
INTRODUCTION

Gastric mucosal integrity can be influenced both by peripheral
and central mechanisms. In the last decades the peripheral
mechanisms of gastric mucosal defense have been intensively
studied, and many details have been clarified. Some of these results
have served as a basis for the development of new strategies,
therapeutic targets in the treatment of gastric mucosal lesions.

On the other hand, in the last 20 years, central regulation of
gastric mucosal protection has been intensively studied as well,
and convincing evidence was obtained on the role of central
nervous system (CNS) in the regulation of gastric mucosal
integrity. However, several mechanisms of the centrally induced
gastric mucosal protection have not been clarified yet, and
further studies are needed to determine the role of CNS under
physiological and pathophysiological conditions in gastric
mucosal homeostasis as well as to reveal how the central
regulatory mechanisms can be utilized in human therapy.

GASTRIC MUCOSALPROTECTION

Peripheral mechanisms of gastric mucosal protection:
mediators, receptors

Gastric mucosal barrier to acid consists of several layers: the
pre-epithelial mucus bicarbonate layer, an epithelial layer, and a

post-epithelial layer which involves blood vessels, non-epithelial
cells and enteric nerves. The latter two have basic role in
generation of several substances which play a role in gastric
mucosal integrity and gastric mucosal defense, e.g. bicarbonate,
mucus, phospholipids, trefoil peptides and prostaglandins (PGs)
(1-5). Prostaglandins of the E and I series are potent
vasodilators, producing this effect in the stomach through
EP2/EP4 and IP receptors (6, 7). Moreover, they reduce the
permeability of the gastric epithelium (directly, or via
enhancement of the effectiveness of surface-active
phospholipids) (1, 6), thereby reducing acid back-diffusion. In
addition, primary afferent sensory neurons innervate gastric
mucosal and submucosal vessels, form a dense plexus at the
mucosal base and regulate mucosal blood flow. Their
stimulation results in the release of calcitonin gene-related
peptide (CGRP) and substance (SP) CGRPpartly directly, partly
indirectly through the release of nitric oxide (NO) induces
submucosal vasodilation (8-10). Namely, NO has a basic role in
gastric mucosal defense by increasing gastric mucosal blood
flow and microcirculation (8-10).

Somatostatin is also likely to be involved in gastric mucosal
defense (11), it reduces the elevated level of SP, vasoactive
intestinal polypeptide (VIP) and leukotriens in ethanol-induced
gastric lesions (12), and also reduces stress-induced mucosal
injury by inducing antioxidant, anti-inflammatory and anti-
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apoptotic actions (13). Our recent finding showed that its
mucosal level dramatically decreased following intragastric
administration of absolute ethanol parallel with the development
of the gastric mucosal lesions in the rat, while gastroprotective
agents, such as endomorphin reversed the reduced level of
somatostatin (3).

Furthermore, protein- and non-protein sulfhydryls (such as
reduced glutathione, GSH) were also shown as endogenous
protective compounds (14), and it was suggested that the
maintenance of a critical level of non-protein sulfhydryls in the
gastric mucosa besides nitric oxide is necessary for the
gastroprotective action (14, 15).

Recently the potential role of hydrogen sulfide in gastric
mucosal defense was raised: H2S, similarly to NO, is an
important mediator of gastric mucosal protection (16) and
inhibition of endogenous H2S synthesis increases the
susceptibility of the mucosa to damage induced by non-steroidal
anti-inflammatory drugs (17). On the other hand, exogenous H2S
donors can increase the resistance of the mucosa to injury (18).
Several mechanisms are involved in the gastroprotective effect
of H2S, such as maintenance and/or elevation of gastric mucosal
blood flow, stimulation of bicarbonate secretion, reduced
proinflammatory cytokine expression/release, increased
prostaglandin synthesis, reduced leukocyte-endothelial
adherence, decreased reactive oxygen metabolite production and
enhanced tissue repair (18, 19).

