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ANOVA Analysis of Variance 
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GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

GDP  Guanosine Diphosphate 

GTP  Guanosine Triphosphate 
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LPA  Lysophosphatidic Acid 

LPAR1 LPA G protein-coupled receptor subtype 1 
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MAPK  Mitogen-activated protein kinase 
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MEK  Mitogen-activated protein 

MHC  Major Histocompatibility Complex 

mTOR  Mammalian Target of Rapamycin 
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NF-κB  Nuclear Factor kappa B 

NK  Natural Killer 
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PD-1  Programmed Death Receptor 1 

PD-L1  Programmed Death Receptor Ligand 1 
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PLC  Phospholipase C 
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1. Introduction 

1.1 Lysophosphatidic acid 

Lysophosphatidic acid (LPA), a bioactive lipid mediator, was first identified over 

three decades ago and has since exhibited medicinal relevance. In the plasma, 

lysophosphatidylcholine (LPC) and other lysophospholipids are the primary sources of 

LPA, which is generated by the lysophospholipase D enzyme, autotaxin (ATX, encoded 

by the human ENPP2 gene) (1,2). Interestingly, ATX was first identified in A2058 human 

melanoma cells as an autocrine motility factor (3), and subsequent analysis revealed that 

the compound was identical to plasma lysophospholipase D, which is responsible for 

converting LPC to LPA (4). ATX is widely expressed, with the highest mRNA levels 

observed in the brain, lymph nodes, kidney, and testis (5). Additionally, it is 

overexpressed in various cancers.  

LPA levels are significantly increased in both plasma and tumor tissues in human 

cancers, indicating that LPA functions as a key factor in tumor development (6). Clinical 

studies revealed that high expression of ATX is linked to numerous malignancies, 

resulting in an elevated level of LPA, which contributes to both tumor progression and 

metastasis formation (7–9). Furthermore, it inhibits anti-tumor immunity in melanoma 

(6). The cellular communication within the tumor microenvironment (TME) is driven by 

a complex network of cytokines, enzymes, and lipids. Recent studies indicate that 

alterations in the lysophospholipid profile within the TME may represent a strategy used 

by tumor cells to circumvent the anti-cancer immune response (10). 

LPA mediates multiple physiological and pathological functions through 

activation of its six confirmed G protein-coupled receptors, named LPAR1-6, with broad 

tissue distributions and overlapping signaling pathways (Figure 1) (11,12). Due to the 

widespread expression of LPA receptors and their connection to diverse G protein-

mediated pathways, including Gi/o, Gs, Gq/11, and G12/13, LPA has been implicated in 

different physiological functions and disorders, such as vascular development, neurite 

remodeling, inflammation, and tumor progression (11,13,14). LPA receptors represent a 

promising avenue for therapeutic interventions, as evidenced by the extensive literature 

on LPA-mediated signaling in cancer development (5,15).  
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Figure 1. Signaling pathways of the G protein-coupled LPA receptors (12). LPA can 

induce numerous intracellular signaling pathway by activating its G-protein coupled 

receptors. AC- adenylate cyclase, PLC- Phospholipase C, PI3K- Phosphoinositide 3-

kinase, Ras- Rat sarcoma virus, Rho- Ras homologous. (Created with BioRender.com) 

 

The ATX-LPA-LPAR signaling axis was becoming one of the most studied fields 

in tumor biology due to its well-documented oncogenic potential. LPA reportedly 

mediates proliferation, survival, migration, angiogenesis, metastasis, and inflammation in 

carcinomas (16). Notably, it was observed in ovarian and gastric cancer cells that LPA 

regulates the cell cycle via LPAR1-, LPAR3-related EGFR/PI3K pathways (17,18). 

LPARs are able to activate a variety of signaling effectors, but overall, LPARs facilitate 

cancer cell proliferation and survival through Gq/11, Gi, and/or G12/13 and predominantly 

enhance cell migration and invasion via Gi and/or G12/13 (13,14,19).  

1.2 Death receptor 6 

Death receptor 6 (DR6, encoded by the human TNFRSF21 gene) is a type I 

transmembrane receptor that belongs to the tumor necrosis factor superfamily (20). DR6 

mRNA is expressed in various organs, including the brain, heart, pancreas, placenta, and 

immune organs such as lymph nodes and bone marrow (20,21). Since elevated DR6 

expression has been found to play a pivotal role in human pathological conditions, 

including Alzheimer's disease, inflammatory processes, and autoimmune disorders, it has 

been identified as a promising target for therapeutic intervention (21,22). Compared to 
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normal tissue, abundant transcript levels of DR6 were observed in certain human cancers, 

suggesting its role in tumor biology (20,23–25). Likewise, studies demonstrated that 

upregulation of DR6 promotes tumor aggressiveness in lung cancer, (26), whereas low 

DR6 expression provides a higher overall survival probability in pancreatic 

adenocarcinoma (27). Furthermore, Yang et al. revealed that DR6 is required for tumor 

angiogenesis through inducing IL-6 production via NF-κB-dependent signaling in B16 

murine melanoma (28).  

DR6 has also been implicated in cell death signaling (29). DR6-mediated 

apoptosis is cell type-dependent, suggesting that its cellular signaling pathways could be 

very different from other death receptors (29). Interestingly, Dong et al. demonstrated 

that LPA is able to induce apoptosis via the upregulation of DR6 in HeLa cells (30), 

although other investigators did not confirm this effect under the same conditions (31,32). 

1.3 Melanoma 

Melanoma is a hazardous, deadliest type of malignant skin cancer. Its incidence 

is still increasing in the Western world with severe impacts on the life quality and 

expectancy of patients (33). Melanoma is a form of aggressive skin cancer arising from 

melanocytes (34). Melanocytes produce melanin, which gives normally the pigmentation 

of the skin, hair, and eyes as well as protection against solar radiation (34–36). A 

neoplastic transformation of the melanocytes derived from the neural crest is thought to 

be responsible for melanoma (37,38). It can occur anywhere on the body, although its 

location appears to be influenced by the age and sex of the patients (37). Melanoma can 

be distinguished as epithelial or non-epithelial origin, with benign, borderline, or 

malignant progression (39). In malignant tumors originating from epithelial-associated 

melanocytes, we distinguish familial, UV-induced, and non-UV-induced, and within the 

latter, mucosal, acro lentiginous, and uveal forms. UV-induced melanomas can be divided 

into chronic (chronic sun-induced damage, CSD) and intermittent (non-CSD) forms 

based on the duration of UV exposure (40).  

However, the appearance of the tumor is inhomogeneous, and pathological 

changes in moles can develop in any area of the body, predominantly in areas exposed to 

direct UV radiation, such as the head, hands, and feet (36–38). Around 20% of melanomas 

in the head and neck have a worse prognosis compared to those in other regions.  
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In the last three decades, recognizing leading gene defects has enabled the 

molecular diagnosis of malignant melanoma. These mutations primarily affect the 

PI3K/AKT and RAS/RAF/MEK/ERK signaling pathways (35,36,39) including the 

alteration of B-Raf proto-oncogene (BRAF), neurofibromin 1 (NF1), NRAS, phosphatase 

and tensin homolog (PTEN), and tumor protein p53 (TP53) (Figure 2). Furthermore, 

Melanocortin-1 receptor (MC1R) is the most important melanocyte receptor, associated 

with pigmentation and protection against melanoma (39–41).  

