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Abstract: The stem bark of black locust (Robinia pseudoacacia L.) was extracted, and nine antioxidant
compounds (R1–R9) were detected by high-performance thin-layer chromatography combined with
the radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, multi-detection, and heated
electrospray high-resolution mass spectrometry. For structure elucidation, the methanolic crude
extract was fractionated by solid-phase extraction, and the compounds were isolated by reversed-
phase high-performance liquid chromatography with diode array detection. The structures of isolated
compounds were elucidated by nuclear magnetic resonance and attenuated total reflectance Fourier-
transform infrared spectroscopy as well as gas chromatography-mass spectrometry to determine the
double bond position. 3-O-Caffeoyl oleanolic acid (R1), oleyl (R2), octadecyl (R3), gadoleyl (R4),
eicosanyl (R5), (Z)-9-docosenyl (R6), docosyl (R7), tetracosyl (R8), and hexacosanyl (R9) caffeates
were identified. While R1 has been reported in R. pseudoacacia stem bark, the known R3, R5, R7,
R8, and R9 are described for the first time in this species, and the R2, R4, and R6 are new natural
compounds. All nine caffeates demonstrated antioxidant activity. The antioxidant effects of the
isolated compounds R1–R8 were quantified by a microplate DPPH• assay, with values ranging from
0.29 to 1.20 mol of caffeic acid equivalents per mole of isolate.

Keywords: black locust (Robinia pseudoacacia L.); phenolic esters of fatty alcohols; high-performance
thin-layer chromatography—effect-directed analysis (HPTLC–EDA); antioxidant assay; heated
electrospray high-resolution mass spectrometry (HESI-HRMS); bioassay-guided isolation;
solid-phase extraction (SPE); reversed-phase high-performance liquid chromatography with diode
array detection (RP-HPLC–DAD); nuclear magnetic resonance (NMR) spectroscopy; attenuated total
reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy; gas chromatography-mass spectrometry
(GC–MS)

1. Introduction

The North American black locust (Robinia pseudoacacia L., family Fabaceae) has been
widely planted all over the world, initially as an ornamental tree and later for soil and
water conversation, like in Europe since the 17th century [1,2]. It is a fast-growing tree
that reproduces both sexually and vegetatively; therefore, it has become one of the most
aggressively invasive woody plants with a high biomass worldwide [2]. Due to its al-
lelopathic potential, it often overgrows the indigenous plants, and as a nitrogen-fixing
species, it can alter the native vegetation [3]. Despite its environmental drawbacks, it offers
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economic benefits, particularly in the honey and wood industries [4]. Furthermore, black
locust has been used in traditional folk medicine, especially in Europe and Asia, due to its
astringent, cholagogue, diuretic, anti-inflammatory, purgative, spasmolytic, and sedative
properties, as well as Cherokee treated toothache with it [5,6]. Its beneficial effects [7,8],
such as antibacterial, antifungal, antioxidant, anti-inflammatory, and cytotoxic proper-
ties, are primarily attributed to the high content of diverse phenoloids [9]. Flowers and
leaves are rich sources of phenolic acids (e.g., caffeoylquinic acids, caffeic and coumaric
acids and their hexosides, coumaroylquinic acids, ellagic acid hexoside, gallic acid, and
p-hydroxybenzoic acid), flavonoids (apigenin, catechin, procyanidin dimers and trimers,
quercetin and kaempferol derivatives, and vescalagins), and tannins [9,10], all of which
exhibit various biological activities. The diversity of flavonoid aglycones and hydroxycin-
namic acid derivatives originated from propolis and nectar-derived kaempferol glycosides
enables the floral authentication of black locust honey [11]. However, black locust also
contains toxic glycoproteins, lectins, and the homo-monoterpene robinlin that can possess
pharmacological activities beyond cytotoxicity [12].

The wood of R. pseudoacacia is predominantly composed of structural polysaccha-
rides (e.g., cellulose, hemicellulose, and lignin) that conceal a wide range of valuable
compounds [13], and it can be the source of biofuels [14]. The heartwood contains several
phenolic acids (e.g., caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, p-coumaric acid,
gallic acid, ellagic acid, p-hydroxybenzoic acid, and protocatechuic acid), flavonoids (e.g.,
di-O-methylquercetin B, quercetin, epigallocatechin, fustin, catechin, kaempferol, myricetin,
procyanidin dimer, robinetin, and dihydrorobinetin), along with stilbenes (resveratrol and
piceatannol) [15–17]. Interestingly, the bark lacks robinetin, but dihydrorobinetin and
phenolic acids like catechin, epicatechin, caffeic acid, and ferulic acid have been detected as
defensive compounds in the bark [18,19].

Plant phenolics play a pivotal role in plant growth, development, and defense by
displaying antioxidant, antimicrobial, allelopathic, and UV-blocking effects [20]. Reac-
tive oxygen species (ROS) and free radicals are essential for cell signaling and other vital
physiological processes. However, during various diseases, including inflammatory and
infectious conditions, their overproduction can lead to potential cellular damage [20–22].
Natural antioxidants, such as phenolic compounds, can diminish this unfavorable effect by
scavenging the free radicals and converting them into stable forms [23]. High-performance
thin-layer chromatography combined with multi-detection (HPTLC–UV/VIS/FLD), the
2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, and derivatization via the Natural Product
reagent A ensure an efficient, high-throughput screening for identifying antioxidant com-
pounds in complex matrices, such as plant extracts [24–26]. It is an effective monitoring
tool in bioactivity-guided compound isolation [27].

The study aimed at screening, characterization, isolation, and identification of an-
tioxidant compounds from the methanolic bark extracts of the black locust. Various an-
alytical techniques were utilized, including reversed-phase (RP)-HPTLC–DPPH• assay,
RP-HPTLC–UV/VIS/FLD–densitometry, RP-HPTLC–heated electrospray high-resolution
mass spectrometry (HESI-HRMS), reversed-phase high-performance liquid chromatogra-
phy diode array detection (RP-HPLC–DAD), attenuated total reflectance Fourier-transform
infrared (ATR–FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and
gas chromatography–mass spectrometry (GC–MS). The antioxidant activity of the isolated
compounds was assessed by a DPPH• microplate assay.