In addition, several other factors, e.g. antioxidant enzymes,
heme oxygenase-1, matrix metalloproteinases and trefoil factor
family (TFF) proteins take part in the complex mucosal
protective system (20).

Antioxidant enzymes, such as the above mentioned GSH, or
superoxide dismutase (SOD) and catalase are able to counteract
oxidative stress caused by excessive production and/or
decreased elimination of reactive oxygen species (ROS). A
decrease of SOD activity and GSH concentration significantly
contributes to cell damage (21). ROS can induce tissue damage
by promoting lipid peroxidation and increasing the production of
inflammatory mediators and proinflammatory cytokines (22-
24). Antioxidant enzymes are able to neutralize ROS, for
instance SOD converts superoxide radical anion (O2

�–) into
hydrogen peroxide (H2O2), which is thereafter converted to
water and oxygen by catalase.

Heme oxygenase-1 (HO-1 or Hsp32), the inducible form of
heme oxygenase, also exerts cytoprotective effect. The
expression of this enzyme may be induced by oxidative stress,
inflammatory cytokines or heavy metals (24). HO-1 catalyzes
the oxidative degradation of the pro-oxidant heme to antioxidant
and cytoprotective carbon monoxide and biliverdin (which is
then converted to bilirubin by biliverdin reductase) (22, 25). The
activity of HO-1 is also increased during the healing of gastric
ulcers, which indicates its involvement in the mucosal repair
processes (26).

Matrix metalloproteinases (MMPs) play a role both in the
pathogenesis and in healing of peptic ulcers. MMPs are zinc-
dependent endopeptidases that degrade extracellular matrix
proteins and are essential for extracellular matrix remodeling
and wound healing (27). They are synthesized and secreted by
various gastric cells (fibroblasts, epithelial and inflammatory
cells) (28, 29), and several animal studies have demonstrated
that NSAIDs or ethanol increased the activity of MMP-1, MMP-
3, MMP-9 and MMP-13, while decreased the expression of
MMP-2 (30-32). Also a recent human study showed that the
expression of MMP-9 correlates with the severity and recurrence
of gastric ulcers (33).

Trefoil factor family (TFF) proteins (TFF1-3) are also able
to enhance mucosal barrier functions by stabilizing the mucus
gel and promoting epithelial restitution (34, 35). Although the

protective role of these small protease-resistant proteins has been
demonstrated in various ulcer models (36, 37), the exact
molecular mechanism is still not clear. Recent reports indicate
that activation of the C-X-C chemokine receptor type 4
(CXCR4) and the apical Na+/H+ exchanger-2 (NHE2) is required
for TFF-induced mucosal repair (38, 39).

Activation of immune cells can also affect gastric mucosal
integrity. Mast cells and macrophages resident within the
lamina propria act as “alarm cells.” Sensing the presence of
foreign substances, these cells are capable of liberating an array
of inflammatory mediators and cytokines that can alter mucosal
blood flow and enhance the recruitment of granulocytes into the
affected region. For example mast cells can be activated by
several factors (ischemia, bacteria, antigens, bile acids, etc.). As
a result, they release histamine and platelet-activating factor,
which can increase the epithelial and vascular endothelial
permeability. In addition, stimulation of the expression of
adhesion molecules and release of tumor necrosis factor α
(TNF-α) from mast cells can also be observed. TNF-α further
stimulates leukocyte-endothelial adhesive interactions. In the
contrary, prostaglandins and nitric oxide can suppress the
reactivity of mast cells, consequently, can counteract many of
these effects (40 - 42).

Under chronic inflammatory conditions (e.g. Helicobacter
pylori infection) inflammatory cells in lamina propria do not
produce only proinflammatory cytokines, but also anti-
inflammatory cytokines, such as interleukin 10 (IL-10), which
thereafter suppresses the production of various proinflammatory
molecules, e.g. IL-1, IL-2, IL-8, TNF-α and IFN-γ (43).
Consequently, IL-10 has a counter-regulatory effect in mucosal
inflammatory processes, which may reduce tissue damage
caused by inflammation, but may also hamper the elimination of
harmful stimulus by suppression of the immune response (43).