NF1, a tumor suppressor gene, is the third most common mutation, altered in 10%-

15% of melanomas (37). NF1 inhibits RAS signaling by converting active RAS-GTP to 

inactive RAS-GDP (42). Loss of NF1 function results in NRAS hyperactivation and 

enhanced PI3K and MAPK pathway signaling (Figure 2), commonly seen in melanomas 

associated with sun exposure, often with other genomic mutations, including NRAS and 

BRAF (43).  

Figure 2. Dysregulated oncogenic signaling pathways in melanoma (44). AKT- Protein 

kinase B, BRAF- B-Raf proto-oncogene, ERK- Extracellular signal-regulated kinase, 
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MDM2- Mouse double minute 2 homolog, MEK- Mitogen-activated protein, mTOR- 

Mammalian target of rapamycin, NF1- Neurofibromin 1, PI3K- Phosphoinositide 3-

kinase, PTEN- Phosphatase and tensin homolog, RAS- Rat sarcoma virus.(Created with 

BioRender.com) 

NRAS activating mutations are the second most common in melanoma, present in 

15%-30% of the cases (38,45,46). These mutations, mainly missense in codons 12, 13, or 

61, prolong the active GTP-bound state of NRAS, leading to sustained aberrant signaling 

through the PI3K and MAPK pathways (46,47). BRAF and NRAS mutations are usually 

mutually exclusive but can co-occur occasionally.  

BRAF is a proto-oncogene coding for a serine/threonine-protein kinase crucial in 

cell growth and proliferation, mainly via the RAS-RAF-MEK-ERK pathway (37,38,48). 

Activating BRAF mutations, particularly the V600E, which converts valine to glutamate, 

are present in 60% of melanomas and lead to uncontrolled cell proliferation and tumor 

development (37,48). More importantly, 60%-70% of advanced melanomas have BRAF 

mutations, indicating their role in progression. These mutations are more frequently 

observed in younger patients with intermittent sun exposure compared to those with 

chronic sun exposure (48). Melanomas with BRAF mutations represent distinctive 

characteristics, including increased aggressiveness compared to BRAF wild-type (WT) 

melanomas, a higher tendency to metastasize to the brain, and a correlation with reduced 

survival in patients with stage IV tumors (49). Due to their prevalence and resistance to 

targeted therapy, BRAF V600 mutations are important targets in melanoma treatments, 

with many drugs developed to reverse the consequences of this mutation (37,48,49).  

PTEN is a tumor suppressor gene that regulates the cell cycle. Dysregulation of 

PTEN occurs in 10%-30% of cutaneous melanoma cases, mainly in the vertical growth 

phase and metastases (37,49,50). Common PTEN alterations include missense and 

frameshift mutations, chromosomal deletions, and epigenetic mechanisms such as 

microRNAs. PTEN mutations often co-occur with BRAF mutations but are mutually 

exclusive with NRAS mutations (51). Loss of PTEN function leads to increased 

PI3K/AKT pathway activation (Figure 2), contributing to melanoma progression and 

resistance to BRAF inhibitors (37, 50,52). Furthermore, Cabrita et al. revealed that PTEN 

alterations promote immune evasion by influencing the cytotoxic T-cell signal within the 

tumor (52). 
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Ultraviolet (UV) light radiation from sunlight is a significant environmental factor 

in melanoma development (41,53). Sunlight, especially intermittent exposure to high 

intensity, increases melanoma risk as the UV-B spectrum penetrates the epidermis, 

targeting melanocytes (53). A history of sunburn, especially in childhood, significantly 

raises melanoma risk, as does exposure to artificial UV-A sources like indoor tanning 

devices (54). UV radiation has been classified as a human carcinogen (54). Host factors 

such as the frequency and type of melanocytic nevi, genetic predisposition, and family 

history also influence melanoma risk (37). Melanomas often develop on pre-existing nevi. 

Genetic factors, including polymorphisms in the MC1R gene, contribute to skin color 

phenotypes and UV sensitivity, with light-skinned individuals being more vulnerable 

(37,41). Certain genetic disorders like familial atypical multiple mole-melanoma 

syndrome, melanoma-astrocytoma syndrome, familial retinoblastoma, Xeroderma 

pigmentosum are linked to a higher melanoma risk (37). 

Melanoma exhibits resistance to hypoxic conditions, oxidative stress, and 

apoptosis-inducing processes, which may promote the formation of metastases (55,56). 

Since melanoma is often visible on the skin surface, early diagnosis and surgical excision 

are possible (stage I-II). However, if it is not recognized in time, it metastasizes first in 

the surrounding lymph nodes (stage III), in which the 5-year survival rate is 60%, 

depending on the size of the primary tumor and the extent of its spread in the surrounding 

lymph nodes and organs. If the melanoma has spread to more distant lymph nodes and 

organs (stage IV), the 5-year survival rate is decreased to 16%, and the treatment is more 

complicated (57). In many cases, if surgical excision is not possible or ineffective alone, 

other adjuvant treatments such as chemotherapy, targeted therapy, immunotherapy, and 

their combination are used.  

1.4 Immunotherapy in melanoma 

Extensive research has been conducted on the tumor microenvironment and the 

role of different immune cells in tumor therapy, developing antitumor treatments to re-

activate the host’s immune system. As melanoma is one of the most immunogenic 

malignant cancer types (58), immunotherapy has changed the life expectancy of patients 

with this aggressive skin cancer over the last decade (59,60).  
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It is known that tumors have different strategies to suppress the host immune 

response. Inhibiting these strategies enables the immune system to be re-activated, 

resulting in effective antitumor treatment. The cycle of tumor immunity consists of two 

main phases: an initial nonspecific phase activating innate immunity through 

macrophages, granulocytes, dendritic cells (DCs), and natural killer (NK) cells, followed 

by a later phase where effector CD4+ and CD8+ T-cells target melanoma cells (59). This 

targeting is facilitated by interferon-gamma production and involves direct tumor cell 

cytotoxicity via MHC-TCR interactions or antigen-specific T-cell activity during the 

adaptive immune response. The initial event that enables melanoma cells to evade the 

immune system is the defective immune recognition of tumor-specific antigens. This is 

caused by inefficient antigen processing, which incrementally impairs the ability of CD8+ 

T cells to recognize and respond to the processed antigens expressed by tumor cells (59). 

Furthermore, the efficacy of T-cell cytotoxicity is determined by the appropriate 

presentation of antigens by antigen-presenting cells (APCs). The activity, co-stimulation, 

and antigen presentation by these cells are critical for the induction of functional 

immunity. The maturation and priming of DCs are influenced by stimuli from their 

microenvironment, where factors such as VEGF, IL-8, and IL-10 produced by melanoma 

cells promote an immature phenotype (59). Moreover, impairment of DCs is associated 

with diminished co-stimulation activity, which can be attributed to the inadequate 

expression of CD80 and CD86. Lytic cell death of tumor cells is associated with CD8+ 

cells, activated by tumor-associated antigens (TAA), which lyse target cells by releasing 

granules containing perforin and granzyme B (61).  

 

Figure 3. Targets of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade (62,63). 