2. Results and Discussion
2.1. RP-HPTLC–DPPH• Assay Screening and Assignment by RP-HPTLC–HESI-HRMS

Antioxidant compounds of the methanolic crude extract obtained from the black locust
bark were separated on RP18 HPTLC plates using acetonitrile—ethanol 3:2 V/V as a mobile
phase and detected via fluorescence detection (FLD) after derivatization with the Natural
Product reagent A and via white light illumination (Vis) after the radical scavenging DPPH•
assay (Figure 1d–g). Nine antioxidant compound zones at hRF 16 (R9), 22 (R8), 28 (R7), 33
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(R5), 37 (R6), 42 (R3), 46 (R4), 54 (R2), and 68 (R1) were revealed. Via the derivatization
with the Natural Product reagent A, the natively weak blue fluorescence of the zones R1–R9
was enhanced, indicating that the compounds responsible for the antioxidant effect belong
to the group of phenolics.
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Figure 1. Flowers (a), stem with leaves (b), and stem bark (c) of Robinia pseudoacacia along with HPTLC
chromatograms of bark crude extract (3 µL) separated on RP18 plates with acetonitrile-ethanol 3:2
V/V and detected at 254 nm (d), 365 nm (e), and after derivatization with natural product reagent
A at 365 nm (f) as well as after the DPPH• assay under white light illumination (g) revealing the
antioxidant compounds R1–R9.

This hypothesis (regarding the presence of phenolics) was confirmed by their den-
sitometrically recorded RP-HPTLC–UV spectra showing characteristic absorption bands
between 300 and 350 nm (Figure S1). The antioxidant compounds were further character-
ized by RP-HPTLC–HESI-HRMS. In the positive ionization mode, the intensity of signals
corresponding to sodium adducts ([M+Na]+) was low, whereas in the negative ionization
mode, signals of deprotonated molecules ([M−H]−) were intense (Table 1).

Table 1. Antioxidant compounds (R1–R9) isolated from the bark extract of black locust detected by
RP-HPTLC–DPPH•–Vis and characterized by RP-HPTLC–HRMS.

Isolates hRF

Observed
m/z

[M−H]−

Theoretical
m/z

[M−H]−

Error
(ppm)

Proposed
Molecular
Formula

Isolated
Amount

(mg)
Assignment

R1 68 617.3848 617.3848 0.1 C39H54O6 2.1 3-O-caffeoyl
oleanolic acid

R2 54 429.3005 429.3010 −1.2 C27H42O4 1.3 oleyl caffeate

R3 46 431.3162 431.3167 −1.2 C27H44O4 2.3 octadecyl caffeate

R4 42 457.3318 457.3323 −1.1 C29H46O4 2.0 gadoleyl caffeate

R5 33 459.3475 459.3480 −1.1 C29H48O4 1.7 eicosanyl caffeate

R6 37 485.3631 485.3636 −1.0 C31H50O4 0.6 (Z)-9-docosenyl
caffeate

R7 28 487.3788 487.3793 −1.0 C31H52O4 1.4 docosyl caffeate

R8 22 515.4101 515.4106 −1.0 C33H56O4 0.9 tetracosyl caffeate

R9 16 543.4414 543.4419 −0.9 C35H60O4 0.9 hexacosanyl caffeate

2.2. Fractionation by Solid-Phase Extraction and Isolation by RP-HPLC–DAD

The methanolic crude extract was fractionated by reversed-phase solid-phase ex-
traction (SPE). The separation and peak identification of the compounds were achieved
by RP-HPLC–DAD–ESI-MS. The isolation from the ethanol eluate was carried out by
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RP-HPLC–DAD (Figure 2). The yields of compounds R1–R9 ranged from 0.9 to 2.3 mg
(Table 1), which were used for subsequent structure elucidation.
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Figure 2. RP-HPLC-UV chromatograms at 323 nm of 1 µL (a) and 100 µL (b) of black locust bark
extract after SPE. Compounds R1–R9 were identified by ESI-MS.

2.3. Results of NMR and ATR-FTIR Spectra Recording

The NMR (Figures S3–S35) and ATR-FTIR spectra (Figures S36–S41) were recorded,
and the data were compiled and listed as follows for 3-O-caffeoyl oleanolic acid (R1): IR
(ATR) νmax 3191, 2941, 2927, 2854, 1696, 1600, 1524, 1463, 1389, 1365, 1266, 1170, 1146, 1117,
1019 cm–1; 1H and 13C NMR data (Table 2).

Table 2. 1H and 13C NMR (CD3OD, 600/151 MHz) resonance assignments of 3-O-caffeoyl oleanolic
acid (R1).

Position δH (J in Hz) δC, Type

1a 1.69 (m, 1H) 39.4, CH2

1b 1.10 (m, 1H)

2a 1.72 (m, 1H) 24.7, CH2

2b 1.67 (m, 1H)

3 4.57 (dd, J = 11.5, 4.3 Hz, 1H) 82.3, CH

4 - 39.0, C

5 0.91 (m, 1H) 56.8, CH

6a 1.59 (m, 1H) 19.4, CH2

6b 1.47 (m, 1H)

7a 1.56 (m, 1H) 33.9, CH2

7b 1.34 (m, 1H)

8 - 40.6, C

9 1.66 (m, 1H) 49.1, CH

10 - 38.2, C

11 1.92 (m, 2H) 24.5, CH2

12 5.26 (t, J = 3.6 Hz, 1H) 123.5, CH
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Table 2. Cont.

Position δH (J in Hz) δC, Type

13 - 145.3, C

14 - 42.9, C

15a 1.79 (m, 1H) 28.9, CH2

15b 1.09 (m, 1H)

16a 2.02 (td, J = 13.5, 3.5 Hz, 1H) 24.1, CH2

16b 1.60 (m, 1H)

17 - 47.7, C

18 2.86 (dd, J = 13.9, 4.6 Hz, 1H) 42.8, CH

19a 1.70 (m, 1H) 47.3, CH2

19b 1.14 (m, 1H)

20 - 31.6, C

21a 1.40 (td, J = 13.8, 3.8 Hz, 1H) 34.9, CH2

21b 1.20 (m, 1H)

22a 1.77 (m, 1H) 33.9, CH2

22b 1.55 (m, 1H)

