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Pulmonary intravascular macrophages: prime 
suspects as cellular mediators of porcine CARPA

Abstract: Pigs provide a highly sensitive and quantita-
tive in vivo model for complement (C) activation-related 
pseudoallergy (CARPA), a hypersensitivity reaction 
caused by some state-of-art nanomedicines. In an effort 
to understand the mechanism of the pigs’ unique sen-
sitivity for CARPA, this review focuses on pulmonary 
intravascular macrophages (PIMs), which are abun-
dantly present in the lung of pigs. These cells represent 
a macrophage subpopulation whose unique qualities 
explain the characteristic symptoms of CARPA in this 
species, most importantly the rapidly (within minutes) 
developing pulmonary vasoconstriction, leading to 
elevation of pulmonary arterial pressure. The unique 
qualities of PIM cells include the following; 1) they are 
strongly adhered to the capillary walls via desmosome-
like intercellular adhesion plaques, which secure stable 
and lasting direct exposition of the bulk of these cells 
to the blood stream; 2) their ruffled surface engaged in 
intense phagocytic activity ensures efficient binding and 
phagocytosis of nanoparticles; 3) PIM cells express ana-
phylatoxin receptors, this way C activation can trigger 
these cells, 4) they also express pattern recognition mol-
ecules on their surface, whose engagement with certain 
coated nanoparticles may also activate these cells or act 

in synergy with anaphylatoxins and, finally 5) their high 
metabolic activity and capability for immediate secretion 
of vasoactive mediators upon stimulation explain the cir-
culatory blockage and other robust physiological effects 
that their stimulation may cause. These qualities taken 
together with reports on liposome uptake by PIM cells 
during CARPA and the possible presence of these cells in 
human lung suggests that PIM cells may be a potential 
therapeutic target against CARPA.
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Introduction: the porcine model 
of CARPA
Complement activation-related pseudoallergy (CARPA) 
is a common adverse immune effect of i.v. administered 
drugs and agents, a subclass of type I hypersensitivity 
reactions (HSRs) which is not mediated by IgE. CARPA 
can be caused by a variety of i.v.-administered nano-
medicines and antibody-based therapeutic or diagnostic 
agents, including liposomal drugs, antibodies, polymers, 
etc. (1, 2). The reaction is usually mild and reversible, 
but in a small percentage of patients the symptoms are 
severe or even lethal, which lends substantial clinical 
and regulatory significance to its study in animal models. 
A subject of previous reviews, CARPA can be induced in 
many animal species, among which pigs stand out as 
being the most appropriate species for mimicking the 
symptoms and other conditions of the reaction in hyper-
sensitive man (3). Accordingly, the porcine CARPA model 
has been used in many previous studies on liposome and 
other nanoparticle-induced CARPA wherein the methods 
applied, the symptoms and their interrelations and many 
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other details of the reaction have been amply described 
(4–8). One of our previous reviews (3) in this volume 
highlights the variation of cardiovascular symptoms in 
porcine CARPA, while the present review focuses solely 
on the likely role of a particular cell in the lung of pigs: 
pulmonary intravascular macrophages, or PIM cells. The 
goal is to summarize the information on PIM cells that 
point to their central role in CARPA. Since PIM cells can 
also occur in humans, the review highlights the possibil-
ity that their selective suppression might be an effective 
approach to prevent CARPA.

PIM cells in general
PIMs are resident cells in the pulmonary capillaries of 
animals in the Artiodactyla order, such as the pig, sheep, 
cattle, in the horse of the Perissodactyla order, and also in 
cats (9). They represent a part of the mononuclear phago-
cyte system (MPS) in the lung of these animals. Just as 
Kupffer cells in the liver, they play an important role in the 
removal of blood-born materials, cellular debris, immune 
cells, bacteria, viruses, endotoxins, etc. The appearance 
of these cells varies in different species and their origin 
and life cycle are debated. One theory holds that they dif-
ferentiate from circulating peripheral blood mononuclear 
cells in situ, while others believe that they are immigrants 
from the neighboring interstitium. In some species PIMs 
appear as a constitutive member of the lung’s MPS, with 
colonization starting soon after birth (10, 11).

