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Abstract
Essential oil of citronella grass (Cymbopogon nardus) was screened for antibacterial compounds by high-performance thin-
layer chromatography (HPTLC) combined with direct bioautography using soil bacterium Bacillus subtilis, marine bacterium 
Aliivibrio fischeri, and plant pathogens Pseudomonas syringae pv. maculicola and Xanthomonas euvesicatoria. The parallel 
derivatization using HPTLC–anisaldehyde reagent also revealed the bioactive compounds separated with n-hexane–isopropyl 
acetate (9:1, v/v), which were analyzed by offline solid-phase microextraction–gas chromatography–electron ionization-MS 
(SPME–GC–EI-MS) after scraping off and elution. The compounds responsible for the antibacterial effect were identified 
as citronellal, geranial, neral, geraniol, α-cadinol, and elemol. These compounds inhibited all studied bacterial strains except 
elemol that demonstrated activity only against B. subtilis and X. euvesicatoria.
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1  Introduction

Cymbopogon nardus, known as citronella grass, is a tropical 
plant from the sweet grass family (Poaceae). It originates 
from Southeast Asia and is highly valued for its aromatic 
essential oil (EO) extracted from the leaves. The EO is rich 
in citronellal, citronellol, and geraniol, contributing to its 
characteristic fresh, lemony scent [1]. Therefore, it is utilized 
in the perfume and cosmetics industry and aromatherapy 
for its calming and stress-relieving effects. Ayurvedic and 
traditional Chinese medicine employs the plant to relieve 
fever, pain, colds, inflammation, infections, and digestive 
problems [2, 3]. In some regions, leaves and extracts are 
used as a poultice to heal wounds and treat skin infections. 

Citronella EO is known for its insecticidal properties and 
is used in candles, sprays, and skin protection products to 
keep mosquitoes and other insects away [2]. In addition to its 
repellent effect, the EO has anti-inflammatory, antioxidant, 
and antimicrobial properties [4]. C. nardus EO was effec-
tive against various bacterial [5] and fungal [6] species. It 
also has potential antispasmodic and analgesic effects, which 
could be beneficial in treating muscle tension and rheumatic 
complaints.

High-performance thin-layer chromatography (HPTLC) 
combined with direct bioautography is a powerful tool for 
screening antimicrobial natural products, such as EOs [7–9]. 
Further analysis of the volatile compounds in the inhibi-
tion zones can be conducted, e.g., by scanning in situ using 
HPTLC–direct analysis in real-time mass spectrometry 
(HPTLC–DART-MS) [8] or by gas chromatography–elec-
tron ionization–MS (GC–EI-MS) after eluting the com-
ponents from the layer, e.g., by using overpressured-layer 
chromatography (OPLC) [9]. Using conventional HPTLC 
followed by offline scraping off and elution approach, solid-
phase microextraction GC–EI-MS (SPME–GC–EI-MS) 
is preferred as it discards from the analysis non-volatile 
compounds originating from the adsorbent [8, 10]. Cym-
bopogon species, including C. nardus, have been studied 
by TLC–direct bioautography using methicillin-resistant 
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Staphylococcus aureus (MRSA) bacterial strain and n-hex-
ane–ethyl acetate (9:1, v/v) as the mobile phase [5]. The 
parallel GC–MS analysis of the EOs identified geraniol/cit-
ronellol in the same zone as the compounds responsible for 
the characteristic inhibition zone in C. nardus EO.

The study aimed at the screening, characterization, and 
identification of antibacterial Cymbopogon nardus EO 
components by the combination of HPTLC–direct bioau-
tography assays using Bacillus subtilis, Aliivibrio fischeri, 
Xanthomonas euvesicatoria, and Pseudomonas syringae 
pv. maculicola, and SPME–GC–EI-MS of the eluted com-
pounds from the inhibition zones.

2 � Experimental

2.1 � Materials

The 20 cm × 10 cm aluminum foil-backed HPTLC silica 
gel 60 F254 layers (#1.05548) were acquired from Merck 
(Darmstadt, Germany). Analytical-grade isopropyl acetate 
was obtained from Sigma-Aldrich (Budapest, Hungary), 
and all other solvents used were of analytical grade from 
Molar Chemicals (Halásztelek, Hungary). Vanillin was 
purchased from Reanal (Budapest, Hungary). Dye rea-
gent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) was acquired from Carl Roth (Karlsruhe, 
Germany) and concentrated sulfuric acid (96%) from Carlo 
Erba (Milan, Italy). Citronella (Cymbopogon nardus) EO 
was obtained from a Hungarian drug store chain (Aromax 
Ltd., Budapest, Hungary). Test substances citronellal and 
citral (mixture of neral and geranial) were purchased from 
Sigma-Aldrich.