APC- Antigen presenting cell, CTLA-4- Cytotoxic T lymphocyte antigen-4, MHC- Major 
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Histocompatibility Complex I/II, TCR- T Cell Receptor, PD-1- Programmed Death 

Receptor 1, PD-L1- Programmed Death Receptor  Ligand 1 (Created with 

BioRender.com) 

 

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a major co-receptor inhibitor in 

immune regulation, expressed by T cells binding to CD80/86 on the surface of the APC, 

causing inhibition of T cell activation (Figure 3) through suppressing the expression of 

interleukin 2 (IL-2) (64,65). This antigen has a vital role in limiting the effective immune 

response against tumor cells. Clinical trials of anti-CTLA-4 antibodies have demonstrated 

their efficacy in the treatment of melanoma (65,66). Two human anti-CTLA-4 

monoclonal antibodies, ipilimumab and tremelimumab, are available (67). Ipilimumab is 

the most widely studied anti-CTLA-4 antibody and has been used successfully in the 

treatment of a variety of tumor types (68). In its evaluation, taking into account its 

immunotherapeutic effect (69), it has been shown to improve the clinical outcome (long-

term stability, reduction in cancer progression) by 30% of patients with advanced stage 

IV melanoma who had failed prior targeted and/or chemotherapy (70). Phase III trials 

have shown significantly higher overall survival in a combined protocol with dacarbazine 

compared to dacarbazine alone (71–74). Its use both as a stand-alone therapy and as 

combined therapy in the treatment of stage III melanoma significantly increased overall 

survival (75,76). The other anti-CTLA-4 antibody, tremelimumab, has shown no 

difference in efficacy compared with conventional chemotherapeutic agents (77), but it 

has a much more severe immune side effect profile compared to ipilimumab (78).  

The other important antitumor checkpoint is Programmed death receptor-1 (PD-

1), an inhibitory receptor found on the surface of DC, B-, T- (CD4+ and CD8+) and NK 

cells (79). PD-1 has an important role in regulating the immune response, including its 

inhibitory effect on T cell proliferation. PD-L1 (programmed cell death receptor ligand-

1) is found in increased amounts on the surface of many cells, such as epithelial cells, 

endothelial cells, T cells-, and tumor cells (80,81). PD-1:PD-L1 interaction prevents the 

activation of PI3K/Akt and MAPK/ERK pathways (81). Inhibition of this interaction by 

monoclonal antibodies can restore the cytotoxic function of T cells, enabling them to 

destroy tumor cells (Figure 3) (81). Various anti-PD-1 antibodies have been developed 

that have shown significant therapeutic effects with reduced toxicity compared to anti-

CTLA-4 therapy in numerous types of tumors, including melanoma (82). The first anti-
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PD-1 antibody was nivolumab, which has been shown to be more efficient compared to 

dacarbazine in clinical trials (83,84). More recently, a clinical trial combining nivolumab 

with ipilimumab has resulted in a significant increase in overall survival compared to 

ipilimumab monotherapy (85). Another anti-PD-1 antibody is pembrolizumab, which, 

like nivolumab, is used in the treatment of advanced melanoma patients previously treated 

with ipilimumab or a BRAF inhibitor, with increased overall survival compared to anti-

CTLA-4 therapy (86). 

Although immunotherapy extends many patients’ life expectancy, clinical studies 

confirm that half of the patients do not respond to immunotherapy (87,88), which 

emphasizes the relevance of investigating the molecular mechanisms behind the 

ineffectiveness. Recently, numerous clinical studies identified that human leukocyte 

antigen DR (HLA-DR), an MHC class II antigen, correlates with the outcome of immune 

checkpoint inhibitor (ICI) treatment (87,89–92). HLA-DR is expressed mainly by 

professional antigen-presenting cells, but other cell types, including some tumors, are also 

able to express it (93).  

1.5 Interleukin 10 

The pleiotropic cytokine interleukin-10 (IL-10) is elevated in several 

malignancies and regulates the secretion of other cytokines (94). It was discovered in the 

late 1980s and was named cytokine synthesis inhibitory factor (95). Among the IL-10 

family members, it has been recognized as a key member mediating different functions 

within the immune system and cancer cells (94,96). It is primarily recognized as an anti-

inflammatory cytokine secreted by immune cells; however, it was later demonstrated that 

non-immune cell types, including fibroblasts and keratinocytes, and various types of 

tumor cells, such as breast, colon carcinoma, and melanoma cells, can also produce IL-

10 (97). IL-10 plays a significant role in both innate and adaptive immunity. Its 

production is induced by various stimuli in different immune cells, primarily monocytes 

and T cells, but also in dendritic cells, B cells, natural killer cells, mast cells, neutrophils, 

and eosinophils (98). During infections, macrophages stimulated by Toll-like receptors 

(TLRs) are the main IL-10 producers (98,99). Likely B cells when activated by TLRs and 

IFN-α in combination with TLR agonists (98,100). However, Regulatory T cells (Tregs) 

influenced by IL-2, IL-4, and TGF-β, which are involved in a positive feedback loop, are 
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known as significant players in maintaining high IL-10 levels (94, 98,100). IL-2 and IL-

27 induce IL-10 in CD8+ T cells, while IL-12 and IL-23 prime CD8+ and CD4+ T cells 

for IL-10 production (94,101,102). IL-10 has both immunosuppressive and 

immunostimulatory effects. It reduces malignant cell sensitivity to cytotoxic T cells but 

increases NK cell cytotoxicity, suggesting a role in combating malignancies by enhancing 

innate immune responses (94). 

Its role in tumor development is the subject of ongoing debate, with suggestions 

that it may act either as a tumor suppressor or promoter. However, due to the complexity 

of IL-10 and the lack of consensus on its role in the TME, this field requires further 

investigation. Most of the existing literature suggests pro-tumoural activity of IL-10, with 

a focus on its impact in different oncological settings (94). IL-10 can contribute to cancer 

progression by activating Signal transducer and activator of transcription 3 (STAT3) 

signaling pathway, which upregulates BCL-2, BCL-xL, and cell proliferation factors like 

cyclins and c-Myc (103). Otherwise, its immunosuppressive activity on macrophages and 

DCs can lead to tumor immune evasion by reducing antigen presentation and cell 

maturation. High IL-10 levels correlate with shorter survival times in diffuse large-cell 

lymphoma and poor prognosis in peripheral T-cell lymphoma, indicating lower complete 

response rates and higher early relapse rates (104,105). Nonetheless, elevated IL-10 at 

diagnosis is an independent prognostic marker in adult hemophagocytic 

lymphohistiocytosis, aiding in treatment strategy decisions (106). Similarly, elevated 

serum IL-10 levels are reportedly associated with a poor prognosis in melanoma (107–

110). Furthermore, abundant IL-10 expression is accompanied by an increase in other 

inflammatory mediators and worsens the outcomes of various cancers, indicating that  

IL-10 can be a key regulator of tumor immunity (111–115).  

IL-10 plays a dual role, acting as pro-inflammatory and anti-inflammatory 

mediator (96,116). In cancer, IL-10, secreted by tumors or tumor-infiltrating immune 

cells can help malignant cells evade immune surveillance (117). However, its function is 

affected by various factors, including target cells, other stimuli (94). The complexity of 

IL-10 effects continues to prompt further research to understand its nature completely.  
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2. Objective  

We aimed to investigate the relation between LPA-LPAR signaling and IL-10-

HLA-DR expression, which represents a previously unexplored topic in melanoma 

research. As elevated IL-10 levels are frequently associated with poor prognosis in 

different cancer types, we aimed to examine the potential role of LPA-induced IL-10 

release and clarify the underlying signaling mechanisms in human melanoma. 

