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Abstract

Diffusion tensor imaging (DTI) histogram metrics are correlated with clinical parameters in cerebral small vessel diseases
(cSVD). Whether ADC histogram parameters derived from simple diffusion weighted imaging (DWI) can provide relevant
markers for long term studies of cSVD remains unknown. CADASIL patients were evaluated by DWI and DTI in a large cohort
study overa6-year period. ADC histogram parameters were compared to those derived from mean diffusivity (MD)
histograms in 280 patients using intra-class correlation and Bland-Altman plots. Impact of image corrections applied to ADC
maps was assessed and a mixed effect model was used for analyzing the effects of scanner upgrades. The results showed
that ADC histogram parameters are strongly correlated to MD histogram parameters and that image corrections have only
limited influence on these results. Unexpectedly, scanner upgrades were found to have major effects on diffusion measures
with DWI or DTI that can be even larger than those related to patients’ characteristics. These data support that ADC
histograms from daily used DWI can provide relevant parameters for assessing cSVD, but the variability related to scanner
upgrades as regularly performed in clinical centers should be determined precisely for longitudinal and multicentric studies
using diffusion MRI in cSVD.
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Introduction

CADASIL (Cerebral Autosomal Dominant Arteriopathy with

Subcortical Infarcts and Leukoencephalopathy) is the most

frequent hereditary cerebral small vessel disease (cSVD) charac-

terized by recurrent stroke and early cognitive decline affecting

middle-aged adults. It is considered as a unique model to

investigate the pathophysiology of subcortical ischemic vascular

dementia related to cSVD.[1]Conventional magnetic resonance

imaging (MRI) provides key information for diagnosis of the

disease. FLAIR or T2-weighted images show diffuse white matter

signal abnormalities in all symptomatic but also in asymptomatic

CADASIL patients[2]. T1-weighted images often show lacunar

infarctions accumulating progressively with the progression of the

disease in two thirds of patients[2].

Unlike conventional T1 and T2-weighted MRI sequences,

diffusion MRI can probe the microstructural integrity of cerebral

tissue and was shown to be highly sensitive to cerebral tissue

changes in cSVD[3]. Important changes of diffusion tensor

imaging (DTI) metrics (mean diffusivity –MD and fractional

anisotropy –FA) have been reported both inside and outside areas

of increased signal on T2-weighted or FLAIR images in various

white-matter disorders.[4–9]In conditions with diffuse tissue

lesions such as hypertension related cSVD or CADASIL, a

quantitative approach based on whole brain histograms of

diffusion was found to reflect the overall disease severity and

various DTI histogram parameters (mean value, median value,

peak location, peak height, kurtosis, skewness) have been reported

to correlate with clinical scores both in cross-sectional and

longitudinal studies.[10–20]Some DTI metrics were even found

more sensitive than clinical scales in detecting the disease

progression over time[11,15,21]. In CADASIL, mean value of

MD histograms obtained over the whole brain has been previously

found to increase before any significant clinical change during

follow up and to predict disease progression [21,22]. DTI

measures were then proposed as potential adjunct outcome

measures for future therapeutic trials in cSVD[10,21–24].

However, the effects of variations in sequences or scanners on

diffusion measures, which are of crucial importance for multicen-

tric and longitudinal studies, have only been evaluated in limited

samples and mainly in healthy volunteers[25–28]. In addition, for

large scale multicentric studies, a very simple and highly

reproducible measure derived from diffusion histograms appears
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strongly needed. Apparent diffusion coefficient (ADC) histograms

obtained from measures in 3 gradient directions (x, y and z

directions) over the whole brain without the use of any operator-

dependent and time-consuming post-processing as daily per-

formed in stroke patients may represent an alternative approach to

DTI-metrics based on longer acquisitions and more sophisticated

calculations. The main advantage of using ADC histograms would

be its wide availability, simplicity and rapidity making it also

suitable for routine clinical use.

The aims of the present study were: 1) to evaluate whether very

simple parameters derived from ADC histograms can be used

similarly to DTI histogram parameters to assess the severity of

cSVD, 2) to assess the magnitude of the effect of scanner upgrades

or changes that necessarily occur in clinical studies over a large

time scale- as compared to the effect of clinical scores, age and sex

on ADC histogram parameters. For this purpose, clinical and

MRI data from a large cohort of CADASIL patients evaluated in

two different clinical centers and over a long time period were

analyzed.

