
ORIGINAL RESEARCH ARTICLE
published: 23 December 2013

doi: 10.3389/fgene.2013.00289

Current composite-feature classification methods do not
outperform simple single-genes classifiers in breast cancer
prognosis
Christine Staiger1,2, Sidney Cadot2, Balázs Györffy3, Lodewyk F. A. Wessels2,4,5* and

Gunnar W. Klau1,6*

1 Life Sciences, Centrum Wiskunde & Informatica, Amsterdam, Netherlands
2 Computational Cancer Biology, Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
3 Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Hungary
4 Cancer Systems Biology Center, Netherlands Cancer Institute, Amsterdam, Netherlands
5 Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Delft, Netherlands
6 Operations Research and Bioinformatics, Faculty of Sciences, VU University Amsterdam, Amsterdam, Netherlands

Edited by:

Benjamin Haibe-Kains, Institut de
Recherches Cliniques de Montréal,
Canada

Reviewed by:

Hongying Dai, Children’s Mercy
Hospital, USA
Yang Dai, University of Illinois at
Chicago, USA
Patrick Breheny, University of Iowa,
USA
Ancha Baranova, George Mason
University, USA

*Correspondence:

Lodewyk F. A. Wessels,
Computational Cancer Biology,
Division of Molecular
Carcinogenesis, Netherlands Cancer
Institute, Plesmanlaan 121,
1066CX Amsterdam, Netherlands
e-mail: l.wessels@nki.nl;
Gunnar W. Klau, Life Sciences,
Centrum Wiskunde and Informatica,
Science Park 123, 1098 XG
Amsterdam, Netherlands
e-mail: gunnar.klau@cwi.nl

Integrating gene expression data with secondary data such as pathway or protein-protein
interaction data has been proposed as a promising approach for improved outcome
prediction of cancer patients. Methods employing this approach usually aggregate the
expression of genes into new composite features, while the secondary data guide this
aggregation. Previous studies were limited to few data sets with a small number of
patients. Moreover, each study used different data and evaluation procedures. This makes
it difficult to objectively assess the gain in classification performance. Here we introduce
the Amsterdam Classification Evaluation Suite (ACES). ACES is a Python package to
objectively evaluate classification and feature-selection methods and contains methods for
pooling and normalizing Affymetrix microarrays from different studies. It is simple to use
and therefore facilitates the comparison of new approaches to best-in-class approaches.
In addition to the methods described in our earlier study (Staiger et al., 2012), we have
included two prominent prognostic gene signatures specific for breast cancer outcome,
one more composite feature selection method and two network-based gene ranking
methods. Employing the evaluation pipeline we show that current composite-feature
classification methods do not outperform simple single-genes classifiers in predicting
outcome in breast cancer. Furthermore, we find that also the stability of features across
different data sets is not higher for composite features. Most stunningly, we observe that
prediction performances are not affected when extracting features from randomized PPI
networks.
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1. INTRODUCTION
During the past decade several algorithms for predicting outcome
in breast cancer based on gene expression data were developed.
The first predictors used single-genes approaches that extracted
genes, which were differentially expressed between the “good”
outcome (metastasis-free for at least 5 years) and “poor” out-
come patients (metastasis within 5 years). Two prominent gene
signatures that were determined by such approaches are the
gene signatures by van ’t Veer et al. (2002) and Wang et al.
(2005). Although these gene signatures can predict outcome,
they vary substantially between data sets, and could thus not
provide a homogeneous biological interpretation of the data.
Moreover, Ein-Dor et al. (2005) showed in their study that
there exist many other signatures that perform as well as the
suggested gene signatures. This indicates that the signal is dis-
tributed over many genes which in turn makes it difficult to
pinpoint one predictive network or gene signature from expres-
sion data alone. One explanation for this lies in the data. Since

the underlying data are high-dimensional gene expression stud-
ies that contain many genes but only few patients, the extrac-
tion of predictor genes is prone to overtraining and may fit
the noise in the data rather than explaining the underlying
disease/phenotype.

Integrating gene expression data with secondary data such
as pathway or protein-protein interaction (PPI) data has been
proposed to address these problems and to improve outcome pre-
diction of cancer patients (Chuang et al., 2007; Lee et al., 2008;
Taylor et al., 2009; Abraham et al., 2010; Dao et al., 2010; Ma
et al., 2010). These methods infer disease or subtype specific sub-
networks and subpathways and use their status as features in
classification. In the context of classification we call these subnet-
works and subpathways composite features. In the single-genes
approaches, each gene is represented by a gene expression vec-
tor across the patients, composite features carry a vector in which
for each patient the expression values of the feature’s member
genes are aggregated. Employing composite features reduces the
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Network Inference

The article describes a novel framework for evaluating network inference methods in the context of breast cancer. The
inferred networks are specific for the outcome of breast cancer patients with respect to the endpoints “5-year distant
metastasis free survival” and “5-year recurrence free survival.” We tested the classification performance of classifiers
employing the inferred networks as features and compared the performances to classifiers employing single genes.
Our results show that the tested classifiers employing network-based features do not perform better than simple
single-genes classifiers on the breast cancer data. However, we find evidence that network inference methods are
more sensitive to the quality of the underlying data and are thus less noisy.

feature space. The underlying biological hypothesis that motivates
the data integration and aggregation of genes is that genes do
not act alone, and complex diseases, such as cancer, are caused
by the activation or inactivation of whole pathways and protein
complexes.

Previous studies exploring the use of such features were lim-
ited to few data sets with a small number of patients. Moreover,
each study used different data and evaluation procedures. This
makes it difficult to objectively assess the gain in classification
performance and shows the need for a standardized evaluation
procedure.

To overcome these problems we recently suggested a classifi-
cation protocol and showed on a breast cancer cohort of ∼900
samples that current composite-feature classification methods do
not outperform simple single-genes classifiers in predicting out-
come in breast cancer (Staiger et al., 2012). Similar findings have
been reported in (Cun and Fröhlich, 2012). Furthermore, we
showed that the gene signatures defined by composite features
are not more stable across different data sets than single genes.
We found that, unexpectedly, classifiers employing composite
features extracted from randomized PPI networks and pathway
databases performed as well as those employing features extracted
from unperturbed secondary data. In our evaluation we strictly
separated between the training and the testing data by using
different gene expression studies for the two steps.

Since the publication of the first composite classifiers, more
gene expression data has become available. In addition, proce-
dures to remove batch effects and merge data sets have become
available. This allows the creation of much larger breast cancer
gene expression data sets, resulting in more statistical power in
the analyses. According to the findings by Ein-Dor et al. (2006)
thousands of samples are required to generate stable gene lists
for classification. In our work we pooled twelve studies to form
a data set of 1600 patients. To account for the fact that we now
only have one data set, we employ a double loop cross valida-
tion (DLCV) protocol (Wessels et al., 2005) that also ensures
strict separation between the testing and training data. All clas-
sifications are performed by nearest mean classifiers (NMC). We
chose the NMC for the following reasons: (i) the NMC provides
performances comparable to other classifiers on expression data
(Wessels et al., 2005; Popovici et al., 2010), (ii) the NMC is a
simple base-line classifier, and (iii) compared to other non-linear
classifiers it offers an easier way to biologically interpret the use of
features.