In species where PIMs are not found at birth, their 
appearance in the lung can be induced by different effects, 
for example stimulation with lipopolysaccharides (LPS) or 
infectious agents, or by changes in the general condition 
of the organism, such as the presence of hepatic cirrhosis, 
tumors, hematologic diseases or experimental ligation of 
the bile duct (12, 13). Pulmonary induction of PIM cells in 
the lung was described in rats, mice, hamsters, rabbits, 
chicken, dogs and macaques (14–16).

The species that lack PIMs show no pulmonary hyper-
tension in response to CARPAgenic triggers, or need three 
orders higher doses to indicate the symptoms (17).

The amount and size of PIM cells is in the d = 20–80 μm 
range show wide differences among the species, however, 
the numbers are difficult to compare directly because of 
the inconsistent specifications. For example, the amount 
of PIM cells in the lung of sheep, being the highest, was 
given as 20% of the endothelial surface, while in pigs it 
was specified as 14 × 103/mm3 of lung parenchyma. Horse 
PIMs are the largest in size (18–20).

Figure 1: Porcine Pulmonary Intravascular Macrophages (PIM cells).
1) PIMs reaching out with pseudopods attached to the surface 
of plastic coverslip after 1 h incubation (sizebar 2 μm); 2) PIMs 
showing rounded shape, ruffled membrane. Picture taken after 8 h 
incubation on the pulmonary artery endothelium ex vivo, sizebar 
5 μm. Modified from Ref. (21) with permission.

Morphology
Figure 1 illustrates the most prominent features of PIM 
cells; rounded shape, ruffled membrane, presence of 
pseudopods and adhesion onto the surface.

Other characteristic features include indented nucleus 
and a unique glycocalyx embedded in the plasma mem-
brane via lipid and lipoprotein foothills of 50–200 nm is 
size. This surface plays a key role in receptor–mediated 
endocytosis or phagocytosis of blood-born materials, 
endotoxins, tracer particles, liposomes (22–25).

Adherence
PIMs have a significant ability for adherence, which is one 
of the most important characteristics of these cells. They 
firmly attach to the capillary endothelium via junction-
like intercellular adhesion plaques (ICAPs), as demon-
strated for the case of a sheep PIM cells adhered to the 
pulmonary capillary endothelium (Figure 2). In addition 
to pulmonary capillaries, in vitro PIM cells adhere via 
adhesion plaques to pulmonary artery and corneal and 
aorta segments (21). The intercellular space between the 
PIM cell membrane and adherence surface is 15–20  nm 
and electron dense material is present on both sides of the 
cell membranes with a width of about 30 nm (26).

As shown in Figure 3, the strong adherence of PIM 
cells enables their in vitro separation.
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mentioned, pulmonary PIM cells dominate in pigs, sheep, 
cattle, horse and cats (9), while hepatic Kupffer cells domi-
nate in rats, rabbit and mice (27, 28). Key difference between 
PIMs and Kupffer cells is that PIMs response to particle 
injection with phagocytosis and secretion of vasoconstric-
tor substances and other mediators (see below), while 
liver Kupffer cells have huge retention capacity without 
such secretory capability (27, 28). PIMs have high affinity 
to endotoxin which can lead to PIM induction, respiratory 
symptoms, immune reactions, even serious inflammation. 
Such activation can arise from external and internal LPS, 
originating in different organs of the body (e.g., intestines).

Phagocytosis
PIM cells are capable for highly effective phagocytosis, 
for example erythrocytes, fibrin and other extracellular 
matrix components (29). Constitutive PIMs, like those in 
the pig, sheep, cattle and horse showed similar kinetics 
of phagocytic activity (30). Post-phagocytic retention of 
intravenously administered particles (colloid gold, iron 
oxide, liposomes, etc.) by PIM cells in the lung in pigs, 
horses and ruminants is substantial ( > 40%), while rodent 
PIM cells had  < 10% of such activity. Liposome retention 
by pig PIM cells was found to be over 60%. In swine and 
ruminants the amount of PIMs and the functional activity 
of phagocytosis show strong correlation (31–33). Several 
publications show that PIMs are also able to take up viral 
particles (e.g., hog cholera, African swine fever) during 
inflammation (34–36).