Methods

Subjects
Data from 771 MRI scans performed in 348 CADASIL patients

having a typical mutation of the Notch3 gene were used for

analysis in this study. Patients were recruited from 2006 to 2012ina

large cohort study performed in two referral centers (Lariboisière

Hospital in Paris and Institute for Stroke and Dementia Research

in Munich). The detailed design of this study has been previously

reported elsewhere.[29]The study was approved by an indepen-

dentethics committee at both centres (Paris: Ethics Committee of

Saint Louis Hospital, reference no. P020921-AOR02001; Mu-

nich: Ethikkommission der Med. Fakultät der LMU München), all

patients gave a written informed consent to participate.

Clinical evaluation
All subjects underwent a detailed neurological examination

during the 2 hours before MRI, including the evaluation of the

NIHSS, modified Rankin Scale, Barthel Index and Mattis

Dementia Rating Scale. Patients had follow-up examinations with

an interval of 18 months over a period of 3 years.

MRI
MRI scans were obtained with 1.5T scanners (Vision[Siemen-

s]in Munich and Signa [General Electric Medical Systems] in

Paris) with repeated software and hardware (coil, channel RF and

other technical element) updates (GE Signa 08, 09, 11, 11 new, 12)

as proposed by the manufacturer in all clinical centers during the

study period. Diffusion weighted imagingwas performed in all

patients (Siemens: TR/TE 5100/137 ms, slice thickness 5 mm,

interslice gap 1.5 mm, 1286128; b-value = 1000; General Electric:

TR/TE 8200/83 ms, slice thickness5.5 mm, interslice gap

1.5 mm, 1286128; b value = 1000 s/mm2). To obtain ADC

maps, DWI scans were acquired in the X, Y, and Z directions

and then averaged to make ADC measurements largely indepen-

dent of the effects of anisotropic diffusion. Apparent diffusion

coefficient values were then calculated for each voxel to generate

ADCxyz maps. In a subset of patients (n = 280) diffusion tensor

imaging was also performed using a unique and optimized

protocol on GE Signa in 23 directions (TR: 7500, TE: 98.8 ms,

EC: 1/1, bandwidth: 91 Khz, slice thickness: 5.5 mm, inter slice

gap 1.5 mm, 23 slices, 1286128, b value = 700 s/mm2in 23

Figure 1. Linear regression analysis of mean value derived
from ADC histograms vs mean MD values obtained with DTI
after CSF removal (x 1024 mm2/s) on the GE scanner. The graph
shows the large effects of different scanner versions (software and
hardware updates). If the ADC and MD measures appear well correlated
overall, the graph illustrates that they clearly depend on the scanner
version and are not concordant since all regression lines significantly
differ from the perfect concordance line (dashed line).
doi:10.1371/journal.pone.0097173.g001

Table 1. Correlation coefficients between ADC and MD histogram parameters (n denotes the number of scans); all p-values are
less than 0.0001

MRI/software Mean w/o CSF Mean w CSF Height w/o CSF Height w CSF Peak

Signa 08 (n = 56) 0.975 0.989 0.957 0.972 0.889

Signa 09 (n = 38) 0.681 * 0.879 0.877 0.884 0.252 **

Signa 11 (n = 129) 0.946 0.952 0.971 0.978 0.888

Signa 11 new (n = 276) 0.959 0.977 0.989 0.991 0.790

Signa 12+ (n = 204) 0.993 0.994 0.990 0.993 0.926

Values of 0.935* and 0.779** after removal of two outliers.
doi:10.1371/journal.pone.0097173.t001
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directions). Eigen-vectors were obtained from all 23 directions for

each voxel and eigen values were used for calculation of mean

diffusivity (MD = Trace/23). Data obtained using other DTI

sequences that were performed during the study were not included

in this analysis.

Image analysis
MD and ADC were first calculated over the whole volume of

the brain. In the present study, all ADC histogram parameters

obtained using DWI were compared to mean diffusivity (MD)

histogram parameters obtained using DTI at the same time and

considered as the reference method. MD histograms were

generated after removal of voxels containing CSF using a cutoff

value of diffusion at 1861024 mm2/s. This cutoff level was chosen

after careful visual assessment of the effect of different thresholds.