Specifically, we addressed the following questions: 

 

• To investigate the effect of LPA on human DR6 promoter activity, transcription, 

and protein levels. 

• To evaluate the LPA-related signaling in DR6 upregulation and assess the 

transcription factor mediating the increased transcription. 

• To evaluate the effect of LPA on IL-10 transcription and release in human 

melanoma cells. 

• To analyze the LPA-NF-κB-DR6-IL-10 axis in melanoma tumor samples in order 

to confirm the in vitro findings of the LPA-mediated signaling cascade.  

• To investigate HLA-DR expression in melanoma cells to prove the importance of 

LPA-related IL-10 release. 

• To analyze the correlation between LPAR1 expression and the efficiency of anti-

PD-1 therapy in melanoma tumor samples in order to confirm the effect of LPA 

on HLA-DR expression. 
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3. Methods 

3.1 Reagents  

 LPA 18:1 was purchased from Avanti Polar Lipids Inc (Alabaster, AL, USA) and 

dissolved in 1 mM fatty acid-free bovine serum albumin (BSA, Merck KGaA; Darmstadt, 

Germany). AM095 (118), Ki16425 (119), and pertussis toxin were obtained from 

Cayman Chemicals (Ann Arbor, MI, USA).   

3.2 Cell culture  

 Human embryonic kidney HEK293T (RRID: CVCL_0063), as well as A2058 

(RRID: CVCL_1059) and A375 (RRID: CVCL_0132) human melanoma cells were 

purchased from the American Type Culture Collection (Rockville, MD, USA). The cell 

lines were maintained in Dulbecco's Modified Eagle’s Medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin and were cultured in 

a humidified incubator at 37°C and 5% CO2. Each cell line underwent regular 

mycoplasma screening, and all experiments were performed using mycoplasma-free 

cells. 

3.3 LPA treatment 

 In all experiments, cells were serum-starved for 1 hour prior to the administration 

of LPA. For inhibition of LPAR, the cells were pretreated with 10 µM AM095 or 

Ki16425, targeting LPAR1 or LPAR1/3 respectively, for 30 minutes prior to treatment 

with LPA. To investigate Gi protein coupling, the cells were preincubated with 100 ng/mL 

pertussis toxin (PTX) for 16 hours prior to LPA administration. Anti-IL-10 neutralizing 

antibody (JES3-9D7) or IgG1 isotype control (Thermo Fisher Scientific) was applied at 

3.5 µg/mL, 1 hour prior to LPA treatment. 

3.4 Luciferase Assay 

 Genomic DNA was isolated from human keratinocytes using DNeasy 

Blood&Tissue kit (Qiagen) and used as a template to amplify the predicted hDR6 

promoter using a forward and a reverse primer with the sequences 5’-
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TCCATCGAGCTCTTGGGGGAAGGGTGATTAAA-3’ and 5’-

AAAACTCGAGTTCTGCCCAGCGCCGCATCCACC-3’, respectively.  The amplicon 

was cloned between the SacI and XhoI restriction sites of the pGL4.10 (Promega, 

Madison, WI, USA) luciferase expression vector. All constructs were confirmed by 

sequencing.  

 HEK293T cells were cultured in 96-well plates. Twenty-four hours after seeding, 

the cells were co-transfected with the hDR6p-pGL4.10-luc luciferase expression vector 

and pRL Renilla luciferase control reporter driven by the SV40 promoter (Promega). 

Plasmid transfection was performed using Lipofectamine3000 (Invitrogen, Karlsruhe, 

Germany) in OptiMEM (Invitrogen) without supplements, according to the 

manufacturer’s protocol. After 24 hours, cells were kept in a serum-free medium for one 

hour and treated with 10 µM LPA for the indicated times. Luciferase activities were 

measured using the Dual-Glo Luciferase Reporter Assay System (Promega) according to 

the manufacturer’s instructions. The relative luciferase activity was calculated by 

normalizing it to Renilla luciferase activity.  

3.5 Gene knockdown 

 Small interfering RNA (siRNA) targeting DR6 (Catalog ID: L-004450-00-0005), 

IL10 (Catalog ID: L-005066-00-0005) or NF-κB1 (Catalog ID: L-003520-00-0005) 

mRNA (ON-TARGETplus SMARTpool), and non-targeting control (siNC) were 

purchased from Dharmacon (Lafayette, CO, USA). siRNAs were applied at the time of 

cell plating in 25 nM final concentration using Lipofectamine RNAiMAX (Invitrogen) 

according to the manufacturer's instructions. Treatments and measurements were carried 

out 24 h after transfection. 

3.6 Quantitative RT-PCR 

 RNA was isolated from cells using the NucleoSpin RNA Plus XS kit (Macherey-

Nagel GmbH & Co. KG, Düren, Germany). RNA concentration and quality were assessed 

with Nanodrop (Thermo Fisher Scientific). Up to 1 µg of total RNA was converted to 

cDNA using the RevertAid First Standard cDNA synthesis kit (Thermo Scientific). RNA 

expression relative to GAPDH was assessed by quantitative real-time PCR using cDNA 

corresponding to 40 ng RNA. Reactions were performed with 250 nM of each forward 
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and reverse primers in a final volume of 10 µl of 2XSsoAdvanced Universal SYBR Green 

Supermix (BioRad, Hercules, CA, USA). Amplification was performed after one initial 

denaturation step for 3 min at 98 ºC for 40 cycles at 95 ºC/10 s and 60 ºC/20 s with a CFX 

Connect™ Real-Time PCR Detection System (BioRad). The fold change of DR6 or IL-

10 gene expression normalized to the housekeeping gene (GAPDH) in LPA-treated 

versus untreated control cells was defined as 2-ΔΔCT. The LPAR1-6 gene expressions were 

defined as 2-ΔCT. The primer sets used were as follows (Merck KGaA; Darmstadt, 

Germany): 

Table 1. Primer sequences used in the quantitative RT-PCR analyses. 

Genes Fwd 5’-3’ Rev 5’-3’ 

GAPDH TCGGAGTCAACGGATTTG CAACAATATCCACTTTACCAGAG 

DR6 GGCATGAACTCAACAGAATC GTTGACTACCTGAAGGTTTG 

IL-10 GCCTTTAATAAGCTCCAAGAG ATCTTCATTGTCATGTAGGC 

LPAR1 TACAGCATCAGGTACACAG ATTACAGGGATGGAAGTAGAG 

LPAR2 ACTGTTGTCATCATCCTGG АСТСАСАGССТАААССАТС 

LPAR3 ACGGTGATGACTGTCTTAG TTGTAGGAGTAGATGATGGG 

LPAR4 AAATATGCACTTCCAAAGGG GGAAATATTTTCCTCCCCAAG 

LPAR5 АATАATGТСАССАСАСАСАС GTTCTCAAAGTGTGATCCAG 

LPAR6 ACCAAGAATTGTGAGAAAGC TTCCGAAATAAACTCCCAAG 

3.7 ELISA 

 Supernatants from melanoma cell cultures were collected after 12 h of 10 µM LPA 

treatment, and IL-10 concentration was quantified using the Human IL-10 ELISA kit 

(Abcam, Cambridge, UK) according to the manufacturer’s instructions. 