Several peripheral receptors have been described to be
involved in gastric mucosal defense/injury.

A specific ionotropic receptor is the transient receptor
potential vanilloid-1 (TRPV1) (44). In the gastrointestinal tract,
TRPV1 can be identified in intrinsic enteric neurons, extrinsic
sensory neurons, epithelial and endocrine cells (45, 46). TRPV1
receptor is activated by capsaicin (47-49). Capsaicin given orally
was found to inhibit gastric mucosal lesions in different
experimental ulcer models (50, 51) and in humans (52) by
stimulating the nerve endings and efferent function of primary
afferents, resulting in the release of CGRP.

Toll-like receptors (TLRs) play an essential role in the host
microbial interaction by sensing conserved microbial
structures (pathogen-associated molecular patterns, PAMPs).
In humans 10 family members (TLR1-10) have been identified
thus far, which recognize different bacterial or viral
components, like peptidoglycan (TLR2), lipopolysaccharide
(TLR4) or flagellin (TLR5),but some of them (e.g. TLR2 and
TLR4) are also capable of responding to different endogenous
molecules, released during inflammation or tissue damages
(53, 54). Gastric epithelial cells express various TLRs (TLR2,
4, 5 and TLR9), whose activation (e.g. by H. pylori) induces
inflammatory responses and may delay ulcer healing (55-57).
Therefore, antagonists of TLRs may serve as novel therapeutic
approaches for gastrointestinal ulcers.

Proteinase-activated receptors (PARs), particularly PAR1
and PAR2, are also important regulators of GI functions. These
unique G-protein-coupled receptors are distributed throughout
the GI tract, and their activation has been reported to increase
gastric mucus secretion and mucosal blood flow, to reduce
gastric acid secretion and to induce cytoprotection (58-60).
Interestingly, capsaicin-sensitive sensory neurons are involved
in PAR2-, but not in PAR1-induced gastroprotection - the latter
one seems to be mainly mediated by PGs (59, 60).

320



Adenosine has a basic role in signaling processes and
induces numerous physiological responses in all mammalian
tissues. Four adenosine receptors have been identified, namely
A1, A2A, A2B and A3. Activation of A2A receptors elicits anti-
inflammatory effects (61) and the selective A2A receptor agonist
ATL-146e has been shown to reduce gastric mucosal lesions
induced by water-immersion stress, aspirin- and indomethacin
(62-64).

Are peripheral opioid receptors and α2-adrenoceptors involved
in gastric mucosal protection?

The presence of µ- and δ-opioid receptors were
demonstrated in gastric fundus, antrum and corpus, primarily
located in the submucosal plexus, deep muscular plexus, and
mucosa (65). We wondered if activation of these receptors can
affect gastric mucosal defense. It was found that δ-opioid
receptor selective peptides such as [D-Ala2,D-Leu5]-enkephalin
(DADLE), [D-Pen2,D-Pen5]-enkephalin (DPDPE) and
deltorphin II injected subcutaneously exerted a dose-dependent
inhibition on the development of mucosal lesions induced by
acidified ethanol, their ID50 values were 0.037 (0.02 – 0.057), 1.8
(1.3 – 2.52) and 3.5 (2.12 – 5.7) µmol/kg, respectively. Since
opioid peptides cannot (or poorly) pass the blood-brain barrier,
their mucosal protective effect is likely to be due to activation of
peripheral opioid receptors. Because naltrindole, the selective δ-
opioid receptor antagonist inhibited the gastroprotective effect of
all above mentioned peptides, it was concluded that activation of

δ-opioid receptors may mediate gastric mucosal protection (66).
The mechanism of gastroprotective effect may be at least partly
mediated by endogenous nitric oxide, as it was suggested also by
previous findings (67).