In search for the simplest measure of diffusion, we evaluated the

effects of different image corrections usually requested for DTI

measures (cerebrospinal fluid (CSF) suppression, automatic and

manual artifacts removal) on ADC histogram parameters. ADC

histograms were generated before and after applying 3 types of

image correction on crude ADC maps; 1) suppression of CSF with

a threshold value at 1861024 mm2/s; 2) automatic removal of the

top and bottom three slices containing the most important artifacts

or peripheral CSF; 3) manual removal of artifacts at the bone-air

interface by an experienced neurologist (JM).Histograms were

obtained using a bin width of 0.161024 mm2/s and normalized

over the number of voxels to correct for individual differences in

brain size. The mean value, peak location and peak height of

diffusion histograms were used for analysis. Because height,

kurtosis and skewness -parameters that represent the histogram

curve- were found to be highly correlated to each other, we chose

to only include height in the final analysis.

Statistical methods
All analyses were made taking into account the 5 hardware

upgrades performed on the GE scanner during the study period

(Signa 08, 09, 11, 11 new and 12+). The relationship between MD

and ADC histogram parameters was evaluated by the correlation

coefficient, linear regression, intra-class correlation and Bland-

Altman plots. A similar methodology was used to compare

corrected and non-corrected ADC histograms. Finally, a mixed-

effects model was used to assess the magnitude of the effect of

scanner upgrades versus clinical scores on ADC histogram

parameters. In these regression models adjusted for age and

gender, a random scanner upgrade effect was used, to model an

expected magnitude of scanner updates in general (standard error

of the random effect), that can be compared to the (fixed) effect of

clinical scores on ADC histogram parameters. All tests were two-

sided and p-values ,0.05 were considered as indicating significant

Table 2. Intra-class correlation coefficient between ADC and MD histogram parameters (n denotes the number of scans).

MRI/software Mean w/o CSF Mean w CSF Height w/o CSF Height w CSF Peak

Signa 08 (n = 56) 0.691 0.777 0.836 0.855 0.477

Signa 09 (n = 38) 0.698* 0.850 0.789 0.826 0.202**

Signa 11 (n = 129) 0.919 0.770 0.811 0.835 0.797

Signa 11 new (n = 276) 0.944 0.964 0.927 0.939 0.722

Signa 12+ (n = 204) 0.990 0.986 0.986 0.990 0.904

Values of 0.833* and of 0.719** after removal of two outliers.
doi:10.1371/journal.pone.0097173.t002

Figure 2. Linear regression analysis of mean value of ADC with and without CSF removal, showing the effects of different scanner
versions.
doi:10.1371/journal.pone.0097173.g002
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Figure 3. Bland–Altman plots for parameters derived from ADC histograms with and without application of different image
corrections.
doi:10.1371/journal.pone.0097173.g003
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association. Analyses were performed using the R statistical

software version 2.15.0.

Results

Comparison of ADC histograms to the reference method
according to scanner upgrades

Correlation coefficients between ADC and MD histogram

parameters (as the reference method) were found high (all r. 0.75

with p values less than 0.0001) but to differ somewhat according to

the scanner upgrade (Figure 1 and Table 1). Intra-class correlation

coefficients (Table 2), corresponding to the ratio of the inter-

patient variance to the overall variance of measurements, were

found high independently of the scanner software version for the

mean and height values of ADC histograms obtained after

removal of CSF. Without CSF removal, the results appeared more

variable according to the scanner version. The tightest correspon-

dence with the reference method was observed for the mean value

of ADC histograms.

Effects of imaging data corrections on ADC histogram
parameters according to scanner upgrades

The intra-class correlation coefficients between corrected and

non-corrected ADC histogram parameters are presented in

Table 3. Intra-class correlation of parameters with/without CSF

removal was found lower for the mean value than for the height of

ADC histograms. Peak location was unaffected by CSF removal

(as expected and not reported here). Plotting parameters with

versus without CSF removal revealed a clear scanner version effect

for the mean value, but also for the height, although less marked

(Figure 2). Histogram parameters with/without removal of

artifacts obtained either automatically (top-bottom three slices)

or manually (bone-air artifacts) were almost perfectly correlated, in

particular for the mean and height values of ADC histograms.

Moreover, no strong scanner software version effect was found,

thus data were analyzed all together by Bland–Altman plots

(Figure 3). These plots showed that narrow limits of agreement

were obtained for all parameters, showing small or even negligible

differences between parameters with and without correction.

However, automatic removal of top/bottom three slices yield to a

drift of mean and height values. Smaller values of parameters were

slightly underestimated and larger values slightly overestimated.

No such drift was observed with manual removal of bone-air

artifacts, but a small downward bias was observed for the mean

and a small upward bias for the height.