In this work, we introduce the Amsterdam Classification
Evaluation Suite (ACES), an implementation of the DLCV
protocol. ACES is a Python package to objectively evaluate

classification and feature-selection methods and contains meth-
ods for pooling and normalizing Affymetrix gene expression
microarray data from different studies. In the provided software
package both schemes, the DLCV and the previously published
pipeline (Staiger et al., 2012), can be applied in the evaluation
procedure.

ACES is simple to use and therefore facilitates the compari-
son of new approaches to best-in-class approaches. In addition
to the methods described in (Staiger et al., 2012), we include
here the well-established prognostic gene signatures proposed
by van ’t Veer et al. (2002) and Wang et al. (2005), the recent
composite-feature selection method by Dao et al. (2010) and
two network-based gene-ranking methods by Morrison et al.
(2005) and by Winter et al. (2012). To analyse classification
performances we employ a much larger cohort of patients. In
contrast to the paired data set evaluation in Staiger et al. (2012)
we describe here an evaluation framework that makes use of
a DLCV, which facilitates the evaluation of classifiers on one
large data set. Furthermore, we provide a concise correction
for batch effects. In addition to the above-mentioned NMC,
the software package contains an implementation of the logistic
regression and the k-nearest neighbor classifier. To account for
new developments in the field we provide detailed information
on how to add new data to the package. Furthermore, we ded-
icate a tutorial on how to insert new feature-selection methods
into ACES.

Applying ACES to a large breast cancer cohort confirms the
findings of our previous study, that is, (i) none of the evaluated
methods performs better than a simple single-genes classifier; (ii)
features extracted by the methods are as stable as single genes, and
(iii) randomizing the secondary data source has no effect on the
classification performance.

The software package ACES, the normalization and merg-
ing package for gene expression data and all raw results can be
downloaded from http://ccb.nki.nl/aces/.

2. MATERIALS AND METHODS
2.1. CLASSIFICATION
Classifiers were trained by a double-loop cross validation (see
Figure 1). Since the gene signatures (Wang et al., 2005) and (van ’t
Veer et al., 2002) consist of a fixed set of genes, it was not necessary
to run the inner CV. Hence, only one classifier for each training
data set was trained employing all genes in the gene signatures.
All other feature selection methods provide a ranking of the fea-
tures. We trained classifiers with increasing number of features up
to 400 features. Features were added sequentially to the classifiers
according to the order in the ranking.
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The package provides the nearest mean classifier (NMC) with
four different scoring metrics based on the cosine distance and the
Euclidean distance. Here we use a metric (V1), that projects the
sample to the straight line connecting the two class means and
normalizes the value; points that project closer to the mean of
the poor outcome patients μpoor are scored as zero, points that

FIGURE 1 | Amsterdam classification evaluation suite (ACES). ACES
executes a double-loop cross validation (DLCV) to train classifiers with
features extracted by different feature extraction methods. The DLCV
consists of two nested fivefold cross-validations (CV), an outer and an inner
CV. 1, Data set D is split into five parts of which one is reserved as test data
and four parts are used as the training data for the outer CV loop. To
determine the best number of features an inner CV is executed. The blue
arrows denote the connection between the outer and the inner cross
validation. Inner CV (blue arrows): 2, The training data of the outer CV is
split into five parts, four parts serve as training data, the remaining part is
used as test data for the inner CV. 3, Features are determined with one of
the methods listed in the yellow box. The methods returns n ranked
features—either single genes or composite features. Note that due to
significance testing the number of returned features is not known in
advance for some of the methods. We set the maximum for n to 400.
4, Nearest mean classifiers (NMC) are trained by sequentially adding the
features according to their ranking. The index corresponds to the number of
features employed in the training. Thus, NMCi is an NMC trained on the top
i features. 5, The performance of the NMCs is tested on the reserved test
data of the inner CV. 6, Steps 3 and 4 are repeated until each of the five
splits was used as test data yielding five performances for each number of
features. The index k of the best performing NMC gives the number of
features that will be employed in the outer CV. Outer CV (green arrows): 7,
k features are extracted on the four training splits, i.e., the training data of
the outer CV. 8, An NMC with the top k ranked features is trained on the
training data. 9, The classifier’s performance is tested on the fifth split. 10,
After completing the outer CV, i.e., each split was employed once as test
data, we receive five performances and five sets of features.

project closer to the mean of the good outcome µgood patients
are scored as one. The three other metrics are described in
Supplement section 8. We also provide the code for a k-nearest
neighbor classifier and the logistic regression.

2.2. EXPRESSION DATA
We compiled a large cohort of breast cancer samples from
NCBI’s Gene Expression Omnibus (GEO) (see Table 1) as it
was suggested in (Györffy and Schäfer, 2009). We only took
samples from the U133A platform into account and removed
duplicate samples, that is, samples that occur in several stud-
ies under the same GEO id. Array quality checks were executed
for all samples belonging to the same study by the R package
arrayQualityMetrics. Due to high memory demands of this
package, studies containing more than 400 samples had to be
divided into two parts. Samples that were classified as outliers
in the RLE or NUSE analysis were discarded. Finally, all sam-
ples across all studies were normalized together using R’s justRMA
function yielding for each sample and each probe a log(intensity)
value. This normalization also included a quantile normalization
step. Subsequently, probe intensities were mean centered, yielding

for each sample and each probe p a log( intensity
μ(intensityp)

) value.

We found batch effects within single studies, where samples
have been collected from different locations and batch effects
between studies. Specifically for breast cancer, samples also form

Table 1 | Datasets.

Label Data set Geo accession No. of No. of

(GSE) poor good

DMFS

Ivshina 4922 6 29
Hatzis-Pusztai 25066 102 48
Desmedt-June07 7390 36 146
Miller 3494 7 33
Schmidt 11121 24 145
Loi 6532 15 32

Total 190 433

RFS

Ivshina 4922 30 72
Hatzis-Pusztai 25066 102 48
Desmedt-June07 7390 56 127
Minn 2603 21 44
Miller 3494 21 68
WangY-ErasmusMC 2034 88 169
Schmidt 11121 24 145
Pawitan 1456 33 114
Symmans 17705 37 187
Loi 6532 24 33
Zhang 12093 9 112
WangY 5327 10 42

Total 455 1161

Shown are the original studies from which the two data sets U133A-DMFS and

U133A-RFS were compiled. The patient labels “good” and “poor” correspond

to 5 year distant metastasis free survival (DMFS) and recurrence free survival

(RFS).
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batches according to the five subtypes of breast cancer: lumi-
nal A, luminal B, Her2 enriched, normal like and basal like. To
account for these effects we employed R’s combat, where the can-
cer subtype was modeled as an additional covariate to maintain
the variance associated with the subtypes. To do so we needed to
stratify the patients according to the subtype. Since this variable is
not always available in the annotation of the patients, we predict
the subtype employing the PAM50 marker genes as documented
in R’s genefu package.