23 0.91 (s, 3H) 28.7, CH3

24 0.97 (s, 3H) 17.3, CH3

25 1.01 (s, 3H) 15.9, CH3

26 0.84 (s, 3H) 17.7, CH3

27 1.19 (s, 3H) 26.4, CH3

28 - 182.1, C

29 0.91 (s, 3H) 33.6, CH3

30 0.95 (s, 3H) 24.0, CH3

1′ 7.03 (d, J = 2.0 Hz, 1H) 115.1, CH

2′ - 146.7, C

3′ - 149.6, C

4′ 6.78 (d, J = 8.2 Hz, 1H) 116.5, CH

5′ 6.94 (dd, J = 8.2, 2.1 Hz, 1H) 122.9, CH

6′ - 127.8, C

7′ 7.52 (d, J = 15.8 Hz, 1H) 146.7, CH

8′ 6.24 (d, J = 15.9 Hz, 1H) 115.6, CH

9′ - 169.2, C

Oleyl caffeate (R2): IR (ATR) νmax 2924, 2854, 1712, 1593, 1509, 1460, 1370, 1263, 1167, 1121,
1091, 1050, 1018 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 16.0 Hz, 1H, H-7′), 7.04
(d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.3, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′),
6.25 (d, J = 15.9 Hz, 1H, H-8′), 5.34 (m, 2H, H-9, H-10), 4.17 (t, J = 6.6 Hz, 2H, H-1), 2.03 (m,
4H, H-8, H-11), 1.69 (p, J = 7.0 Hz, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 20H, H-4–H-7,
H-12–H-17), 0.91 (m, 3H, H-18); 13C NMR (CD3OD, 151 MHz) δ (2D HSQC, HMBC) 169.5
(C, C-9′), 149.7 (C, C-3′), 146.9 (C, C-2′), 146.8 (CH, C-7′), 130.8 (CH, C-9), 130.8 (CH, C-10),
127.8 (C, C-6′), 122.9 (CH, C-5′), 116.6 (CH, C-4′), 115.3 (CH, C-8′), 115.1 (CH, C-1′), 65.6
(CH2, C-1), 33.2 (CH2, C-16), 30.9–30.2 (CH2, C-4–C-7, C-12–C-15), 29.8 (CH2, C-2), 28.0
(CH2, C-8, C-11), 27.1 (CH2, C-3), 23.4 (CH2, C-17), 14.4 (CH3, C-18)
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Octadecyl caffeate (R3): IR (ATR) νmax 3222, 2918, 2851, 1710, 1593, 1520, 1466, 1382, 1269,
1165, 1119, 1077, 1049 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′),
7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.1, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′),
6.25 (d, J = 15.9 Hz, 1H, H-8′), 4.17 (t, J = 6.6 Hz, 2H, H-1), 1.70 (p, J = 6.8 Hz, 2H, H-2), 1.41
(m, 2H, H-3), 1.29 (br s, 28H, H-4–H-17), 0.90 (t, J = 7.0 Hz, 3H, H-18); 13C NMR (CD3OD,
151 MHz) δ 169.4 (C, C-9′), 149.6 (C, C-3′), 146.8 (C, C-2′), 146.8 (CH, C-7′), 127.7 (C, C-6′),
122.9 (CH, C-5′), 116.5 (CH, C-4′), 115.2 (CH, C-8′), 115.1 (CH, C-1′), 65.6 (CH2, C-1), 33.1
(CH2, C-16), 30.8–30.6 (CH2, C-6–C-15), 30.5 (CH2, C-4), 30.3 (CH2, C-5), 29.8 (CH2, C-2),
27.1 (CH2, C-3), 23.7 (CH2, C-17), 14.4 (CH3, C-18)

Gadoleyl caffeate (R4): IR (ATR) νmax 2925, 2854, 1713, 1683, 1648, 1592, 1540, 1459, 1347,
1266, 1165, 1122, 1050, 1013 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 16.0 Hz, 1H,
H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.1, 2.0 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz,
1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 5.34 (m, 2H, H-9, H-10), 4.17 (t, J = 6.6 Hz, 2H,
H-1), 2.03 (m, 4H, H-8, H-11), 1.69 (p, J = 7.1 Hz, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s,
24H, H-4–H-7, H-12–H-19), 0.91 (m, 3H, H-20); 13C NMR (CD3OD, 151 MHz) δ (2D HSQC,
HMBC) 169.5 (C, C-9′), 149.6 (C, C-3′), 146.9 (C, C-2′), 146.8 (CH, C-7′), 130.8 (CH, C-9),
130.8 (CH, C-10), 127.8 (C, C-6′), 123.0 (CH, C-5′), 116.6 (CH, C-4′), 115.3 (CH, C-8′), 115.1
(CH, C-1′), 65.6 (CH2, C-1), 33.1 (CH2, C-18), 30.9–30.2 (CH2, C-4–C-7, C-12–C-17), 29.8
(CH2, C-2), 28.0 (CH2, C-8, C-11), 27.1 (CH2, C-3), 23.4 (CH2, C-19), 14.4 (CH3, C-20)

Eicosanyl caffeate (R5): IR (ATR) νmax 3327, 2918, 2851, 1713, 1599, 1523, 1468, 1380, 1265,
1165, 1118, 1089, 1048 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′),
7.04 (d, J = 2.0 Hz, 1H, H-1′), 6.94 (dd, J = 8.3, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H,
H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 4.17 (t, J = 6.6 Hz, 2H, H-1), 1.70 (p, J = 6.9 Hz, 2H,
H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 32H, H-4–H-19), 0.90 (t, J = 7.0 Hz, 3H, H-20); 13C NMR
(CD3OD, 151 MHz) δ (2D HSQC, HMBC) 169.5 (C, C-9′), 149.7 (C, C-3′), 146.9 (C, C-2′),
146.8 (CH, C-7′), 127.8 (C, C-6′), 122.9 (CH, C-5′), 116.5 (CH, C-4′), 115.2 (CH, C-8′), 115.1
(CH, C-1′), 65.6 (CH2, C-1), 33.1 (CH2, C-18), 30.8–30.0 (CH2, C-4–C-17), 29.8 (CH2, C-2),
27.1 (CH2, C-3), 23.7 (CH2, C-19), 14.4 (CH3, C-20)