Gram-positive Bacillus subtilis soil bacterium (strain 
F1276) was a gift from József Farkas (Central Food 
Research Institute, Budapest, Hungary). Gram-negative, 
naturally luminescent marine bacterium Aliivibrio fischeri 
(DSM 7151) was obtained from Leibniz Institute DSMZ, 
German Collection of Microorganisms and Cell Cultures, 
Berlin, Germany, the Hungarian paprika pathogen Xan-
thomonas euvesicatoria from János Szarka (Primordium 
Kft., Budapest, Hungary) and Arabidopsis pathogen Pseu-
domonas syringae pv. maculicola from Jun Fan (John Innes 
Center, Department of Disease and Stress Biology, Norwich, 
UK [11]).

2.2 � High‑performance thin‑layer chromatography

HPTLC separation was achieved in a 20 cm × 10 cm unsatu-
rated chamber (CAMAG, Muttenz, Switzerland) with n-hex-
ane–isopropyl acetate (9:1, v/v) as the mobile phase. CEO 
(30 mg/mL), citronellal (5 mg/mL), and citral (5 mg/mL) 
dissolved in ethanol were applied manually in the range of 

2–5 µL at 8 mm height from the bottom edge in 6 mm bands 
by a 10 µL syringe (Hamilton, Bonaduz, Switzerland). The 
chromatoplates developed up to 8 cm from the lower edge 
were dried by a cold air stream using a hair dryer (5 min) and 
documented with a digital camera (Cybershot DSC-HX60, 
Sony, Neu-Isenberg, Germany) under an ultraviolet (UV) 
lamp (λ = 254 nm) (CAMAG) and at Vis after derivatization 
with vanillin–sulfuric acid reagent (200 mg vanillin + 50 mL 
ethanol + 1 mL concentrated sulfuric acid; the dipped plates 
were heated to 110 °C for 5 min).

For isolation, 150 μL of citronella EO solution (30 mg/
mL) was applied manually as a 170 mm band by a 100 µL 
syringe and developed with the mobile phase n-hexane–iso-
propyl acetate (4:1, v/v). Then, zones of interest, determined 
by vanillin-sulfuric acid reagent using the left side of the 
chromatogram (0.5 cm), were scraped off from the remain-
ing underivatized part into a syringe with a Teflon filter 
(0.22 μm, Phenomenex) and eluted with 500 μL of ethanol. 
The eluates were analyzed by SPME–GC–MS.

2.3 � HPTLC–bioassay

The bioassays were performed using B. subtilis, A. fischeri, 
P. syringae pv. maculicola, and X. euvesicatoria bacterial 
strains based on previously published methods [8]. Briefly, 
the dried HPTLC plates developed for B. subtilis and X. 
euvesicatoria bioassays were immersed into the appropri-
ate cell suspension, incubated for 2 h in a vapor chamber at 
37 °C and 28 °C, respectively, stained with aqueous MTT 
solution (100 mg in 100 mL of water) by immersion, and 
after a 15–20 min incubation, the bioautograms were docu-
mented with the Cybershot DSC-HX60 digital camera. The 
bright spots against the bluish background indicate the zones 
of antibacterials.

In the cases of luminescent A. fischeri and P. syringae pv. 
maculicola, the developed layers were dipped into the cell 
suspensions and immediately put into a transparent glass 
cage under a low-light camera (iBright FL1500 Imaging 
System, Thermo Fisher Scientific, Budapest, Hungary). The 
exposure time was 40–80 s for A. fischeri and 2–3 min for P. 
syringae pv. maculicola. The dark zones lacking luminescent 
viable cells indicate antibacterial activity.

2.4 � SPME–GC–MS conditions

The analysis of the EO and its compounds was carried out 
with an Agilent 6890N/5973N GC-MSD (Santa Clara, CA, 
USA) system equipped with a Supelco (Sigma-Aldrich) 
SLB-5MS capillary column (30 M × 250 µm × 0.25 µm). 
The GC oven temperature increased from 60 °C (3 min iso-
thermal) to 250 °C at 8 °C/min (1 min isothermal). High-
purity helium (6.0) was used as a carrier gas at 1.0 mL/
min (37 cm/s) in constant flow mode. Static headspace 
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solid-phase microextraction (sHS-SPME) technique was 
performed with an automatic multipurpose sampler (CTC 
Combi PAL, CTC Analytics AG, Zwingen, Switzerland) 
using a 65 μM StableFlex polydimethyl siloxane/carboxene/
divinyl benzene (CAR/PDMS/DVB) SPME fiber (Supelco, 
Bellefonte, PA, USA) and 20 mL headspace vials. Extraction 
was performed after a 5 min incubation at 100 °C by expos-
ing the fiber to the headspace for 10 min. Then, the fiber was 
immediately transferred to the injector port and desorbed for 
1 min at 250 °C. Cleaning and conditioning of the SPME 
fiber was carried out in a Fiber Bakeout Station (Agilent) in 
a pure nitrogen atmosphere at 250 °C for 15 min. The mass 
selective detector was equipped with a quadrupole mass 
analyzer and was operated in electron ionization mode at 
70 eV in full scan mode (41–500 a.m.u. at 3.2 scan/s). MSD 
ChemStation D.02.00.275 software (Agilent) was used for 
data analysis. Compound identification was carried out by 
comparing retention data and the recorded spectra with the 
data of the NIST 2.0 library. Percentage evaluation included 
area normalization.