Evaluation and impact of scanner upgrades
A strong effect of scanner upgrade was detected on all diffusion

parameters (measured both on DTI and DWI). This is illustrated

on Figure 1 for the mean values of whole brain histograms after

CSF removal. The latest scanner software upgrades Signa 11 new

and Signa 12 were the only ones for which all parameters

measured by DTI (MD) or DWI (ADC) histograms were found

highly concordant, with intraclass correlation coefficients above

0.9 (Table 2).On the contrary, the other scanner upgrades showed

a smaller concordance, and the mean value and peak of the

histogram were even very poorly correlated with Signa 09 version.

Finally, Bland–Altman plots were also obtained for Signa 11 new

and 12 versions of scanner since for the other versions, clear biases

and deviations were expected. The corresponding plots are

presented in Figure 4 showing small limits of agreement (mean

difference 6 2 SD) between the mean value of ADC and MD

histograms, after CSF removal in all cases. Some evidence of

downward bias for mean ADC measures was found for Signa 11
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Figure 4. Bland–Altman plots for the mean value of ADC vs MD histograms after CSF removal on GE scanners with upgrade Signa
11 new and Signa 12+.
doi:10.1371/journal.pone.0097173.g004

Table 4. Effects of clinical scores, age and sex (represented by their regression coefficients) compared to the random scanner
effect (represented by its standard deviation) on different ADC histogram parameters.

Clinical score Rankin NIHSS Barthel at 100

Coefficient (SE) P Coefficient (SE) P Coefficient (SE) P

ADC mean

Score 0.55 (0.04) ,0.0001 0.18 (0.02) ,0.0001 21.44 (0.15) ,0.0001

Age 0.051 (0.006) ,0.0001 0.073 (0.006) ,0.0001 0.061 (0.006) ,0.0001

Male gender 0.37 (0.11) 0.002 0.40 (0.13) 0.002 0.49 (0.12) ,0.0001

Random scanner effect

SD of random effect (SE) 1.01 (0.06) 0.98 (0.07) 1.03 (0.05)

ADC mean without CSF

Score 0.19 (0.02) ,0.0001 0.053 (0.010) ,0.0001 20.49 (0.07) ,0.0001

Age 0.022 (0.003) ,0.0001 0.030 (0.003) ,0.0001 0.025 (0.003) ,0.0001

Male gender 0.097 (0.052) 0.065 0.11 (0.06) 0.049 0.14 (0.05) 0.013

Random scanner effect

SD of random effect (SE) 0.76 (0.06) 0.76 (0.06) 0.76 (0.06)

ADC peak location

Score 0.13 (0.02) ,0.0001 0.038 (0.011) ,0.0001 20.35 (0.08) ,0.0001

Age 0.012 (0.003) ,0.0001 0.017 (0.003) ,0.0001 0.014 (0.003) ,0.0001

Male gender 0.038 (0.061) 0.54 0.048 (0.063) 0.45 0.062 (0.062) 0.32

Random scanner effect

SD of random effect (SE) 1.02 (0.07) 1.02 (0.06) 1.03 (0.05)

Note that no test was performed for random effects.
doi:10.1371/journal.pone.0097173.t004
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new, with a mean difference of 20.04 (95%CI 20.06 to 20.03)

and of upward bias with Signa 12, with which the mean difference

was 0.08 (95%CI 0.07 to 0.09). Despite these differences, limits of

agreement were 20.3 and 0.2 for Signa 11 new and 20.1 and 0.2

for Signa 12, which are small enough as compared to the

measurements of DTI and DWI which span over the range of 8.5

to 12.5, with an average of about 10.

The effect of clinical scores, age and sex as compared to the

random MRI scanner effect on different ADC histogram

parameters evaluated in a mixed-effects model is presented in

Table 4. The results showed that, globally, the standard deviation

of the random scanner effect was larger than the regression

coefficients of fixed effects of clinical scores, age or sex on ADC

histogram parameters.

Discussion

The main findings of this study are that: 1) ADC histogram

parameters appear highly correlated to MD values derived from

DTI histograms previously used for assessing microstructural

changes in cSVD, 2) image corrections such as CSF or artifacts

removal have little effect on ADC measures over the whole brain,

3) conversely, scanner upgrades, as currently performed in a

clinical setting over a large time scale, have major effects on

measures derived from ADC histograms that can be even larger

than the effects of age, sex or of the disease itself.