(Z)-9-docosenyl caffeate (R6): 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 16.0 Hz, 1H, H-7′),
7.04 (d, J = 2.0 Hz, 1H, H-1′), 6.94 (dd, J = 8.0, 1.7 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′),
6.25 (d, J = 15.9 Hz, 1H, H-8′), 5.34 (m, 2H, H-9, H-10), 4.17 (t, J = 6.5 Hz, 2H, H-1), 2.03 (m,
4H, H-8, H-11), 1.70 (m, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 28H, H-4–H-7, H-12–H-21),
0.90 (t, J = 6.7 Hz, 3H, H-22)

Docosyl caffeate (R7): IR (ATR) νmax 2917, 2850, 1716, 1583, 1512, 1467, 1433, 1373, 1259,
1168, 1120, 1056 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′), 7.04
(d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.2, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′),
6.25 (d, J = 15.8 Hz, 1H, H-8′), 4.17 (t, J = 6.6 Hz, 2H, H-1), 1.70 (p, J = 6.8 Hz, 2H, H-2), 1.40
(m, 2H, H-3), 1.29 (br s, 36H, H-4–H-21), 0.90 (t, J = 7.1 Hz, 3H, H-22); 13C NMR (CD3OD,
151 MHz) δ (2D HSQC, HMBC) 169.5 (C, C-9′), 149.7 (C, C-3′), 146.8 (C, C-2′), 146.6 (CH,
C-7′), 127.8 (C, C-6′), 122.9 (CH, C-5′), 116.6 (CH, C-4′), 115.3 (CH, C-8′), 115.1 (CH, C-1′),
65.6 (CH2, C-1), 33.2 (CH2, C-20), 30.9–30.0 (CH2, C-4–C-19), 29.9 (CH2, C-2), 27.1 (CH2,
C-3), 23.7 (CH2, C-21), 14.4 (CH3, C-22)

Tetracosyl caffeate (R8): 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.8 Hz, 1H, H-7′), 7.04
(d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.0, 1.8 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′),
6.25 (d, J = 15.9 Hz, 1H, H-8′), 4.17 (t, J = 6.7 Hz, 2H, H-1), 1.70 (p, J = 6.9 Hz, 2H, H-2), 1.40
(m, 2H, H-3), 1.29 (br s, 40H, H-4–H-23), 0.90 (t, J = 6.8 Hz, 3H, H-24)

Hexacosanyl caffeate (R9): 1H NMR (CD3OD, 600 MHz) for O-caffeoyl moiety δ 7.53 (d,
J = 15.7 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.0, 1.8 Hz, 1H, H-5′), 6.78
(d, J = 8.2 Hz, 1H, H-4′), 6.25 (d, J = 15.8 Hz, 1H, H-8′)

2.4. Structure Elucidation of the Isolated Compounds

The NMR and ATR-FTIR spectroscopy data were consistent with HESI-HRMS data and
in good agreement with the literature cited. The downfield region of the 1H NMR spectra of
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the isolated compounds R1–R9 highly resembled each other with a set of resonances at δH
7.04–7.03 (d, J ≈ 2 Hz, 1H, H-1′), 6.94 (dd, J ≈ 8 and 2 Hz, 1H, H-5′), and 6.78 (d, J ≈ 8 Hz,
1H, H-4′) ppm suggesting the presence of a 1,2,4-trisubstituted aromatic ring. Moreover, 1H
signals at δH 7.53–7.52 (d, J ≈ 16 Hz, 1H, H-7′) and 6.25–6.24 (d, J ≈ 16 Hz, 1H, H-8′) ppm
implied a trans-oriented, disubstituted carbon-carbon double bond. The 13C or the 1H–13C
HMBC spectra of compounds R1–R8 revealed one ester carbonyl carbon at δC 169.5–169.2
located at the C-9′ position, as evidenced by HMBC correlations H-7′/C-9′ and H-8′/C-9′.
Besides, they exhibited typical carbon signals at δC 149.7–149.6 (C, C-3′), 146.9–146.7 (C,
C-2′), 146.8–146.6 (CH, C-7′), 127.8–127.7 (C, C-6′), 123.0–122.9 (CH, C-5′), 116.6–116.5 (CH,
C-4′), 115.6–115.2 (CH, C-8′), and 115.1 (CH, C-1′) ppm, indicating that their structure
contains an O-caffeoyl basic skeleton [28,29], which were corroborated by the ATR-FTIR
absorption bands at around 3350–3200 cm–1 (O–H stretch) and at 1716–1710 cm–1 (α,β-
unsaturated ester C=O stretch). The connectivity between the aromatic ring and the double
bond was confirmed by long-range HMBC correlations H-8′/C-6′, H-7′/C-1′, H-7′/C-5′,
and H-7′/C-6′. The 13C chemical shifts could not be determined for compounds R6 and R8
due to their low isolated quantity of below 1 mg (Table 1).

The HESI-HRMS spectrum of R1 showed a deprotonated molecule peak at m/z
617.3848 [M−H]− establishing its molecular formula as C39H54O6 (Table 1), which cor-
responded to 13 double bond equivalents. Its 1H NMR spectrum (Table 2) indicated the
presence of seven isolated methyl groups at δH 1.19 (s, 3H, H-27), 1.01 (s, 3H, H-25), 0.97 (s,
3H, H-24), 0.95 (s, 3H, H-30), 0.91 (s, 3H, H-23), 0.91 (s, 3H, H-29), and 0.84 (s, 3H, H-26)
ppm, an olefinic proton at δH 5.26 (t, J = 3.6 Hz, 1H, H-12) ppm, and an oxymethine proton
at δH 4.57 (dd, J = 11.5, 4.3 Hz, 1H, H-3) ppm. The 13C NMR spectrum (Table 2) revealed
30 carbon resonances excluding the O-caffeoyl moiety, including seven methyl carbons at
δC 33.6 (C-29), 28.7 (C-23), 26.4 (C-27), 24.0 (C-30), 17.7 (C-26), 17.3 (C-24), 15.9 (C-25) ppm,
two olefinic carbons at δC 145.3 (C-13), 123.5 (C-12) ppm, one oxygenated carbon at δC
82.3 (C-3) ppm, as well as one carboxylic carbon at δC 182.1 (C-28) ppm. The caffeate and
carboxylic moiety and the carbon-carbon double bond account for eight double bond equiv-
alents, implying a pentacyclic triterpene skeleton with seven angular methyl groups. Based
on the spectral data along with the 2D homo- and heteronuclear correlations and by compar-
ing the 1H, 13C NMR, and ATR-FTIR data with those reported in the literature [30,31], the
triterpene was identified as oleanolic acid. The point of attachment between the O-caffeoyl
moiety and oleanolic acid was determined by the downfield chemical shifts of H-3 at δH
4.57 ppm and C-3 at δC 82.3 ppm, and a key HMBC correlation was observed from H-3
to C-9′, supporting the substitution of oleanolic acid at the C-3 position. In addition, the
large coupling constant between H-2ax and H-3 (3JH-2ax–H-3 = 11.5 Hz) confirmed that H-3
occupied an α-axial position, thereby indicating that the O-caffeoyl moiety was β-oriented.
Thus, compound R1 was elucidated as 3-O-caffeoyl oleanolic acid (Figure 3).