Principal component analysis of the batch corrected data
revealed pairs of samples with a very high correlation (>0.9).
Those pairs were regarded as replicate samples. For each pair of
replicate samples one sample was removed randomly. Affymetrix
probe IDs were mapped to Entrez Gene IDs via the map-
ping files provided by Affymetrix. Only probes that mapped to
exactly one Gene ID were taken into account and probes start-
ing with AFFX were discarded. If an Entrez Gene ID mapped
to several Affymetrix probe IDs, probes were considered in
the following order according to their suffix (Gohlmann and
Talloen, 2010): “_at,” “s_at,” “x_at,” “i_at,” and “a_at.” When there
were still several probes valid for one Gene ID, the Affymetrix
probe with the higher variance of expression values was
chosen.

The patients’ class labels corresponding to recurrence free or
distant metastasis free survival were calculated with respect to a 5-
year threshold. The final cohort is shown in Table 1. We derived
two data sets: one labeled according to recurrence free survival
(RFS) and one labeled according to distant metastasis free sur-
vival (DMFS). Note, that the DMFS data set is a subset of the RFS
data set.

We provide all of the code, data, secondary data and the pro-
cedure for normalization, sample selection and batch correction
as a package at http://ccb.nki.nl/aces/.

2.3. SECONDARY DATA
2.3.1. KEGG
We collected all pathway information for Homo sapiens (hsa) from
the KEGG database (Kanehisa et al., 2010), version December
2010. The considered pathways are metabolic pathways, path-
ways involved in genetic information processing, signal transduc-
tion in environmental information processing, cellular processes
and pathways active in human disease and drug development.
We obtained 215 pathways. In this way we obtained a net-
work composed of 200 pathways containing 4066 nodes and
29972 interactions of which 3249 nodes are also contained in the
expression sets.

2.3.2. MsigDB
As second pathway database we used the C2 collection of the
MsigDB (Subramanian et al., 2005) (version 3.0), which was also
used in Lee et al. (version 1.0). It contains gene sets from pathway
databases such as KEGG, gene sets made available in scientific
publications and expert knowledge. We obtained 3272 gene sets
of which 3000 could be entirely or partially covered by genes in
the expression data. The MsigDB does not contain any edges,
thus this database was only usable for the algorithm by Lee et al.
(2008).

2.3.3. HPRD9
The protein-protein interactions were derived from the litera-
ture. We employed the HPRD version 9 (Prasad et al., 2009).
The HPRD contains 9231 proteins and 35853 interactions. The
protein ids were mapped to their corresponding Entrez Gene
IDs. There are 7728 genes contained in both the HPRD and the
expression sets.

2.3.4. OPHID/I2D
The OPHID/I2D database, downloaded in April 2011, combines
protein-protein interactions from BIND, HPRD and MINT as
well as predicted interactions from yeast, mouse and C. elegans.
The database contains 12643 nodes and 142309 edges. 10018 of
the nodes are also present in the breast cancer studies exam-
ined here.

2.3.5. PPI network curated by Chuang et al. (NetC)
Chuang et al. (2007) gathered a PPI of 57228 interactions and
11203 nodes of which 8572 are contained in the cohort. The
source of the interactions are yeast two hybrid experiments and
interactions predicted from co-citation.

2.4. FEATURE SELECTION METHODS
Let E be the expression data matrix where Epj is the expression of
gene j in patient p. The set of genes is denoted by G. We denote the
patient’s class label by cp where cp = 0 indicates a “good” outcome
patient and cp = 1 indicates a “poor” outcome patient. Similarly,
we denote the patient’s survival time as tp ∈ R.

A PPI network is defined as a graph N = (G, E) where G is
the set of genes and edges E denote interactions between genes. A
pathway is an unsorted set of genes G′ ⊆ G.

2.4.1. Gene signatures Wang et al., 2005 and van ’t Veer et al., 2002
We included two gene signatures for predicting distant metastasis
free survival based on gene expression data, the signature by van ’t
Veer et al. (2002) and by Wang et al. (2005). Each gene j is used
as one feature in the classifier and the value for each of these fea-
tures is the gene’s expression value for a patient p. Both signatures
are actually probe signatures. The signature by Wang et al. (2005)
(Erasmus) was determined on the Affymetrix U133A array, thus
all probes are also present in the two data sets we generated. The
76 probes map to only 66 unique geneIDs.

The signature by van ’t Veer et al. (2002) (NKI) was deter-
mined on an Agilent platform. This required the probes
to be matched to gene IDs and then mapped to the data.
Here we employed the gene ID collection from the MsigDB
‘VANTVEER_BREAST_CANCER_POOR_PROGNOSIS’ path-
way as gene signature. From this pathway 41 genes were also
present in the two data sets.

2.4.2. Single-genes and random genes—the benchmark methods
The single-genes approach ranks all genes G by their t-statistic
between the good and poor outcome patients. The top n genes are
used in an NMC and the expression values of the top n genes serve
as the feature values for each patient. To determine the genes to be
employed in a random single-genes classifier we simply randomly
selected n genes from the total set of genes.
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2.4.3. GeneRank (Morrison et al., 2005) and Winter et al., 2012
The GeneRank algorithm (Morrison et al., 2005) and the method
by Winter et al. (2012) are based on Google’s page rank algorithm
(Page et al., 1999). The vector of gene ranks r is calculated as
follows:

(I − dWtD−1)r = (1 − d)r0 (1)

where I is the identity matrix, Wt is the transpose of the PPI
network’s adjacency matrix, D = diag(deg(j) + 1) for j ∈ G and
r0 is the vector of initial ranks. The vector r contains for each
gene the resulting rank. The degree of genes was incremented by
one to allow singleton genes to be included in the calculation.
The parameter d is called the damping factor and regulates the
influence of the network on the rank. If d = 1 gene ranks are
determined by the network only whereas with d = 0 each gene
keeps its initial rank.

As initial ranks for GeneRank we chose the absolute difference
of average expression between the “poor” outcome patients and
the “good” outcome patients, as it was suggested in the origi-
nal paper. Additionally, we calculated classification performances
with the initial ranks being the t-statistic between the two patient
groups.

The original Winter method proposed the correlation coeffi-
cient between the survival times of the patients and the genes’
expression values. Additionally, we considered the correlation
between the patients’ class labels.

2.4.4. Chuang et al., 2007
This method determines subnetworks with the aim to distin-
guish between “good” and “poor” outcome patients. The dis-
criminatory power of a subnetwork is evaluated by the mutual
information score between the discretized average gene expres-
sion (Equation 2) and the patients’ class labels. Given a subnet-
work induced by G′ ⊆ G, its activity score a for a patient p is
given by

aG′,p =
∑

j ∈ G′

epj√|G′| (2)

To calculate the mutual information of a subnetwork we need to
calculate the activity scores for each patient and subsequently dis-
cretize them. Let a′ be the vector of discretized activity scores
for the network induced by G′ and let c be the vector of class
labels. The mutual information score for the subnetwork is
defined as

sMI(a′, c) =
∑

x ∈ a′

∑

y ∈ c

ρ(x, y) log
ρ(x, y)

ρ(x)ρ(y)
(3)

where ρ denotes the joint and marginal probability density
functions.

