
1 

 

SEMMELWEIS EGYETEM 

DOKTORI ISKOLA 

 

 

Ph.D. értekezések 

 

 

2989. 

 

 

ROKAI JÁNOS 

 

 
 

 

 

 

 

Funkcionális Idegtudományok 

című program 

 

 

  
 
 

 

 
Programvezető: Dr. Sperlágh Beáta, c. egyetemi tanár 

Témavezető: Dr. Márton Gergely, tudományos főmunkatárs 
                                                                

 

DOI:10.14753/SE.2024.2989



2 

  

SPIKE SORTING USING DEEP LEARNING  
 

 

PhD thesis 

 

 

 János Rokai, MD 

 

János Szentágothai Doctoral School of Neurosciences Semmelweis 

University  

  

 
 

Supervisor:     Gergely Márton, Ph.D 

Official reviewers:    Péter Barthó, Ph.D 

     Csaba Dávid, Ph.D 

 

 

Head of the Complex Examination Committee:        Alán Alpár, MD, D.Sc 

 

Members of the Complex Examination Committee:     László Acsády, D.Sc 

      Zoltán Somogyvári, Ph.D

  

 

 

Budapest 

2023 

DOI:10.14753/SE.2024.2989



3 

Table of Contents 

  

Table of Contents .............................................................................................................. 3 

List of Abbreviations ........................................................................................................ 6 

1. Introduction ............................................................................................................... 8 

1.1. Electrophysiology .................................................................................................. 8 

1.2. Local Field Potential .............................................................................................. 8 

1.3. Unit Activity .......................................................................................................... 9 

1.4. Spike sorting process ............................................................................................ 11 

1.4.1. Filters and Detectors....................................................................................... 11 

1.4.2. Feature extraction .......................................................................................... 14 

1.4.3. Clustering ...................................................................................................... 15 

1.5. End-to-end / automated solutions ........................................................................ 17 

1.5.1. Online spike sorters ....................................................................................... 17 

1.5.2. Offline spike sorters ...................................................................................... 17 

1.6. Challenges ............................................................................................................ 21 

1.6.1. Noise.............................................................................................................. 21 

1.6.2. Lack of ground truth data .............................................................................. 21 

1.6.3. Overlapping spikes ........................................................................................ 22 

1.6.4. Drifting .......................................................................................................... 23 

1.6.5. Scalability ...................................................................................................... 24 

2. Objectives ................................................................................................................ 26 

2.1. Applying semi-supervised deep learning methods to spike sorting ..................... 26 

2.2. Developing a deep learning solution for edge devices ........................................ 26 

3. Methods ................................................................................................................... 27 

DOI:10.14753/SE.2024.2989



4 

3.1. Overview of the working environment and key tools utilized ............................. 27 

3.2. Overview of the used datasets ............................................................................. 28 

3.2.1. Fiath dataset................................................................................................... 28 

3.2.2. Paired datasets ............................................................................................... 28 

3.2.3. Hybrid Janelia ............................................................................................... 29 

3.3. Overview of the evaluation metrics ..................................................................... 30 

3.3.1. Standard metrics ............................................................................................ 30 

3.3.2. Custom evaluation methods .......................................................................... 32 

3.4. Methods related to applying semi-supervised deep learning methods to spike 

sorting ......................................................................................................................... 34 

3.4.1. Autoencoders ................................................................................................. 34 

3.4.2. β-VAE ............................................................................................................ 35 

3.4.3. Model architecture......................................................................................... 37 

3.4.4. Preprocessing ................................................................................................ 39 

3.5. Methods related to developing a deep learning solution for edge devices .......... 41 

3.5.1. Nearest-neighbor contrastive learning .......................................................... 41 

3.5.2. Single-shot detection ..................................................................................... 44 

3.5.3. MobileNetV2 ................................................................................................. 45 

3.5.4. EdgeTPU ....................................................................................................... 47 

4. Results ..................................................................................................................... 49 

4.1. Results related to applying semi-supervised deep learning methods to spike sorting

 .................................................................................................................................... 49 

4.1.1. Results from the Kampff dataset ................................................................... 51 

4.1.2. Results from the Fiath dataset ....................................................................... 52 

4.1.3. Results from the Hybrid Janelia dataset ........................................................ 54 

4.1.4. Assessment of Sorting Efficiency ................................................................. 56 

DOI:10.14753/SE.2024.2989



5 

4.2. Results concerning to developing a deep learning solution for edge devices...... 58 

4.2.1. Results of the unsupervised part.................................................................... 58 

4.2.2. Results of the supervised part........................................................................ 60 

5. Discussion ............................................................................................................... 62 

5.1. Applying semi-supervised deep learning methods to spike sorting ..................... 62 

5.2. Developing a deep learning solution for edge devices ........................................ 64 

5.2.1. Self-supervised model ................................................................................... 64 

5.2.2. Supervised model .......................................................................................... 65 

5.3. TPU inference ...................................................................................................... 66 

5.3.1. Scalability ...................................................................................................... 67 

6. Conclusions ............................................................................................................. 68 

7. Summary ................................................................................................................. 69 

8. References ............................................................................................................... 70 

9. Bibliography of the candidate`s publications .......................................................... 83 

9.1. Papers closely related to the PhD dissertation ..................................................... 83 

10. Acknowledgements ............................................................................................. 84 

 

  

DOI:10.14753/SE.2024.2989



6 

List of Abbreviations 

AE   Autoencoder 

ASIC   Application-Specific Integrated Circuits  

BCI   Brain-computer interface  

Bi-LSTM  Bidirectional long-short term memory 

CDBM  Coral Development Board Mini 

CNN   Convolutional Neural Network 

CNS    Central Nervous System 

CPU   Central processing unit  

CUA   Coral USB Accelerator  

DBS   Distance between clusters 

DWT   Discrete Wavelet transform 

ECoG    Electrocorticography 

EEG   Electroencephalography 

FLOPS  Floating point operation per second  

FN   False negative 

FP   False positive 

FPGA   Field-Programmable Gate Array  

GPU   Graphical processing unit  

ICA   Independent Component Analysis 

LFP   Local field potential  

LSTM   Long-short term memory 

MEA   Microelectrode array 

MES   Mean Embedding similarity 

MST   Minimum Spanning Tree 

MUA   Multiple Unit Activity 

NMS   Non-max suppression 

NN   Nearest-neighbor 

NNCLR  Nearest-neighbor contrastive learning 

P2P   Peak to Peak 

PCA   Principal Component Analysis 

DOI:10.14753/SE.2024.2989



7 

PNR   Positive-negative label ratio  

RELU   Rectified Linear Unit  

SNR   Signal to Noise Ratio 

SPC   Superparamagnetic clustering 

SSD   Single Shot Detector 

SUA   Single Unit Activity  

TEO   Teager energy operator  

TES    Template Embedding Similarity  

TN   True negative  

TOPS   Tera operations per second  

TP   True positive  

TPU    Tensor Processing Unit 

t-SNE   t-distributed stochastic neighbor embedding  

VAE   Variational Autoencoder 

 

  

DOI:10.14753/SE.2024.2989



8 

1. Introduction 

1.1. Electrophysiology  

The development of electrophysiological techniques has progressed significantly over the 

centuries. Luigi Galvani's observation in 1791 of electric currents inducing muscle 

contraction marked a pivotal moment. In 1952, Hodgkin and Huxley's invention of the 

"voltage clamp" technique and Hubel and Wiesel's use of electrophysiological recordings 

for understanding higher visual processing further advanced the field. Today, 

electrophysiology encompasses a wide range of complex solutions. 

Extracellular recording, particularly with small-diameter electrodes, has become a 

dominant technique in neuroscience research. It enables the detection of action potentials 

from individual neurons, providing insights into neuron-level activity. 

Electrophysiology techniques can be categorized based on the recording-site used. 

Electroencephalography (EEG) measures the summed extracellular activity of cortical 

pyramidal cells using on-scalp electrodes. It is a non-invasive method but offers low 

spatiotemporal resolution of brain activity. Electrocorticography (ECoG) involves 

placing electrodes on the brain surface, providing better spatiotemporal resolution but 

requiring invasive installation. In-depth electrodes offer the highest spatiotemporal 

resolution but involve the most invasive installation procedure. 

To address the challenge of mixed signals from nearby neurons, spike sorting algorithms 

were developed. These algorithms separate single-unit activity from multiunit activity, 

allowing for precise analysis and decoding of neural signals. 

This work focuses specifically on the signals and analysis of in-depth electrodes. With 

their high spatiotemporal resolution, in-depth electrodes distinguish two major 

components: the low-frequency local field potential (LFP) and the high-frequency 

extracellular manifestation of action potentials from nearby individual neurons, also 

known as "spikes." 

1.2. Local Field Potential  

The extracellular voltage fluctuations generated by the collective activity of neurons in a 

local region of the brain are referred to as the local field potential. These fluctuations are 

DOI:10.14753/SE.2024.2989



9 

produced by transmembrane currents, which can originate from various sources, 

including synaptic activity, fast activity potentials, calcium spikes, intrinsic currents and 

spike afterhyperpolarizations (1). The contribution of the different currents to the 

recorded LFP is proportional to their distance from the recording electrode. Due to the 

multitude of contributing sources, interference occurs both spatially and in the frequency 

domain. Since distance is the primary factor influencing the nature of LFP, its structure is 

predominantly determined by the activity of neighboring cells, thereby providing a 

localized measure of neural activity surrounding the electrode. 

These fluctuations can be detected using microelectrodes implanted in the brain tissue. 

The LFP signal is typically measured as a voltage fluctuation over time, and it has a 

characteristic frequency range of a few Hz to a few hundred Hz (usually up to 300 Hz).  

1.3. Unit Activity  

Unit activity, also known as spike, refers to the electrical activity generated by individual 

neurons, more specifically to the action potentials.  

The axonal membrane potential of neurons gives rise to action potentials. These action 

potentials are constructed by different channels located in the axonal membrane, 

including voltage-gated sodium (Na+) channels and potassium (K+) channels.  

The membrane of a neuron at resting state is typically impermeable to most charged ions, 

which enables ion pumps to distribute different ions in different proportions between the 

extracellular and intracellular spaces. This process results in higher concentrations of Na+, 

Ca++, and Cl- ions outside of the cell, while K+ ions are more concentrated inside the 

neuron. However, passive K+ channels allow for the flow of K+ ions between the two 

sides of the membrane, which maintains the membrane potential close to the potassium 

reversal potential (resulting in a membrane potential of around -70mV) described by the 

Nernst equation. In the course of an action potential, voltage-gated Na+ channels open, 

facilitating the rapid influx of Na+ ions into the neuron, causing the membrane potential 

to deviate towards the reversal potential of sodium (approximately +55mV). The 

principles and mechanisms behind the electrical activity of neurons were first described 

by Hodgkin and Huxley (2–4).  

DOI:10.14753/SE.2024.2989



10 

The membrane potential is the result of ionic currents that are able to pass through the 

membrane in a proportional manner to their permeability, which is regulated by ion 

channels. At the dendritic level, synaptic activities are convolved and summed, and if the 

summed value reaches a threshold at the axon initial segment, it can trigger an action 

potential in an "all-or-nothing" fashion. Fast voltage-gated Na+ channels are major 

contributors to the initiation of action potentials. These channels provide the Na+ currents 

that are responsible for the sharp depolarizing effect at the start of the action potential. 

The effects of the action potential are not limited to intra-cellular processes and can be 

measured extracellularly with various recording techniques. 

The extracellular effect, or the unit activity can be measured with inserted measuring 

electrodes into the extracellular space, where single unit activity (SUA) and multiple unit 

activities (MUA) can be recorded.  

One important characteristic of SUA is its frequency range. The frequency range of SUA 

typically falls between 300-3000 Hz. This high frequency range is due to the fast 

transmembrane processes involved in action potential generation. The amplitude of unit 

activities recorded with an electrode is strongly influenced by the distance between the 

source of the activity and the electrode. This can make it challenging to detect spikes from 

neurons that are further away, as their amplitudes may be lower and more difficult to 

distinguish from background noise. In addition to frequency, the amplitude and waveform 

of SUA signals can also provide information about the neuron's behavior.  

The activity of the nearby neurons around the measuring electrode can provide 

information about their role in different processes, contributing to a more complete 

understanding of various brain functions, such as the thalamus or hippocampus. 

Electrophysiological recordings have been instrumental in identifying and characterizing 

different types of neurons and their interactions within neural networks, such as the 

hippocampal place cells (5,6) or the grid cells (7,8) in the entorhinal cortex. Place cells 

fire selectively in specific locations or environments, indicating the neural representation 

of space, while grid cells exhibit a regular firing pattern, representing the animal's location 

on a two-dimensional plane. These findings have played a substantial role in enhancing 

our understanding of the neural mechanisms that underlie spatial navigation and memory. 

The identification and characterization of different types of neurons provide insights into 

DOI:10.14753/SE.2024.2989



11 

the functional organization of the brain and have implications for understanding various 

neurological and psychiatric disorders. Extracellular recordings have also been used in 

neuroprosthetic devices (9–11), where neural activity is recorded and used to control 

artificial limbs or other devices. 

Spike sorting is a critical step in the analysis of extracellular recordings and involves 

identifying and separating individual SUA signals from other sources of electrical 

activity. Spike sorting can be a challenging problem due to the variability of SUA 

waveforms, the presence of noise, and the potential overlap of signals from different 

neurons. Several algorithms have been developed to address this problem, including 

template matching, principal component analysis, and clustering algorithms.   

1.4. Spike sorting process 

1.4.1. Filters and Detectors  

The first step in spike detection is usually filtering the wideband data from local field 

potential signals, low and high-frequency noises. This filtering is often performed in the 

frequency domain and typically falls between 300 and 3000 Hz (12,13). Once the data 

has been filtered, various methods can be used to detect the action potentials.  

One common approach is the threshold-based method (14–16), where a threshold is set 

based on the median value of the given channel ( eq 1.). 

Other methods use different types of energy operators to identify spikes (17–20). Wavelet 

decomposition is another approach (21), where the signal is decomposed into different 

frequency bands using wavelets, and spikes are detected in each channel separately. 

 𝑇𝑐 =
median(𝐷𝑐)

0.6745
 (1) 

1.4.1.1. Teager energy operator thresholding TEO 

The Teager energy operator (TEO) is a non-linear signal processing technique that 

provides an estimate of the instantaneous energy of a signal. TEO is used in various 

applications such as speech processing, image processing, and biomedical signal 

processing. In spike detection , TEO can be used as a thresholding technique to detect 

spikes in extracellular recordings (18,22). 

DOI:10.14753/SE.2024.2989



12 

TEO is calculated as the difference between the squared value of the signal and the 

product of the adjacent samples (eq.2). The resulting energy signal emphasizes high-

frequency components and suppresses low-frequency components, making it effective for 

detecting spikes in extracellular recordings. 

𝑇𝐸𝑂(𝑥, 𝑡) =  𝑥𝑡
2 −  𝑥𝑡−1𝑥𝑡+1 (2) 

The thresholding process involves setting a threshold value based on the estimated noise 

level of the recording. The signal is then compared to the threshold, and samples above 

the threshold are considered spike candidates. The TEO thresholding technique is 

effective at detecting spikes in noisy recordings, as it is less sensitive to low-frequency 

noise than other thresholding techniques. 

One advantage of TEO thresholding is its computational efficiency, as it requires only 

simple arithmetic operations. Additionally, TEO thresholding can be easily adapted to 

various types of extracellular recordings, including recordings with different electrode 

configurations and sampling rates. 

However, TEO thresholding has some limitations. It may fail to detect spikes with low 

energy levels, and it is sensitive to non-stationary noise, which can result in false 

detections. Therefore, TEO thresholding is often used in combination with other spike 

detection techniques to improve the overall spike detection performance. 

1.4.1.2. Template matching  

Template matching is a widely used method in spike detection, where spikes are detected 

by comparing the recorded waveform with a set of pre-defined templates (23,24). The 

basic idea is that the shape of the recorded waveform for a given neuron remains constant 

from one spike to another, and therefore, a template can be constructed for each neuron 

based on a subset of its spikes. The templates are then used to detect new spikes by 

computing the correlation between the recorded waveform and each template. 

In the template matching approach, the detection process typically involves two steps: 

template construction and template matching (24). In the template construction step, a set 

of waveforms that correspond to a single neuron is extracted from the recorded data. 

These waveforms are then aligned in time, relative to a common reference point, typically 

the peak or trough of the waveform, to account for small variations in the time of 

DOI:10.14753/SE.2024.2989



13 

occurrence of the spike. The aligned waveforms are then averaged to produce a template 

waveform that represents the typical shape of the spikes for that neuron. The template 

waveform is then normalized to have unit energy and used in the template matching step. 

In the template matching step, the recorded waveform is compared with each template 

waveform using a correlation coefficient or other similarity measure. The template 

waveform that maximizes the similarity measure is considered to be the best match, and 

a spike is detected if the similarity measure exceeds a certain threshold. The threshold is 

typically set to a value that ensures a low false positive rate while still detecting a high 

percentage of true spikes. 

Template matching has several advantages as a spike detection method. It is highly 

specific to individual neurons and can be used to detect spikes from overlapping neurons 

with high accuracy. It is also computationally efficient and can be easily implemented on 

hardware devices. However, it requires a set of pre-defined templates for each neuron, 

which can be time-consuming to construct and may not capture all the variability in the 

shape of the spikes. Additionally, the method may not be robust to changes in the 

waveform shape due to changes in the electrode position or other factors. 