Receptors
Table 1 shows the receptors on the surface of PIM cells 
along with their molecular type and function. These 
receptors serve the adhesion and secretory function of 
PIM cells. From the point of view of CARPA the C5aR is 
especially important, since it is very likely that it plays a 
key role in channeling the C activation signal to physiolog-
ical changes during CARPA. Our literature search has not 
found direct demonstration of C5aR on PIM cells, but the 
indirect evidence is overwhelming. It includes the omni-
presence of C5aR on monocyte/macrophage line cells and 
multiple demonstration of C5aR on pulmonary alveolar 
macrophages (36, 45–49). As mentioned, CARPA repre-
sents an anaphylactic reaction, a phenomenon whose 
name reveals its relation to anaphylatoxins.

Function
The primary function of PIM cells is the clearance of infec-
tious or deleterious agents from the blood, such a bacteria, 
virus or nanoparticles that are recognized as foreign mate-
rial. Kupffer cells in the liver have similar function, and in 
different species one or the other cell type dominates. As 

Figure 2: Pulmonary Intravascular Macrophage (PIM) of a sheep, 
anchored to the pulmonary capillary endothelium.
Unique ruffled globular membrane structure (arrows) is present. AS, 
alveolar space; *, red blood cells; circle, phagocytosis; thick arrow, 
capillary wall; curved arrow, aveolar epithelium; magnification, 
X10,000. Modified from Ref. (25).

20 µm

Figure 3: Porcine PIM cells adhered to plastic surface.
The dens, larger cells (marked by arrows) show ruffled membrane 
structures and multiple vacuoles. Cells were washed out from the 
capillaries by collagenase and let to adhere to gelatin surface for 
30 min at 37°C, essentially as described in Ref. (21). Magnification: 
40 × , unpublished data.
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Table 1: Receptors on PIM cells.

Receptor Type  Structure   Function   References

P Integrins   glycosilated- 
dimeric 
proteins

  –  Cell adherence
–  Intercellular communication
–  Cell signaling 
–  Regulation of cell shape and motility

  (37)

Toll-like 
receptors (TLR 
1–9)

  dimeric protein   Recognition of 
–  Pathogens
–  LPS
–  Lipoproteins
–  Lipopeptides
–  β-glucan (Zymosan) 

  (38–40)

Fc-receptor 
(FcR)

  transmembrane 
tyrosine kinase

  Binding of 
–  IgG, 
–  IgA
–  IgE
–  Opsonins

  (41, 42)

Complement-
receptors CR1 
(CD35) CR3, 
CR4

  single-chain 
membrane 
glycoproteins

  CR1
–  binds C3b, C4b, 
–  binds immune complexes
–  Mediates adherence and phagocytosis, 
– Inhibits C activation via the classic and alternative pathways
CR3 (CD11b/18) 
–  binds iC3b
–  promotes adhesion to the vascular endothelium
–  binds β-glucan (Zymosan) 
–  C3dg and C3d bind iC3b with low
–  CR4 receptor binds iC3b
–  CR3 (CD11b/18) and CR4 (CD11c/18) are both bind to iC3b. 

CR3 binds iC3b with high and C3dg and C3d with low affinity. 
–  The CR4 receptor binds iC3b but not β-glucan

  (43, 44)

C5aR (C5R1, 
CD88)*

  Membrane 
spanning

  Binding of anaphylatoxin C5a   (36, 45–49)

Secretory products and mediators
Following stimulation, PIM cells can secrete a large 
number of vasoactive and/or inflammatory mediators, 
listed in Table 2.

Among the secretory products, thromboxane A2 
(TXA2) deserves special attention, as it plays a pivotal role 
in the hemodynamic changes that we see and measure in 
the porcine CARPA model. The vasoconstrictive and con-
sequent hypertensive effect of TXA2 has been known for 
long (58, 59), and the causality between these phenomena 
obtains spectacular demonstration in the porcine CARPA 
model inasmuch as the rise of PAP closely follows the rise of 
TXB2 level in blood (TXB2 is the stable metabolite of TXA2) 
on the second-to minute scale, with only a few second 
delay (Figure 4). In addition, indomethacin, an inhibi-
tor of cyclooxygenase which produces TXA2, completely 
inhibits the rise of PAP and other hemodynamic changes 
(4), which effect offers a possible therapeutic intervention 
with CARPA. It should also be noted regarding the effi-
cacy of indomethacin that TXA2 secretion and pulmonary 