3.8 Flow Cytometry 

 Cells were washed and resuspended in PBS supplemented with 1% bovine serum 

albumin and stained with a DR6 (7678R, Bioss, Woburn, MA, USA) or HLA-DR (LN3, 

Invitrogen) antibody at 4 ºC for 30 min. At least 2 × 104 events per sample were counted 

by using flow cytometry (CytoFLEX, Beckman Coulter Life Sciences; Indianapolis, 

USA). Data were analyzed with the CytExpertCell software (Beckman Coulter Life 

Science). 
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3.9 Analysis of gene expression in melanoma samples 

 A transcriptomic database of immunotherapy-treated patient samples was 

established as described previously (120). The gene expression data was quantile 

normalized to integrate datasets generated using different technologies. From the entire 

database, only samples from patients treated with anti-PD-1 therapies, specifically 

nivolumab or pembrolizumab, were included. 

 To increase the sample size and robustness of the analysis, we included all 

available patients, irrespective of tumor histology. However, only pre-treatment samples, 

those obtained before the initiation of immune therapy, were used to evaluate the 

correlation between LPAR1 expression and the effectiveness of anti-PD-1 therapy. This 

approach was taken to avoid the confounding effects of ongoing systemic immune 

modulation. 

3.10 Statistical Analysis 

 Statistical analysis was performed using Prism 6 (GraphPad Software Inc.; La 

Jolla, CA, USA). All data are presented as mean ± SEM obtained from at least three 

independent experiments. Statistical significance was analyzed using one-way ANOVA 

and Dunnett’s post hoc test and was considered at p <0.05. 

For the correlation analysis, Spearman rank correlation was computed. To evaluate the 

correlation with therapy response, receiver operating characteristic (ROC) analysis was 

performed, and the area under the curve (AUC) value was calculated to determine the 

overall predictive effect. 
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4. Results 

4.1 Effect of LPA on DR6 receptor expression in HEK293T cells 

 First, the effect of LPA on the expression of DR6 was determined, and it was 

found that LPA dose-dependently upregulates the transcript levels of DR6 in HEK293T 

cells (Figure 4A). Measuring luciferase activity in HEK293T cells transfected with a 

human DR6 promoter construct revealed that LPA increased the DR6 promoter activity 

within 30 minutes compared to the vehicle-treated control, and the endogenous 

expression of DR6 mRNA also increased with a similar time course (Figure 4B). 

However, while the promoter activity declined after 60 min, the mRNA level remained 

elevated even at 3 h after LPA stimulation (121). 

 

Figure 4. A. HEK293T cells were treated with the indicated concentrations of LPA for 

30 min and DR6 expression was measured using qPCR. B. HEK293T cells transfected 

with the DR6 promoter construct were treated with 10 µM LPA for the indicated times 

and luciferase activity was measured (green line). Relative expression of the DR6 

transcript was analyzed by qPCR (red line). All data are presented as mean ± SEM. 

Statistical analysis was performed using one-way ANOVA and Dunnett’s posthoc test; 

*p<0.05, **p<0.01, ****p<0.0001. Figure adapted from the author’s original publication 

(121). 

 Our next aim was to identify the receptor mediating the effect of LPA. Of the six 

LPA GPCRs, LPAR1 and LPAR3 showed the highest expression levels in HEK293T 
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cells (Figure 5A); therefore, we tested if inhibitors selective for either LPAR1/3 

(Ki16425) or LPAR1 (AM095) can interfere with the effect of LPA. Both Ki16425 and 

AM095 were able to inhibit the effect of LPA on DR6 promoter activity (Figure 5B) and 

mRNA levels (Figure 5C), suggesting that LPAR1 is the receptor involved in mediating 

DR6 upregulation (121). 

 

Figure 5. A. The LPAR mRNA expression profile of HEK293T cells. B. HEK293T cells 

transfected with DR6 promoter construct were treated with 10 µM LPA for 30 min. 

Where indicated, cells were pretreated with either LPAR1/3 inhibitor Ki16425 (10 µM) 

or LPAR1 inhibitor AM095 (10 µM). C. The inhibition of the LPA-induced upregulation 

of DR6 by Ki16425 or AM095 was confirmed by qPCR. All data are presented as mean 

± SEM. Statistical analysis was performed using one-way ANOVA and Dunnett’s 

posthoc test; **p<0.01, ****p<0.0001 vs. control, #p<0.0001 vs LPA alone. Figure 

adapted from the author’s original publication (121). 

4.2 Effect of LPA on DR6 expression in human melanoma cells  

 To explore the potential role of the LPA-DR6 axis in melanoma, we investigated 

the effect of LPA on DR6 expression in human A375 (Figure 6A and B) and A2058 

melanoma cells (Figure 6C and D). LPA treatment increased DR6 mRNA and protein 

levels in both melanoma cell lines. LPA-induced DR6 mRNA transcript levels reached a 

maximum at 1h, whereas the expression of DR6 receptor on the cell surface peaked at 3h 

after LPA treatment in both melanoma cell lines. In the A375 cell line, LPA-induced DR6 

protein expression was biphasic, with a second increase occurring at 12 hours (Figure 

6B) (121).  
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Figure 6. Melanoma cells were treated with 10 µM LPA. Time-dependent induction of 

DR6 expression was followed by qPCR (A, C) and flow cytometry (B, D). All data are 

presented as mean ± SEM. Statistical analysis was performed using one-way ANOVA 

and Dunnett’s posthoc test; *p<0.05, ***p<0.001, ****p<0.0001. Figure adapted from 

the author’s original publication (121). 

 Next, with the aim of elucidating the signaling pathways involved in LPA-induced 

DR6 upregulation, we analyzed the expression levels of different LPA receptors in A2058 

and A375 melanoma cells and found that both express predominantly LPAR1 and LPAR3 

receptors (Figure 7) (121).  
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Figure 7. The mRNA profile of LPARs in A375 and A2058 melanoma cells was 

quantified by qPCR. Figure adapted from the author’s original publication (121). 

Inhibiting the LPAR1/3 receptors with Ki16425 or selectively LPAR1 using 

AM095 completely abolished LPA-induced DR6 mRNA expression in both cell lines, 

supporting a central role of LPAR1 in the process (Figure 8A and C). To further validate 

these findings, we used flow cytometry and showed that LPA induced a marked increase 

in the protein level of DR6, which was inhibited by AM095 in both A375 (Figure 8B) 

and A2058 cells (Figure 8D) (121). 
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Figure 8. Melanoma cells were treated with 10 µM LPA for 1 h in the presence or absence 

of 10 µM Ki16425 or 10 µM AM095. The pretreatment with PTX (100 ng/mL) was 

administered 16 h prior to the LPA treatment. Gene expression was evaluated by qPCR 

(A, C). The inhibitory effect of AM095 on DR6 protein expression was analyzed by flow 

cytometry (B, D). All data are presented as mean ± SEM. Statistical analysis was 

performed using one-way ANOVA and Dunnett’s posthoc test; **p<0.01, ***p<0.001, 

****p<0.0001 vs. control; #p<0.001 vs. LPA alone. Figure adapted from the author’s 

original publication (121). 

To identify the G-protein involved in LPAR1-mediated upregulation of DR6, 

melanoma cells were pretreated with pertussis toxin (PTX). PTX, a specific inhibitor of 

Gi, abrogated the effect of LPA in both melanoma cell lines (Figure 8A and C) (121).  