All subnetworks are subjected to statistical tests assessing the
significance with respect to the local and global null distribution
of the activity scores and with respect to the null distribution of
mutual information scores. We used the java package PinnacleZ
as an implementation of the algorithm. PinnacleZ performs a
z-normalization prior to the subnetwork search, which is depre-
ciated in a fivefold cross validation. Therefore, we implemented a
patch that skips this normalization step.

2.4.5. Taylor et al., 2009
This algorithm identifies differentially coordinated hub proteins
in the PPI network. As measure for coordination the Pearson
correlation is used. The coordination of a hub and one of its inter-
actors is defined as the Pearson correlation PC(h, i) between the
hub’s expression h and the interactor’s expression i. To assess the
different coordination of a hub across the two patient groups the
average hub difference is calculated

d(h) =

∑
i ∈ n(h)

|PC0(h, i) − PC1(h, i)|

|n(h)| (4)

given the two sample classes, indicated by the superscript 0 and
1, n(h) denotes the set of neighbors. All hubs are subjected to a
statistical test, testing the significance of the hub difference. Only
hubs with a significant hub difference are selected as features.
Feature values for each patient are given by the average difference
of expression between the hub and its interactors.

2.4.6. Dao et al., 2010
This method defines subnetworks that obey two criteria: they are
(i) maximally densely connected and (ii) show deregulation in at
least L poor outcome patients. To decide whether a gene is deregu-
lated the expression matrix is discretized, i.e., each pair of patient
and gene is assigned one of the three signs {+,−, 0}, where +
means the gene is overexpressed, − indicates underexpression and
0 indicates that patient does not show an aberrant gene expres-
sion with respect to the cohort. Given a PPI network and a gene
expression data set the algorithm first enumerates all connected
subnetworks that obey the above-mentioned two criteria such
that no subnetwork is a subgraph of any other subnetwork. The
subnetworks are ranked based on their information gain. The
parameter L was set such that at least 5% of the poor outcome
patients were covered by each subnetwork. In the classification
step these subnetworks served as features. To classify patients the
average expression across all member genes of each subnetwork
was calculated for each patient to obtain feature values.

2.4.7. Lee et al., 2008
This method extracts sub-pathways as features from a pathway
database. The member genes of each pathway are ranked by their
t-statistic between the “good” and “poor” outcome patients. Then
the top n genes are combined by Equation 2 and their com-
bined expression is again tested by the t-statistics. The search for
the subpathway starts with the highest ranking gene and succes-
sively adds the next genes in the ranking as long as the t-statistic
increases.

3. TUTORIALS
To enable a wider use of ACES and to keep the package flexible
to new developments in the field we provide tutorials on how to
include more expression data, PPI networks and pathway data.
Further, we dedicate one tutorial to the topic of including more
feature extraction methods, including methods that are developed
in programming languages different from Python, and show how
to create a wrapper that links the new software to ACES.
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3.1. INTEGRATING NEW DATA
We created Python objects to represent the expression data,
PPI networks and pathways. The class ExpressionDataset con-
tains the expression matrix, patient labels and the patient class
labels. PPI networks are represented by the class EdgeSet. Each
edge is represented by a frozenset containing the start and
end node of the edge. Weights on the edges can be stored as a
dictionary in EdgeSet.edgeweights, where the key is the edge
and the value is the weight. Pathways are represented by the class
GeneSetCollection. The whole pathway database is represented
as a list of lists, GeneSetCollection.geneSets, where each path-
way itself is stored as a list of genes. The names of the pathways
are stored as a list in GeneSetCollection.geneSetsNames.

3.1.1. Expression data
The Python script NewDatasets.py provides code and infor-
mation on how to convert external data files into an
ExpressionDataset and subsequently saves it in hdf5 format.

3.1.2. Network and pathway data
New PPI data should be provided as SIF formatted file and can be
read in by EdgeSet.ReadSIF. Similarly pathway data can be read
in by GeneSetCollection. ReadGeneSetCollection. The file for-
mat is as follows. Each line contains one gene set, and genes in a
gene set are space-separated. If you want to attach names to each
gene set, insert a line starting with “NAME” directly before the
gene set. Examples are provided in the folder “experiments/data”
in the ACES package.

3.2. INTEGRATING A NEW FEATURE SELECTION METHOD
We assume that any new feature selection method written in some
programming language is provided as software that is called from
command line. We further assume that all input is read in from
files and all output is written to files.

To integrate a new feature selection method you will need to
provide the code for the two classes Feature ExtractionFactory
and FeatureExtractor. The FeatureExtractorFactory deter-
mines the features on a training data set and a secondary data
source, whereas the FeatureExtractor maps the input genes
from the data set to the feature space and scores each feature for
each sample in the data set. We clearly divided between these two
classes since they correspond to different steps in the pipeline.

3.2.1. The FeatureExtractorFactory
In the FeatureExtractorFactory the code that defines features is
provided. When the actual feature extraction algorithm is given
as an independent software package in a different language the
FeatureExtractionFactory serves as a wrapper to connect the
software to ACES. To initialize a new FeatureExtractorFactory

the location of the executable of the software is passed to the
constructor—the __init__ function:

def __init__(self, softwareExecutable):
self.executable = softwareExecutable

The method train receives all necessary data instances to
extract the features. To ensure that several instances of the
FeatureExtractionFactory can be run at the same time on

the same machine we first create a temporary directory to
which the input files are written. The input files can be
directly created from the data instances, which contain func-
tions to write the data as space- or tab-separated files. The
format for pathways is as follows: each line contains all genes
belonging to one pathway separated by spaces. The name of
each pathway, if present in the GeneSetCollection instance, is
printed in the line preceding the member genes and is indi-
cated by the keyword “NAME.” Instances of the type EdgeSet

can be written to a space-separated sif-file or a file where
each line consists of the start node, end node and the edge
weight. The function ExpressionDataset.writeToFile writes
the gene expression matrix to a tab-separated file, while all
patients’ class labels are saved in a separate file by the function
ExpressionDataset.writeClasslabels.