1.4.1.3. Discrete Wavelet transform  

Discrete Wavelet transform (DWT) is often used to filter out noise and baseline drift, 

leaving behind the high-frequency spikes (25,26). The DWT decomposes the signal into 

different scales and time-frequency domains, allowing the extraction of specific signal 

features at different resolution levels. This decomposition enables a multi-scale analysis 

of the signal, which can be useful in detecting spikes that occur at different amplitudes 

and frequency ranges. The DWT coefficients are then thresholded to remove noise and 

extract only the wavelet coefficients that correspond to the spike waveform. After the 

thresholding step, the remaining wavelet coefficients can be reconstructed back into a 

spike waveform. This waveform can then be compared to a template waveform to 

determine if it matches a known spike shape. If the waveform matches the template, it is 

classified as a spike. 

DOI:10.14753/SE.2024.2989



14 

1.4.1.4. Deep learning methods 

More recently, deep learning methods have also been applied to spike detection. For 

example, a single dense layer has been used to detect spikes (27), and LSTM layers have 

been used to evaluate recordings per data point (28). These approaches use neural 

networks to learn patterns in the data that correspond to spikes and can achieve high 

accuracy in detecting spikes. 

In case of (27), fixed-length snippets are extracted from the filtered timeseries, and spike 

detection is performed individually for each channel. The fixed-length snippets are then 

inputted into a single dense layer. Following this, a Rectified Linear Unit (RELU) 

activation function is applied, and the resulting output is aggregated into a single output 

neuron. The output neuron employs a sigmoid function to produce the probability of the 

input snippet containing a spike or not. 

In a previous study (28), the combination of Convolutional layers and LSTM cells was 

explored. The aim of this hybrid architecture was to exploit the spatial filtering 

capabilities inherent in Convolutional layers, while also incorporating the memory and 

temporal modeling abilities provided by LSTM cells. By integrating these two 

components, the network was able to simultaneously consider both the local spatial 

context and the sequential temporal context during the process of making spike detection 

decisions. 

1.4.2. Feature extraction  

In spike sorting, the extraction of distinctive features from the spikes is crucial for 

accurate signal decoding.  

After successful data filtering and action potential detection, the spikes need to be 

realigned for further analysis. This involves binning them into fixed-length windows and 

aligning based on a temporal reference point, like maximum value or slope (29,30). While 

this method is crucial for clustering alternatives, it may be limited by high noise 

corruption (31). Upsampling and super-resolution alignment can mitigate these issues 

(32). 

Among the widely favored techniques for reducing dimensionality is principal component 

analysis (PCA) (33–38). This method involves creating a matrix of orthogonal basis 

DOI:10.14753/SE.2024.2989



15 

vectors found within the feature space that encompass the most significant variations. A 

similar alternative to PCA, the independent component analysis (ICA) has been also used 

in several studies (39–41). 

Other feature extraction methods consist of optimal wavelet transforms (42), wavelet 

packet decomposition used with support vector machine (43) or Laplacian eigenmaps 

(16). 

1.4.3. Clustering  

Clustering plays a crucial role in decoding extracellular action potentials. Clustering 

algorithms can be categorized as model-based or non-model-based, acknowledging the 

substantial differences within each group. 

Model-based approaches, such as Bayesian methods, expectation maximization, and 

maximum likelihood estimation, utilize spike probability distributions provided by 

generative models. These methods exhibit resilience to noise associations and enable 

cluster visualization (44). On the other hand, non-model-based methods focus on 

classification tasks. Manual clustering relies on apparent factors such as spike amplitude, 

duration, and channel location as indicators for patterns. These approaches have 

progressively given way to minimally supervised or unsupervised methods, including k-

means clustering from the partitional subclass. 

Learning-based clustering incorporates diverse approaches, ranging from single-layer 

perceptrons to advanced spiking neural networks, to improve spike sorting performance. 

Consensus and ensemble clustering capitalize on the diversity present in various 

clustering algorithms.  

In conclusion, there is no universally applicable clustering solution for spike sorting, and 

the selection of an algorithm depends on the specific characteristics of the data and feature 

set under consideration. 

1.4.3.1. K-means clustering 

K-means clustering is commonly used in spike sorting due to its simplicity, alongside 

other techniques such as hierarchical, graph-based, fuzzy logic, density-based, grid-

based, and learning-based methods. In K-means clustering, spike waveforms are assigned 

DOI:10.14753/SE.2024.2989



16 

to clusters by minimizing within-cluster variance or maximizing between-cluster 

separation. The algorithm iteratively updates cluster centroids until convergence is 

achieved. The choice of the number of clusters (K) is crucial and depends on the 

complexity of neural activity and desired separation level. Determining the optimal K 

value can be challenging, requiring domain knowledge and validation techniques like 

silhouette analysis. A notable limitation of K-means clustering is its underlying 

parametric assumption of spherical clusters, relying on the Euclidean distances from the 

centroids. This assumption proves inadequate for representing non-spherical neural data 

distributions, such as the ellipsoidal clusters encountered during electrode drift. 

Consequently, this parametric constraint may lead to suboptimal division of clusters and 

compromises the accuracy of spike sorting outcomes. 

1.4.3.2. Superparamagnetic clustering 

Hierarchical solutions in clustering analysis utilize Euclidean distance algorithms for 

optimal filter estimation. Graph-based clustering methods, such as spectral clustering and 

super-paramagnetic clustering (SPC) in wave_clus, incorporate nearest neighbor 

interactions. SPC draws inspiration from magnetic particle alignment to guide clustering. 

It involves randomly assigning spike waveforms to clusters, evaluating clustering energy 

based on spike similarity, and applying a sampling procedure to minimize energy by 

iteratively reassigning spikes. The process continues until a low-energy state is achieved, 

resulting in distinct clusters representing different neurons. 

1.4.3.3. HDBScan 

Density-based algorithms, like Hierarchical Density-Based Spatial Clustering of 

Applications with Noise (HDBScan), resemble human clustering strategies by focusing 

on agglomerated regions and low-density belts in the feature space. HDBScan, widely 

used in data mining and pattern recognition, has potential applications in spike sorting 

due to its ability to handle density variations and noise. HDBScan incorporates a 

hierarchical clustering approach to identify dense regions in the data based on point 

density. It constructs a Minimum Spanning Tree (MST) on the distance graph of the data 

points to capture the connectivity between these regions. The MST is then condensed into 

a dendrogram using hierarchical clustering techniques, revealing the hierarchical 

relationships between clusters of different densities. To determine the final clusters, 

DOI:10.14753/SE.2024.2989



17 

HDBScan employs a stability-based approach. It assesses the persistence of cluster 

memberships across different levels of the dendrogram, allowing for the identification of 

robust and meaningful clusters while disregarding unstable or noise-like structures. 

1.4.3.4. ISO-SPLIT 

The algorithm in ISO-SPLIT makes two key assumptions about cluster distributions 

within this feature space. Firstly, it assumes that each cluster originates from a density 

function that, when projected onto any line, exhibits unimodality with a single region of 

highest density. Secondly, it assumes that distinct clusters can be separated by a 

hyperplane, which is characterized by a relatively lower density in its surrounding 

neighborhood. These assumptions have been observed to hold for the majority of neurons 

across various brain regions, aligning with similar implicit assumptions found in many 

other neural clustering methods (45). 

1.5. End-to-end / automated solutions 

1.5.1. Online spike sorters 

On-chip spike sorters represent contemporary tools utilized for decoding neural spikes 

recorded from neural systems. These sorters predominantly rely on Field Programmable 

Gate Arrays (FPGAs) (46–49) or Application-specific Integrated Circuits (ASICs) (50–

52). Initially designed for conventional hardware, the Osort algorithm was subsequently 

adapted for FPGA platforms, combined with template matching as a clustering method 

(46,48). The FPGA implementation of Osort involves optimizing the algorithm to 

minimize memory access and numerical operations. In the most recent iterations of 

FPGA-based Osort, spatial correlation between channels is considered, utilizing a spatial 

window that operates on cluster memory (49). Another noteworthy FPGA-based 

technique is Hebbian PCA, which entails iteratively training eigenvectors for spike 

prediction (51,53,54). The growing number of publications focused on hardware-based 

spike sorting underscores the increasing emphasis on on-chip processing of neural signals 

(55).   

1.5.2. Offline spike sorters 

1.5.2.1. Kilosort 

Kilosort is a widely recognized and widely used method for end-to-end spike sorting in 

neuroscience research. Over time, Kilosort has undergone several updates and iterations 

DOI:10.14753/SE.2024.2989



18 

(56,57), each incorporating various improvements to its pipeline, enhancing its 

performance and capabilities. In Kilosort, a series of pre-processing steps are employed 

to prepare the data for spike sorting. These steps include common average referencing, 

temporal filtering, and spatial whitening, which collectively aim to eliminate low-

frequency fluctuations and correlated noise that may interfere with accurate spike 

detection and classification. To address common noise sources and fluctuations across 

channels, Kilosort utilizes zero-phase component analysis, a technique that effectively 

whitens the data. This process ensures that the data from different channels are adjusted 

to have comparable statistical properties, reducing the impact of spatial variations in noise 

and enhancing the accuracy of subsequent spike sorting steps.  

The algorithm models mean spike waveforms using singular value decomposition, 

incorporating customized "private" principal components for each spike. This method 

effectively reduces residual waveform variance compared to standard PCA 

approximation per channel. 

To infer spike times, cluster assignments, and amplitudes, Kilosort employs an integrated 

template matching framework. It identifies local maxima of dot products between 

template waveforms and raw data, considering amplitude proximity to the mean 

amplitude of the template. Spatiotemporal overlapping spikes are detected using a 

matching pursuit algorithm. Spike times, templates, and amplitudes are optimized by 

minimizing a quadratic function. Stochastic batch optimization is utilized to learn the 

templates. 

The overall process of Kilosort involves iterative optimization steps alternating between 

template matching and template optimization. Post-optimization merging is performed to 

identify pairs of clusters with continuous spike densities. The algorithm initializes with 

prototypical spikes and applies scaled K-means clustering based on local spike density. 

A key goal of Kilosort is to minimize a cost function that considers the difference between 

the recorded voltage and the model's predicted voltage. Additionally, the cost function 

includes a term that restricts the number of spikes with significantly deviant amplitudes. 

Spike times, amplitudes, templates, and cluster assignments are updated to optimize the 

cost function. The learning and inference steps are iterated until convergence, with 

additional steps for spike merging. 

DOI:10.14753/SE.2024.2989



19 

1.5.2.2. Spyking Circus 

SpyKING CIRCUS (58) is an algorithm specifically designed for robust and accurate 

spike sorting, offering advanced techniques to handle neuronal spike data recorded from 

extracellular electrodes. The algorithm consists of two main steps: clustering and template 

matching, each incorporating various processes to optimize spike sorting performance. 

During spike detection, SpyKING CIRCUS identifies spikes by detecting threshold 

crossings. Extracellular waveforms corresponding to randomly chosen spike times are 

isolated to capture the characteristics of the detected spikes. These waveforms, known as 

snippets, are then grouped based on their respective electrode positions. Clustering is 

performed separately on each group, allowing for the separation of different neurons 

within the dataset. 

To reduce noise and focus on relevant information, the snippets are masked, taking into 

consideration that a single cell's influence is localized to nearby electrodes. By retaining 

the signal on electrodes close to the voltage peak, the algorithm effectively reduces the 

memory requirements for each clustering step. PCA is employed to project the masked 

snippets into a lower-dimensional feature space. This step aids in feature extraction and 

dimensionality reduction, a common practice in spike sorting algorithms. 

SpyKING CIRCUS utilizes density-based clustering to identify centroids representing 

putative neurons within each group. The algorithm measures the density of points in the 

neighborhood of each snippet, taking into account the average distance to the 100 closest 

points and the distance to the closest point with higher density. By selecting the ten points 

with the highest ratio of distance-to-density, the algorithm determines the centroids. 

Remaining snippets are then assigned iteratively to the nearest centroid with the highest 

density, resulting in the classification of spikes to specific neurons. 

To address the issue of overlapping spikes, SpyKING CIRCUS incorporates a template 

matching step. Templates are extracted from the clusters and consist of averaged 

extracellular waveforms evoked by putative cells, along with the direction of the largest 

variance orthogonal to these average waveforms. The algorithm assumes that each 

waveform triggered by a cell is a linear combination of these components, allowing for 

variations in amplitude and shape. The template matching process uses a greedy iterative 

approach inspired by the projection pursuit algorithm, comparing the templates to the raw 

DOI:10.14753/SE.2024.2989



20 

data. The similarity between the first component of the template and the raw signal is 

evaluated, and if it falls within predetermined thresholds, the template is matched and 

subtracted from the raw signal. This process continues until no further matches can be 

made, resulting in the identification of spikes associated with specific cells. 

Upon completion of the algorithm, SpyKING CIRCUS outputs putative cells, 

characterized by their templates, along with the corresponding spike times at which the 

templates were matched to the raw data. This comprehensive approach ensures accurate 

spike sorting and provides valuable information for further analysis and interpretation of 

neuronal activity. 

1.5.2.3. MountainSort4  

MountainSort4 (45) is an advanced spike sorting algorithm that utilizes the ISO-SPLIT 

clustering algorithm as its core component. MountainSort4 is a spike sorting algorithm 

used to analyze neuronal activity in multi-electrode recordings. It involves several stages 

of preprocessing, event detection, feature extraction, clustering, and cluster consolidation. 

The preprocessing stage includes bandpass filtering each channel of the recorded signal 

between 600 Hz and 6000 Hz. Spatial whitening is then applied to remove correlations 

among channels that are not due to the neuronal signals of interest. This whitening step is 

crucial for separating nearby clusters. 

Event detection is performed independently on each electrode using the preprocessed 

(whitened) data. An event is flagged when it meets two criteria: it exceeds a detection 

threshold in standard deviations away from the mean, and there is a minimum time 

difference between two events on the same channel. 

Feature extraction is performed by extracting event clips centered around the detected 

events. PCA is then applied to compute PCA features in a high-dimensional feature space. 

Clustering is performed using the ISO-SPLIT algorithm in the n-dimensional feature 

space (n=10). The branch method is used to increase sensitivity in distinguishing between 

nearby clusters by recursively recomputing PCA features and clustering. Overall, 

MountainSort4 provides a non-parametric spike sorting approach that handles multi-

electrode recordings. 

DOI:10.14753/SE.2024.2989



21 

1.6. Challenges 

1.6.1. Noise 

In electrophysiological recordings, noise can originate from multiple sources, including 

amplifier and electrode noise, environmental noise, and background neural activity. This 

noise can introduce distortions and obscuration to spike waveforms, posing challenges in 

accurately classifying spikes based on their waveform characteristics. Several noise 

reduction techniques have been developed to address this issue, including filtering, PCA 

denoising, and wavelet denoising. However, these methods may inadvertently remove or 

distort crucial signal features, leading to difficulties in spike sorting accuracy. 

The foundation of classical signal-detection theory heavily depends on the premise that 

channels showcase the presence of additive white Gaussian noise, leading to the 

development of corresponding signal-detection techniques. However, noise in 

extracellular recordings has been found to deviate from this assumption, being both non-

white and non-Gaussian (59). Consequently, many classical techniques are not applicable 

in this context. Additionally, signal-detection approaches that do not presume Gaussian 

noise but still rely on understanding the noise distribution encounter obstacles when 

employed with neural data, primarily due to the absence of precise noise models, 

especially those that remain valid across diverse experimental configurations. 

1.6.2. Lack of ground truth data  

One of the main difficulties in spike sorting is the lack of ground truth data. The lack of 

a gold standard makes it difficult to evaluate the performance of spike sorting algorithms 

and to compare different methods.  

The utilization of synthetic datasets for evaluating spike sorting algorithms offers certain 

advantages; however, there are notable disadvantages associated with their use. These 

drawbacks primarily stem from the inherent limitations of synthetic datasets in faithfully 

representing the complexities and intricacies of real neural data. 

One significant disadvantage is the limited representativeness of synthetic datasets. Due 

to their artificial nature, synthetic datasets often fail to capture the full range of variations 

and nuances present in real neural recordings. They are typically generated based on 

simplified assumptions and models, which may not adequately encompass the diverse 

DOI:10.14753/SE.2024.2989



22 

array of spike shapes, noise patterns, and interneuronal correlations encountered in actual 

experimental settings. Consequently, the performance assessment of spike sorting 

algorithms solely based on synthetic datasets may not accurately reflect their real-world 

capabilities and generalizability. 

In contrast, paired datasets, which contain simultaneous recordings of both extracellular 

and intracellular signals from individual neurons, are an important source of ground truth 

data. However, paired datasets are relatively scarce and time-consuming to obtain, 

limiting their use in developing and evaluating spike sorting algorithms. 

To address this issue, hybrid datasets have been proposed, which consist of simulated or 

partially simulated data based on real recordings. These datasets combine the advantages 

of both simulated and real data, allowing for a greater degree of control over the ground 

truth while retaining some of the complexity and variability of real data. However, hybrid 

datasets are still limited in their ability to capture the full range of variability and 

complexity in real neural recordings, and there may be differences in the statistical 

properties of simulated and real data that could affect the performance of spike sorting 

algorithms. 

1.6.3. Overlapping spikes 

The problem of spatial-temporally overlapping spikes frequently challenges spike sorting 

algorithms. When different neurons fire within a confined time window, their waveforms 

can overlap (60). This can cause difficulty in accurately detecting and sorting individual 

spikes, as they may be merged together or appear as a single large spike, making it 

difficult to extract suitable subcomponent features for clustering. 

To address overlapping spikes, various approaches have been proposed. One 

straightforward solution involves censoring spikes with double peaks to mitigate the 

problem, while deconvolution methods can be employed for cases with mild overlap (61). 