Next, we aimed to analyze the transcriptional regulation of DR6 expression. Using 

the ALGGEN-PROMO software, we found that the putative promoter sequence of DR6 

contains binding sites for the transcription factor (TF) NF-κB1 (Figure 9A). Since LPA 

DOI:10.14753/SE.2025.3109



25 

 

is a known activator of NF-κB, we investigated its involvement in LPA-induced DR6 

expression. We showed that siRNA silencing of NF-κB1 abrogated the LPA-induced 

DR6 expression without affecting basal DR6 expression (i.e. in the absence of LPA) 

(Figure 9B). Our results indicate that stimulation of the Gi-coupled-LPAR1 by LPA 

increases DR6 expression via activation of NF-κB1 in both A2058 and A375 melanoma 

cell lines (121). 

 

 

Figure 9. A. The putative promoter region of human DR6 was identified using the 

Berkley NNPP program; and the ALGGEN-PROMO software was used to identify the 

transcription factor binding sites. B. NF-κB1 was silenced using specific siRNA to assess 

its role in the LPA-mediated induction of DR6. All data are presented as mean ± SEM. 

Statistical analysis was performed using one-way ANOVA and Dunnett’s posthoc test; 

*p<0.05, ***p<0.001 vs. control; #p<0.001 vs. LPA alone. Figure adapted from the 

author’s original publication (121). 
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4.3 Regulation of IL-10 production by LPA in melanoma 

 As IL-10 has been reported to play a crucial role in melanoma progression (122), 

we investigated whether LPA could regulate IL-10 expression. We found that 10 µM LPA 

increased IL-10 transcript with a similar time course in A2058 and A375 melanoma cells, 

resulting in maximal mRNA expression at 3h (Figure 10 A and C). Using AM095 and 

PTX, it is shown that LPA-induced upregulation of IL-10 is mediated via the LPAR1-Gi 

pathway (Figure 10B and D) (121).  
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Figure 10. Melanoma cells were treated with 10 µM LPA. Time-dependent induction of 

IL-10 expression was examined by qPCR (A, C). AM095 and PTX were used to 

investigate the involvement of the Gi-coupled LPAR1 in LPA-induced IL-10 expression 

(B, D). All data are presented as mean ± SEM. Statistical analysis was performed using 

one-way ANOVA and Dunnett’s posthoc test; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001vs control, #p<0.001 vs. LPA alone. Figure adapted from the author’s 

original publication (121). 

As LPA-induced IL-10 expression appeared to be mediated by the same signaling 

steps that were previously identified in DR6 upregulation, we hypothesized that DR6 may 

be involved in the LPA-mediated IL-10 production. Therefore, we evaluated whether 

silencing the DR6 gene with siRNA interferes with LPA-induced IL-10 mRNA 

expression. Interestingly, blocking DR6 expression with siRNA abolished the LPA-

induced increase of IL-10 mRNA levels without influencing those in the absence of LPA 

(Figure 11). These results indicate that DR6 is responsible for mediating LPA-induced 

IL-10 expression (121).  

 

Figure 11. IL-10 mRNA expression of siNC or siDR6-transfected A375 and A2058 

melanoma cells in the presence or absence of 10 µM LPA or its vehicle for 3 h. All data 

are presented as mean ± SEM. Statistical analysis was performed using one-way ANOVA 

and Dunnett’s posthoc test; ***p<0.001, ****p<0.0001vs control, #p<0.0001 vs. LPA 

alone. Figure adapted from the author’s original publication (121). 
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Moreover, we showed that the LPA-induced secretion of IL-10 in melanoma cells 

is mediated by LPAR1 and DR6. Specifically, LPA induced a 3- and 5-fold increase in 

IL-10 secretion of A375 and A2058 cells, respectively (Figure 12). These effects were 

abolished completely by pharmacological inhibition of LPAR1 or silencing of the DR6 

gene (Figure 12), providing evidence for the involvement of the LPA-LPAR1-DR6 axis 

in increasing IL-10 secretion in melanoma (121). 

 

Figure 12. siNC or siDR6-transfected A375 and A2058 melanoma cells were treated with 

10 µM LPA or its vehicle for 12 h in the presence or absence of AM095. The level of IL-

10 was determined in the cell supernatants. All data are presented as mean ± SEM. 

Statistical analysis was performed using one-way ANOVA and Dunnett’s posthoc test; 

****p<0.0001vs control, #p<0.0008 vs. LPA alone. Figure adapted from the author’s 

original publication (121). 

4.4 Correlation of LPAR1-DR6 and IL-10 expression in melanoma patient 

samples 

Databases of patients with melanoma were analyzed using the Spearman rank 

correlation to verify the significance of the LPAR1−NF-κB1−DR6−IL-10 signaling 

cascade in vivo. The correlations between the gene expression levels of LPAR1, NF-κB1, 

DR6, and IL-10 are depicted in Figure 13. Based on 435 melanoma samples, LPAR1 

expression strongly correlates with NF-κB1 (Spearman’s r=0.23, p=9.8×10-7), DR6 
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(Spearman’s r=0.33, p=1.9×10-12) and IL-10 (Spearman’s r=0.21, p=1.3×10-5) expression 

(Figure 13). Supporting our findings, not only LPAR1, but DR6 also positively correlates 

with IL-10 (Spearman’s r=0.19, p=7.6×10-5) (Figure 13). These results are consistent 

with our in vitro findings on the LPAR1−DR6−IL-10 signaling cascade in human 

melanoma (121). 

 

Figure 13. Heatmap representing the correlation between the expression of LPAR1, 

NF-κB1, DR6 and IL-10 in melanoma tumor samples. n= 435. Statistical analysis was 

performed using Spearman rank correlation. Figure adapted from the author’s original 

publication (121). 

4.5 Effect of LPA on HLA-DR expression in melanoma 

 Next, we investigated whether the LPA-LPAR1-DR6 axis and subsequent IL-10 

release affect HLA-DR expression in human melanoma. To do this, A375 or A2058 cells 

were treated with LPA in the absence and presence of the LPAR1 antagonist AM095, 

siRNA silencing of DR6 or IL-10, as well as in the presence of anti-IL-10 neutralizing 

monoclonal antibody or IgG1 kappa isotype control. Treatment with LPA alone resulted 

in a marked downregulation of HLA-DR in both A375 and A2058 melanoma cells 

(Figure 14), which disappeared after pharmacological inhibition of LPAR1 by AM095 

or silencing DR6 expression by siDR6 (121).  
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Figure 14. A375 and A2058 cells were treated with 10 µM LPA for 22 h and HLA-DR 

expression was measured by flow cytometry. The signaling pathway was examined using 

AM095, siDR6 or siIL10. All data are presented as mean ± SEM. Statistical analysis was 

performed using one-way ANOVA and Dunnett’s posthoc test; ****p<0.0001 vs. 

control, #p<0.0004 vs. LPA. Figure adapted from the author’s original publication (121). 

More importantly, silencing IL-10 expression by siRNA (Figure 14) or blocking 

its effect by neutralizing antibody (Figure 15) completely abolished the effect of LPA on  

HLA-DR expression (121). 
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Figure 15. A375 and A2058 cells were treated with 10 µM LPA for 22 h and HLA-DR 

expression was measured by flow cytometry. IL-10 was neutralized by an anti-IL10 

monoclonal antibody and IgG1 kappa was used as an isotype control. All data are 

presented as mean ± SEM. Statistical analysis was performed using one-way ANOVA 

and Dunnett’s posthoc test, **p<0.01, ****p<0.0001 vs. control, #p<0.01 vs. LPA. 