In the example below the expression matrix is written to the
file “matrix_file.txt,” the patients’ class labels are written to “class-
labels_file.txt” and the network is written to “network_file.sif”:

def train(self, dataset, network):
tempdir = tempfile.mkdtemp()

MatrixFilename = os.path.join(tempdir,
’matrix_file.txt’)

dataset.writeToFile(MatrixFilename)
ClassesFilename = os.path.join(tempdir,

’classlabels_file.txt’)
dataset.writeClasslabels(ClassesFilename)
NetworkFilename = os.path.join(tempdir,

’network_file.sif’)
network.writeSIF(NetworkFilename)

Next, we create the command that calls the executable with the
input files. Note that the executable lies in a different directory
than the input files. To achieve that also the output is written to
the temporary directory we either need to copy the executable to
the new location or create an option for the output in the exe-
cutable. The shutil module provides several functions for copy-
ing files to a different location from within python. For now, we
assume the executable is located in the temporary directory and
the output is written to a file called “output.txt” that contains the
features. The list args contains the complete call of the executable.
You can check the correctness by print ’ ’.join(args). The
command is executed as subprocess in the temporary directory:

def train(self, dataset, network):

tempdir = tempfile.mkdtemp()

...

args = []
args.extend([yourCompiler+’ ’+os.path.basename

(executable)])
args.extend([MatrixFilename, ClassesFilename,

NetworkFilename])

proc = subprocess.Popen (args, cwd=os.path.
dirname(tempdir))

Finally, the generated output.txt needs to be read in and for-
matted as a list of lists, where each sublist contains the genes
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belonging to one feature. This is accomplished by modules =

readOutput(tempdir+’/output.txt’), which must be provided
by the user. In ACES we assume that the genes belonging to the
features are not given by their name but by their index with
respect to the data set used in the function train. Thus, if genes
are given by name in the output file, we need to map them to their
indices:
def train(self, dataset, network):

...

modules = readOutput
(tempdir+’/output.txt’)

geneLabelsToIndex = dict(zip(dataset,
geneLabels, xrange(len(dataset.
geneLabels))))

features = [frozenset([geneLabels
ToIndex[gene] for gene in module if
gene in geneLabelsToIndex]) for module
in modules]

return NewFeatureExtractor
(dataset.geneLabels, features)

The output of the FeatureExtractorFactory is an instance of
the FeatureExtractor that maps an expression data set with the
same genes and the same ordering of the genes as the data set
employed in the train function to the feature space.

3.2.2. The FeatureExtractor
In the FeatureExtractor an input data set is mapped to the fea-
ture space and each feature is scored for each patient of the data
set. Features are defined over the indices of the genes in the data
set employed to determine the features. The FeatureExtractor is
initialized with the gene space and the features it maps to. Only
data sets with the same genes and the same ordering of genes can
be mapped to the features:

def __init__(self, geneLabels, features):

self.geneLabels = geneLabels
self.features = features
self.validFeatureCounts = range(1,

len(self.features) + 1)

The method extract maps the data to the first k features. We
ensure here that there are k features and that the data set is defined
on the correct genes:

def extract(self, dataset, k):

assert all(dataset.geneLabels ==
self.geneLabels)

assert k in self.validFeatureCounts

return numpy.transpose(numpy.array ([self.score
(dataset.expressionData, feature)
for feature in self.features[:k]]))

The function score attaches a score to each feature for each
patient. In the case of single genes this would be the gene’s expres-
sion value for the patients. In case of a feature consisting of
multiple genes the function score needs to provide information

on how to merge the genes’ expression to one value. We show
here an example of how to average over the genes’ expression that
belong to the same feature:

@staticmethod
def score(expressionData, feature):

return numpy.sum(expressionData[:, list(feature)],
axis = 1) /len(feature)

To store and reload a feature extractor efficiently, we provide a
function toJsonExpression which stores all the information in a
json document:

def toJsonExpression(self):
return json.dumps((self.__class__.__name__,

[geneLabel for geneLabel in self.geneLabels],
[sorted(feature) for feature in self.features]))

The full example code is shown in Supplementary section 6.

4. RESULTS AND DISCUSSION
4.1. NETWORK AND PATHWAY-BASED METHODS DO NOT

OUTPERFORM THE BENCHMARK METHODS
We evaluated the performances of nearest mean classifiers
(NMC) employing the benchmark feature-selection methods
“single genes,” “random genes” and gene signatures specific for
breast cancer outcome, “NKI” and “Erasmus,” and compared
them with the performances of classifiers employing composite
features.

All classifiers were trained in the double-loop cross validation
(DLCV) procedure described in Figure 1. The DLCV consists of
two nested fivefold cross validations. In the outer CV we deter-
mine the training and testing data. From the inner CV we obtain
the parameters for the outer CV’s classifier and feature selec-
tion method (number of features and the damping factor for the
Page Rank based algorithms Morrison et al., 2005; Winter et al.,
2012). Once the inner CV is completed we use its best performing
parameters to train the outer CV classifier. Thus, although hav-
ing only one initial data set for training and evaluating classifiers,
we strictly separate the data employed in these two steps, which
ensures an unbiased evaluation.

Figures 2, 3 and Supplementary figure S1 show the results
for the NMC using the V1 metric. There are no differences
in performances between the different versions of the NMC.
From this we conclude that the distance measure does not play
a major role (the raw data for all NMCs can be downloaded
at http://ccb.nki.nl/aces/). None of the composite-features clas-
sifiers significantly outperforms the single-genes classifier (see
Table S1). In the Supplement sections 2.1–2.19 we show that
changing the number of features does not lead to a change
in performance. The feature selection proposed by Winter
et al. (2012) and the GeneRank algorithm are also influenced
by the damping factor. Supplementary section 3, however,
shows that the classifiers performances do not vary signifi-
cantly across different damping factors. This suggests that the
network only has a marginal influence on the classification
result.
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FIGURE 2 | Classification results of the NMC V1 on the DMFS data

set. The number of features was trained in the inner CV. Shown are
the five performances received in the outer CV. The individual AUC
values are shown as blue dots. The red lines indicate the mean
performances. The gray area indicates the performance interval of the
single-genes classifier. SG, Single genes; L, Lee; C, Chuang; T, Taylor;

D, Dao; W, Winter using association between class labels and gene
expression as initial gene ranks; W-time, Winter using association
between survival times and gene expression as initial gene ranks; GR,
GeneRank with absolute expression difference between “good” and
“poor” outcome groups as initial rank; GR-Tstat, GeneRank employing
the t-statistic as initial gene ranks.

FIGURE 3 | Classification results of the NMC V1 on the RFS data set.

Description as in Figure 2. SG, Single genes; L, Lee; C, Chuang; T, Taylor;
D, Dao; W, Winter using association between class labels and gene
expression as initial gene ranks; W-time, Winter using association between

survival times and gene expression as initial gene ranks; GR, GeneRank
with absolute expression difference between “good” and “poor” outcome
groups as initial rank; GR-Tstat, GeneRank employing the t-statistic as
initial gene ranks.

The method by Dao et al. (2010) performs worse than the
benchmark methods. The reason might be that not necessarily
all patients are considered during extraction of predictive net-
work markers. In the algorithm a minimum number of “poor”
outcome patients is required to be covered by each network.
However, there is no constraint reinforcing that each patient is
covered by the networks. This allows that the same group of poor
outcome patients determines all the features and good outcome
patients are neglected in this step. Thus, valuable information
about patients might be lost, which, in turn, leads to higher
misclassification rates.