Other strategies include combining pairwise action potential waveform templates at 

different time shifts to enhance sorting accuracy (62). Alternative methods have also been 

explored: blind source separation techniques, and careful examination of spike cluster 

centers can aid in automated template merging and resolving overlapping spikes 

(34,40,63,64). Wavelet Packets Decomposition and Mutual Information (WM sorting) 

DOI:10.14753/SE.2024.2989



23 

specifically targets overlapping spikes and has shown superior performance compared to 

other methods discussed. However, its computational intensity raises concerns about its 

real-time applicability (65).  

Recently, deep learning-based approaches have also been applied to the problem of 

separating overlapping spikes. For example, some models use recurrent neural networks 

(66) to model the temporal dependencies of the spike train and estimate the firing times 

of individual neurons from the overlapping signals. 

Nevertheless, the separation of spatial-temporally overlapping spikes remains a 

challenging problem, and further research is essential to enhance the accuracy and 

efficiency of spike sorting algorithms in such scenarios. 

1.6.4. Drifting  

Drift is a prevalent issue encountered in spike sorting and single-unit recordings, arising 

from the shifting position of recording electrodes over time. The causes and duration of 

these drifts can vary. Mechanical factors, such as pressure release in the tissue after probe 

insertion, can result in gradual displacements of cells from their initial positions. 

Additionally, physiological factors including cardiac and breathing cycles, as well as 

minor animal movements during recording sessions, can contribute to drift (67–69). 

Consequently, signals from the same neuron may be detected on different channels at 

different times, leading to cluster splitting or the formation of erroneously classified 

groups of action potentials. Furthermore, drifting can affect the shape and amplitude of 

recorded waveforms, making it challenging to match them with known neuron templates. 

Several strategies have been developed to mitigate the impact of drifting in spike sorting. 

These solutions can be categorized into two main approaches: pre-processing and post-

processing (70). Pre-processing drift handling involves non-rigid spatial registration of 

extracellular signals to correct for drift. This method emulates drift-correction procedures 

utilized in calcium imaging (71), aiming to maintain the consistency of activity 

histograms over time (72,73). However, pre-registration introduces distortions to the 

input data, potentially introducing unwanted artifacts that impact spike sorting 

performance. 

DOI:10.14753/SE.2024.2989



24 

Another approach involves incorporating spike localization and motion correction to 

facilitate downstream clustering. Precise estimation of spike positions relative to the 

probe layout can serve as an additional feature for clustering. Advanced techniques such 

as variational inference (74) or point-source models (75) aimed at estimating spike 

positions and establishing depth localization. Leveraging estimated positions during 

clustering enhances the identification and tracking of distinct clusters over time (76,77). 

Alternatively, drifts can be addressed at the post-processing stage by dividing the 

recording into small overlapping temporal intervals and performing sorting independently 

on each chunk. By analyzing the overlapping regions, connections can be established, and 

cell identities can be tracked despite minor waveform variations. However, this approach 

requires running multiple instances of the spike sorting procedure, potentially slowing 

down the overall processing pipeline. 

Overall, the problem of drifting in spike sorting and single-unit recordings is a significant 

challenge that requires careful consideration in experimental design and data analysis. A 

combination of multi-channel recordings, drift correction, and denoising techniques can 

help to mitigate the effects of drifting and improve the accuracy of spike sorting. 

1.6.5. Scalability 

The advancement of electrode technologies allows for an increase in the number of 

channels on a single electrode, thereby expanding the ability to gain insights into the 

activity of larger brain areas. This enhancement enables a superior interpretation of neural 

population activity (78). However, spike sorting algorithms encounter notable challenges 

in terms of scalability, necessitating the efficient management of a substantial number of 

recorded channels and spikes. 

Larger electrode arrays and higher channel counts require the processing and analysis of 

larger data volumes. This entails tasks such as waveform detection, feature extraction, 

and clustering across multiple channels simultaneously. The complexity of these tasks 

escalates rapidly with an increasing number of channels, emphasizing the need for 

efficient algorithms and parallel computing strategies to maintain reasonable processing 

times. To tackle this challenge, an effective strategy involves embracing a divide-and-

conquer processing technique (34). This approach facilitates the identification of 

DOI:10.14753/SE.2024.2989



25 

duplicated or overlapping spikes, while also furnishing comprehensive spatial 

information action potentials sources.  

The development of scalable algorithms assumes critical importance in extracting 

meaningful neural information from recorded data while ensuring computational 

efficiency and accuracy. This necessitates continuous advancements in electrode 

technologies, as well as the design of effective data processing techniques and algorithms.  

DOI:10.14753/SE.2024.2989



26 

2. Objectives 

2.1. Applying semi-supervised deep learning methods to spike sorting  

Objective 2.1 focuses on utilizing semi-supervised deep learning methods for spike 

sorting. The primary aim is to develop and implement innovative semi-supervised deep 

learning architectures specifically designed for spike sorting applications. These 

architectures will be trained using a combination of labeled spikes, obtained through 

manual annotation, and synthetic spikes generated through a combination of unsupervised 

and supervised techniques. 

Evaluation of the developed spike sorting solution will involve rigorous testing on both 

synthetic datasets and real experimental data. Performance metrics such as accuracy, 

precision, recall, and F1 score will be used to assess the quality of the spike sorting results. 

Furthermore, the computational efficiency of the proposed method will be thoroughly 

evaluated to determine its feasibility for real-time or near-real-time applications. 

2.2. Developing a deep learning solution for edge devices  

Objective 2.2 centers around the development of a deep learning solution that is 

specifically optimized for Tensor Processing Units (TPUs). This involves adapting 

existing deep learning architectures and algorithms to efficiently utilize the parallel 

processing capabilities of TPUs. Special attention is given to designing network 

architectures that maximize the utilization of TPU's hardware features, while considering 

memory limitations and communication overhead.  

The goal of this objective is to create a deep learning solution tailored for TPUs. By 

harnessing the power of these specialized hardware accelerators, it becomes possible to 

achieve local spike sorting efficiently, even with TPUs' compact form-factor. This 

optimized solution brings the potential for achieving close to state-of-the-art performance 

in an energy-efficient manner.   

DOI:10.14753/SE.2024.2989



27 

3. Methods 

3.1. Overview of the working environment and key tools utilized 

The working environment in this scenario involves the use of Python 3 along with two 

important libraries, NumPy and Tensorflow. Python is a popular programming language 

that is widely used in data science, machine learning, and other scientific applications. 

NumPy is a library for numerical computing in Python that provides efficient array 

operations and linear algebra capabilities. Additionally, the recordings are managed 

through Spikeforest (79), a platform for managing and analyzing extracellular recordings 

from different sources. 

TensorFlow is a popular open-source deep learning framework developed by Google. It 

provides a comprehensive set of tools for building and deploying deep learning models 

across a range of platforms and devices. TensorFlow includes a flexible and intuitive 

programming interface, Keras, that allows developers to define, train, and deploy 

complex neural networks with ease. It also includes a wide range of pre-built neural 

network architectures, such as convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and transformers, as well as a variety of optimization algorithms and 

loss functions. 

Spikeforest, on the other hand, is an open-source framework for managing, analyzing, 

and sharing electrophysiology data from neural recordings. Spikeforest provides a suite 

of tools for organizing and processing data from multiple recording platforms. The 

provided database includes synthetic datasets (80,81), paired datasets (58,82) and hybrid 

datasets as well. It also includes a variety of data analysis tools, such as spike sorting 

algorithms, and allows users to easily share and collaborate on their data and analysis 

results. 

When used together, Spikeforest and TensorFlow provide a powerful set of tools for 

analyzing and processing electrophysiological data and building deep learning models for 

tasks such as spike detection, feature extraction or even end-to-end spike sorting. By 

converting recordings from Spikeforest into TensorFlow-compatible tfrecord files, users 

can take advantage of TensorFlow's flexible and efficient data processing capabilities, as 

well as its extensive library of pre-built deep learning layers.  

DOI:10.14753/SE.2024.2989



28 

3.2. Overview of the used datasets  

3.2.1. Fiath dataset 

The Fiath dataset (83) encompasses nine recordings obtained from a high-density silicon 

MEA consisting of 128 channels. The MEA features a square-shaped configuration with 

a 32 × 4 sensor array. The recordings were conducted at a sampling rate of 20 kHz and 

targeted various neocortical areas, including the somatosensory cortex, parietal 

association cortex, motor cortex, and cingulate cortex. 

To establish spike labels for the dataset, the KiloSort algorithm (56) was employed. 

Subsequently, the resulting clusters of neural activity underwent manual refinement using 

Phy and custom-written MATLAB scripts. The manual correction process involved 

several techniques, such as cluster merging, cluster separation based on Feature-View 

analysis, and the removal of clusters with fewer than 100 elements, which were 

considered noise. Clusters demonstrating low inter-unit waveform variability and 

exhibiting a distinct refractory period were deemed of high quality. 

Furthermore, additional custom scripts were applied to refine the results further by 

removing low-amplitude waveforms identified as units with a peak-to-peak amplitude of 

less than 60 μV. 

3.2.2. Paired datasets 

Paired datasets offer valuable advantages as they provide a ground-truth reference for 

real-world extracellular recordings. However, their utility is constrained by the 

requirement for intracellular monitoring, resulting in the availability of ground-truth 

labels for only one neuron. Consequently, the assessment of paired datasets is primarily 

focused on evaluating the spike detection phase of the spike sorting process. 

Since ground-truth labels are available for only one cluster among potentially numerous 

clusters, the evaluation of clustering becomes limited. Meaningful comparisons can only 

be made between the ground truth cluster and other clusters. However, evaluating the 

relationships between different clusters becomes challenging in the absence of ground-

truth labels for those clusters.  

As a result, in this work, the use of paired datasets is dedicated to the evaluation of spike 

detection systems. 

DOI:10.14753/SE.2024.2989



29 

3.2.2.1. Kampff dataset  

The Kampff Lab provided a dataset (82) that utilized both an extracellular silicon MEA 

and a glass micro-pipette to monitor the potential inside the cell body of individual 

neurons at varying inter-probe distances, ranging from 800 to 1800 μm deep in the cortex. 

The measurements were taken at a sampling rate of 30 kHz from the cortex of 

anesthetized rats. Juxtacellular signals were analyzed using a custom script based on 

thresholding, resulting in the creation of a binary label for each of the 128-channel 

recordings in the dataset.  

3.2.2.2. Boyden dataset 

The Boyden dataset (84) consists of recordings obtained using electrode arrays designed 

and constructed at the MIT Microsystems Technology Laboratories. The recording sites 

on the arrays were approximately 9 × 9 μm in size and spaced 2 μm apart in two columns, 

forming a 64x2 site grid, resulting in a total of 128 channels.  

The authors developed an automated system that simultaneously performed patch-clamp 

recordings and extracellular recordings from the same neuron. By comparing the patch-

clamp data with the extracellular recordings, they assessed how well the multielectrode 

arrays captured the spiking information from the neuron. The dataset includes recordings 

from the mammalian cortex, specifically investigating how bursting activity affects the 

performance of spike sorting algorithms on close-packed multielectrode arrays. 

3.2.2.3. Yger dataset 

The Yger dataset (58) includes recordings of ganglion cells in mice retina using loose 

patch recordings combined with dense extracellular recordings from 252 channels. The 

probe layout used is a 16x16 multi-electrode array with 30 μm spacing. However, an 8x8 

sub-array was extracted from the original 16x16 array, excluding the four corners, 

resulting in 64 channels used for the dataset. The recordings were conducted at a sampling 

rate of 20 kHz. 

3.2.3. Hybrid Janelia  

Hybrid Janelia dataset comprises a combination of real-world data and synthetic methods 

to generate a comprehensive recording. The waveform templates used in this study were 

obtained through high-speed recordings conducted at a sampling rate of 30 kHz, 

DOI:10.14753/SE.2024.2989



30 

employing electrodes spaced 5 μm apart. These recordings were part of Kampff's Ultra 

Dense Extracellular Survey, and the corresponding reference can be found in the 

literature. 

Using the real-world waveform templates as a basis, a synthetic dataset was created by 

introducing various modifications. These modifications involved the addition of noise to 

simulate real-world conditions, and in some instances, the introduction of drifting. The 

drifting was implemented using a 2D interpolation technique. 

The hybrid nature of the recordings enables the evaluation of spike sorting solutions in a 

manner that closely mimics real-world extracellular recordings. The Spikeforest platform 

provides access to individual recordings that are split into two parts, such way, one part 

can be used for training and validation, while the other part is reserved for testing 

purposes. Moreover, the recordings within the dataset can be categorized based on the 

presence or absence of drifting. This categorization provides researchers with flexibility 

in selecting recordings that align with their specific objectives. Additionally, the dataset 

encompasses recordings with different channel counts, catering to diverse experimental 

requirements. For the purposes of this study, 64 and 32 channel recordings were utilized. 

3.3. Overview of the evaluation metrics   

3.3.1. Standard metrics  

Evaluation metrics are used to measure the performance of a model's predictions. Here, 

we will discuss several evaluation metrics that are commonly used in the context of spike 

sorting. These metrics are Recall, Precision, F1 (micro, macro, weighted), and Accuracy. 

3.3.1.1. Recall 

Recall, also known as sensitivity, is a metric that measures the percentage of true positive 

results that were correctly identified by the model. It is the ratio of the number of true 

positives to the total number of actual positives (eq. 3). A high recall value indicates that 

the model is correctly identifying most of the spikes in the data. 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

DOI:10.14753/SE.2024.2989



31 

3.3.1.2. Precision 

Precision, also known as specificity, is a metric that measures the percentage of true 

positive results out of all the positive results that the model has predicted. It is the ratio 

of the number of true positives to the total number of positive predictions made by the 

model (eq. 4). A high precision value indicates that the model has a low rate of false 

positives. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

3.3.1.3. F1 scores 

F1 Score is the harmonic mean of precision and recall. It is a measure of the model's 

accuracy that takes both precision and recall into account. The F1 Score is calculated 

according to eq. 5. It is a value between 0 and 1, where 1 indicates perfect precision and 

recall, and 0 indicates the worst possible performance.  

   𝐹1 = 2 ∙
𝑅∙𝑃

𝑅+𝑃
 (5) 

𝑅𝑚 =
∑ 𝑇𝑃𝑗

𝐶
𝑗=1

∑ (𝑇𝑃𝑗+𝐹𝑁𝑗)𝐶
𝑗=1

,      𝑃𝑚 =
∑ 𝑇𝑃𝑗

𝐶
𝑗=1

∑ (𝑇𝑃𝑗+𝐹𝑃𝑗)𝐶
𝑗=1

,      𝐹1
𝑚 = 2 ∙

𝑅𝑚∙𝑃𝑚

𝑅𝑚+𝑃𝑚
 .  (6) 

𝐹1
𝑀 =

1

𝐶
∑ 𝐹1𝑗

𝐶
𝑗=1  (7) 

𝐹1
𝑊 =

∑ 𝑛𝑗∙𝐹1𝑗
𝐶
𝑗=1

∑ 𝑛𝑗
𝐶
𝑗=1

  (8) 

In multi-class classification problems, we can calculate the F1 Score for each class. The 

Micro F1 Score (eq. 6) takes TP, FP and FN globally across categories (C). The Macro 

F1 Score (eq. 7) is the unweighted average of the F1 Scores of all classes. The Weighted 

F1 Score is the weighted average of the F1 Scores of all classes, weighted by the number 

of samples in each class. 

3.3.1.4. Accuracy 

Accuracy is a metric that measures the percentage of correct predictions made by the 

model out of all the predictions made. It is the ratio of the number of correct predictions 

to the total number of predictions made by the model (eq. 9). Accuracy is not always a 

good metric for evaluating the performance of a model in spike sorting, as it can be 

DOI:10.14753/SE.2024.2989



32 

misleading in the presence of imbalanced classes or when the dataset contains many noise 

events. 

𝐴 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 (9) 

Recall, Precision, and F1 Score are commonly used metrics for evaluating the 

performance of a model. Micro F1, Macro F1, and Weighted F1 are useful when dealing 

with imbalanced datasets.  

3.3.2. Custom evaluation methods  

3.3.2.1. xSpeed 

A custom metrics, xSpeed is introduced to assess the relative acceleration of the sorting 

speed compared to the actual recording duration. The xSpeed metric serves as a 

quantitative indicator of the efficiency exhibited by the sorting algorithm, highlighting its 

ability to process data at an accelerated pace. 

To compute xSpeed, two primary parameters are considered: the record duration, 

representing the total duration of the recorded data, and the sorting time, indicating the 

time required by the algorithm to complete the sorting process. The xSpeed value is 

obtained by dividing the record duration by the sorting time, quantifying the factor by 

which the sorting speed surpasses the actual recording duration (eq. 10). 

𝑥𝑆𝑝𝑒𝑒𝑑 =
𝑅𝑒𝑐𝑜𝑟𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑜𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 (10) 

A higher xSpeed value denotes a more efficient sorting process, signifying that the 

algorithm can process the data at a significantly faster rate compared to the duration of 

the recorded data. This observation implies that the algorithm exhibits timely data 

handling capabilities, potentially leading to reduced overall processing time for sorting 

operations. 