The 1H NMR spectra of the four isolated compounds R3, R5, R7, and R8 were re-
markably similar, which was consistent with literature [32–36], displaying another set of
signals at δH 4.17 (t, J ≈ 6.5 Hz, 2H, H-1), 1.70 (p, J ≈ 7 Hz, 2H, H-2), 1.41 (m, 2H, H-3),
1.29 (br s, varied integrals), 0.90 (t, J ≈ 7 Hz, 3H, terminal CH3) ppm suggestive for the
presence of a saturated fatty acid moiety in their structures. It was verified by the observed
13C signals at δC 65.6 (CH2, C-1), 33.2–33.1 (CH2, C-16(R3)/C-18(R5)/C-20(R7)), 30.9–30.0
(CH2, C-4–C-15(R3)/C-17(R5)/C-19(R7)), 29.9–29.8 (CH2, C-2), 27.1 (CH2, C-3), 23.7 (CH2,
C-17(R3)/C-19(R5)/C-21(R7)), 14.4 (CH3, C-18(R3)/C-20(R5)/C-22(R7)) ppm [28,37]. In
the HESI-HRMS spectra, deprotonated molecules were observed at m/z 431.3162 [M−H]−

(R3), m/z 459.3475 [M−H]− (R5), m/z 487.3788 [M−H]− (R7), and m/z 515.4101 [M−H]−

(R8), corresponding to the molecular formulae C27H44O4 (R3), C29H48O4 (R5), C31H52O4
(R7), and C33H56O4 (R8) (Table 1) that suspected a long-chain series with a two methylene
group difference between adjacent members. The chemical formula of the aliphatic chains
could be determined based on the fact that R3, R5, R7, and R8 were caffeate esters: C18H37,
C20H41, C22H45, and C24H49, respectively. Thus, the isolates were identified as octadecyl
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caffeate (R3), eicosanyl caffeate (R5), docosyl caffeate (R7), and tetracosyl caffeate (R8),
respectively (Figure 3).
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Figure 3. The chemical structures of the isolated compounds R1–R9.

Due to the low purity and isolated amount of compound R9, only limited structural
information could be inferred from its 1H NMR spectrum revealing the characteristic
signals of O-caffeoyl moiety at δH 7.53 (d, J = 15.7 Hz, 1H, H-7′), 7.04 (d, J = 1.8 Hz, 1H,
H-1′), 6.94 (dd, J = 7.8 and 1.9 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′), and 6.25 (d,
J = 15.8 Hz, 1H, H-8′) ppm. The HESI-HRMS spectrum displayed a deprotonated molecule
peak at m/z 543.4419 [M−H]− indicating the molecular formula as C35H60O4 (Table 1).
Being a caffeate ester, the chemical formula C26H53 was deduced for the fatty alcohol
moiety, thus compound R9 was assigned as hexacosanyl caffeate (Figure 3) [38].

2.5. GC–MS for Assignment of the Double Bond Position

Based on the HESI-HRMS analyses (Table 1), deprotonated molecules were detected
at m/z 429.3005 [M−H]− (R2), 457.3318 [M−H]− (R4), and m/z 485.3631 [M−H]− (R6),
corresponding to the molecular formulae C27H42O4 (R2), C29H46O4 (R4), and C31H50O4
(R6), indicative of one degree of unsaturation in the fatty alcohol moiety compared to
R3, R5, R7, and R8. The 1H NMR spectra of compounds R2, R4, and R6 were similar to
each other and that of R3, R5, R7, and R8, with the additional resonances at δH 5.34 (m,
2H) and 2.03 (m, 4H) consistent with one carbon-carbon double bond. The presence of a
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monounsaturated long chain was supported by additional 13C signals at δC 130.7–130.5 (CH)
and 27.9–27.7 (CH2) ppm, indicating the chemical formulae C18H35 (R2), C20H39 (R4), and
C22H43 (R6) for aliphatic chains. However, the position of the double bond in the side chain
could not be elucidated by NMR spectroscopy; therefore, GC–MS analyses were conducted.
Compounds R2 and R4 were identified as oleyl and gadoleyl caffeate, respectively, as their
aliphatic chains (oleyl and gadoleyl alcohol) were recognized by the NIST mass spectral
library search, showing an excellent agreement between the experimental and theoretical
EI-MS spectra (Figures S42 and S43). However, the long fatty alcohol chain of compound
R6 does not have a mass spectrum in the databases (Figure S44); therefore, we used its
chromatographic retention property for its identification. The measured retention times
for R2, R4, and R6 were 7.5, 8.4, and 9.3 min, respectively (Figure S45). The identical
position and configuration of the double bond (9Z) in the fatty alcohol chain of R6 were
confirmed by the linear relationship between the number of carbon atoms and logarithmic
retention times (R2 = 0.998) (Figure S46), indicating that R2, R4, and R6 belong to the same
homologous series. Thus, compound R6 was determined as (Z)-9-docosenyl caffeate.

2.6. Equivalency Calculation of the Antioxidant Activity of the Isolates by DPPH•
Microplate Assay

All isolated compounds exhibited antioxidant effects using the DPPH• microplate
assay (Table 3), which confirmed the initial screening results obtained from the RP-HPTLC–
DPPH• assay and the assignment by RP-HPTLC–HESI-HRMS. Antioxidant activity of
R1–R8 was compared to that of caffeic acid and found to be 0.10–0.35 mg caffeic acid
equivalents per mg isolate, corresponding to 0.29–1.20 mol caffeic acid equivalents per
mol isolate. The R1 displayed the strongest antioxidant activity, surpassing caffeic acid at
its molar level (1.20 mol caffeic acid equivalent/mol R1), while the R8 demonstrated the
weakest activity (0.29 mol caffeic acid equivalent/mol R8). The antioxidant effect of R9
was detected but not quantified due to its low purity.