Previously, we have shown that classifiers employing the
features by Taylor et al. (2009) perform worse than the
single-genes classifiers (Staiger et al., 2012). In our earlier
interpretation of the algorithm each edge was regarded as a
single feature. This led to an enormous feature space and
to poor classification performances. Here, we keep the selec-
tion of hubs and their interactors, but in contrast to the
previous classifier, we score each hub by the average expres-
sion difference between itself and all of its interactors. This
decreases the feature space and leads to much better classifica-
tion results. Still, the method does not outperform the bench-
mark methods.

4.2. NETWORK AND PATHWAY-BASED METHODS DO NOT PRODUCE
MORE STABLE GENE SETS THAN THE BENCHMARK METHODS

In addition to the claim that using composite features increases
classification performance, it is often stated that these features are
by far more stable than single genes. Here, we analyze the overlap
of composite features by means of Fisher’s exact test and compare
them to the overlap of single genes. Since composite features con-
sist of many genes we considered all genes belonging to the k best
performing features. Thus, the overlap of two composite-feature
sets is determined by the overlap of the corresponding gene sets.
Composite features are calculated from PPI and pathway data,
which contain different numbers of genes and fewer genes than
there are genes in the expression data. These differences have to
be taken into account when comparing the overlap between gene
sets. For example, when determining two composite feature sets
from the KEGG database for two different data sets the overlap
between the two sets is very likely to be higher than generat-
ing two feature sets for the same data on the I2D network due
to the difference in size of the two PPIs. Fisher’s exact test takes
these differences into account. We illustrate the use of the test in
Supplementary section 7. Moreover, to compare the overlap of
the composite features’ gene sets to single genes we have to cor-
rect for the size of the composite features since a single composite
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feature can contain many genes. For each training data set and
each feature selection approach we obtain the n highest ranking
features containing m genes. We then determine the size-matched
highest scoring single genes on the same training data set of the
outer CV.

Figures 4, 5 show that none of the composite features produces
more stable gene sets than the single genes. In many cases the
control-for-size single genes are more stable than the correspond-
ing composite features. The overlap of randomly drawn genes is
very low, as expected. Although their performance in classifica-
tion is equally good as single genes, the experiment clearly shows
that overlap and performance in classification are not related to
each other. The method by Taylor et al. (2009) produces highly
stable gene sets. The method selects hub proteins and a feature
consists of the hub and all of its interactors. Thus, a large number
of genes contribute to a feature. This seems to be enough to ensure
a high overlap as the corresponding box of the control-for-size
single genes also indicate highly stable gene sets.

From the results we can not conclude that composite-features
ensure more stable gene signatures from expression data than
single-genes classifiers where the genes were selected on an indi-
vidual basis, given that a sufficiently large number of genes are
selected.

4.3. RANDOMIZATION OF THE SECONDARY DATA SOURCES DOES NOT
DECREASE CLASSIFICATION PERFORMANCES OF NETWORK AND
PATHWAY-BASED METHODS

To find out whether the quality of the PPI networks have a major
influence on the performance we executed randomization exper-
iments. The nodes in each network were shuffled. By this the
network topology stayed the same, but nodes that were origi-
nally hubs may now have only few neighbors and nodes with
few neighbors might become hubs. For each PPI network we

did this random shuffling 25 times, resulting in 25 PPI net-
works. Each network dependent method was then executed on
each of these 25 networks using the DLCV ACES protocol. Thus,
the network provides only non-sensical biological information,
which in turn should hinder the methods to extract useful fea-
tures. We would expect that the classification performances drop
dramatically when employing these features.

Figures 6, 7 show the results for the network dependent meth-
ods executed on the shuffled I2D PPI network, the performance
interval employing the original networks is depicted in gray.
Figures S2, S3 show the results for the randomized HPRD9.

The methods by Chuang et al. (2007), Dao et al. (2010) and
Taylor et al. (2009) do not always find features for some combina-
tions of data set and randomized networks, i.e., the algorithms do
not return features. This indicates that these methods are indeed
sensitive to the quality of the network data.

The method by Taylor et al. (2009) searches for significantly
altered hubs across the two conditions. Shuffling the nodes in the
networks disrupts the connection between significantly altered
genes and hubs. Previous hub genes might no longer be hubs
or may be shifted to a neighborhood in which their interactors
do not show high (anti-)correlation with it. Under these circum-
stances the method cannot define features. A confirmation of
this effect provides the analysis of the features. Supplement sec-
tion 5 clearly shows that the algorithm finds fewer features with
fewer member genes on the randomized PPI networks. The effect
becomes stronger when a small network is randomized (cf. Taylor
on I2D and HPRD9) or when the data set size is small (cf. Taylor
on the DMFS data set and the RFS data set). Thus, searching for
altered hubs might offer a good biological interpretation of the
data in context of outcome prediction. However, it is important to
note that the algorithm is sensitive to the network size and data set
size. When features can be defined by the method, they perform

FIGURE 4 | Overlap of the gene sets corresponding to the best

number of features on the DMFS data set. Genes belonging to the
best number of composite features were extracted for each training set
(outer CV). The overlap between the gene sets was calculated with

Fisher’s exact test. The corresponding number of top ranking single
genes for each training data set were drawn and the overlap was
calculated between these gene sets to control the influence of the
gene set sizes.
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FIGURE 5 | Overlap of the gene sets corresponding to the best number of features on the RFS data set.

as well in classification as features determined on the real PPI net-
works. Thus, the major factor contributing to a good classification
performance is the expression data.

Chuang et al. (2007) determines subnetworks whose mutual
information between the member genes’ expression and the class
labels is high. This link is certainly disrupted by randomizing
the PPI network. The algorithm includes statistical tests to only
return significantly altered subnetworks, which should prevent
returning randomized features. Thus, for some combinations of
randomized networks and expression data no subnetworks can
be found whose mutual information score is significantly high.
However, if features are found we observe that the classifica-
tion performance is as good as with features extracted from the
real networks. Moreover, Supplement section 5 shows that the
number of features increases on the randomized PPI networks.
One reason for that could be that many genes are involved in
breast cancer and many of them also show a significant differ-
ential expression (Ein-Dor et al., 2005). Thus, by shuffling the
nodes there is still a high chance that subsets of these genes again
form a subnetwork that is then identified by the algorithm as
a feature. Since genes are no longer grouped according to their
pathway, the information is scattered over the network. Thus,
features extracted from randomized networks with the method
by Chuang et al. may contain a lot of redundant information.
As above this leads to the conclusion that the main factor in
classification is the expression data.