3.3.2.2. MES 

The evaluation of the self-supervised model involved the examination of multiple 

similarity matrices. To construct the Mean Embedding Similarity (MES) matrix, 

waveform samples were processed by the model's encoder to generate feature vectors in 

a latent space. These vectors were then grouped according to their ground truth cluster 

DOI:10.14753/SE.2024.2989



33 

identity. Using the Euclidean distance calculation, the distances between the feature 

vectors within each group were determined (eq.11). The resulting distance values were 

used to populate a similarity matrix (s), which facilitated the assessment of cluster 

separability within the latent space. To normalize the values in s, the minimum and 

maximum values of s were determined. By subtracting the minimum value from each 

element (si,j) and dividing the result by the difference between the maximum and 

minimum values, the values in s were normalized. Subsequently, 1 was subtracted from 

each value to obtain the normalized value for MES (eq. 12). 

𝑠𝑖,𝑗 =  ‖
1

𝑁
∑ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑖,𝑛

𝑤 )𝑛 −
1

𝑀
∑ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑗,𝑚

𝑤 )𝑚 ‖
2
 (11) 

𝑀𝐸𝑆𝑖,𝑗 = 1 − 
𝑠𝑖,𝑗−minimum (𝑠)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑠)
  (12) 

3.3.2.3. DBS 

To create the Distance Between Clusters matrix (DBS), the distances between the 

different clusters on the channel axis (xch) were considered. The process of constructing 

the matrix involved several steps. First, a standard distance matrix (d) was created using 

eq. (13), which calculates the distance between two clusters based on their positions on 

the channel axis. Next, this matrix was normalized to ensure that all the values were 

within a specific range. Finally, the values in the matrix were inverted using Eq. (14). 

This resulted in the final distance matrix DBS, which represents the distance between the 

different clusters on the channel axis. The values in the matrix are normalized and 

inverted to ensure that they are easy to interpret and compare. 

𝑑𝑖,𝑗 =  𝑥𝑗
𝑐ℎ −  𝑥𝑖

𝑐ℎ (13) 

𝐷𝐵𝑆𝑖,𝑗 = 1 −  
𝑑𝑖,𝑗−minimum (𝑑)

𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑛𝑢𝑚𝑏𝑒𝑟
  (1) 

By combining and normalizing the MES matrix and the DBS matrix, a Combined matrix 

was formed (eq. 15). This matrix integrates both the positional differences between 

clusters along the channel axis and the similarity of their feature vectors. It provides a 

comprehensive view of cluster separability, considering both spatial positioning and 

feature characteristics. 

DOI:10.14753/SE.2024.2989



34 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
𝑀𝐸𝑆∙𝐷𝐵𝑆

maximum (ME𝑆∙𝐷𝐵𝑆)
  (2) 

3.3.2.4. TES 

Furthermore, the Template Embedding Similarity matrix (TES) was constructed to 

investigate the distances between the embeddings of cluster-wise averaged waveforms 

(eq.16).  

𝑇𝐸𝑆𝑖,𝑗 = ‖𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (
1

𝑁
∑ 𝑥𝑖,𝑛

𝑤
𝑛 ) − 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (

1

𝑀
∑ 𝑥𝑖,𝑚

𝑤
𝑚 )‖

2
 (3) 

 

3.4. Methods related to applying semi-supervised deep learning methods to spike 

sorting  

3.4.1. Autoencoders  

Autoencoder models are an unsupervised deep learning paradigm aimed at reproducing 

input data while performing feature reduction. A pivotal component in autoencoders is 

the latent layer, which acts as a bottleneck with significantly fewer nodes than the input. 

The concept of autoencoders was initially introduced in a seminal publication in 1986 

(85). 

The autoencoder formulation is defined by the following equations: 

𝒛 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝒙),
𝒙′ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒛),

 (4) 

where the encoder Encoder and decoder Decoder are differentiable functions, often 

implemented using deep learning architectures. The latent layer z serves as a compressed 

representation of the input snippet x, while x' represents the reconstructed output. 

 

The traditional principle in constructing autoencoder architectures entails mirroring the 

encoder structure to design the decoder. However, in this study, a more flexible approach 

will be adopted, which will be discussed in detail later. During training, the autoencoder 

endeavors to minimize the reconstruction error, which quantifies the discrepancy between 

the reconstructed output x' and the original input x. This reconstruction error serves as 

the optimization objective for model training. 

DOI:10.14753/SE.2024.2989



35 

Deep learning autoencoders are neural networks specifically designed to learn encoding 

and decoding processes for data compression in a compressed representation. The 

underlying idea revolves around capturing a low-dimensional representation of high-

dimensional data, yielding reconstructed data that closely approximates the original input. 

Training an autoencoder involves unsupervised learning techniques applied to a given 

dataset. 

Autoencoders comprise two fundamental components: an encoder and a decoder. The 

encoder learns to compress the input data into a condensed representation, commonly 

referred to as a latent code. Subsequently, the decoder employs this latent code to 

reconstruct the original input data. Both the encoder and decoder are typically 

implemented as neural networks, and their weights are learned through backpropagation 

and gradient descent algorithms. The training process aims to minimize the reconstruction 

loss, which quantifies the discrepancy between the original input data and the 

reconstructed output data (eq.18). The reconstruction loss is typically evaluated using 

distance metrics such as mean squared error or binary cross-entropy. 

𝐿(𝒙, 𝒙′) = ∑‖𝑥𝑖 − 𝑥′𝑖‖2
2

𝑁

𝑖=0

= ∑‖𝑥𝑖 − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑖))‖
2

2
𝑁

𝑖=0

, (18) 

Autoencoders find applications in diverse domains, including data compression, image 

denoising, anomaly detection, and dimensionality reduction. By learning a compressed 

representation of high-dimensional data, autoencoders offer a means to reduce storage 

and memory requirements for datasets. Moreover, autoencoders have been successfully 

employed in spike detection for spike sorting tasks, where they learn templates of spike 

waveforms to facilitate the sorting process. 

3.4.2. β-VAE 

β-VAE, an extension of the variational autoencoder (VAE), builds upon the core concept 

of autoencoders. As described previously, autoencoders are neural networks that learn a 

compressed representation of data through an encoder and a decoder. The VAE, a type of 

autoencoder, introduces a probabilistic framework for modeling the input data and 

mapping it to a latent space. 

DOI:10.14753/SE.2024.2989



36 

The likelihood q(z|x) in VAE is approximated by the probabilistic encoder q, assuming a 

Gaussian distribution for q(z|x). This means that the probabilistic encoder outputs the 

mean and variance of the normal distribution q(z|x), represented as zi ∼ N(μi(x), σi(x)). 

In the context of β-VAE, the conditional probability of data x given latent variable z can 

be expressed as: 

𝑝(𝒙|𝒛) =
𝑞(𝒛|𝒙)𝑝(𝒙)

𝑝(𝒛)
 . (19). 

Here, 𝑝(𝒙|𝒛)represents the likelihood of observing data x given latent variable z, 𝑞(𝒛|𝒙) 

is the approximated likelihood derived from the probabilistic encoder, and 𝑝(𝒛) is the 

prior distribution of the latent variables. 

The prior distribution 𝑝(𝒛) is assumed to be a normal distribution, denoted as 𝑝(𝒛) = N(0, 

I), where N(0, I) represents a normal distribution with a mean of zero and a covariance 

matrix of identity. This assumption ensures that the latent variables follow a standard 

normal distribution, regularizing the latent space. 

The loss function of β-VAE, denoted as 𝐿𝛽−𝑉𝐴𝐸(𝜃, 𝜑; 𝛽), combines the reconstruction 

loss and the Kullback-Leibler (KL) divergence loss in the following way: 

𝐿𝛽−𝑉𝐴𝐸(𝜃, 𝜑; 𝛽) = E𝑞𝜑(𝒛|𝒙)[log 𝑝𝜃 (𝒙|𝒛)] − 𝛽DKL (𝑞𝜑(𝒛|𝒙) ||  𝑝(𝒛)) . (20) 

In equation (20), 𝐸𝑞𝜑(𝒛|𝒙)[𝑙𝑜𝑔 𝑝𝜃 (𝒙|𝒛)] represents the expected reconstruction loss, 

which measures the ability of the decoder to reconstruct the input data. 

𝐷𝐾𝐿 (𝑞𝜑(𝒛|𝒙) ||  𝑝(𝒛)) denotes the KL divergence loss, which ensures that the 

distribution of the latent space 𝑞(𝒛|𝒙) remains close to the prior distribution 𝑝(𝒛). The 

hyperparameter β controls the trade-off between the reconstruction loss and the KL 

divergence loss, allowing for the adjustment of the emphasis on disentanglement. 

By tuning the value of β, the loss function 𝐿𝛽−𝑉𝐴𝐸 promotes the disentanglement of latent 

variables in the learned representation. A higher β encourages more disentangled 

representations, where each dimension of the latent space corresponds to a distinct feature 

of the input data. Conversely, a lower β places greater emphasis on the reconstruction 

capability of the network. 

DOI:10.14753/SE.2024.2989



37 

In summary, β-VAE leverages the autoencoder concept and introduces a modified loss 

function to encourage disentangled latent representations. Equations (19) and (20) define 

the probabilistic framework of β-VAE, including the approximation of the likelihood by 

the probabilistic encoder and the formulation of the loss function. These equations 

highlight the probabilistic nature of β-VAE and its ability to learn compressed 

representations while promoting disentanglement. 

3.4.3. Model architecture  

The basis of the semi-supervised architecture (ELVISort) is a β-VAE, which is customized 

to fit the target task. The artificial neural network completes the detection, feature 

extraction and sorting phases. ELVISort was trained by applying the supervised paradigm 

to the detection/clustering and the unsupervised paradigm to the reconstruction part of the 

model. 

The input of ELVISort is a 2D matrix of electrophysiological signals, where rows 

correspond to channels and columns correspond to sampling points in time. A subsidiary 

goal was to train the network to effectively reconstruct the different input patterns from 

their compressed representations, which are coded by the different states of the latent 

space of the autoencoder. A proper representation offers the possibility of distinguishing 

spikes originating from different sources. To achieve this, multiple branches are used 

while training the autoencoder to ensure the emergence of a well-balanced latent space 

which is useful for classification and sorting as well. 

In spike analysis, time-domain feature extraction is as important as the inspection of 

space-domain-specific inter-channel relations. To exploit this concept, the main elements 

of ELVISort are long short-term memory (LSTM) (86), bidirectional LSTM (Bi-LSTM) 

(87) and 2D convolutional layers (88,89).  

During model development, several architecture combinations were tested, including 

purely 2D or 3D convolutional networks. To create a latent space with satisfactory 

generalization capability, good reconstruction capability is needed. As a metric to rank 

the performance of architecture types, the reconstruction loss was used; the architecture 

described here (Figure 1.) proved to be the best among all. In our experience, LSTM 

DOI:10.14753/SE.2024.2989



38 

layers were superior to convolution layers in terms of reconstruction when they were used 

alone; however, when combined, they outperformed the single-type architecture models. 

To prevent the model to overfit the training data, two regularization methods were used. 

The method of early stopping was used in conjunction with several dropout layers 

probability of 0.5.  

Figure 1. The architecture of ELVISort. The input of the model consists of a 2-

dimensional snippet. The encoder (a) contains two branches of different architecture 

types: BiLSTM and Conv2D. The results of these two branches are concatenated and fed 

to a series of dense layers, the final dense layer outputs the mean and standard deviation 

of each latent variable. In contrast to the encoder, the reconstruction branch is using only 

LSTM and transformer architecture. The output of ELVISort consists of a classification 

vector (b), a reconstruction of the input (c) and a soft layer assignment vector (d). These 

are produced by the supervised classifier branch containing dense layers (b)(yellow 

building blocks), the unsupervised reconstruction (c) and clustering branches (d) (green 

building blocks) respectively. (90) 

The encoder consists of two different branches: the LSTM-based branch processes data 

in the time domain, having a 2-dimensional matrix as input while the 2D CNN branch 

extracts spatiotemporal features from a 3-dimensional input. Note that in image 

processing, the third axis of the input for the first Conv2D layer usually corresponds to 

the color channels (e.g. R/G/B), in contrast to our model, where samples are lined up 

along the third axis. For the convolution branch 4 building blocks from GoogLeNet (91) 

were included beside dropout and convolutional layers. The outputs of the LSTM and 

DOI:10.14753/SE.2024.2989



39 

CNN branches are concatenated and combined non-linearly using fully connected layers. 

The last layer outputs the mean and variance of the latent inference. 

In the reconstruction branch, only LSTM elements were used: in our experience, a CNN 

branch in the reconstruction branch does not ameliorate the overall performance. An 

improvement in the generalization capability of the model was experienced upon the 

insertion of attention layers between LSTM layers (92). A custom layer was implemented 

to handle the inference of the latent variables based on their mean and variance 

approximated by the encoder. The latent space was constricted to improve clustering, 

finally a size of 32 was chosen. To further compress information, a hierarchical latent 

layout was used (93), moreover fully connected layers were applied to the latent variables 

to further decrease the size of the latent space: the higher latent layer had a total of 

8 dimensions, making a total of 40 latent variables. The latent space was visualized using 

t-distributed Stochastic Neighbor Embedding (t-SNE)  (94) and depicted in Figure 5. 

3.4.4. Preprocessing 

Having multiple datasets with different electrode alignments, general data characteristics 

and data encodings, we made use of the object-oriented features of Python, implementing 

the preprocessing as a base object and introducing polymorphism to the system only in 

relation to data and label loading, thus ensuring that every dataset is processed in a similar 

fashion. 

In the preprocessing phase, data is filtered between 300 and 3000 Hz (12)(13) using a 

Butterworth filter (95) of order 5. After this, a threshold is computed (eq.21) from the 

median and standard deviation of each channel, according to the formula below (having 

𝜃 as a multiplier constant for fine-tuning the positive/negative label ratio (PNR) of the 

generated data). 

 𝑇𝑐 =
median(𝐷𝑐)

0.6745
+ 𝜃 ∙ std(𝐷𝑐), (21) 

where 𝐷 is the filtered data, 𝐶 is the channel number and 𝑇 is the threshold. Different, 

although similar θ values were used for the datasets (Fiath dataset: θ = 3, Hybrid Janelia 

dataset: θ = 2.5, Kampff dataset: θ = 2) to obtain the best PNR. The following algorithm 

was performed to generate snippets for the artificial neural network: 

 

DOI:10.14753/SE.2024.2989



40 

Algorithm 1 Sample generation from preprocessed and filtered data 

Require:  𝑐 ∈ {0,1, … , 𝐶} : channel index 

Require:  𝑡 ∈ {0,1, … , 𝑇} : timestamp 

Require: 𝐷𝑡
𝑐: preprocessed data-point 

Require: 𝑇𝑟𝑐: threshold for the specific channel 

Require: 𝐹𝑡: filter mask, where 𝐹𝑡 = {
1,   𝑖𝑓 ∑ 𝑎𝑏𝑠(𝐷𝑡

𝑖) − 𝑇𝑟𝑖𝐶
𝑖=0 > 0

0,   𝑖𝑓 ∑ 𝑎𝑏𝑠(𝐷𝑡
𝑖) − 𝑇𝑟𝑖𝐶

𝑖=0 ≤ 0
 

Require: 𝑠𝑡: Snippet timespan in sample 

1: 𝐷𝑡
′ ← max(𝑎𝑏𝑠(𝐷𝑡)) ∙ 𝐹𝑡 

2: 𝑡 ← 0 

3: while t <  T do: 

4: if 𝐷𝑡
′ > 0 then 

5:  𝑐 ← 𝑎𝑟𝑔𝑚𝑎𝑥([𝐷𝑡−𝑠𝑡/2
′ , 𝐷𝑡+𝑠𝑡/2

′ ]) 

6:  if 𝑠𝑡 − 𝑐 > 𝑠𝑡/2 then 

7:   𝑡 ← 𝑡 + 𝑐 − 𝑠𝑡/2 

8:  end if  

9:  𝑆𝑎𝑚𝑝𝑙𝑒 ← [𝐷𝑡−𝑠𝑡/2, 𝐷𝑡+𝑠𝑡/2] 

10: end if 

11:  𝑡 ← 𝑡 + 1 

12: end for 

The above algorithm generates a filter mask (𝐹𝑡) for each channel, in which, for each 

above-threshold data-point the number 1 will be assigned, while for data-points with 

values not reaching the threshold value, the number 0 is assigned. The whole dataset is 

filtered with the aforementioned mask, so only the relevant values are kept. For every 

non-zero data-point, a snippet of length 𝑠𝑡 is generated. If multiple non-zero values are 

encountered within a snippet length, the one with the largest value will be considered as 

the center for the particular snippet (Algorithm 1, ln. 5). Important that every snippet is 

built from the non-filtered data-points, thus maintaining every information for the sorting 

algorithm.   

As snippet timespan, 64 samples for the Fiath and Kampff datasets and 32 samples for 

the Hybrid Janelia were chosen. 

Each recording from the Fiath and Kampff datasets were split into two major parts: 

training and test data, with the former consisting of the first 70% of the recording and the 

latter composed of the remaining 30%. The training split was further divided into training 

and validation splits, using 75% of the data for training and 25% for validation.  

In order to obtain a balanced dataset, two counter-measures were taken against the low 

PNR in the training data: the negative instances were downsampled (only a small random 

subset of the negative instances were used) and a weighting variable was introduced in 

the classifier branch loss that penalizes false negatives more than false positives. This 

DOI:10.14753/SE.2024.2989



41 

weighting variable’s value was determined empirically and was found that false negatives 

needed to be penalized in the Kampff dataset by 3 times more than false positives. 