Figure adapted from the author’s original publication (121). 

 

These results revealed that LPA downregulates HLA-DR expression via 

activating the LPAR1-DR6-IL-10 pathway in both human melanoma cell lines. 

4.6 The efficiency of anti-PD-1 therapy related to LPAR1 in melanoma 

patients 

Investigating the gene expression profile associated with resistance to anti-PD-1 

therapy in melanoma tumors revealed that LPAR1 expression is significantly higher in 

non-responders compared to the responder group (AUC=0.574, p=1.4×10-2, strongest 

cutoff=132), confirming the marked role of LPAR1 in melanoma progression (Figure 

16). This analysis highlights the potential predictive value of LPAR1 expression in 

determining the response to anti-PD-1 therapy in melanoma patients. The findings 

suggest that increased expression levels of LPAR1 may be associated with worse 

therapeutic outcomes, underscoring the importance of further investigating this gene as a 

potential biomarker for immunotherapy response (121). 

Figure 16. ROC plots of LPAR1 expression of melanoma samples predicting resistance 

in anti-PD-1 treatment.   
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5. Discussion 

Melanoma, the most aggressive and deadly form of skin cancer, severely impacts 

life expectancy when it has progressed to advanced stages (87). Discovering the potency 

of re-invigorating the immune system revolutionized the outcomes of this malignancy. 

Despite the promising potential of immune checkpoint blockade for treating melanoma, 

about 50% of patients do not respond favorably to these therapies (87). Human A375 and 

A2058 melanoma cell lines were used as a preclinical model of low or highly metastatic 

melanoma, respectively, to investigate the molecular mechanisms by which melanoma 

can evade the anti-tumor immune response (121).  

The evidence of LPA in tumor development and metastasis is well-established in 

experimental and clinical studies (123). The level of LPA in the plasma is in nanomolar 

concentration, but under certain pathological circumstances like malignancies, it can be 

increased several-fold (124). The abundant expression of autotaxin, the enzyme 

responsible for the biosynthesis of LPA, influences tumor development and antitumor 

immunity not only in melanoma (10,125–128). The autotaxin-derived LPA on tumor-

infiltrating lymphocytes and its role in the immune escape of melanoma has been well-

documented (10). In the current study, an LPA-mediated signaling pathway in melanoma 

immune-escape was examined.  

Our findings demonstrate that LPA regulates DR6 expression by activating 

LPAR1. The altered expression of LPAR1 is linked to various aspects of carcinogenesis 

and therapy resistance in melanoma (14, 60,129,130). Ki16425 and AM095 were selected 

in our study as LPA receptor antagonists because of their well-documented 

pharmacological properties validated in cellular systems and preclinical animal models 

(5,118,119). Ki16425 is one of the most frequently used selective LPA receptor 

antagonists. Based on the structure of Ki16425, AM095, a biphenyl-substituted isoxazole 

analog, was designed and synthesized as a selective antagonist of the LPAR1 receptor 

(118). Therapeutic potency of LPAR1 antagonism by Ki16425 or AM095 has been 

reported in preclinical models of rheumatoid arthritis, hydrocephalus, dermal, pulmonary, 

and renal fibrosis, as well as in different tumor types (5, 15,131,132). The role of LPAR1 

in LPA-induced cancer invasion and oncogenesis is well-documented (6). Elevated 

LPAR1 expression in many primary tumors is associated with increased cell proliferation 
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and poor prognosis (130). Furthermore, LPAR1 is a key regulator of melanoma invasion, 

metastasis, and therapy resistance mainly via Gi, Gq coupling (13, 129,133). Our 

experiments using PTX confirm the involvement of the LPAR1 coupled Gi protein in this 

regulatory process (134). Notably, this study is the first to explore how LPA and LPAR1 

influence HLA-DR expression and the efficacy of anti-PD-1 therapy. 

DR6 has a complex role in the progression of malignancies (135). While increased 

DR6 expression has been observed in various tumor types, including melanoma, its 

precise function in tumor biology has been unclear. Notably, DR6 upregulation is related 

to therapy resistance in melanoma (136).  

Our study indicates that DR6 functions as an immediate-early gene responsive to 

LPA, as an increased DR6 promoter activity and mRNA expression were observed after 

30 minutes (121). Analysis of the putative promoter sequence of DR6 revealed conserved 

binding sites for NF-κB1 (p50). Silencing NF-κB1 inhibited LPA-induced DR6 

expression without affecting its basal expression level, confirming its role in DR6 

upregulation (121). The multifaceted role of NF-κB in tumor progression is well 

established. NF-κB transcription factors are key regulators of cell survival, and aberrant 

NF-κB signaling has been implicated in the pathogenesis of most human malignancies, 

including melanoma (137,138). Members of the NF-κB family, especially p50 and p65, 

are overexpressed in melanoma cells compared to non-transformed melanocytes, 

emphasizing their contribution to cancer progression (139,140). The NF-κB-regulated 

cytokines and chemokines, when transcriptionally activated, are thought to enhance 

melanoma progression through autocrine and paracrine signaling (138). LPA is a known 

activator of NF-κB expression (141,142). However, not all cell types respond uniformly 

to a given stimulus, either because they lack the cognate receptor or because they lack the 

required signal transduction molecules (142). Although this study focused on DR6 and 

NF-κB in melanoma cells, their roles in immune cells are likely equally important. For 

instance, tumor-derived DR6 influences dendritic cell development and T-cell activation 

(143). NF-κB may play an even more significant role in tumor progression by regulating 

the release of various chemokines and cytokines from melanoma cells and the effects of 

these mediators are considered to promote tumor progression as they maintain a high 

constitutive activation of NF-κB, which switches from pro-apoptotic to anti-apoptotic 

functions in melanoma (138). Moreover, it is likely to be involved in the transcriptional 
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regulation of IL-10 expression and potentially mediating IL-10 effects. Interestingly, DR6 

reportedly induces the activation of NF-κB (144), and Cao et al. identified NF-κB1, as a 

crucial factor in the transcription of IL-10 in macrophages (145). It is reasonable to 

hypothesize that NF-κB induces the expression of both DR6 and IL-10 in our system. 

However, due to methodological constraints, we could not clarify this in the current study.  

Altered IL-10 levels can significantly contribute to carcinogenesis and tumor 

progression. Elevated IL-10 promotes tumor growth by activating STAT3, inhibiting 

apoptosis, and allowing immune evasion through downregulation of HLA class I 

molecules, suppression of DC function, recruitment of Treg cells, inhibition of NK cell 

activity, and impaired activation of CD4+ Th1 and CD8+ cytotoxic T cells (146–148). 

High IL-10 expression in primary tumor cells and tumor-associated macrophages is 

linked to cancer progression and metastasis, and elevated serum IL-10 levels in cancer 

patients often correlate with poor prognosis (147,149–153). Clinical studies have 

demonstrated a correlation between elevated IL-10 expression and melanoma progression 

(154–157), and Sato et al. identified transformed melanocytes as a main source of IL-10 

production in melanoma metastases (157). 