Table 3. Antioxidant activity of the isolated fatty alcohol caffeates expressed as caffeic acid equivalents
(mean of triplicates with standard deviation SD).

Isolate
Mass Equivalency Caffeic

Acid/Isolate
(mg/mg ± SD)

Molar Equivalency Caffeic
Acid/Isolate

(mol/mol ± SD)

R1 0.35 ± 0.008 1.20 ± 0.024

R2 0.20 ± 0.005 0.49 ± 0.011

R3 0.19 ± 0.003 0.47 ± 0.007

R4 0.24 ± 0.002 0.61 ± 0.005

R5 0.26 ± 0.007 0.67 ± 0.018

R6 0.13 ± 0.003 0.35 ± 0.007

R7 0.17 ± 0.007 0.47 ± 0.021

R8 0.10 ± 0.003 0.29 ± 0.008

2.7. Progress Achieved in Comparison to Literature

3-O-Caffeoyl oleanolic acid (R1) has been isolated from different plant organs such as
the seeds of Oenothera biennis [39], the whole plant of Leptopus lolonum [40], the leaves of
Elaeagnus oldhamii [41], the barks of Betula platyphylla var. japonica [42], the skins of apples
and pears [43], and the stem bark of R. pseudoacacia [44]. This compound demonstrated
cytotoxic [41,45], antineoplastic [40,42], antibacterial against Mycobacterium tuberculosis [46],
anti-inflammatory [43,47], anticoronavirus [45], and antioxidant [39] effects.

Phenolic esters with long-chain saturated fatty alcohols (R3, R5, R7, R8, and R9)
were described in various plant species but not from the Robinia genus. Among oth-
ers, the root bark of Paeonia suffruticosa [48], leaves of Artemisia argyi [49], bark of Acacia
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species [50], and roots of Ipomoea asarifolia [51] were reported as a source of octadecyl caf-
feate (R3) that displayed α-glucosidase and α-amylase inhibition [48], antioxidant [36,49],
cytotoxic [51], antiproliferative [37], anti-HIV (Human immunodeficiency virus) [52], and
anti-inflammatory [37] activities. Eicosanyl caffeate (R5) and docosyl caffeate (R7) were
found in stems of Wikstroemia scytophylla [53], roots of Glycyrrhiza glabra [33], and Sophora
species [54,55]. Both exhibited chymotrypsin-like elastase inhibition [33], antiprolifera-
tive [37], anti-inflammatory [37], and antioxidant [33,49,56] effects. The isolation of docosyl
caffeate (R7) from Thymelaea hirsute [57], the bark of Acacia species [50], its antineoplastic
effect [57], and moderate activity against acetyl- and butyrylcholinesterase enzymes [58]
have also been reported. Tetracosyl caffeate (R8) was described as a constituent of wigs
of Hypericum oblongifolium [59], the whole plant of Caragana conferta [60], roots of Cae-
salpinia mimosoides [61], and bark of Acacia species [50], and as a urease inhibitor [62],
anti-inflammatory [61], antineoplastic [34], antimicrobial [63], and cytotoxic [61] agent.
The stem bark of Pongamia glabra [38], bark of Acacia species [50], stem bark and leaves of
Inga edulis [64], and stems of Hibiscus taiwanensis [65] were sources of hexacosanyl caffeate
(R9) that showed antioxidant activity [66]. Synthetic oleyl caffeate (R2) exerted inhibitory
activity against HIV-1 [67]. To the best of our knowledge, oleyl caffeate (R2), gadoleyl
caffeate (R4), and (Z)-9-docosenyl caffeate (R6) has not been reported previously as natural
product constituents.

Phenolic compounds with hydrogen- or electron-donating properties are potential
free radical scavengers that protect biomolecules from oxidative stress. Their antioxidant
capacity is structure-related, mainly depending on the number and position of hydroxyl
groups attached to the aromatic ring and the presence of sugar or other substituents [68].
Caffeic acid, with its dihydroxylated aromatic ring in ortho position, is one of the strongest
phenolic antioxidants. Its half-maximal effective concentration (EC50) value in the DPPH•
assay was similar to that of flavonoid aglycones (quercetin, kaempferol, and epicatechin)
and lower than that of the well-known potent antioxidant ascorbic acid or other phenolic
acids (e.g., 3-O-chlorogenic acid, ferulic acid, p-coumaric acid, and p-hydroxybenzoic
acid) [69,70]. In this study, the antioxidant activity of the isolated compounds was compared
to that of caffeic acid, and it was found that 3-O-caffeoyl oleanolic acid (R1) was stronger,
while other isolates were similar or slightly weaker than caffeic acid. These results are in
agreement with literature data, as 3-O-caffeoyl oleanolic acid (R1) exerted lower free radical
scavenging activity than ascorbic acid [39], octadecyl caffeate (R3) showed an antioxidant
effect comparable to caffeic acid and higher than ferulic acid and sinapic acid [36], and
hexacosanyl caffeate (R9) exhibited a slightly lower activity than caffeic acid [66]. However,
in the DPPH• assay, eicosanyl caffeate (R5) and docosyl caffeate (R7) displayed weaker
antioxidant activity (10–15 times higher EC50) than gallic acid [33,49], which was found to
be a stronger free radical scavenger (two times lower EC50) than caffeic acid in the same
assay [71].

3. Materials and Methods
3.1. Materials

HPTLC plates, silica gel 60 RP18, and methanol (MS grade) were purchased from
Merck (Darmstadt, Germany). Solvents for extraction and HPTLC (analytical grade) were
obtained from Th. Geyer (Renningen, Germany) or Reanal (Budapest, Hungary). The
2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and caffeic acid (98%) were acquired from
Sigma-Aldrich (Steinheim, Germany), and Natural Product reagent A (diphenylbory-
loxyethylamine or diphenylboric acid β-ethylamino ester, 98%) was purchased from Carl
Roth (Karlsruhe, Germany). Methanol-d4 (CD3OD, 99.8 atom% D) for NMR measure-
ments was purchased from VWR (Budapest, Hungary), and gradient-grade methanol and
acetonitrile for isolation were supplied by Fisher Scientific (Pittsburg, PA, USA).
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3.2. Sample Origin and Preparation

The stem bark of R. pseudoacacia L. was collected in October 2016 in Harta (46◦41′45′′ N
19◦02′26′′ E, altitude: 93 m) in the Great Plain of Hungary and dried at room temperature. A
voucher sample (PPI-MA-RB1) has been deposited at the herbarium of the Plant Protection
Institute, Centre for Agricultural Research, Budapest, Hungary. The dried material was
powdered by a coffee grinder (Bosch MKM6000, Stuttgart, Germany) and was extracted
with methanol (150 mg/mL) using an ultrasound-assisted extraction for 10 min (Sonorex
Super RK 106, Bandelin, Berlin, Germany) and centrifuged for 1 min at 5000× g (Dlab
D1008, Beijing, China).