3.5. Methods related to developing a deep learning solution for edge devices 

Figure 2. Schematics of the training. In the top subfigure (A), the self-supervised model 

is depicted during training. Pairs of inputs are provided to the model and are processed 

by a shared encoder, which produces a feature vector. This feature vector is then passed 

through a projection head and the NNCLR loss is calculated based on the output of the 

projection head. The loss is then backpropagated through the model. During inference, 

only the encoder is used. The resulting feature embeddings are used as labels in the 

supervised model depicted in the bottom subfigure (B). The supervised model is a single-

shot detector type object detection system, which has been modified to include a feature 

prediction branch. The goal of this branch is to learn the feature embeddings generated 

by the self-supervised model during training. (96) 

3.5.1. Nearest-neighbor contrastive learning 

Nearest-neighbor contrastive learning (NNCLR) (97) is a self-supervised learning 

method based on contrastive learning, in which the model outputs a feature vector.  In the 

contrastive learning paradigm, the model takes in two inputs and generates two different 

feature vectors. The contrastive loss function then either pulls the vectors together or 

DOI:10.14753/SE.2024.2989



42 

pushes them apart in the feature space, depending on whether the inputs are considered 

positive or negative pairs. This results in the model producing similar feature vectors for 

similar inputs and separable feature vectors for non-similar inputs. The similarity can be 

(and it is most of the cases) of higher order. To properly utilize this principle and 

effectively train the model in an unsupervised manner, it is necessary to augment the 

inputs to produce multiple similar input pairs for the contrastive model.  

NNCLR builds upon this principle by using nearest-neighbor to enhance the proximity 

between different views of the same sample, which are typically produced by data 

augmentation. In NNCLR, the nearest-neighbor component is used to select a similar 

point in the feature space (Q) for one of the feature vectors using nearest-neighbor (NN). 

The dot product is then calculated between the selected similar point and the other feature 

vector (which is l2 normalized). The other inputs in the mini-batch act as negative 

samples. The loss function, ℒ𝑖
𝑁𝑁𝐶𝐿𝑅 (eq. 22), is defined as the function of the two feature 

vectors (𝑧𝑖 𝑎𝑛𝑑 𝑧𝑖
+) which are generated by the model 𝜃 from the same input i in the 

given mini-batch using data augmentation ( 𝑧𝑖 = 𝜃(𝑎𝑢𝑔(𝑖𝑛𝑝𝑢𝑡𝑖)),  𝑧𝑖
+ =

𝜃(𝑎𝑢𝑔(𝑖𝑛𝑝𝑢𝑡𝑖)) ). Instead of calculating the dot product, NNCLR uses NN to select a 

similar point (𝑁𝑁(𝑧𝑖, 𝑄)) for one of the feature vectors. This selection is used in the loss 

function to pull the feature vectors for positive pairs together and push the feature vectors 

for negative pairs apart in the feature space. 

ℒ𝑖
𝑁𝑁𝐶𝐿𝑅 = − log

exp (
𝑁𝑁(𝑧𝑖,𝑄) ∙ 𝑧𝑖

+

𝜏
)

∑ exp (
𝑁𝑁(𝑧𝑖,𝑄) ∙ 𝑧𝑘

+

𝜏
)𝑛

𝑘=1

  (22) 

3.5.1.1. Preprocessing 

To extract relevant features from waveforms using NNCLR, waveforms were extracted 

from the dataset and the average of the waveforms was calculated for each cluster. 

Samples with single channel were then extracted from the waveforms which were 105 

datapoints long. The waveforms were normalized between [0, 1] to facilitate the learning 

of the waveforms themselves and avoid overfitting to the signal to noise ratio of the 

samples. Noise was introduced into the one-dimensional input through augmentations 

using random scaling (eq. 23) and jittering (eq. 24), which introduced multiplicative and 

additive noise with a normal distribution, respectively (eq. 25). 

DOI:10.14753/SE.2024.2989



43 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑥) = 𝑥 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 1, 𝑠𝑡𝑑𝑑𝑒𝑣 = 0.1) (5) 

𝑗𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔(𝑥) =   𝑥 + 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑑𝑑𝑒𝑣 = 0.03) (24) 

𝑎𝑢𝑔(𝑥) =  𝑗𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔(𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑥)) (25) 

Positive pairs were formed using an instance i waveform from a cluster k and the average 

waveform of the same cluster (eq. 26, 27). (Figure 3.)  

𝑖𝑛𝑝𝑢𝑡𝑖,1
𝑘 = 𝑎𝑢𝑔(𝑥𝑖

𝑘) (26) 

𝑖𝑛𝑝𝑢𝑡2
𝑘 = 𝑎𝑢𝑔(

1

𝑁
∑ 𝑥𝑖

𝑘𝑁
𝑖=1 ) (27) 

 

Figure 3. Pairs of waveforms as inputs for self-supervised model. The pairs of inputs 

for the self-supervised model consists of an instance from a cluster and the mean template 

waveform of that cluster. The averaged waveform is showed in red, while the instance is 

depicted in blue. The normalization is done before the augmentation. The left column 

contains examples of input pairs before augmentation, while the right column contains 

examples of input pairs after augmentation. (96) 

DOI:10.14753/SE.2024.2989



44 

3.5.1.2. NNCLR modell 

The base model for NNCLR was constructed using Residual blocks, 1D convolution 

layers, Dense layers, and Batch normalization layers. (Figure 4) The input to the model 

is a 1D sample with shape (1x105), and the output is a vector with 32 dimensions (1x32). 

The residual blocks and convolution layers are used to extract features from the input 

sample, while the batch normalization layers help to stabilize the training process and 

improve the model's performance. Leaky ReLU activation function after the batch 

normalization layers introduces a small non-zero gradient for negative input values, 

allowing the model to learn more robust features. Together, these layers work to transform 

the input sample into a compact, low-dimensional feature vector that represents the 

underlying patterns in the data. The model depth is quite shallow, to enhance stability and 

avoid overfitting.  

Figure 4. Backbone model for embedding generation for NNCLR. The backbone of 

the NNCLR is a simple model made of customized 1D Residual Blocks, 1D convolution 

layers and Batch normalization. After every BatchNormalization layer a LeakyRelu 

activation layer is present as well, which is not depicted on this figure to increase clarity. 

The input is a 1-dimensional sample (of shape 1x105), while the output is a vector of 32 

dimensions (1x32). (96) 

The NNCLR architecture includes a projection head during training, but this block is 

removed during inference. The remaining backbone model, depicted in Figure 2. as the 

encoder, is used for unsupervised inference phase. In this phase, the feature vector of each 

mean waveform is extracted and saved as a label for use in the supervised phase.  

3.5.2. Single-shot detection  

Single-shot detector (SSD) models are anchor-based object detection models that use a 

set of pre-defined boxes, called anchor boxes or anchors, to identify objects in an input 

image. These anchor boxes are placed at various locations and scales throughout the 

image and are designed to overlap heavily, allowing the model to identify objects with 

high precision. To improve the accuracy of the detection, the model also predicts the 

transformation parameters that control the positions and sizes of the anchor boxes. This 

enables the model to adjust the boxes to better match the objects in the image, even if 

DOI:10.14753/SE.2024.2989



45 

they are shorter or have different aspect ratios than the anchor boxes. During inference, 

the model outputs a set of confidence scores for each anchor box, indicating the likelihood 

that the box contains an object. To select the best prediction for each object, non-max 

suppression (NMS) is applied to the overlapping boxes, taking into account the 

confidence scores. NMS removes lower confidence boxes that are highly overlapped with 

higher confidence boxes, leaving only the box with the highest confidence score for each 

object. This helps to reduce false positive detections and improve the overall accuracy of 

the model.  

The custom anchor system was designed to address the aspect ratio of waveforms when 

representing them on a 2D plane. The anchor boxes used had a universal width of 5 

channels, which was chosen for simplicity to match the width of the ground truth boxes. 

Using anchor boxes with different widths would not significantly impact performance 

because the model is able to predict the transformation parameters for the positions and 

sizes of the anchor boxes, allowing it to adjust the boxes to better fit the objects in the 

input image. The key factor in improving the precision of the detection is ensuring that 

the anchor boxes have good overlap with the objects in the image, as this allows the model 

to accurately predict the transformation parameters. 

Ground truth boxes were formed based on ground truth 2D points and had a universal 

width of 5 channels (covering an electrode space of approximately ~38 µm2), with the 

ground truth point placed in the middle.  This customization of the labeling generation 

and anchor system allows the model to accurately predict the transformation parameters 

of the anchor boxes, enabling it to adjust the boxes to better match the objects in the input 

image. The ability to predict these transformation parameters is important for improving 

the precision of the detection. The model predicted 1024 anchor boxes for each sample.  

3.5.3. MobileNetV2 

The SSD model was chosen based on the limitations of the edgeTPU hardware and the 

need for a simple yet efficient architecture. MobileNetV2 (98) and EfficientDet (99) were 

considered as two promising options. EfficientDet had higher accuracies according to 

previous research, but its greater complexity made it less practical for this use case, as it 

had lower inference speed. Therefore, MobileNetV2 was selected because it is a 

lightweight architecture supported by the edgeTPU and is well-suited for systems with 

limited computational resources. 

DOI:10.14753/SE.2024.2989



46 

MobileNetV2 is a neural network architecture designed for efficient mobile and 

embedded vision applications. It was developed by Google researchers in 2018 as an 

upgrade to the original MobileNet architecture. 

MobileNetV2 has a similar structure to MobileNet, but it introduces several new 

techniques to improve the efficiency and accuracy of the model. One of the key 

improvements is the use of residual connections, which allow for better gradient flow and 

enable deeper networks to be trained. 

The MobileNetV2 architecture is composed of a series of building blocks called "inverted 

residuals". Each inverted residual block consists of three main components: a linear 

upsampling, an inverted residual, and a linear bottleneck. 

The linear upsampling is another 1x1 convolutional layer that increases the number of 

input channels for the following layer. The next layer in the inverted residual block is a 

depthwise separable convolutions layer (100), which is computationally efficient and can 

capture spatial features effectively. The linear bottleneck is a 1x1 convolutional layer that 

reduces the number of output channels to match the desired output size.  

The alpha parameter, also known as the width multiplier, controls the width of the 

convolutional blocks in MobileNetV2 and determines the trade-off between accuracy and 

performance. A smaller alpha value results in decreased accuracy but increased 

performance due to reduced computational requirements, while a larger alpha value leads 

to increased accuracy but decreased performance. For this study, the MobileNetV2 was 

customized with an alpha value of 0.2. The MobileNetV2 was also customized by 

doubling the output dimensions while maintaining the depth of the original model, which 

greatly improved the model's performance. 

The output of the model consists of 3 different branches: box-, score- and feature 

prediction branches. The score and feature branches have a common, but separate branch 

from the box branch, branching at the end only. Both main branches use architectural 

elements from SSDLite introduced with MobileNetV2. The score prediction consists of 

2 different classes, where the model predicts the probability that a box is containing a 

spike or not. The feature prediction branch output has the same dimensions as the feature 

vectors generated by the previously described self-supervised model. For the box and 

score prediction, FocalLoss (101) was applied, while for the feature prediction the cosine 

similarity loss was calculated during training. The provided feature vector for the boxes 

DOI:10.14753/SE.2024.2989



47 

containing no-spikes was a vector of the same length filled with zero values. At inference, 

a postprocessing step is added to the model output, where an NMS is performed based on 

the box and score predictions and based on the results the predicted feature vectors are 

filtered as well. 

3.5.4. EdgeTPU 

To run the model in an embedded environment, EdgeTPU chip was chosen, which has as 

basis a Tensor Processing Unit (TPU) which is a specialized ASIC chip for deep-learning 

tasks. The TPU is built with a plethora of supported operations, however despite having 

a large basis of supported operations, it is still considered a limitation in the architecture 

designing process. To speed up the designing phase, known, supported architectures were 

chosen from. The EdgeTPU runs the operations in an efficient manner, requiring only 1 

Watt per 2 Tera Operations Per Second (TOPS). From the first node that the EdgeTPU 

encounters as being an unsupported operation, the execution will be performed on the 

CPU side. 

The evaluation of the model speed is done on two different TPU devices: a Coral 

Development Board Mini (CDBM), which consists of a MediaTek 8167s System on Chip 

(which integrates a Quad-core Arm Cortex-A35 CPU and an IMG PowerVR GE8300 

GPU), 2GB LPDDR3 and a TPU module; a Coral USB Accelerator (CUA) consisting of 

a TPU module with a USB 3.0 connector. The CUA acts as a peripheral to a PC with a 

configuration of AMD Ryzen 7 2700X Eight-Core Processor 3.70 GHz CPU, 16GB 

DDR3 RAM and a Nvidia GeForce RTX 2080 SUPER GPU.  

The inference speed is measured on both systems, measuring the net speed of the model 

inference on the TPU chip, and measuring the additional time needed by the NMS 

postprocessing. As the NMS is integrated into the model itself, the TFLite library will 

automatically take care of the data transfer between the CPU and TPU, because NMS 

runs only on CPU not being supported by the TPU. Thus, the execution can be divided 

into two major parts: spike detection and feature prediction executed on the TPU, and the 

postprocessing, like NMS and sorting will be effectuated on the CPU.  

To run the proposed model on the TPU, it is necessary to quantize the model, which 

involves converting the model's parameters from 32-bit float values to 8-bit integers. This 

process can often result in a performance drop, but to minimize this drop, a quantization-

aware training method was applied during the model's training. This technique involves 

introducing quantization noise during training, which allows the model to learn to be more 

DOI:10.14753/SE.2024.2989



48 

robust to the effects of quantization. When the model is then quantized for deployment, 

it should experience a smaller performance drop compared to a model that was not trained 

with quantization-aware training.   

DOI:10.14753/SE.2024.2989



49 

4. Results 

4.1. Results related to applying semi-supervised deep learning methods to spike 

sorting  

Figure 5. Latent spaces of train and test data for different datasets. The natural 

clustering capability of ELVISort can be observed on the latent spaces of the training (on 

the left) and test (on the right) data for the Hybrid Janelia (a), Fiath (b) and Kampff (c) 

datasets. Points with different colors represent different clusters: in cases (a) and (c) the 

available ground truth labels (74 and 2 clusters respectively), while in case (b) the 

manually curated labels provided by KiloSort were used for color coding (42 clusters). 

To visualize the 40-dimensional latent space, t-SNE was applied.  The figures show high 

spatial separation although they were generated without tuning t-SNE training parameters 

excessively. ELVISort generates latent variables with high spatial separation between 

true clusters on training data (left column) and maintains the high separability on never 

seen data as well (test data - right column). (90) 

DOI:10.14753/SE.2024.2989



50 

Figure 6. Reconstruction performance of ELVISort. Snippet pairs are from Hybrid 

Janelia (a), Fiath (b) and Kampff (c) test datasets. Each row corresponds to an individual 

snippet with the original instance on the left and the reconstructed on the right. The 

horizontal and vertical axes represent channels (there are 128 of them for all the datasets), 

and snippet timespan (64 for (b) and (c) and 32 for (a)), respectively. Despite the use of 

a high β value (β = 15), which according to studies makes reconstruction more 

challenging, vital information is preserved accurately while a fine noise reduction on the 

reconstructed snippets can be observed. All the snippets are normalized individually prior 

to processing and batch-wise using a batch normalization layer embedded in the model 

(due to this, color ranges of different pairs may differ). (90) 

 

 

  

DOI:10.14753/SE.2024.2989



51 

4.1.1. Results from the Kampff dataset 

ELVISort was trained and tested on the Kampff dataset (2015_09_03_Cell.9.0), but 

similarly to state-of-the-art spike detectors and sorters, it managed to produce good results 

from one recording only. This is due to the low signal-to-noise ratio (SNR) of the majority 

of the recordings: spikes of the patched neurons have an average peak-to-peak (P2P) 

amplitude smaller than 30.8 μV for the majority of the recordings because ground truth 

neurons are mostly located quite distantly from the MEA. 

It is worthwhile to note that the description of other spike sorting algorithms featuring the 

same dataset only report the one recording for which ELVISort gave good results. 

ELVISort identified the ground truth spikes from the Kampff recording 

2015_09_03_Cell.9.0 with an F1 score of 0.964 and an accuracy of 95% (for details, see 

Table 1). 

 

Table 1. Results of different algorithms from the SpikeForest website for recording 

2015_09_03_Cell.9.0 of the Kampff dataset. Recall and precision parameters are 

available on the SpikeForest website, F1 score for each algorithm was calculated by us. 

(90) 

 Recall Precision F1 score 

HerdingSpikes2 1.00 0.95 0.97 

IronClust 1.00 0.95 0.97 

JRClust 0.97 0.99 0.98 

KiloSort 1.00 0.96 0.98 

KiloSort2 0.95 0.94 0.94 

MountainSort4 0.55 0.93 0.69 

SpykingCircus 1.00 0.95 0.97 

Tridesclous 0.61 0.99 0.75 

ELVISort 0.95 0.98 0.96 

 

 

DOI:10.14753/SE.2024.2989



52 

4.1.2. Results from the Fiath dataset 

In order to test the detection performance on the Fiath dataset, the clusters were 

repartitioned (all the spikes were put in one group). ELVISort yielded results comparable 

to the ones given by the existing supervised learning methods. Having trained it separately 

on every recording, an average F1 score of 85.55% was produced for the validation and 

82.42% for the test set (see Figure 7a). 

To test classification capability, the non-spike cluster was excluded and ELVISort was 

trained on each recording separately. It performed very well in general, providing an 

average F1 score of 0.77 across the datasets (see Figure 7b). Only one of the 9 recordings 

yielded poor results (0.51 F1 score). 

Figure 7. Results from the Fiath dataset. Performance (F1 score) of ELVISort for the 

different Fiath recordings (1–9) aiming spike detection (a), classification (b) and both (c). 

For the supervised part, labels generated by KiloSort followed by manual correction were 

used. In the cases where classification is applied (subfigure b and c) a higher value of F1 

weighted score can be observed for the test datasets relative to the validation datasets. 

