is a robust data analytical approach that is capable of effectively integrating 

multiple echocardiographic parameters of LV structure and function into a looped 

patient-patient similarity network in which subjects could be mapped to specific 

locations associated with distinct disease stages and clinical outcomes. 

1.2 TDA can be utilized to trace the progression of cardiac dysfunction in patients as 

they travel through cycles of compensation and decompensation within a looped 

disease space. 

1.3 TDA may have broad implications for developing clinical risk stratification 

schemes using patient-patient similarity networks and bring us one step closer to 

precision medicine. 

2. In our second study, in which we implemented and evaluated various ML algorithms 

to predict all-cause mortality in patients undergoing CRT implantation, we came to 

the following conclusions: 

2.1 By capturing the non-linear associations between predictors and outcomes, our 

CIRF-based risk stratification system – the SEMMELWEIS-CRT score – 

achieved high performance in predicting 1-, 2-, 3-, 4-, and 5-year all-cause death 

in patients undergoing CRT implantation and effectively outlined patient 

subgroups at high risk for mid- and long-term mortality. 

2.2 The SEMMELWEIS-CRT score outperformed several conventional statistics-

based risk scores, namely the SHFM, the VALID-CRT, the EAARN, the 

ScREEN, and the CRT-score. 

2.3 The proposed model laid the foundation stone for future testing of its clinical 

utility as a decision support tool to optimize candidate selection and improve the 

prognostication of CRT patients. 

3. Our third study, in which we used ML algorithms to explore the sex-specific 

differences and similarities in the predictors of all-cause mortality among patients 

undergoing CRT, led us to the following conclusions: 
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3.1 Female sex was found to be associated with significantly better survival rates in 

our cohort of CRT patients. 

3.2 Using CIRF in combination with easily obtainable clinical features, we could 

effectively predict 1- and 3-year all-cause mortality in patient subsets containing 

males or females exclusively. 

3.3 Sex-specific patterns were identified in the predictors of mortality, which also 

changed over time. The role of HF etiology (ischemic or non-ischemic), NYHA 

functional class, and LVEF were more pronounced in females, whereas 

hemoglobin concentration, QRS morphology, and treatment with allopurinol were 

notably more predictive for all-cause mortality in males.  
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7. SUMMARY 

In cardiovascular medicine, one of the major priorities is to prevent adverse 

clinical events and hospitalization by risk factor management and by earlier detection of 

subclinical cardiac dysfunction. To improve predictive modeling and elucidate novel 

determinants of a specific outcome, ML has been increasingly applied in HF research. 

ML algorithms can account for interactions between myriads of predictors and their non-

linear associations with outcomes; thus, their utilization could potentially lead to 

improved predictive models. In this thesis, the potentials of ML were demonstrated 

through three studies aiming to improve the prognostication of HF patients. 

Using retrospectively and prospectively collected echocardiographic data, we 

illustrated that a patient-patient similarity network is suitable for mapping cardiac 

dysfunction without the constraint of any a priori diagnostic system in varying degrees of 

LV structural and functional remodeling. By integrating echocardiographic features, 

TDA created a looped network in which patients could be mapped to specific locations 

associated with distinct disease stages and clinical outcomes. Moreover, the created 

topological network enabled us to trace the progression of cardiac dysfunction in patients 

as they travel through cycles of worsening cardiac function and recovery within a looped 

disease space. 

We also demonstrated that ML can capture high-dimensional, non-linear 

relationships among clinical features of patients undergoing CRT implantation, and it can 

be used to develop a risk stratification system that predicts 1-, 2-, 3-, 4-, and 5-year all-

cause mortality more accurately than the currently available, conventional statistics-based 

risk scores. As the relative importance of features explaining sex-related differences in 

outcomes is scarcely explored in this patient population, we also aimed to assess the sex-

specific differences and similarities in predictors of 1- and 3-year all-cause mortality 

utilizing ML techniques. Our analysis revealed sex-specific patterns in the predictors of 

mortality, which also changed over time. 

In summary, ML and TDA offer practical and robust solutions for personalized 

risk stratification and prognostication in cardiovascular medicine and may enable the 

identification of patient populations who are more likely to respond to a specific therapy.  
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8. ÖSSZEFOGLALÁS 

A kardiovaszkuláris medicinában kiemelt jelentőséggel bír a nemkívánatos 

klinikai események hatékony megelőzése, melyhez elengedhetetlen a rizikófaktorok 

megfelelő kezelése és a szubklinikus kardiális diszfunkció korai felismerése. Ezt a célt 

szolgáló prediktív modellek tökéletesítése és az adott klinikai végpont prediktorainak 

feltárása érdekében egyre szélesebb körben kerül alkalmazásra a gépi tanulás. A gépi 

tanulásban rejlő lehetőségeket három olyan vizsgálaton keresztül mutattuk be, amelyek 

célja a szívelégtelenségben szenvedő betegek prognosztikációjának javítása. 

Retrospektív és prospektív echokardiográfiás adatbázisok felhasználásával 

bemutattuk, hogy különböző mértékű strukturális és funkcionális bal kamra remodellációt 

mutató betegek úgynevezett hasonlósági hálózata alkalmas a kardiális diszfunkció teljes 

spektrumának feltérképezésére. Az echokardiográfiás paraméterek topologikus 

elemzésével egy olyan körkörös hálózatot hoztunk létre, melynek egyes régiói a kardiális 

diszfunkció bizonyos stádiumainak feleltek meg, illetve eltérést mutattak a klinikai 

kimenetel tekintetében is. Továbbá, a topológiai hálózat segítségével lehetőségünk volt a 

kardiális diszfunkció progressziójának nyomon követesére az egyes betegeknél. 

Szintén demonstráltuk, hogy a gépi tanulás képes modellezni a kardiális 

reszinkronizációs terápián áteső betegek klinikai jellemzőiben rejlő sokdimenziós, 

nemlineáris kapcsolatokat. Így ezek az algoritmusok alkalmasak voltak egy olyan rizikó 

stratifikációs rendszer létrehozására, amely pontosabban prediktálta az 1, 2, 3, 4 és 5 éves 

összhalálozást, mint a jelenleg rendelkezésre álló, hagyományos statisztikán alapuló 

rizikóbecslő pontrendszerek. Mivel az összmortalitás prediktorainak relatív 

fontosságában fellelhető nemi különbségeket korábban alig vizsgálták ebben a 

betegpopulációban, ezért gépi tanulási technikák segítségével meghatároztuk az 1- és 3 

éves összhalálozás prediktorainak nemek közti különbségeit. Elemzésünk a nők és férfiak 

esetében is karakterisztikus mintázatokat tárt fel az összmortalitás prediktoraiban, 

amelyek az implantációtól eltelt idő függvényében jelentős változásokat mutattak. 

Összefoglalva, a gépi tanulás és a topologikus adatelemzés robusztus megoldást 

kínál a kardiovaszkuláris betegek személyre szabott rizikóbecslésére és 

prognosztikációjára, illetve lehetőséget nyújt azon betegpopulációk azonosítására, 

amelyek nagyobb valószínűséggel reagálnak kedvezően egy adott kezelésre.  
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