vasoconstriction starts in the lung of pigs within 1–3 min 
after i.v. administration of liposomes or other C-activating 
nanoparticles (3). Since indomethacin is an effective inhib-
itor of CARPA even when it is administered only minutes 
before triggering the reaction (4), TXA2 must be formed 
by cyclooxygenase in a very fast reaction during CARPA, 
rather than being stored in preformed intracellular vesicles 
and released upon PIM cell activation.

In addition to TXB2, PIMs secrete cytokines, oxygen 
radicals and proteolytic enzymes which contribute to 
local tissue injury and delayed cardiovascular effects in 
CARPA and/or inflammation.

Methodical aspects of  
experimentation with PIMs
Table 3 lists the experimental methods applied for 
addressing various questions relating to PIM cell structure 
and function.
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Facts pointing to a causal role of 
PIM cell stimulation in CARPA

There are many facts and considerations that suggest 
that PIM cells play a causal role in porcine CARPA. These 
include the following;
1. The initial eicosanoid (TXB2) secretion and pulmo-

nary hypertension closely coincide (5);
2. The kinetics of particle uptake by PIM cells is also in the 

same time course (in minutes) as the development of 
pulmonary and other hemodynamic changes (29, 66);

3. The species that lack PIMs (or have only induced PIMs 
under normal conditions, i.e., rats) show systemic 
hemodynamic changes after i.v. bolus injections of 
reactogenic drugs (Zymosan, Ambisome) only at 2–3 
orders of magnitude higher doses than the reacto-
genic trigger dose in pigs (17);

4. Depletion of PIM cells eliminates most of the acute 
abnormal pulmonary hemodynamic changes in endo-
toxin shock (63) or hyperacute pulmorary xenograft 
rejection in pigs (49). PIM depletion in sheep led to the 
loss of pulmonary vaso-responsiveness, whose return 
coincided with PIM repopulation (67). PIM depletion 

Table 2: PIM cell-derived secretory products and mediators.

Mediator type   Structure   Function   References

Thromboxane A2   Eicosanoid   Pulmonary vasoconstriction   (50, 51)
Leukotrienes       (52)
TNF-alpha   Soluble 

glycoproteins
  proinflammatory, activation of 

neutrophils
  (38, 53–57)

IL-1beta     proinflammatory, activation of 
neutrophils

 

IL-6     Proinflammation, leukocyte 
activation,

 

IL-8     promotion of recruitment of 
Platelets, and heterophils

 

Platelet-derived 
growth factor (PDGF)

    induces cell proliferation, 
migration and angiogenesis

 

Vascular endothelial 
growth factor (VEGF)

    angiogenesis, vascular 
permeability increase

 

Reactive oxygen apecies   oxidative tissue injury, vascular 
tone mediator

  (57)
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Figure 4: Time correlation between the rises of blood TXB2 and pulmonary arterial pressure during zymosan-induced CARPA in a pig  
(reaction following 0.5 mg/kg Zymosan i.v. injection).
Zymosan (0.5 mg/kg) was injected i.v. at time 0. At 30 s after the injection TXB2 level exceeds 9 ×  the preinjection value, and clearly  
precedes the rise of PAP. Original data reproducing a similar experiment wherein the reaction was triggered by liposomes.
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also attenuated capillary leakage, preserved low pul-
monary vascular resistance and decreased the pro-
duction of thromboxane A2 (49);

5. In miniature pig reactogenic liposomes caused CARPA 
and, at the same time, the authors could detect and 
visualize the presence of liposomes in PIM cells (66).

The double hit theory of CARPA
Porcine CARPA has a feature that is difficult to explain: in 
the case of certain drugs, only the first dose causes HSR; the 

Table 3: Methods applied in PIM cell research.