This seeming contradiction is overcome when one understands that the test datasets were 

longer recordings compared to validation. This latter fact means that frequent clusters 

outweigh those lower frequency clusters for which the model has a lower F1 score 

(possibly also due to their relatively low representation in the training data). (90) 

Finally, ELVISort was trained to perform the combined task (i.e. the detection and 

classification at the same time). It performed well, maintaining the peak performance of 

the previous “clustering only” phase (weighted F1 score: 0.96) while producing better 

results for the recording that had yielded poor performance previously (weighted F1 score: 

0.87). The average score has also improved providing an average of 0.84 F1 score over 

DOI:10.14753/SE.2024.2989



53 

the different recordings (see Figure 7c; the classification performance of the system for 

a representative recording is illustrated in Figure 8). 

Figure 8. Comparison of the classification results of ELVISort and KiloSort. The 

comparison was made using a representative recording from the Fiath dataset. Non-spike 

clusters were excluded for getting a more straightforward comparison. Each row 

corresponds to a cluster determined by the Kilosort algorithm, while the columns present 

the clusters determined by ELVISort. The cluster identifiers are shown at the very left 

and bottom of the table. The numbers in the matrix correspond to the number of matching 

events. The last column represents the number of spikes assigned to each cluster by 

KiloSort but not by ELVISort. The numbers in the second last row correspond to the 

events assigned to each cluster by ELVISort, but not by KiloSort. Our algorithm performs 

similar to KiloSort, sorting spikes in similar clusters as the compared algorithm.  Cluster 

nr. 33 was not identified by our algorithm, possibly due to the small number of 

occurrences (n=10, shown in the last column). (90) 

  

DOI:10.14753/SE.2024.2989



54 

4.1.3. Results from the Hybrid Janelia dataset 

The same combined (detector and sorter) model architecture that had been developed for 

the Fiath dataset was trained and tested on the Hybrid Janelia dataset. The performance 

was assessed with and without the non-spike cluster and no major differences were 

observed (see Table 2). The performance per cluster was also inspected, with respect to 

matched (true positives, TP) versus falsely matched (false positives + false negatives, 

FP+FN) snippets (Figure 9a). The performance of ELVISort in relation to maximum peak 

values of the different clusters has also been evaluated (Figure 9b). 

 

Table 2. Results of ELVISort for the Hybrid Janelia dataset. The results were the 

same for the model performing sorting only (S) and the model performing detection and 

sorting simultaneously (D+S). Values are calculated according to the methods described 

on the SpikeForest website (i.e. F1 score is determined without weighting cluster scores 

by cluster size). (90) 

 

 

 

 

  

 F1 score Accuracy 

HerdingSpikes2 0.62 0.44 

IronClust 0.83 0.71 

JRClust 0.63 0.46 

KiloSort 0.81 0.66 

KiloSort2 0.83 0.74 

MountainSort4 0.67 0.49 

SpykingCircus 0.83 0.70 

Tridesclous 0.74 0.59 

ELVISort (S) 0.81 0.67 

ELVISort (D+S) 0.81 0.67 

DOI:10.14753/SE.2024.2989



55 

 

Figure 9. The performance of ELVISort on the Hybrid Janelia dataset. 

(a) Detailed results per cluster. Cluster no. 1 represents the non-spike snippets. # – Cluster 

number, TP – True Positive, FP – False Positive, FN – False Negative.  

(b) Accuracies for different clusters plotted against the peak amplitude. 

Peak amplitude was computed averaging the maximum absolute spike amplitude from 

snippets where no other spike was present. (90) 

  

DOI:10.14753/SE.2024.2989



56 

4.1.4. Assessment of Sorting Efficiency 

The training and testing for ELVISort was perfomed on a Windows PC with i9-7920X 

with 64 GB RAM and a GeForce RTX 2080 Ti GPU. We relied on the fast 

implementations of basic layers and arithmetics from the Numpy, Scipy and Tensorflow2 

libraries. 

ELVISort was tested with respect to computational speed as well. During the test, the 

decoder module was removed (which was only necessary for the training phase). In order 

to avoid falsely optimistic results, data caching was disabled. Since CPU to GPU and 

GPU to CPU data transfers are one of the most time-consuming stages of GPU data 

processing, caching (i.e. storing data in GPU memory for further use) can make 

algorithms run faster. In real-time processing scenarios, however, caching is not an option.  

As test data, one of the recordings from the Hybrid Janelia (REC_64C_600S_12) was 

used with 64 channels. For other algorithms Docker containers were used, provided by 

the Spikeforest framework.   

Efficiency tests were dispatched on a Windows PC with i9-7920X with 64 GB RAM and 

an NVIDIA GeForce RTX 2080 Ti GPU. The batch of data, that can be processed depends 

heavily on the GPU memory capacity, a larger memory enabling a larger batch size of 

instances (batch size x instances) to be sorted. ELVISort could evaluate the 600 s long 

recording in 38.17 s. This corresponds to an execution speed which is 15.71 times faster 

than required to perform real-time operation, surpassing other solutions (see Table 3) 

ELVISort was measured in a way where every single incoming instance was evaluated, 

this can be reduced significantly with simple yet efficient online filtering methods, thus 

further reducing the sorting time of the whole measurement. In spite real-time data comes 

at the sampling rate, for future real-time multiple simultaneous measurement evaluation, 

faster-than-sampling-rate algorithms are needed. A faster-than-sampling-rate algorithm 

also has the potential to be run on smaller devices, where the performance is more limited, 

thus efficiency becomes a key aspect.  

To assess the computational efficiency of the model, the number of floating-point 

operations (FLOP) were determined. In order to process input data in real-time, a 

minimum computational performance of ~259 GFLOP/sec is needed. 

DOI:10.14753/SE.2024.2989



57 

We illustrate that ELVISort is the most efficient compared to other state-of-art methods 

in Figure 10., having a shorter runtime, while maintaining similar sorting performance.  

  

Table 3. Performance comparison of different spike sorting algorithms. The duration 

of evaluation of different algorithms based on the Hybrid Janelia recording: 

REC_64C_600S_12. Sorting time is represented in seconds, while xSpeed is described 

in eq.12. Despite ELVISort treats the 64 channel recording as a 128 channel recording by 

padding it, it has the least running duration among the compared. All but ELVISort were 

run from Docker containers obtained from the Spikeforest framework. To evaluate the 

speed compared to real-time, the duration of the recording (600 seconds) was divided by 

the sorting time of each algorithm. ELVISort was able to run 15.71 times faster than real-

time on the Hybrid Janelia dataset, achieving the fastest speed among the compared 

algorithms. (90). 

 

 

 

 

 

 

  

 Sorting time xSpeed 

Herdinspikes2 192.97 3.10 

IronClust 84.38 7.11 

JRClust 153.51 3.90 

KiloSort2 86.41 6.94 

MountainSort4 299.49 2.00 

SpykingCircus 2521.78 0.23 

ELVISort 38.17 15.71 

DOI:10.14753/SE.2024.2989



58 

Figure 10. Sorting efficiency of different solutions regarding F1 score and xSpeed. 

The X-axis represents the F1 scores, which are listed in Table 2, while the Y-axis 

represents the xSpeed of each solution (Table 3). xSpeed is a factor without upper 

boundary, while the F1 score is a normalized score between 0 and 1. The upper-right 

corner represents the ideal spike sorting solution: having a fast algorithm while 

maintaining a perfect F1 score (=1). Based on the examined algorithms, ELVISort proves 

to be the most efficient: compromising minimal sorting performance, yet achieving an 

xSpeed higher than any other compared algorithm. (90) 

4.2. Results concerning to developing a deep learning solution for edge devices 

4.2.1. Results of the unsupervised part  

Figure 11. Embedding of the waveforms after NNCLR training. Using the NNCLR 

method, a highly separable latent space is obtained. To visualize the high-dimensional 

space, t-SNE is applied for dimensionality reduction. In the figure, we can observe that 

different clusters overlap each other if their waveforms are similar while being separated 

from those that differ. (96) 

   

  

   

  

   

  

   

 

                     

  
 

 
 

  

       

0

2

4

6

8

10

12

14

16

18

0.5 0.6 0.7 0.8 0.9 1

x
S

p
e

e
d

F1 score

IronClust

JRClust

MountainSort4

SpykingCircus

Herdingspikes2

Kilosort2

ELVISort

DOI:10.14753/SE.2024.2989



59 

 

 

 

Figure 12. Similarity matrices of spike clusters. Subfigure (A) shows similarity matrix 

between the different cluster-means. (B) depicts the normalized 1-distance between 

different clusters in the channel-axis. (C) subfigure is the combination of (A) and (B) both 

normalized between 0,1, are combined thus a similarity matrix is built which considers 

both distance and mean embedding between clusters. In subfigure (D) the normalized 

similarity matrix between the cluster template embeddings can be seen.  (96) 

  

DOI:10.14753/SE.2024.2989



60 

4.2.2. Results of the supervised part  

Table 4. Detection accuracy comparison.  Results of different algorithms on different, 

paired datasets. Two main datasets were used to compare our model to state-of-art spike 

sorting algorithms. (96) 

 

Table 5. Detection performance on hybrid data.  Results of average accuracies on the 

two hybrid data with multiple ground truth. The hybrid datasets are from the Hybrid 

Janelia dataset. (96) 

 

 

 

 

 

 

 

 

 

Algorithm 

Datasets 

Avg 

acc 
BOYDEN YGER 

1103_1_1 509_1_1 419_1_7 20170621 20170622_1 20170622_2 

HerdingSpikes2 (76) - - - 0,93 0,81 0,93 89* 

IronClust (77) 0,84 0,76 0,74 0,84 0,66 0,94 
79.6

7 

JRClust (77) 0,92 0,53 0,88 - - 0,94 
0,82

* 

KiloSort (56) 0,96 0,05 0,75 0,97 0,97 0,94 0,77 

KiloSort2  0,57 0,65 0,9 0,42 1 0,94 0,74 

MountainSort4 (45) 0,96 0,76 0,71 1 0,97 0,92 0,88 

SpykingCircus (58) 0,93 0,69 0,75 0,98 1 0,94 0,88 

Tridesclous (102) 0,89 0 0,71 0,98 0,96 0,94 0,74 

Average acc 0,86 0,49 0,77 0,87 0,91 0,93 
80.5

0 

Ours  0,96 0,73 0,88 1 1 1 0,93 

Datasets Average detection accuracy 

HS_64_12 95,69% 

HS_32_32 50,05% 

DOI:10.14753/SE.2024.2989



61 

Table 6. Clustering performance. Results of the two clustering methods used for the 

sorting of the features given by our model. (96) 

 

Table 7. Spike sorting performance. Comparison of the different spike sorting 

algorithms on two of the hybrid datasets.  (96) 

 

Table 8. Inference speed performance. Comparison of the inference speed of the 

different types of setups. Inference speed is composed of the model's computation time 

for making predictions and the time required for the non-maximum suppression (NMS) 

step. (96) 

 

 

  

Clustering algorithm 
Datasets 

HS_64_12 HS_32_32 

ISOSplit5 (45)  74,60% 69,90% 

Agglomerative clustering 89,85% 81,62% 

Algorithm 
Accuracy 

HS_64_12 HS_32_32 

HerdingSpikes2 0,79 0,47 

IronClust 0,86 0,52 

IRClust 0,89 0,53 

KiloSort 0,94 0,51 

KiloSort2 0,84 0,53 

MountainSort4 0,82 0,48 

SpykingCircus 0,91 0,54 

Tridesclous 0,87 0,54 

Mean 0,86 0,51 

Ours  0,86 0,42 

Setup NMS incl.  

PC CPU + GPU  3,95 msec 

PC CPU + USB accel 5.32 msec 

Coral DevBoard Mini 22,15 msec 

DOI:10.14753/SE.2024.2989



62 

5. Discussion 

5.1. Applying semi-supervised deep learning methods to spike sorting  

Despite multiple deep-learning based spike classification and/or sorting algorithms are 

present in the literature, to our knowledge, ELVISort is the first system that unifies spike 

detection and sorting with unsupervised deep learning architecture (i.e. β-VAE), and 

proved to be successful in performing the addressed tasks.  

It was demonstrated that a method that applies both supervised and unsupervised learning 

paradigms performs well compared to commonly used state-of-the-art methods. It 

surpasses many conventional spike sorting systems that are featured on the SpikeForest 

platform.  

The main objectives during training were the amelioration of the reconstruction capability 

of ELVISort and the disentanglement of its latent space; these two having a negative 

influence on each other meant that the effects of the parameter changes on these factors 

constantly had to be monitored. The reconstruction capability of ELVISort was kept very 

strong, despite the value of β was increased to 15 (the original and reconstructed snippets 

can be compared using Figure 3). The latter phenomenon was investigated previously 

and it was demonstrated, that β-VAE models with higher β value are significantly more 

robust to adversarial attacks and noisy data, compared to models with lower β value or 

Vanilla VAE (103).  

During the training of an unsupervised clustering autoencoder the so-called “feature 

randomness” can occur, which is resulting from the usage of pseudo-labels during 

training. Pseudo-labels are based on hypothetical similarities and in the process of 

generating these pseudo-labels, a significant portion of true labels are substituted by 

random ones, producing latent spaces that underfit the semanticity of natural datasets 

(104). In order to alleviate the impact of this phenomenon, another branch was used to 

regularize the latent space (the supervised/detector branch), especially in the early 

training phases, where feature randomness can have a bigger impact on the performance 

of the trained model.   

Another important phenomenon, the “feature drift” can deteriorate the performance of the 

final model as well. The feature drift occurs during model optimization when multiple 

DOI:10.14753/SE.2024.2989



63 

loss functions are present and they strongly compete with each other, which can lead to 

an underperforming model (104). In order to weight each loss component the most 

optimal way, 9-fold cross-validation on the Fiath dataset was performed using several 

different reconstruction/detection loss rates.  

The latent space was inspected during training. To compress information as much as 

possible, its disentanglement had to be facilitated. As previously noted, this was done by 

choosing a larger β value for the KL loss. 

As it had been anticipated, data mostly concentrated around the origin, although snippets 

belonging to different clusters formed separate distributions in the parameter space (see 

Figure 5 for details). Data were compressed without significant performance loss to a 

total of 40 latent variables, representing only 0.488% of the input. By being able to both 

reconstruct snippets previously unknown for ELVISort and segment the spikes with high 

accuracy using the latent space, it can be concluded that the construction of an end-to-end 

deep learning model capable of extracting spike-relevant information from 64 × 128 = 

8192 dimension inputs was successful. While in our model the unsupervised part had a 

good generalization capability, the supervised classifier branch showed a varying 

performance. We assume this is partly due to the great diversity of SNRs across the 

recordings. To test whether the performance of the classifier branch can be improved, the 

classifier of a pre-trained instance of ELVISort was fine-tuned (having its β-VAE part 

frozen) for a small number of epochs (n = 10) on a dataset unknown to the model. A great 

improvement in the F1 score was observed, from an initial 50.03% to 83.92%. This leads 

us to assume that applying few-shot learning methods to the classifier (like Reptile or 

First Order Model Agnostic Meta Learning) would enable us to efficiently fine-tune 

classifiers in the future. In its current form, for unsupervised use on a dataset where the 

number of clusters is unknown, we propose the usage of the sigmoid activation function 

on the classifier branch to assign soft labels to snippets and use a traditional clustering 

algorithm on these soft labels. Because the unsupervised part of the model is robust we 

can use the same parameters for different recordings and only the supervised 

classification branch has to be fine-tuned. 

Other real-time spike sorting systems offer integrated solutions like (47), however their 

performance regarding multi-channel recordings, is unknown. While not fully 

DOI:10.14753/SE.2024.2989



64 

unsupervised as the previously mentioned solutions, EVLISort offers similar sorting 

performance to offline algorithms while reducing runtime significantly.  

 

5.2. Developing a deep learning solution for edge devices  

5.2.1. Self-supervised model  

One of the limitations of some unsupervised learning algorithms is that they can be biased 

by the inclusion of labeled data or assumptions about the data. In the case of the self-

supervised model used in this paper, the inclusion of cluster-wise-averaged waveforms as 

one of the pairs for the contrastive learning process could be seen as introducing a 

supervised bias. However, to mitigate this potential bias, augmentation was applied to the 

cluster average waveforms as well. Additionally, using different clusters with similar 

average waveforms can also help to alleviate the impact of this bias, as shown in Figure 

11. In this figure, different clusters tend to overlap because the waveforms are very 

similar, which helps to avoid unnecessary cluster separation. Overall, these measures help 

to ensure that the self-supervised model is able to learn more generalized feature 

representations, rather than being overly influenced by any labeled data or assumptions 

about the data.  

 

To demonstrate the effectiveness of our approach in creating a general embedding space, 

and the overlapping clusters can be indeed resolved by using channel information, we 

generated similarity matrices to analyze the distinguishability of various clusters (Figure 

12).  These matrices were generated by training our model on two different datasets 

simultaneously, which allowed us to observe the separability of the different waveforms 

within these datasets. In order to further examine the separability of the clusters, we also 

included channel-distance information between the clusters in our analysis. This was 

necessary because the hybrid recordings we used to train our model contained similar 

waveforms that were used to generate different clusters on different channels. The 

combination of both types of information resulted in a highly separable matrix, 

demonstrating the ability of our model to create a general embedding space that is able to 

effectively separate different waveforms. 

 

DOI:10.14753/SE.2024.2989



65 

5.2.2. Supervised model  

Feature prediction and the detection of the individual spikes were assessed separately as 

well. To assess the performance of the detection of our model, we used paired recordings. 