In contrast to the above mentioned algorithms, the features
by Dao et al. (2010) perform significantly worse in classification
when they were determined on random PPI networks. We also
observe that no features are found for some combinations of
input data and in general fewer features are found (Supplement
section 5). Since it is required in the method that a certain per-
centage of “poor” outcome patients show deregulation for each
of the features, the number of member genes in the features
can not decrease. The method searches for maximally densely

connected subnetworks that cover at least 5% of the poor out-
come patients. As noted before, looking for features that only
describe one condition and do not consider information about
all training samples might lead to a poor performance. The effect
is worsened when giving the algorithm non-sensical biological
information, as we do with the randomized networks. However,
comparing the results obtained on the I2D network and the
HPRD9 network and on the two different expression data sets,
it seems that this effect is also linked to network and data set
size. Since the methods by Taylor et al. (2009) and Dao et al.
(2010) are more sensitive to the underlying quality of the data
we can conclude that they are less prone to extract noise from the
underlying data.

Also the GeneRank algorithm (Morrison et al., 2005) and the
method by Winter et al. (2012) do not suffer from randomizing
the networks. Both methods determine the rank for each gene by
an initial rank and the diffused ranks of the genes in the vicin-
ity. Having many differentially expressed genes in a network may
contribute to selecting genes that can well distinguish between the
patient classes. This is also confirmed by the fact that the damp-
ing factor, and thus the network, has only a minor influence on
the classification when employing real PPI networks (see Section
3 in the supplement).

4.4. COMPOSITE FEATURES EXTRACTED FROM RANDOMIZED
NETWORKS ARE LESS STABLE

In previous studies the overlap between features, i.e., in case of
composite features the genes contained in the features, has been
used as an indicator for biological meaningful features. When
genes are chosen as features or as a part of composite features on
different data sets, they might contain valuable biological infor-
mation. We now analyze the overlap between features generated
on the randomized PPI networks. For each training data set in
the outer CV we determined the best performing features on one
randomized network. We then calculated the overlap between
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FIGURE 6 | Classification performance when employing randomized

networks, I2D and DMFS data. The nodes in the I2D PPI network were
shuffled 25 times yielding 25 different randomized networks. Each network
dependent feature selection method was applied to each of the randomized
networks and classifiers were trained using the double-loop CV protocol. The

gray area indicates the AUC value interval employing the original PPI
network. Panel (A), Chuang; panel (B), Dao; panel (C), Taylor; panel (D),
GeneRank with absolute expression difference between “good” and “poor”
outcome groups as initial rank; panel (E), Winter using association between
survival times and gene expression as initial gene ranks.

the genes contained in the features for the five training data sets
as above. Thus, we only compared features that were generated
using the same algorithm and the same randomization of the net-
work. The boxes in Figures 8, 9 summarize all values across the
25 randomizations. Overlap for gene sets determined on random

networks is always significantly worse than the overlap of features
determined on the real networks when employing the method
by Dao et al. (2010). Apparently, looking for maximally densely
connected subnetworks is an adequate mathematical translation
to define marker genes for breast cancer outcome. Taylor always
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FIGURE 7 | Classification performance when employing randomized

networks, I2D and RFS data. Description as in Figure 6. Panel (A), Chuang;
panel (B), Dao; panel (C), Taylor; panel (D), GeneRank with absolute

expression difference between “good” and “poor” outcome groups as initial
rank; panel (E), Winter using association between survival times and gene
expression as initial gene ranks.

produces an equally stable overlap. The only exception on the
NetC PPI network is due to the small number of features that
could be determined on this network. This confirms that the
high overlap is merely due to the algorithm. Selecting many
genes leads to stable gene sets. The results for Chuang, Winter
and the GeneRank algorithm are mixed. Here, the stability of
features seems to depend on the combination of network and
expression dataset. To conclude, we showed that randomizing the

subnetworks leads to a loss of information that is important to
extract gene sets that are stable across different data sets. However,
the lost information is irrelevant for the classification as shown in
the previous section.

4.5. SUMMARY
Previously many feature selection methods were put forward
for better classification of breast cancer outcome. The novel
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FIGURE 8 | Overlap of the gene sets determined on the randomized PPI networks, DMFS data set. The overlap between the gene sets was calculated
with Fisher’s exact test. The blue boxes show the overlap of the corresponding features determined on the original networks.

FIGURE 9 | Overlap of the gene sets determined on the randomized PPI networks, RFS data set. The overlap between the gene sets was calculated with
Fisher’s exact test. The blue boxes show the overlap of the corresponding features determined on the original networks.

methods claimed that integrating gene expression data and
secondary data, such as PPI networks and pathway data,
improves the classification performance and provides more sta-
ble features. We evaluated the methods based on two large
breast cancer data sets and a variety of PPI networks and
pathway databases. Our results do not confirm any of these
claims.

To facilitate an easy and unbiased evaluation of more
methods on more networks, pathways and expression data,

we have proposed the Amsterdam Classification Evaluation
Suite (ACES), a novel evaluation framework. In the imple-
mented pipeline, we strictly separate between the training data
and the testing data by employing a double-loop cross val-
idation procedure. We provide tutorials which make it very
easy to extend the described pipeline with additional data.
Furthermore, we provide a tutorial and in depth instructions
how to include new feature selection methods. ACES is freely
available.
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We conclude that it remains difficult to evaluate whether the
composite-features selection methods draw any useful informa-
tion from the secondary data sources, such as PPI networks and
pathway data. We showed here and in our previous work (Staiger
et al., 2012) that the methods by Chuang et al. (2007), Winter
et al. (2012) and Lee et al. (2008) and the GeneRank algorithm
(Morrison et al., 2005) do indeed perform as well on random-
ized PPI networks as on the real PPI networks. In contrast, the
methods by Dao et al. (2010) and Taylor et al. (2009) are more
dependent on the subnetwork structure when selecting features
and fail to provide useful features on randomized network data.
However, we also observe that in some cases these two methods
perform worse on the original PPI networks than the single-genes
classifiers, suggesting that some specific combinations of gene
expression data and network data delivers less information for
the classification task than the expression data alone. This sug-
gests that the most predictive power for outcome is derived from
the gene expression data and that the PPI network and path-
way data only provides some means to reduce the feature space
but adds little to the predictive accuracy of the classifiers. To this
end it is extremely difficult to decide whether networks in gen-
eral add little information to the classification task or whether
the tested methods are not able to successfully leverage this
information.

There are two independent goals when creating feature selec-
tion methods for outcome prediction in breast cancer: (i) to
correctly classify the patients and (ii) to find genes or combi-
nations of genes that carry some biological meaning. We have
shown that currently the first goal can best be achieved by apply-
ing simple single-gene approaches and not by applying elaborate
methods that use network or pathway data. However, for the def-
inition of gene signatures specific for certain phenotypes, such
methods seem to be more reliable to extract less noisy features—
and thus possibly biological meaningful genes—than single-gene
approaches.

AUTHOR CONTRIBUTIONS
Christine Staiger, Lodewyk F. A. Wessels, and Gunnar W. Klau
conceived and designed the experiments. Christine Staiger and
Balázs Györffy acquired and analyzed the data. Christine Staiger
and Sidney Cadot performed the experiments. Christine Staiger,
Lodewyk F. A. Wessels, and Gunnar W. Klau analyzed the exper-
imental results. Christine Staiger, Lodewyk F. A. Wessels, and
Gunnar W. Klau wrote the manuscript. All authors read and
approved the final version of the manuscript.