3.3. High-Performance Thin-Layer Chromatography, Derivatization, and DPPH• Assay

The crude extract (3 µL) was applied onto the RP18 HPTLC plate by the Automatic
TLC Sampler 4 (ATS4, CAMAG, Muttenz, Switzerland) as a 7 mm band with an 8 mm
distance from the lower edge. HPTLC separation was carried out with a mobile phase
of acetonitrile—ethanol 3:2 V/V in a Twin Trough Chamber (10 cm × 10 cm, CAMAG)
up to 80 mm from the lower edge of the plate. The dried chromatogram was detected at
254 nm and 365 nm with the TLC Visualizer (CAMAG), and the UV spectra of selected
zones were recorded by a TLC Scanner 4 (CAMAG). To detect phenolics (e.g., flavonoids,
anthocyanidines, hydroxyl- and methoxycinnamic acids [72]), the plate was dipped into
a 0.5% methanolic solution of Natural Product reagent A, dried, and documented at
365 nm. Free radical scavenging activity was visualized by the HPTLC–DPPH• assay.
The chromatogram was immersed into a 0.02% methanolic solution of DPPH•, and the
bright zones of antioxidants against a lilac background were documented under white light
illumination in the transmittance mode (TLC Visualizer).

3.4. HPTLC–HESI-HRMS

For HPTLC–HRMS analysis [73,74], a TLC–MS Interface (CAMAG) or a PlateExpress
interface (Advion, Ithaca, NY, USA) equipped with an oval elution head (4 mm × 2 mm)
was integrated online between a quaternary pump (Ultimate LPG-3400 XRS, Dionex Softron,
Germering, Germany) and a hybrid quadrupole-orbitrap mass spectrometer operated
with a heated electrospray ionization probe (HESI-II, Q Exactive Plus, Thermo Fisher
Scientific, Bremen, Germany). MS-grade methanol at a flow rate of 0.1 mL/min was
used to elute selected zones. The following conditions were applied: spray voltage 3.5 kV,
capillary temperature 270 ◦C, and nitrogen sheath and auxiliary gas with 20 and 10 arbitrary
units, respectively, produced by an SF2 compressor (Atlas Copco Kompressoren und
Drucklufttechnik, Essen, Germany). HRMS full scan spectra were recorded in both negative
and positive ionization modes in the range of m/z 80–1200 with a resolution of 280,000;
the automatic gain control target (AGCT) was set to 3 × 106, and the maximum injection
time (IT) was 100 ms. Xcalibur 3.0.63 software (Thermo Fisher Scientific) provided the
instrument control and data analysis.

3.5. Fractionation by Solid-Phase Extraction

The bark powder (20 g) was extracted three times with 100 mL of methanol by
ultrasound-assisted extraction. The combined extracts were filtered (Whatman No. 2
filter paper, Sigma), concentrated by a rotary evaporator to 20 mL (Büchi Rotavapor R-134,
Flawil, Switzerland), and diluted with water to 40 mL. This methanol-water 1:1 crude ex-
tract was purified by solid-phase extraction using Strata-XL cartridges (10 portions, 200 mg
100 µm polymeric RP, Phenomenex, Torrance, CA, USA). The cartridge was rinsed with
4 mL of methanol, conditioned with 4 mL of 50% aqueous methanol, loaded with 4 mL of
sample, washed with 4 mL of acetonitrile, and then eluted with 4 mL of ethanol. The whole
10 eluates (from 10 cartridges) were pooled, concentrated by a rotary evaporator to 2 mL,
and transferred to HPLC analysis.
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3.6. Compound Isolation by HPLC–DAD–ESI-MS

The antioxidant compounds were isolated by HPLC using an LCMS-2020 system
(Shimadzu, Kyoto, Japan) consisting of a binary gradient solvent pump, a vacuum degasser,
a thermostated autosampler, a column oven, a photodiode detector, and a mass analyzer
using an electrospray ionization (ESI) interface. The instrument control, data acquisition,
and data processing were carried out by LabSolutions 5.42v software (Shimadzu). Sepa-
ration was achieved on a Gemini C18 column (250 mm length, 4.6 mm ID, 5 µm particle
size, Phenomenex, Torrance, CA, USA) at 35 ◦C with a linear gradient of 5% aqueous
acetonitrile with 0.05% formic acid (A) and methanol with 0.05% formic acid (B). The
gradient program was as follows: 0–16 min, 92% B; 16–25 min, 92–100% B; 25–35 min, 100%
B; and 35.1–40 min, 92% B. The flow rate of the mobile phase was adjusted to 1.2 mL/min.
The injection volume was set to 1 µL for method development and 100 µL for isolation.
The appropriate peaks were collected based on the UV chromatogram at 323 nm, and the
fractionation protocol was repeated 15 times. The combined 15 fractions were dried with a
rotary evaporator at 40 ◦C and transferred to NMR spectroscopy. The MS conditions were
as follows: nebulizer gas (N2) flow rate 1.5 L/min, drying gas (N2) flow rate 15 L/min,
interface temperature 350 ◦C, heat block temperature 400 ◦C, desolvation line temperature
250 ◦C, and detector voltage 4.5 kV. Full mass scan spectra were recorded in the negative
ionization mode in the range of m/z 150–1000 with a scan speed of 883 u/s.