Metrics derived from whole brain MD histograms using DTI

previously emerged as reliable and precise markers of disease

severity and appeared particularly promising for monitoring

disease progression in cSVD[10,11,13,15,21,22].Although some

studies based on routine DWI-derived ADC histograms already

provided significant results[24], different diffusion MR techniques

for assessing microstructural changes in cSVD have not been

directly compared so far. In the present study, ADC histogram

parameters obtained with DWI were found strongly correlated to

parameters derived from MD histograms after CSF removal

obtained with DTI and considered as the ‘‘gold standard’’

measure of diffusion in cSVD. In particular, the correlation was

excellent when mean or height values of ADC histograms were

compared to MD histogram values after CSF suppression. As

might be expected, the concordance with the reference method

was slightly altered in the absence of CSF suppression. These data

strongly support that ADC histogram parameters from basic DWI

as daily used in stroke centers may replace DTI measures for

assessing tissue damage in cSVD.

Since the goal of using diffusion MR histograms is to globally

quantify the microstructural brain tissue damage, considerable

efforts are made to remove factors that may alter diffusion

estimates such as the partial volume effect of increased CSF spaces

in cortical atrophy or artifacts related to image distortion or those

at the bone-air interface. Thus, various methods of CSF

suppression have been proposed such as diffusion threshold-

ing[14,22,24], fuzzy clustering-voxel based morphometry [15,26]

or the use of FLAIR-DWI[26,30]. In this study we used a

relatively low diffusivity threshold (1861024 mm2/s) after careful

visual assessment of different threshold values (ranging from 16 to

2861024 mm2/s) to exclude voxels containing CSF before

histogram generation. CSF removal had only slight effects on

the correlation between ADC and MD histogram parameters. It

did not change the peak location, but as expected, shifted the

mean ADC to lower values and elevated the height of ADC

histograms. Although moderate, the influence of CSF suppression

was found to vary according to scanner upgrades. In contrast,

removal of all bone-air artifacts manually or automatic suppression

of the problematic top-bottom slices were found to have negligible

effects on ADC histogram parameters in the cohort. The intra-

class correlation coefficients were found always larger than 0.9

when ADC histograms were obtained before and after these

interventions.

During this study, multiple upgrades of the MR scanner

occurred as usually observed in a clinical setting over a large time

scale. We showed in this study that these upgrades had major

effects on diffusion measures. Such large variations were not

initially expected since water diffusion as measured by MRI is

mainly a physical characteristic of the tissue itself that should not

be related to MR properties. However, significant effects related to

the use of different scanners and/or imaging sequences on

diffusion measures were previously reported in a small number

of healthy volunteers[25–28]. These studies showed that ADC

measures are significantly influenced by more or less important

changes of hardware often performed over a long period in a

clinical setting. The inter-scanner variability was previously found

much greater than the inter-sequence variability but both were

found relatively low in previous studies[25]. Growing maximum b-

values were found to shift diffusion histograms to lower values, but

scan-rescan results did not significantly differ[26]. In the present

study, we observed that the variability related to the different

scanner upgrades performed during the study period can far

exceed the effects of the disease itself. In contrast, when the

analysis was restricted to data obtained after the two last scanner

upgrades which provided the most concordant diffusion data with

the reference method, variations related to the scanner effect were

found 10 times less than those related to patient characteristics.

These data suggest that MR scanner upgrades can alter diffusion

quantification during a long term follow-up study of cSVD but

also that a reduction of related-variations can be obtained using

appropriate technology and quality control as was proposed by a

recent study on diffusion MRI of the breast[31]. The use of

phantoms across upgrades for reducing scanner related variations

may be particularly useful for correcting these variations.

In this study, the mean value appeared as the most useful

parameter derived from whole brain ADC histograms for different

reasons. The mean value is a continuous parameter and is thus

more precise than the peak location which is necessarily discrete

due to the use of bins for histograms. The mean value was also

found to show the tightest correlation with the corresponding MD

histogram parameter and was less influenced by the random

scanner effect than the other parameters. Finally, the mean value

of both ADC and MD histograms were previously reported to

correlate with various clinical scores more than other histogram

parameters both cross-sectionally and longitudinally[11,15,21,22].

In conclusion, the results of the present study suggest that

parameters of whole brain ADC histograms derived from clinically

used DWI may be helpful in investigating cSVD in multicentric

and large cohort studies. The mean ADC value measured over the

whole brain after CSF suppression may represent a simple and

relevant measure of microstructural changes in cSVD. However,

the control of the major effects related to scanner upgrades on

diffusion measures appears mandatory and the variability related

to scanner or sequence changes on diffusion measures should be

precisely estimated for long-term or multicentric studies.
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