This allowed us to compare the results to those of other existing solutions. The results, 

shown in Table 4., demonstrate that our model performs very well in terms of spike 

detection and is able to generalize to new recordings with different electrode parameters 

and waveform types. In fact, the results show that our model performs better and more 

consistently than current state-of-the-art methods, even though it is specifically designed 

for use on embedded systems. These results suggest that our model is a promising solution 

for accurate and reliable spike sorting in a variety of settings. 

A separate assessment was made for the two hybrid datasets, where detection, sorting and 

the combination of the two was considered (Figure 13.). The detection performance has 

a quite large gap between the two recordings (Table 5.): one of the probable explanations 

for this is that for the HS_64_12 recording cluster with the smallest SNR has an SNR 

value of 4.38, while for the HS_32_32 the minimum SNR is 0.34. The sorting of the found 

spikes show a more robust performance: while the Isosplit5 algorithm provides a faster 

sorting, the agglomerative clustering has a better performance on the generated feature 

space, however being the slower one. (Table 6.)  

Table 7. compares the spike sorting performance of our system with other methods. We 

demonstrate that our compact model can reach the performance of some of the offline 

sorters and comparable with other the state-of-the-art methods.  

DOI:10.14753/SE.2024.2989



66 

Figure 13. Embedded features after clustering. The features generated by our model. 

To the features NMS is applied, PCA and the results of the latter are then given as inputs 

for t-SNE to visualize the original 32-dimensional feature space in 2 dimensions. The 

clustering was performed after PCA, the different coloring representing different ground 

truth clusters. (96) 

5.3. TPU inference  

We tested the inference speed of our model on 128-channel samples in three different 

scenarios: a completely PC-based setup, where high performance CPU and GPU is 

available; a hybrid setup where high performance CPU is coupled with a TPU-based USB 

Accelerator, and a development-board-based setup, where a lower performance CPU is 

coupled with a TPU. The first setup was obviously the fastest, while the last one was the 

slowest one. The exported TFLite model is also heavily influenced by the speed of the 

CPU, because of the integrated NMS which runs on the CPU. The difference in latency 

time seen between the different setups in the Postprocessing included column in Table 

8., consists of the different processing speeds of the NMS node in the model. The CPU-

TPU setup can achieve real-time inference speed, being able to process recordings with 

sampling rate up to 24 kHz. In contrast, the DevBoard-setup has a slower inference speed, 

because of the lower CPU performance: in an online matter it can handle data with 6kHz 

sampling rate. 

             

   

    

   

 

  

        

  
 

 
 

  
 

DOI:10.14753/SE.2024.2989



67 

5.3.1. Scalability 

The presented system can also be scaled both data-wise as architecture wise. One of the 

benefits of such system is that it can be trained on more datasets at once but also the 

backbone architecture of both the unsupervised and supervised part can be improved 

according to the state-of-the-art methods.  

The presented system is designed to be scalable in two key ways. First, it can be trained 

on multiple datasets simultaneously, allowing it to learn a more generalized representation 

of the waveform properties. This is achieved by using a self-supervised model to extract 

relevant features from the waveforms, and a supervised object-detection-based model to 

detect spikes and predict the feature-vectors in the embedding-space learned by the self-

supervised model. This approach allows the system to be input-source agnostic, meaning 

it can be trained on data from different sources without requiring any prior knowledge of 

the recording conditions or electrode geometry. 

Second, the system can also be scaled in terms of architecture by using state-of-the-art 

methods to improve both the self-supervised and supervised components of the model. 

This means that the system can be updated to reflect advances in machine learning 

techniques, without requiring any hardware changes. The so created embedding system 

then can be updated without any hardware changes, effectively converting the problem 

of spike sorting from a hardware problem to a software problem at the level of embedded 

systems. This makes the problem of spike sorting more flexible and adaptable, allowing 

for more efficient and accurate spike sorting on various platforms and devices.  

Overall, the scalable nature of the system makes it a powerful tool for addressing the 

challenge of spike sorting in a variety of different contexts. 

  

DOI:10.14753/SE.2024.2989



68 

6. Conclusions 

The application of semi-supervised deep learning methods to spike sorting has yielded 

promising results. The proposed deep learning model, ELVISort, leverages the β-VAE 

architecture to efficiently detect and sort spikes. ELVISort successfully reduces the input 

data size to less than 0.5% of its original dimensions, thereby achieving notable gains in 

memory and time efficiency during the clustering process. The model's performance was 

rigorously assessed using publicly available datasets, demonstrating commendable F1 

scores on both the Hybrid Janelia and Kampff datasets. Furthermore, ELVISort 

showcased its viability for real-time applications, accomplishing spike processing within 

a substantially reduced timespan. These findings underscore the potential of ELVISort as 

a valuable tool in the development of memory and time-efficient brain-computer 

interfaces in the future. 

In the realm of deep learning solutions for edge devices, our model distinguishes itself as 

the pioneering deep learning-based solution capable of accommodating recordings with 

a high number of channels, while being deployable on embedded systems, particularly on 

TPUs and at the same time, being able to exhibit a performance similar to existing state-

of-art methods on unseen recordings.  

  

DOI:10.14753/SE.2024.2989



69 

7. Summary 

We are faced with the challenge of accurately detecting and evaluating neural cell 

activities due to the increasing number of recording sites on silicon-based probes. To 

overcome this challenge, we have developed highly automated signal processing tools. 

Our focus is on deep learning-based spike sorting systems that aim to achieve high 

efficiency and performance comparable to offline spike sorting methods, while enabling 

real-time processing. 

In our approach, we have developed ELVISort, a spike sorting model that combines the 

detection and clustering of different action potentials using deep learning. We have tested 

ELVISort on multiple independent datasets and achieved high average F1 scores. Notably, 

ELVISort exhibits real-time processing capabilities, enabling it to execute computations 

for a given sample length significantly faster than the actual duration.  

Additionally, we have proposed another deep learning-based spike sorting system that 

combines unsupervised and supervised paradigms. Our system learns a general feature 

embedding space and effectively detects neural activity in raw data. An advantage of our 

system is its ability to be trained on multiple diverse datasets simultaneously, resulting in 

greater generalizability compared to previous models. We have demonstrated that our 

proposed system achieves accuracy on par with state-of-the-art offline spike sorting 

methods. Moreover, our system has the potential to run on edge TPUs, which opens up 

possibilities for integrating it into wearable electronic devices for advanced brain-

computer interfaces. 

By developing these deep learning-based spike sorting systems, we aim to address the 

challenge of accurately detecting and evaluating neural cell activities. Our systems offer 

high performance, efficiency, and real-time processing capabilities. They also have the 

potential to leverage AI-specific hardware, such as GPUs and TPUs, for parallel 

processing. 

  

DOI:10.14753/SE.2024.2989



70 

8. References 

1.  Buzsáki G, Anastassiou C a, Koch C. The origin of extracellular fields and 

currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci [Internet]. 

2012;13(6):407–20. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/22595786 

2.  Hodgkin AL, Huxley AF. A quantitative description of membrane current and its 

application to conduction and excitation in nerve. J Physiol [Internet]. 1952 Aug 

28;117(4):500–44. Available from: 

https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004764 

3.  Hodgkin AL, Huxley AF. The dual effect of membrane potential on sodium 

conductance in the giant axon of Loligo. J Physiol [Internet]. 1952 Apr 

28;116(4):497–506. Available from: 

https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004719 

4.  Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through 

the membrane of the giant axon of Loligo. J Physiol [Internet]. 1952 Apr 

28;116(4):449–72. Available from: 

https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004717 

5.  O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: Why 

they fire where they fire. Exp Brain Res [Internet]. 1978 Apr;31(4). Available 

from: http://link.springer.com/10.1007/BF00239813 

6.  O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence 

from unit activity in the freely-moving rat. Brain Res [Internet]. 1971 

Nov;34(1):171–5. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/0006899371903581 

7.  Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. Microstructure of a spatial 

map in the entorhinal cortex. Nature [Internet]. 2005 Aug 19;436(7052):801–6. 

Available from: https://www.nature.com/articles/nature03721 

8.  Moser EI, Kropff E, Moser M-B. Place Cells, Grid Cells, and the Brain’s Spatial 

Representation System. Annu Rev Neurosci [Internet]. 2008 Jul 1;31(1):69–89. 

DOI:10.14753/SE.2024.2989



71 

Available from: 

https://www.annualreviews.org/doi/10.1146/annurev.neuro.31.061307.090723 

9.  Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. 

Neuronal ensemble control of prosthetic devices by a human with tetraplegia. 

Nature [Internet]. 2006 Jul;442(7099):164–71. Available from: 

https://www.nature.com/articles/nature04970 

10.  Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain–computer interfaces 

for communication and rehabilitation. Nat Rev Neurol [Internet]. 2016 Sep 

19;12(9):513–25. Available from: 

https://www.nature.com/articles/nrneurol.2016.113 

11.  Homer ML, Nurmikko A V., Donoghue JP, Hochberg LR. Sensors and Decoding 

for Intracortical Brain Computer Interfaces. Annu Rev Biomed Eng [Internet]. 

2013 Jul 11;15(1):383–405. Available from: 

https://www.annualreviews.org/doi/10.1146/annurev-bioeng-071910-124640 

12.  Rey HG, Pedreira C, Quian Quiroga R. Past, present and future of spike sorting 

techniques. Brain Res Bull [Internet]. 2015;119:106–17. Available from: 

http://dx.doi.org/10.1016/j.brainresbull.2015.04.007 

13.  Lewicki MS. A review of methods for spike sorting: The detection and 

classification of neural action potentials. Netw Comput Neural Syst. 

1998;9(4):R53–78.  

14.  Vargas-Irwin C, Donoghue JP. Automated spike sorting using density grid contour 

clustering and subtractive waveform decomposition. J Neurosci Methods. 

2007;164(1):1–18.  

15.  Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals 

in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods 

[Internet]. 1996;69(2):175–88. Available from: 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext

&D=med4&AN=8946321%5Cnhttp://sirius.library.unsw.edu.au:9003/sfx_local?

sid=OVID:medline&id=pmid:8946321&id=doi:&issn=0165-

0270&isbn=&volume=69&issue=2&spage=175&pages=175-

DOI:10.14753/SE.2024.2989



72 

88&date=1996&title 

16.  Chah E, Hok V, Della-Chiesa A, Miller JJH, O’Mara SM, Reilly RB. Automated 

spike sorting algorithm based on Laplacian eigenmaps and k -means clustering. J 

Neural Eng [Internet]. 2011 Feb 1;8(1):016006. Available from: 

https://iopscience.iop.org/article/10.1088/1741-2560/8/1/016006 

17.  Kim KH, Kim SJ. Neural spike sorting under nearly 0-dB signal-to-noise ratio 

using nonlinear energy operator and artificial neural-network classifier. IEEE 

Trans Biomed Eng. 2000;47(10):1406–11.  

18.  Choi JH, Jung HK, Kim T. A new action potential detector using the MTEO and 

its effects on spike sorting systems at low signal-to-noise ratios. IEEE Trans 

Biomed Eng. 2006;53(4):738–46.  

19.  Tambaro M, Bisio M, Maschietto M, Leparulo A, Vassanelli S. FPGA Design 

Integration of a 32-Microelectrodes Low-Latency Spike Detector in a Commercial 

System for Intracortical Recordings. Digital. 2021;1(1):34–53.  

20.  Malik MH, Saeed M, Kamboh AM. Automatic threshold optimization in nonlinear 

energy operator based spike detection. In: 2016 38th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 

[Internet]. IEEE; 2016. p. 774–7. Available from: 

http://ieeexplore.ieee.org/document/7590816/ 

21.  Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting 

with wavelets and superparamagnetic clustering. Neural Comput. 

2004;16(8):1661–87.  

22.  Semmaoui H, Drolet J, Lakhssassi A, Sawan M. Setting Adaptive Spike Detection 

Threshold for Smoothed TEO Based on Robust Statistics Theory. IEEE Trans 

Biomed Eng [Internet]. 2012 Feb;59(2):474–82. Available from: 

http://ieeexplore.ieee.org/document/6070974/ 

23.  Kim S, McNames J. Automatic spike detection based on adaptive template 

matching for extracellular neural recordings. J Neurosci Methods [Internet]. 2007 

Sep;165(2):165–74. Available from: 

DOI:10.14753/SE.2024.2989



73 

https://linkinghub.elsevier.com/retrieve/pii/S0165027007002634 

24.  Laboy-Juárez KJ, Ahn S, Feldman DE. A normalized template matching method 

for improving spike detection in extracellular voltage recordings. Sci Rep. 

2019;9(1):1–12.  

25.  Barabino G, Baldazzi G, Sulas E, Carboni C, Raffo L, Pani D. Comparative 

evaluation of different wavelet thresholding methods for neural signal processing. 

Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2017;(1):1042–5.  

26.  Quotb A, Bornat Y, Renaud S. Wavelet Transform for Real-Time Detection of 

Action Potentials in Neural Signals. Front Neuroeng [Internet]. 2011;4(JULY):1–

10. Available from: 

http://journal.frontiersin.org/article/10.3389/fneng.2011.00007/abstract 

27.  Issar D, Williamson RC, Khanna SB, Smith MA. A neural network for online spike 

classification that improves decoding accuracy. J Neurophysiol [Internet]. 

2020;123(4):1472–85. Available from: 

https://www.biorxiv.org/content/10.1101/722934v1.abstract?%3Fcollection= 

28.  Rácz M, Liber C, Németh E, Fiáth R, Rokai J, Harmati I, et al. Spike detection and 

sorting with deep learning. J Neural Eng [Internet]. 2020 Jan 24;17(1):016038. 

Available from: https://iopscience.iop.org/article/10.1088/1741-2552/ab4896 

29.  Metcalfe BW, Clarke CT, Donaldson N, Taylor J. A New Method for Neural Spike 

Alignment: The Centroid Filter. IEEE Trans Neural Syst Rehabil Eng [Internet]. 

2017 Nov;25(11):1988–97. Available from: 

https://ieeexplore.ieee.org/document/7951023/ 

30.  Valencia D, Alimohammad A. Neural Spike Sorting Using Binarized Neural 

Networks. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2021;29:206–14. 

Available from: https://ieeexplore.ieee.org/document/9288743/ 

31.  Valencia D, Alimohammad A. An Efficient Hardware Architecture for Template 

Matching-Based Spike Sorting. IEEE Trans Biomed Circuits Syst [Internet]. 2019 

Jun;13(3):481–92. Available from: https://ieeexplore.ieee.org/document/8675427/ 

32.  Lee JH, Carlson D, Shokri H, Yao W, Goetz G, Hagen E, et al. YASS: Yet another 

DOI:10.14753/SE.2024.2989



74 

spike sorter. Adv Neural Inf Process Syst. 2017;2017-Decem(Nips):4003–13.  

33.  Salmasi M, Büttner U, Glasauer S. Fractal dimension analysis for spike detection 

in low SNR extracellular signals. J Neural Eng [Internet]. 2016 Jun 

1;13(3):036004. Available from: http://dx.doi.org/10.1088/1741-

2560/13/3/036004 

34.  Chen K, Jiang Y, Wu Z, Zheng N, Wang H, Hong H. HTsort: Enabling Fast and 

Accurate Spike Sorting on Multi-Electrode Arrays. Front Comput Neurosci 

[Internet]. 2021 Jun 21;15(June):1–13. Available from: 

https://www.frontiersin.org/articles/10.3389/fncom.2021.657151/full 

35.  Yang K, Wu H, Zeng Y. A Simple Deep Learning Method for Neuronal Spike 

Sorting. J Phys Conf Ser [Internet]. 2017 Oct;910(1):012062. Available from: 

https://iopscience.iop.org/article/10.1088/1742-6596/910/1/012062 

36.  Wood F, Fellows M, Donoghue JP, Black MJ. Automatic spike sorting for neural 

decoding. Annu Int Conf IEEE Eng Med Biol - Proc. 2004;26 VI:4009–12.  

37.  Dai M, Luo J. A Robust Method for Spike Sorting with Overlap Decomposition. J 

Comput. 2014;9(3):1195–8.  

38.  Biffi E, Ghezzi D, Pedrocchi A, Ferrigno G. Spike detection algorithm 

improvement, spike waveforms projections with PCA and hierarchical 

classification. IET Conf Publ. 2008;(540 CP).  

39.  Buccino AP, Hagen E, Einevoll GT, Hafliger PD, Cauwenberghs G. Independent 

Component Analysis for Fully Automated Multi-Electrode Array Spike Sorting. 

In: 2018 40th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC) [Internet]. IEEE; 2018. p. 2627–30. 

Available from: https://ieeexplore.ieee.org/document/8512788/ 

40.  Leibig C, Wachtler T, Zeck G. Unsupervised neural spike sorting for high-density 

microelectrode arrays with convolutive independent component analysis. J 

Neurosci Methods [Internet]. 2016 Sep;271:1–13. Available from: 

http://dx.doi.org/10.1016/j.jneumeth.2016.06.006 

41.  Jäckel D, Frey U, Fiscella M, Franke F, Hierlemann A. Applicability of 

DOI:10.14753/SE.2024.2989



75 

independent component analysis on high-density microelectrode array recordings. 

J Neurophysiol. 2012;108(1):334–48.  

42.  Yang Y, Mason AJ. Frequency Band Separability Feature Extraction Method with 

Weighted Haar Wavelet Implementation for Implantable Spike Sorting. IEEE 

Trans Neural Syst Rehabil Eng. 2017;25(6):530–8.  