While LPA is recognized for its role in cytokine release, its involvement in 

regulating IL-10 expression by tumor cells has not been previously documented. In  

LPS-stimulated human dendritic cells and macrophages, LPA enhances IL-10 release, 

which subsequently suppresses TNF-α production (158). Additionally, DR6 serves as an 

immunosuppressive factor, hindering the proliferation and migration of B and T cells, 

thus contributing to tumor survival and progression (135). Although the upregulation of 

IL-10 within the tumor microenvironment is frequently reported (94,159), this study is 

pioneering in demonstrating that LPA induces IL-10 production in melanoma cells and 

highlights the LPAR1-dependent upregulation of DR6 as a key mechanism in the process. 

IL-10 can impede crucial stages of immune recognition by reducing the 

expression of HLA class I and II antigens and the intercellular adhesion molecule-1 

(ICAM-1) on the surface of melanoma cells (160). The success of immunotherapy relies 

on T cells being able to identify these cell surface antigens. HLA-DR, an MHC class II 

antigen, is constitutively expressed in antigen-presenting cells but can also be induced in 

other tissues, including tumor cells (161). The primary function of HLA-DR is to present 

antigens to CD4+ T cells, which in turn support the activation of CD8+ T cells and the 
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generation of memory T cells (162). Additionally, tumor-specific HLA-DR expression is 

linked to favorable outcomes in cancer patients (87, 92,162), and therefore it is considered 

a prognostic marker (91,163,164). 

While HLA-DR expression does not appear to be a prognostic factor by itself in 

melanoma, it has been demonstrated to exert a considerable influence on the efficacy of 

ICI therapy (87, 89,165–168). Recent retrospective clinical studies have demonstrated a 

correlation between HLA-DR positivity in tumor cells and a higher response rate to ICI 

immunotherapy in patients with advanced melanoma (168–170). Tumors exhibiting 

elevated HLA-DR expression demonstrated markedly superior progression-free and 

overall survival rates compared to those with HLA-DR negativity (defined as tumors with 

less than 5% HLA-DR+ melanoma cells) (87). Our findings demonstrate that LPA 

markedly diminishes HLA-DR expression in human melanoma cells, thereby elucidating 

a previously unidentified mechanism through which LPA facilitates immune evasion. 

This effect is primarily mediated by the upregulation of DR6 and the subsequent release 

of IL-10. However, the direct impact of DR6 on HLA-DR cannot be entirely ruled out 

based on the available data. Furthermore, we observed a negative correlation between 

LPAR1 expression and the efficacy of anti-PD-1 therapy, indicating that LPA-induced 

downregulation of HLA-DR may contribute to therapy resistance. Notably, a recent study 

by Kovács et al. reported significantly higher LPAR1 expression in non-responders to ICI 

therapy in multiple tumor types (116). Emphasizing the role of LPA in anti-PD-1 therapy 

efficacy, Konen et al. identified upregulated levels of ATX and LPA in anti-PD-1 resistant 

non-small cell lung cancer and a negative correlation with the number of infiltrating 

CD8+ T cells (171), indicating that increased LPA levels negatively affect the response 

to ICI. 

In conclusion, the findings of this study demonstrate that LPA enhances DR6 

expression via a Gi-coupled LPAR1- and NF-κB-dependent mechanism. Furthermore, 

LPA markedly regulates IL-10 gene transcription and protein release via DR6, resulting 

in diminished HLA-DR expression in melanoma cells (Figure 17). Given that IL-10 plays 

a multifaceted role in tumor immune evasion and neutralizing IL-10 has been proposed 

as a novel anti-tumor therapy (172,173), the downregulation of HLA-DR via LPA-

induced IL-10 production may represent a critical pathway in the progression, metastasis, 

and immune evasion of melanoma. 
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Figure 17. LPA, via its Gi-coupled LPAR1 receptor, activates NF-κB1-mediated DR6 

expression, inducing the transcription and secretion of IL-10, which in turn leads to the 

downregulation of HLA-DR antigen in human melanoma cells. (Created with 

BioRender.com). Figure adapted from the author’s original publication (121). 
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6. Conclusions 

In the current study, we aimed to determine the role of LPA-DR6 axis in human 

melanoma immune escape and clarify the underlying mechanisms. Our findings 

indicate that: 

• LPA increases DR6 promoter activity and DR6 mRNA levels within 30 minutes, 

implying that DR6 acts as an immediate early response gene to LPA.  

• Ki16425 or AM095 blocks the LPA-induced increase of DR6 promoter activity 

and expression, indicating that LPAR1 mediates this effect. 

• LPA regulates DR6 mRNA and protein levels in A375 and A2058 human 

melanoma cells via LPAR1, in A375 cells with a biphasic increase in DR6 protein 

expression with a second peak at 12 hours.  

• Pertussis toxin (PTX), a Gi protein inhibitor, abrogates the effect of LPA, 

indicating a Gi pathway involvement. 

• The transcription factor NF-κB1 is crucial for LPA-induced DR6 expression, as 

its silencing negates the effect without altering basal DR6 expression. 

• LPA increases IL-10 mRNA levels via LPAR1-Gi pathway in A375 and A2058 

melanoma cells. 

• DR6 silencing negotiates the LPA-induced increase in IL-10 transcription and 

secretion in human melanoma cells. 

• In human melanoma samples LPAR1 expression positively correlates with  

NF-κB1, DR6, and IL-10 expression, confirming the in vitro observations. 

• LPA downregulates HLA-DR expression in A375 and A2058 melanoma cells via 

the LPAR1-DR6-IL-10 pathway, highlighting a potential autocrine mechanism of 

anti-PD-1 immune checkpoint blockade therapy resistance in melanoma. 

• Elevated LPAR1 expression is associated with poor response to anti-PD-1 therapy 

in melanoma patients, considering it a predictive biomarker for immunotherapy 

outcomes. 
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7. Summary 

 

Immunotherapy has revolutionized the treatment of melanoma, providing improved 

progression-free survival and enhanced quality of life for patients. However, despite the 

advances, a significant number of patients exhibit resistance to immunotherapies such as 

anti-PD-1, emphasizing the need to understand the underlying mechanisms of resistance 

and identify potential targets to enhance therapeutic outcomes. This study focuses on the 

role of lysophosphatidic acid (LPA) in modulating the expression of death receptor 6 

(DR6) and its implications for melanoma progression and response to immunotherapy. 

Recent findings have demonstrated that elevated expression of human leukocyte 

antigen-DR (HLA-DR) in tumors is associated with better prognosis and improved 

response to immune checkpoint inhibitors (ICIs). In this study, we identified LPA as a 

negative regulator of HLA-DR expression in melanoma cells via induction of DR6 

expression. DR6, which is inducibly expressed in tumor cells, regulates various cellular 

functions, including cytokine release. 

Our results show that LPA activates the Gi-coupled LPA receptor subtype 1 (LPAR1) 

signaling pathway, leading to NF-κB-mediated transcriptional upregulation of DR6 in 

human melanoma cells. Subsequently, LPA, through DR6, increases the expression and 

release of interleukin 10 (IL-10), which in turn reduces HLA-DR expression. Moreover, 

we found a statistically significant correlation between the expression levels of LPAR1, 

NF-κB, DR6, and IL-10 in human melanoma tissues, as well as our data revealed an 

association between increased LPAR1 expression and reduced effectiveness of  

anti-PD-1 immunotherapy. 

These findings support the hypothesis that the LPAR1-DR6-IL-10 autocrine loop may 

constitute a novel mechanism by which tumor cells evade immunosurveillance, via 

decreasing HLA-DR expression. A better understanding of this pathway could provide 

new insights into overcoming resistance to immunotherapy in melanoma patients. 
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