3 � Results and discussion

Antibacterial compounds of citronella EO were separated on 
HPTLC layers using n-hexane–isopropyl acetate (9:1, V/V) 
as the mobile phase and detected at UV 254 nm and after 
derivatization with vanillin–sulfuric acid reagent and via 
direct bioautographic antibacterial assays using Gram-pos-
itive B. subtilis and Gram-negative A. fischeri, P. maculicola, 
and X. euvesicatoria (Fig. 1). Six chromatographic zones 
at hRF 22 (c1), 27 (c2), 31 (c3), 52 (c4), 57 (c5), and 80 
(c6) that showed antibacterial effect were marked (Fig. 1). 
Derivatization with vanillin–sulfuric acid reagent showed 

all indicated zones in color (Fig. 1b). However, at 254 nm 
(Fig. 1a), only zones c4 and c5 were detectable. Inhibition by 
zones c1, c2, and c6 of the EO was visible against all bacte-
rial strains (Fig. 1c–f). Still, zone c3 exhibited strong activity 
against B. subtilis and X. euvesicatoria, while it had a weak 
effect against A. fischeri and P. maculicola. The EO seems to 
contain zones c4 and c5 (Fig. 1a), but their ability for char-
acteristic inhibition against B. subtilis was low (Fig. 1c). In 
the cases of other strains, the minimum inhibitory amounts 
were not reached (Fig. 1d–f).

Using standard compounds, the presence of geranial, 
neral, and citronellal was confirmed in zones c4–c6, respec-
tively (Fig. 1a, b). These compounds inhibited all strains and 
were the constituents of the citronella EO, as confirmed by 
SPME–GC–MS analysis (Fig. 2a). The main components of 
the citronella EO are listed in Table 1.

The compounds in zones c1–c3 responsible for the anti-
bacterial effect (Figs. 1 and 3) were identified by offline 
SPME–GC–MS after scraping off and eluting with etha-
nol. HPTLC–vanillin-sulfuric acid reagent (Fig. 3a) and 
HPTLC–B. subtilis assay (Fig. 3b) confirmed the purity 
and the bioactivity of the eluates at the appropriate hRF 
and based on SPME–GC–MS analysis (Fig. 2), geraniol, 
α-cadinol, and elemol were present in the inhibition zones 
c1–c3 (Fig. 2b–g), respectively.

Citronellal, geranial, neral, geraniol, α-cadinol, and 
elemol have been described as constituents of citronella 
EO [4, 5, 12, 13], all displaying a cytotoxic effect [14–16]. 
Moreover, anti-inflammatory activities of α-cadinol [17], 
elemol [18], and geraniol [19] have been reported. The 
antibacterial effect of citronellal, citral, and geraniol has 
been documented against diverse strains, among others, 
Bacillus cereus, Staphylococcus aureus, Pseudomonas 
aeruginosa, and Escherichia coli [20–23]. Geraniol and 

Fig. 1   HPTLC chromatograms of citronella essential oil (o) and 
standards (st) citronellal (c6), neral (c5), and geranial (c4), devel-
oped with n-hexane–isopropyl acetate (9:1, V/V) and detected at UV 
254 nm (a), at white light illumination after derivatization with vanil-

lin-sulphuric acid reagent (b) and bioautograms after Bacillus subtilis 
(c), Aliivibrio fischeri (d), Pseudomonas syringae pv. maculicola (e), 
and Xanthomonas euvesicatoria (f) bioassays. The compound zones 
are indicated as c1–c6
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citral displayed anti-yeast activity against Candida albi-
cans [24, 25] and citronellal and citral inhibited some 
filamentous fungi, e.g., various Aspergillus strains [6, 
26]. Among the four studied bacterial strains, only the 
anti-Bacillus subtilis activity of citral has been reported 
previously [27].

4 � Conclusions

The combination of HPTLC–direct bioautography with 
SPME–GC–MS enabled efficient screening and identifi-
cation of antibacterial compounds of citronella essential 
oil, which were identified as citronellal, citral, geraniol, 
α-cadinol, and elemol. To the best of our knowledge, 

Fig. 2   SPME–GC–MS total ion chromatograms of the citronella essential oil (a) and the isolates c1 (b), c2 (c), and c3 (d) and the EI-MS spec-
trum of the isolated compounds (e–g, respectively)
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among the antibacterial effects demonstrated in this study, 
only the anti-Bacillus subtilis activity of citral has been 
previously known. Thus, this is the first report also about 
the inhibition effect of citronella essential oil components 
against plant pathogens P. maculicola and X. euvesicato-
ria, which can adumbrate the use of these compounds as 
agrochemical agents after appropriate formulation.
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