43.  Oweiss KG, Anderson DJ. Spike sorting: A novel shift and amplitude invariant 

technique. Neurocomputing. 2002;44–46:1133–9.  

44.  Mahallati S, Bezdek JC, Popovic MR, Valiante TA. Cluster tendency assessment 

in neuronal spike data. Cymbalyuk G, editor. PLoS One [Internet]. 2019 Nov 

12;14(11):e0224547. Available from: 

http://dx.doi.org/10.1371/journal.pone.0224547 

45.  Chung JE, Magland JF, Barnett AH, Tolosa VM, Tooker AC, Lee KY, et al. A 

Fully Automated Approach to Spike Sorting. Neuron [Internet]. 2017;95(6):1381-

1394.e6. Available from: https://doi.org/10.1016/j.neuron.2017.08.030 

46.  Gibson S, Judy JW, Marković D. An FPGA-based platform for accelerated offline 

spike sorting. J Neurosci Methods. 2013;215(1):1–11.  

47.  Valencia D, Alimohammad A. A Real-Time Spike Sorting System Using Parallel 

OSort Clustering. IEEE Trans Biomed Circuits Syst [Internet]. 2019 

Dec;13(6):1700–13. Available from: 

https://ieeexplore.ieee.org/document/8869918/ 

48.  Schaffer L, Nagy Z, Kineses Z, Fiath R. FPGA-based neural probe positioning to 

improve spike sorting with OSort algorithm. In: 2017 IEEE International 

Symposium on Circuits and Systems (ISCAS) [Internet]. IEEE; 2017. p. 1–4. 

Available from: http://ieeexplore.ieee.org/document/8050608/ 

49.  Schaffer L, Nagy Z, Kincses Z, Fiath R, Ulbert I. Spatial Information Based OSort 

for Real-Time Spike Sorting Using FPGA. IEEE Trans Biomed Eng [Internet]. 

2021 Jan;68(1):99–108. Available from: 

https://ieeexplore.ieee.org/document/9103059/ 

50.  Zhang B, Jiang Z, Wang Q, Seo J-S, Seok M. A neuromorphic neural spike 

DOI:10.14753/SE.2024.2989



76 

clustering processor for deep-brain sensing and stimulation systems. In: 2015 

IEEE/ACM International Symposium on Low Power Electronics and Design 

(ISLPED) [Internet]. IEEE; 2015. p. 91–7. Available from: 

http://ieeexplore.ieee.org/document/7273496/ 

51.  Chen Y-L, Hwang W-J, Ke C-E. An Efficient VLSI Architecture for Multi-

Channel Spike Sorting Using a Generalized Hebbian Algorithm. Sensors 

[Internet]. 2015 Aug 13;15(8):19830–51. Available from: 

http://www.mdpi.com/1424-8220/15/8/19830 

52.  Chen T-C, Wentai Liu, Chen L-G. 128-channel spike sorting processor with a 

parallel-folding structure in 90nm process. In: 2009 IEEE International 

Symposium on Circuits and Systems [Internet]. IEEE; 2009. p. 1253–6. Available 

from: http://ieeexplore.ieee.org/document/5117990/ 

53.  Yu B, Mak T, Li X, Xia F, Yakovlev A, Sun Y, et al. Real-Time FPGA-Based 

Multichannel Spike Sorting Using Hebbian Eigenfilters. IEEE J Emerg Sel Top 

Circuits Syst [Internet]. 2011 Dec;1(4):502–15. Available from: 

http://ieeexplore.ieee.org/document/6132381/ 

54.  Hwang WJ, Lee WH, Lin SJ, Lai SY. Efficient architecture for spike sorting in 

reconfigurable hardware. Sensors (Switzerland). 2013;13(11):14860–87.  

55.  Zhang T, Rahimi Azghadi M, Lammie C, Amirsoleimani A, Genov R. Spike 

sorting algorithms and their efficient hardware implementation: a comprehensive 

survey. J Neural Eng [Internet]. 2023 Apr 1;20(2):021001. Available from: 

https://iopscience.iop.org/article/10.1088/1741-2552/acc7cc 

56.  Pachitariu M, Steinmetz N, Kadir S, Carandini M, Kenneth D. H. Kilosort: realtime 

spike-sorting for extracellular electrophysiology with hundreds of channels. 

bioRxiv [Internet]. 2016;061481. Available from: 

http://biorxiv.org/lookup/doi/10.1101/061481 

57.  Pachitariu M, Sridhar S, Stringer C. Solving the spike sorting problem with 

Kilosort. bioRxiv [Internet]. 2023;2023.01.07.523036. Available from: 

https://www.biorxiv.org/content/10.1101/2023.01.07.523036v1%0Ahttps://www.

biorxiv.org/content/10.1101/2023.01.07.523036v1.abstract%0Ahttps://www.bior

DOI:10.14753/SE.2024.2989



77 

xiv.org/content/10.1101/2023.01.07.523036v1%0Ahttps://www.biorxiv.org/cont

ent/10.1101/2023.01.07.523036v1. 

58.  Yger P, Spampinato GLB, Esposito E, Lefebvre B, Deny S, Gardella C, et al. A 

spike sorting toolbox for up to thousands of electrodes validated with ground truth 

recordings in vitro and in vivo. Elife. 2018;7:1–23.  

59.  Pouzat C, Mazor O, Laurent G. Using noise signature to optimize spike-sorting 

and to assess neuronal classification quality. J Neurosci Methods [Internet]. 2002 

Dec;122(1):43–57. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S0165027002002765 

60.  Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: 

Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. 

Front Neuroinform. 2022;16(June).  

61.  Li Z, Wang Y, Zhang N, Li X. An Accurate and Robust Method for Spike Sorting 

Based on Convolutional Neural Networks. Brain Sci [Internet]. 2020 Nov 

11;10(11):835. Available from: https://www.mdpi.com/2076-3425/10/11/835 

62.  Mokri Y, Salazar RF, Goodell B, Baker J, Gray CM, Yen S-C. Sorting Overlapping 

Spike Waveforms from Electrode and Tetrode Recordings. Front Neuroinform 

[Internet]. 2017 Aug 17;11(August):1–15. Available from: 

http://journal.frontiersin.org/article/10.3389/fninf.2017.00053/full 

63.  Chiarion G, Mesin L. Resolution of spike overlapping by biogeography-based 

optimization. Electron. 2021;10(12).  

64.  Wouters J, Kloosterman F, Bertrand A. A data-driven spike sorting feature map 

for resolving spike overlap in the feature space. J Neural Eng. 2021;18(4).  

65.  Huang L, Ling BW-K, Cai R, Zeng Y, He J, Chen Y. WMsorting: Wavelet 

Packets’ Decomposition and Mutual Information-Based Spike Sorting Method. 

IEEE Trans Nanobioscience [Internet]. 2019 Jul;18(3):283–95. Available from: 

https://ieeexplore.ieee.org/document/8681441/ 

66.  Liu M, Feng J, Wang Y, Li Z. Classification of overlapping spikes using 

convolutional neural networks and long short term memory. Comput Biol Med 

DOI:10.14753/SE.2024.2989



78 

[Internet]. 2022;148(May):105888. Available from: 

https://doi.org/10.1016/j.compbiomed.2022.105888 

67.  Gong W, Senčar J, Bakkum DJ, Jäckel D, Obien MEJ, Radivojevic M, et al. 

Multiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices 

Using High-Density Microelectrode Arrays. Front Neurosci [Internet]. 2016 Nov 

22;10(NOV):1–16. Available from: 

http://journal.frontiersin.org/article/10.3389/fnins.2016.00537/full 

68.  Harris KD, Quiroga RQ, Freeman J, Smith SL. Improving data quality in neuronal 

population recordings. Nat Neurosci [Internet]. 2016 Sep 26;19(9):1165–74. 

Available from: https://www.nature.com/articles/nn.4365 

69.  Chaure FJ, Rey HG, Quian Quiroga R. A novel and fully automatic spike-sorting 

implementation with variable number of features. J Neurophysiol [Internet]. 2018 

Oct 1;120(4):1859–71. Available from: 

https://www.physiology.org/doi/10.1152/jn.00339.2018 

70.  Buccino AP, Garcia S, Yger P. Spike sorting: new trends and challenges of the era 

of high-density probes. Prog Biomed Eng. 2022;4(2):1–20.  

71.  Greenberg DS, Kerr JND. Automated correction of fast motion artifacts for two-

photon imaging of awake animals. J Neurosci Methods [Internet]. 2009 

Jan;176(1):1–15. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S0165027008004913 

72.  Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, et al. 

Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain 

recordings. Science (80- ). 2021;372(6539).  

73.  Varol E, Boussard J, Dethe N, Winter O, Urai A, Brain Laboratory TI, et al. 

Decentralized Motion Inference and Registration of Neuropixel Data. In: ICASSP 

2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP) [Internet]. IEEE; 2021. p. 1085–9. Available from: 

https://ieeexplore.ieee.org/document/9414145/ 

74.  Hurwitz CL, Xu K, Srivastava A, Buccino AP, Hennig MH. Scalable Spike Source 

DOI:10.14753/SE.2024.2989



79 

Localization in Extracellular Recordings using Amortized Variational Inference. 

arXiv [Internet]. 2019 May 29;(NeurIPS 2019). Available from: 

http://arxiv.org/abs/1905.12375 

75.  Boussard J, Varol E, Lee HD, Dethe N, Paninski L. Three-dimensional spike 

localization and improved motion correction for Neuropixels recordings. Adv 

Neural Inf Process Syst. 2021;27(NeurIPS):22095–105.  

76.  Hilgen G, Sorbaro M, Pirmoradian S, Muthmann JO, Kepiro IE, Ullo S, et al. 

Unsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays. 

Cell Rep [Internet]. 2017 Mar 7;18(10):2521–32. Available from: 

http://dx.doi.org/10.1016/j.celrep.2017.02.038 

77.  Jun JJ, Mitelut C, Lai C, Gratiy SL, Anastassiou CA, Harris TD. Real-time spike 

sorting platform for high-density extracellular probes with ground-truth validation 

and drift correction. bioRxiv [Internet]. 2017;101030. Available from: 

https://www.biorxiv.org/content/10.1101/101030v1 

78.  Hurwitz C, Kudryashova N, Onken A, Hennig MH. Building population models 

for large-scale neural recordings: Opportunities and pitfalls. Curr Opin Neurobiol 

[Internet]. 2021;70:64–73. Available from: 

https://doi.org/10.1016/j.conb.2021.07.003 

79.  Magland J, Jun JJ, Lovero E, Morley AJ, Hurwitz CL, Buccino AP, et al. 

SpikeForest, reproducible web-facing ground-truth validation of automated neural 

spike sorters. Elife [Internet]. 2020 May 19;9:e55167. Available from: 

https://elifesciences.org/articles/55167 

80.  Pedreira C, Martinez J, Ison MJ, Quian Quiroga R. How many neurons can we see 

with current spike sorting algorithms? J Neurosci Methods [Internet]. 2012 

Oct;211(1):58–65. Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S0165027012002749 

81.  Henze D a, Borhegyi Z, Csicsvari J, Mamiya  a, Harris KD, Buzsáki G. 

Intracellular features predicted by extracellular recordings in the hippocampus in 

vivo. J Neurophysiol [Internet]. 2000;84(1):390–400. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/10899213 

DOI:10.14753/SE.2024.2989



80 

82.  Neto JP, Lopes G, Frazão J, Nogueira J, Lacerda P, Baião P, et al. Validating 

silicon polytrodes with paired juxtacellular recordings: Method and dataset. J 

Neurophysiol. 2016;116(2):892–903.  

83.  Fiáth R, Márton AL, Mátyás F, Pinke D, Márton G, Tóth K, et al. Slow insertion 

of silicon probes improves the quality of acute neuronal recordings. Sci Rep. 

2019;9(1):1–17.  

84.  Allen BD, Moore-Kochlacs C, Bernstein JG, Kinney JP, Scholvin J, Seoane LF, et 

al. Automated in vivo patch-clamp evaluation of extracellular multielectrode array 

spike recording capability. J Neurophysiol. 2018;120(5):2182–200.  

85.  Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error 

propagation. Parallel Distrib Process Explor Microstruct Cogn [Internet]. 

1986;567. Available from: 

https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/PDPVolIChapt

er8.pdf 

86.  Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 

1997;9(8):1735–80.  

87.  Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional 

LSTM and other neural network architectures. Neural Networks. 2005;18(5–

6):602–10.  

88.  Fukushima K. Neocognitron: A self-organizing neural network model for a 

mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 

1980;36(4):193–202.  

89.  Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image 

classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 

2012;3642–9.  

90.  Rokai J, Rácz M, Fiáth R, Ulbert I, Márton G. Elvisort: Encoding latent variables 

for instant sorting, an artificial intelligence-based end-to-end solution. J Neural 

Eng. 2021;18(4).  

91.  Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper 

DOI:10.14753/SE.2024.2989



81 

with convolutions. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 

2015;07-12-June:1–9.  

92.  Lin H, Jia W, Sun Y, You Y. Spatial-temporal self-attention network for flow 

prediction. arXiv [Internet]. 2019; Available from: 

http://arxiv.org/abs/1912.07663 

93.  Razavi A, Van Den Oord A, Vinyals O. Generating diverse high-fidelity images 

with VQ-VAE-2. arXiv [Internet]. 2019; Available from: 

http://arxiv.org/abs/1906.00446 

94.  García-Alonso CR, Pérez-Naranjo LM, Fernández-Caballero JC. Multiobjective 

evolutionary algorithms to identify highly autocorrelated areas: The case of spatial 

distribution in financially compromised farms. Ann Oper Res. 2014;219(1):187–

202.  

95.  Stephen Butterworth. On the Theory of Filter Amplifiers. Vol. 7, Experimental 

Wireless and the Wireless Engineer. 1930. p. 536–541.  

96.  Rokai J, Ulbert I, Márton G. Edge computing on TPU for brain implant signal 

analysis. Neural Networks [Internet]. 2023 Feb; Available from: 

https://linkinghub.elsevier.com/retrieve/pii/S0893608023001089 

97.  Dwibedi D, Aytar Y, Tompson J, Sermanet P, Zisserman A. With a Little Help 

from My Friends: Nearest-Neighbor Contrastive Learning of Visual 

Representations. Proc IEEE Int Conf Comput Vis. 2021;9568–77.  

98.  Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted 

Residuals and Linear Bottlenecks. In: 2018 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition [Internet]. IEEE; 2018. p. 4510–20. Available 

from: https://ieeexplore.ieee.org/document/8578572/ 

99.  Tan M, Pang R, Le Q V. EfficientDet: Scalable and Efficient Object Detection. 

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit [Internet]. 2019 Nov 

20;10778–87. Available from: http://arxiv.org/abs/1911.09070 

100.  Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions. In: 

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 

DOI:10.14753/SE.2024.2989



82 

[Internet]. IEEE; 2017. p. 1800–7. Available from: 

http://ieeexplore.ieee.org/document/8099678/ 

101.  Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object 

Detection. IEEE Trans Pattern Anal Mach Intell. 2020;42(2):318–27.  

102.  Pouzat C, Garcia S. Tridesclous [Internet]. 2019 [cited 2020 Jul 7]. Available from: 

https://github.com/tridesclous/tridesclous 

103.  Willetts M, Camuto A, Rainforth T, Roberts S, Holmes C. Improving VAEs’ 

Robustness to Adversarial Attack. 2019;1–36. Available from: 

http://arxiv.org/abs/1906.00230 

104.  Mrabah N, Bouguessa M, Ksantini R. Adversarial Deep Embedded Clustering: on 

a better trade-off between Feature Randomness and Feature Drift. IEEE Trans 

Knowl Data Eng [Internet]. 2020;1–1. Available from: 

https://ieeexplore.ieee.org/document/9099972/ 

  

DOI:10.14753/SE.2024.2989



83 

9. Bibliography of the candidate`s publications 

 

9.1. Papers closely related to the PhD dissertation 

Rokai J, Ulbert I, Márton G. Edge computing on TPU for Brain Implant Signal Analysis. 

Neural Networks. 2023;162:212–24. doi:10.1016/j.neunet.2023.02.036  

Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From end to end: Gaining, 

sorting, and employing high-density neural single unit recordings. Frontiers in 

Neuroinformatics. 2022;16. doi:10.3389/fninf.2022.851024  

Rokai J, Rácz M, Fiáth R, Ulbert I, Márton G. ELVISort: Encoding latent variables for 

instant sorting, an artificial intelligence-based end-to-end solution. SSRN Electronic 

Journal. 2020; doi:10.2139/ssrn.3699796  

Rácz M, Liber C, Németh E, Fiáth R, Rokai J, Harmati I, et al. Spike detection and sorting 

with Deep Learning. Journal of Neural Engineering. 2020;17(1):016038. 

doi:10.1088/1741-2552/ab4896  

 

 

 

  

DOI:10.14753/SE.2024.2989



84 

10. Acknowledgements 

 

 

I express sincere gratitude for the unwavering support and seamless coordination 

provided by my supervisor, Dr. Márton Gergely. His guidance and mentorship have been 

instrumental in shaping the trajectory of my work. I extend my heartfelt appreciation to 

my colleagues for fostering an intellectually stimulating environment. The exchange of 

ideas and collaborative spirit within our professional community has undeniably enriched 

my perspective and contributed to the depth of my research. Furthermore, I would like to 

express my sincere appreciation to my friends, whose unwavering encouragement and 

companionship have provided a constant source of inspiration. 

Last but certainly not least, I owe a debt of gratitude to my family. Their steadfast support, 

belief in my abilities, and unwavering encouragement have been the cornerstone of my 

accomplishments. 

DOI:10.14753/SE.2024.2989