3.7. NMR Spectroscopy

The isolated compounds R1–R9 were dissolved in methanol-d4, and the samples were
transferred to a standard 5 mm NMR tube for measurements. NMR spectra were collected
on a Varian DDR 600 (1H: 599.9 MHz, 13C: 150.9 MHz; 14.1 T) spectrometer equipped
with a dual 5 mm inverse-detection pulsed-field gradient (IDPFG) probehead at 298 K.
The instrument was operated and controlled by VnmrJ 3.2C software. All applied pulse
sequences were obtained from the Chempack 5.1 standard pulse program library of the
instrument. 1H and 13C chemical shifts (δ) are provided on the δ-scale, reported in ppm
and referenced to the NMR solvent used (CHD2OD residual peak at δH = 3.31 ppm and
CD3OD at δC = 49.0 ppm), whereas spin-spin coupling constants (J) are given in Hz. The
signal multiplicities are denoted as s—singlet, br s—broad singlet, d—doublet, t—triplet,
p—pentet; m—multiplet; dd—doublet of doublets; td—triplet of doublets. The full 1H
and 13C NMR resonance assignments were performed by means of comprehensive one-
(1H and 13C) and two-dimensional homonuclear (1H–1H COSY and 1H–1H TOCSY) and
heteronuclear (1H–13C edHSQC (1JC–H = 140 Hz) and 1H–13C HMBC (nJC–H = 8 Hz), both of
them gradient-enhanced with adiabatic pulses) NMR experiments. In the case of compound
1, band-selective HSQC (bsHSQC) and HMBC (bsHMBC) spectra were also recorded to
enhance the spectral resolution in the F1 dimension.

3.8. ATR-FTIR Spectroscopy

The ATR-FTIR spectra were recorded by a Perkin Elmer Spectrum 400 FT-IR/FT-NIR
spectrometer (Waltham, MA, USA) equipped with a diamond/ZnSe ATR crystal and a
MIR TGS detector. Spectra were collected in the range of 4000–650 cm−1 with a spectral
resolution of 4 cm–1. A few drops of the isolates (1 mg/mL in ethanol) were placed onto
the ATR crystal, then the solvent was completely evaporated and the spectra were obtained
by averaging 8–32 scans after background subtraction. Data processing and analysis were
performed by Perkin Elmer Spectrum Software version 6.3.1, which included baseline
correction and Savitzky-Golay smoothing.

3.9. GC–MS

The isolated compounds R2, R4, and R6 were dissolved in ethanol (1 mg/mL). For
the GC–MS analysis, a Shimadzu GCMS-TQ8040 NX instrument was applied using a Rtx-5
(30 m × 250 µm i.d.; film thickness: 0.32 µm, Restek, Bellefonte, PA, USA) capillary column.
Helium was used as a carrier gas with a linear velocity of 50 cm/s. The solution of each
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compound (1 µL) was injected in split mode (split ratio 1:20) at 300 ◦C. The column oven
temperature was programmed to increase from 80 ◦C to 320 ◦C at 20 ◦C/min, and the
final temperature was held for 10.5 min. The ionization in the electron impact ion source
was performed with an electron beam of 70 eV. The triple quadrupole analyzer operated
in full scan mode (m/z range 29–600, scan speed 3333 amu/s). The interface and the ion
source temperatures were maintained at 280 ◦C, and the accelerating and detector voltages
were set to 4.0 kV and 0.9 kV, respectively. The data were acquired and evaluated with
GCMSsolutions 4.52 software (Shimadzu). The identification of the compounds was aided
by the NIST 17 mass spectral library.

3.10. DPPH• Microplate Assay of Isolated Compounds

The antioxidant activity of the isolated compounds (1 mg/mL in ethanol) was eval-
uated using 96-well microplates and expressed as caffeic acid equivalents (mg caffeic
acid/mg isolates and mol caffeic acid equivalent/mol isolates). Caffeic acid (10, 9, 8, 7,
6, 5, 4, 3, 2, 1 µL, 1 mg/mL in ethanol) and isolated compounds (10 µL) were pipetted
to the wells in triplicate (on two separate occasions). After evaporation of the ethanol,
100 µL of DPPH• solution (0.3 M in methanol) was added to each well. After incubating the
microplate at 25 ◦C for 10 min in the dark, the deep-violet stable free radical DPPH• was
reduced to the pale-yellow 2,2-diphenyl-1-picrylhydrazine in the presence of antioxidants,
resulting in a decrease in absorbance measured at 517 nm (Clariostar® Plus microplate
reader, BMG LABTECH, Ortenberg, Germany).

4. Conclusions

This study identified nine antioxidant caffeate esters from the stem bark of R. pseu-
doacacia using RP-HPTLC–DPPH• assay, RP-HPTLC–UV/VIS/FLD–HESI-HRMS, HPLC–
DAD–ESI-MS, GC–MS, ATR–FTIR, and NMR spectroscopy. It led to the identification of
3-O-caffeoyl oleanolic acid (R1), oleyl caffeate (R2), octadecyl caffeate (R3), gadoleyl caffeate
(R4), eicosanyl caffeate (R5), (Z)-9-docosenyl caffeate (R6), docosyl caffeate (R7), tetracosyl
caffeate (R8), and hexacosanyl caffeate (R9). This is the first report for natural compounds
R2, R4, and R6, while R3, R5, R7, R8, and R9 were obtained from this genus for the first
time. The antioxidant effects of the isolated compounds were confirmed using the DPPH•
microplate assay. The stem bark of black locust holds significant potential as a candidate
for pharmaceutical applications, as the known isolates display a range of other bioactivities
such as antimicrobial, cytotoxic, antiproliferative, and anti-inflammatory properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29235673/s1, Figure S1: UV-VIS spectra (190–600 nm)
of the compounds R1–R9 recorded by RP-HPTLC-densitometry; Figure S2: HPTLC chromatogram
of black locust bark isolates (R1–R9) and extract (E) on RP18 plates with acetonitrile-ethanol 3:2
V/V after derivatization with natural product reagent at UV 365 nm; Figures S3–S35: 1D and 2D
NMR spectra of compounds R1–R9; Figures S36–S41: ATR FTIR spectra of compounds R1–R7;
Figure S42: The experimental EI-MS spectrum of compound R2 and the theoretical EI-MS spectrum
of oleyl alcohol; Figure S43: The experimental EI-MS spectrum of compound R4 and the theoretical
EI-MS spectrum of gadoleyl alcohol; Figure S44: The experimental EI-MS spectrum of compound
R6; Figure S45: GC–MS TIC chromatograms of compounds R2, R4, and R6; Figure S46: Plot of the
logarithmic retention time (tR) versus the number of carbon atoms for compounds R2, R4, and R6.
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