ACKNOWLEDGMENTS
We would like to thank Jan Bot for providing help to perform
the vast amount of calculations. This work was carried out on
the Dutch national e-infrastructure with the support of the SURF
Foundation.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fgene.2013.
00289/abstract

REFERENCES
Abraham, G., Kowalczyk, A., Loi, S., Haviv, I., and Zobel, J. (2010). Prediction

of breast cancer prognosis using gene set statistics provides signature sta-
bility and biological context. BMC Bioinformatics 11:277. doi: 10.1186/1471-
2105-11-277

Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., and Ideker, T. (2007). Network-
based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140. doi:
10.1038/msb4100180

Cun, Y., and Fröhlich, H. F. (2012). Prognostic gene signatures for patient strat-
ification in breast cancer - accuracy, stability and interpretability of gene
selection approaches using prior knowledge on protein-protein interactions.
BMC Bioinformatics 13:69. doi: 10.1186/1471-2105-13-69

Dao, P., Colak, R., Salari, R., Moser, F., Davicioni, E., Schönhuth, A., et al. (2010).
Inferring cancer subnetwork markers using density-constrained biclustering.
Bioinformatics 26, i625–i631. doi: 10.1093/bioinformatics/btq393

Ein-Dor, L., Kela, I., Getz, G., Givol, D., and Domany, E. (2005). Outcome signature
genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178. doi:
10.1093/bioinformatics/bth469

Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples are needed to
generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad.
Sci. U.S.A. 103, 5923–5928. doi: 10.1073/pnas.0601231103

Gohlmann, H., and Talloen, W. (2010). Gene expression studies using Affymetrix
microarrays. Boca Raton, FL: CRC Press.

Györffy, B., and Schäfer, R. (2009). Meta-analysis of gene expression profiles related
to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res. Treat.
118, 433–441. doi: 10.1007/s10549-008-0242-8

Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010).
Kegg for representation and analysis of molecular networks involving dis-
eases and drugs. Nucleic Acids Res. 38(Database issue), D355–D360. doi:
10.1093/nar/gkp896

Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T., and Lee, D. (2008). Inferring pathway
activity toward precise disease classification. PLoS Comput. Biol. 4:e1000217.
doi: 10.1371/journal.pcbi.1000217

Ma, S., Shi, M., Li, Y., Yi, D., and Shia, B.-C. (2010). Incorporating gene
co-expression network in identification of cancer prognosis markers. BMC
Bioinformatics 11:271. doi: 10.1186/1471-2105-11-271

Morrison, J. L., Breitling, R., Higham, D. J., and Gilbert, D. R. (2005). Generank:
using search engine technology for the analysis of microarray experiments. BMC
Bioinformatics 6:233. doi: 10.1186/1471-2105-6-233

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford
InfoLab.

Popovici, V., Chen, W., Gallas, B. G., Hatzis, C., Shi, W., Samuelson, F. W.,
et al. (2010). Effect of training-sample size and classification difficulty on
the accuracy of genomic predictors. Breast Cancer Res 12, R5. doi: 10.1186/
bcr2468

Prasad, T. S. K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan,
S., et al. (2009). Human protein reference database–2009 update. Nucleic Acids
Res. 37(Database issue), D767–D772. doi: 10.1093/nar/gkn892

Staiger, C., Cadot, S., Kooter, R., Dittrich, M., Müller, T., Klau, G. W., et al. (2012).
A critical evaluation of network and pathway-based classifiers for outcome
prediction in breast cancer. PLoS ONE 7:e34796. doi: 10.1371/journal.pone.
0034796

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Taylor, I. W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D.,
et al. (2009). Dynamic modularity in protein interaction networks pre-
dicts breast cancer outcome. Nat. Biotechnol. 27, 199–204. doi: 10.1038/
nbt.1522

van ’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al.
(2002). Gene expression profiling predicts clinical outcome of breast cancer.
Nature 415, 530–536. doi: 10.1038/415530a

Wang, Y., Klijn, J. G. M., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F.,
et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-
node-negative primary breast cancer. Lancet 365, 671–679. doi: 10.1016/S0140-
6736(05)17947-1

Frontiers in Genetics | Bioinformatics and Computational Biology December 2013 | Volume 4 | Article 289 | 14

http://www.frontiersin.org/journal/10.3389/fgene.2013.00289/abstract
http://www.frontiersin.org/journal/10.3389/fgene.2013.00289/abstract
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Staiger et al. Evaluation of breast cancer classifiers

Wessels, L. F. A., Reinders, M. J. T., Hart, A. A. M., Veenman, C. J., Dai, H.,
He, Y. D., et al. (2005). A protocol for building and evaluating predictors
of disease state based on microarray data. Bioinformatics 21, 3755–3762. doi:
10.1093/bioinformatics/bti429

Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., et al. (2012).
Google goes cancer: improving outcome prediction for cancer patients by
network-based ranking of marker genes. PLoS Comput. Biol. 8:e1002511. doi:
10.1371/journal.pcbi.1002511

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 15 September 2013; paper pending published: 13 October 2013; accepted: 28
November 2013; published online: 23 December 2013.

composite-feature classification methods do not outperform simple single-genes classi-
fiers in breast cancer prognosis. Front. Genet. 4:289. doi: 10.3389/fgene.2013.00289
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Genetics.
Copyright © 2013 Staiger, Cadot, Györffy, Wessels and Klau. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org December 2013 | Volume 4 | Article 289 | 15

Citation: Staiger C, Cadot S, Györffy B, Wessels LFA and Klau GW (2013) Current

http://dx.doi.org/10.3389/fgene.2013.00289
http://dx.doi.org/10.3389/fgene.2013.00289
http://dx.doi.org/10.3389/fgene.2013.00289
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis
	Introduction
	Materials and Methods
	Classification
	Expression Data
	Secondary Data
	KEGG
	MsigDB
	HPRD9
	OPHID/I2D
	PPI network curated by Chuang et al. (NetC)

	Feature Selection Methods
	Gene signatures Wang et al., 2005 and van 't Veer et al., 2002
	Single-genes and random genes—the benchmark methods
	GeneRank (Morrison et al., 2005) and Winter et al., 2012
	Chuang et al., 2007
	Taylor et al., 2009
	Dao et al., 2010
	Lee et al., 2008


	Tutorials
	Integrating New Data
	Expression data
	Network and pathway data

	Integrating a New Feature Selection Method
	The FeatureExtractorFactory
	The FeatureExtractor


	Results and Discussion
	Network and Pathway-Based Methods do not Outperform the Benchmark Methods
	Network and Pathway-Based Methods do not Produce More Stable Gene Sets than the Benchmark Methods
	Randomization of the Secondary Data Sources does not Decrease Classification Performances of Network and Pathway-Based Methods
	Composite Features Extracted from Randomized Networks are Less Stable
	Summary

	Author Contributions
	Acknowledgments
	Supplementary Material
	References