Research area   Method   References

Phagocytic 
features

  tracers used:
–  monastral blue
–  radiolabeled molecules
–  gold colloids
–  magnetic iron oxide
–  surfactants
–  fluorescent molecules

  (20, 60)

Physiologic 
function

  Depletion by
–  gadolinium chloride
–  liposomal clodronate

  (49, 
61–63)

Isolation/
culturing

  Detachment from endothel by
–  magnetic field treatment after 

forced phagocytosis of iron oxide
–  Enzymatic digestion 

(collagenase, DNAse)

  (21, 32, 
64, 65)

Figure 5: Scheme of the “double hit” hypothesis, explaining tachyphylactic CARPA.
PIM cells are activated both via the C3a/C5a receptor (anaphylatoxin receptors, ATr), and via patter recognizing receptor (PRr)-mediated uptake 
of Doxil®, illustrating liposomes or other coated nanoparticles that are taken up by these cells. In case of “double hit” simultaneous binding 
occurs on both receptor types, leading to additive or synergetic stimulation of the cell that entails mediator release and, ultimately, HSR.

second, or third similar, or even greater doses remain inef-
fective. The phenomen represents self-induced tolerance, 
or tachyphylaxis. It is observed with PEGylated small uni-
lamellar lispomes, such as Doxil®, certain polymers, but 
not with higly charged AmBisome, or large multilamellar 
liposomes. The clinical significance of tachyphylaxis lies 
in the possibility to tolerize patients against HSR by slow 
initial administration of the drug in a way the first reac-
tion remains subclinical, and then administering the rest 
of the dose without adverse event. In fact, the well-known 
clinical success of low reactogenic administration proto-
cols, applied for antibody-based pharmaceuticals (68–71) 
and some liposomal drugs, e.g., Doxil® (72) is likely to 
rests on this principle.

Possible explanations for the phenomenon include 
the depletion of a reaction meditor (such as natural anti-
bodies), or saturation of a reaction-mediating process 
(such as C activation or cellular uptake of liposomes) and 
the “double hit” hypothesis (Figure 5).

According to the “double hit” hypothesis, tachyphylac-
tic CARPA is not only C-activation, and, hence C5aR-depend-
ent, but also depends on cellular uptake of the reactogenic 
drug by PIM cells, via one or more of their surface recep-
tors (e.g., Fc receptor, Toll-like receptor, or similar pattern 
recognition receptors). It is only simultaneous occurance 
of these processes that can trigger PIM cells for release 
reaction, and if one activation step is too weak or missing, 
the reaction will fade and then disappear. It is assumed 
that in the case of tachyphylactic HSRs one or the other 
activation channel is irreversible, or get downregulated, 
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explaining the lack of reaction upon the second and later 
repetitive treatments. In case of non-tachyphylactic reac-
tions full secretory response can be achieved from PIMs 
either by a strong, supra-threshold stimulus of ATr and/or 
on PRr receptors, or by simultaneous sub-threshold stimuli 
on both receptor fields. It leads to tachyphylaxis when the 
stimulus is way under the effective sub-threshold level. The 
theory, illustrated in Figure 5, equally applies to mast cells 
and PIM cells (3). Future studies will hopefully reveal more 
details about the involvement of PIM cells in CARPA and 
the mechanism of tachyphylaxis.

Outlook with speculations on the 
mechanism of human CARPA
Man and nonhuman primates lack constitutive PIMs, 
although in baboons an increased phagocytic activity 
is shown in the lung by mononuclear cells (15). Mac-
rophages can, nevertheless, accumulate in the intravas-
cular space in human lungs, for example in the so-called 
hepatopulmonary syndrome, a common complication of 
hepatic cirrhosis (25, 56, 73). The mechanism and condi-
tions of de novo PIM cell colonization in human lung is 
still unknown, and in lack of contrary evidence, it is not 
excluded that a low percentage of healthy people also 
host PIM cells in their lung. A further speculation might 
be that the low percentage of man who develops severe 
CARPA carry somewhere in their circulation intravascular 
macrophages (perhaps Kupffer cells) which like PIM cells, 
immediately respond to exposure to particles and/or ana-
phylatoxins with intense secretion of allergy mediators 
into the blood. The bottom line is that the study of the role 
of PIM cells or other macrophages in CARPA will hope-
fully shed more light on the pathogenesis of this adverse 
immune reaction to state-of-art (nano)medicines.
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