Moreover, based on the well-known interaction between
opioid receptors and α2-adrenoceptors, the question was raised
whether activation of α2-adrenergic receptors can elicit gastric
mucosal protection as well. We found that α2-adrenoceptor
stimulants, clonidine and rilmenidine injected either orally or
subcutaneously (s.c.) exerted gastroprotective effect against
ethanol-induced gastric lesions in a dose dependent manner, their
ED50 values were 32 (12 – 84) and 25 (10 – 62.5) nmol/kg for
clonidine; 25 (10 – 62.5) and 3.1 (0.5 – 20) nmol/kg for
rilmenidine, following oral or s.c. administration, respectively (68).
Pharmacological analysis with selective antagonists of the α2A/D

and α2B/C-adrenoceptor subtypes suggested that the α2B/2C-
adrenoceptor subtypes are likely to mediate this mucosal protective
effect, while the α2A-one has no important role in it. We wondered
if the distribution of α2-adrenoceptor subtypes in gastric mucosa
confirms the concept on the peculiar role of α2B/2C-adrenoceptor
subtypes in gastric mucosal protection. However, though
expression of all the three subtypes could be detected in gastric
mucosa of the rat, the dominant subtype was the α2A-one (68).
Consequently, the findings on distribution of the adrenoceptor
subtypes in gastric mucosa does not support the conclusion of
pharmacological analysis, that the α2B/2C-adrenoceptor subtypes
have a prominent role in mucosal defense (68). Moreover, ST91
(2-[2,6-diethylphenylamino]-2-imidazoline), an α2B/2C-
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Fig. 1. The effect of AP-7 (DL-2-Amino-7-phosphonoheptanoic acid, 31 nmol/rat i.c.v.) on the gastroprotective effect of deltorphin II
(Delt, 0.56 nmol/rat i.c.v.) and β-endorphin (β-end, 0.01 nmol/rat i.c.v.). Gastric mucosal injury was induced by acidified ethanol (2
ml concentrated HCl + 98 ml absolute ethanol), which was injected orally after 24 hours food deprivation in a volume of 0.5 ml/animal.
The ulcer index was determined by evaluating the mucosal lesions macroscopically one hour after the ethanol challenge. Opioids were
given intracerebroventricularly (i.c.v.) 10 minutes before ethanol in a volume of 10 µl in conscious rats. AP-7 was injected 10 minutes
before the opioids. Opioids were dissolved in physiologic saline. AP-7 was dissolved in 1 molar equivalent of NaOH, and then diluted
with saline. Control animals received the drug solvents.
Each column represents mean ± S.E.M., n = 5; ***P< 0.001 compared with vehicle-treated group (column 1); ##P < 0.01 compared
with deltorphin II-treated group (column 2); +++P< 0.001 compared with β-endorphin-treated group (column 3); †P< 0.05, ††P< 0.01
compared with AP-7 + vehicle-treated group (column 4) (ANOVA, Newman-Keuls post hoc test).



adrenoceptor subtype preferring, peripherally acting adrenoceptor
stimulant exerted only a slight, non-significant inhibition of gastric
mucosal lesions in the rat (68). In addition, the gastroprotective
effect of rilmenidine given s.c. was antagonised by the
intracerebroventricularly (i.c.v.) injected α2-adrenoceptor
antagonist yohimbine (68). These findings suggest that the site of
gastroprotective action of α2-adrenoceptor stimulants is not likely
to be in the periphery, but rather in the CNS.

Centrally induced gastroprotection

1. Central opioid receptors and a2-adrenoceptors in gastric
mucosal protection

The above results prompted us to analyze the role of central α2-
adrenoceptors in gastroprotection. It was found that both clonidine
and rilmenidine exerted gastroprotective effect following i.c.v.
administration, their ED50 values are 200 (90 – 400) and 10 (1 – 10)
pmol, respectively. In addition, ST91, the above mentioned α2B/2C-
adrenoceptor subtype preferring agonist, which passes poorly the
blood-brain barrier and failed to significantly affect the gastric
mucosal lesions following peripheral administration, proved to be
effective following i.c.v. administration. The centrally initiated
gastroprotective effect of clonidine (470 pmol), rilmenidine (45
pmol) and ST-91 (33 nmol) was antagonized by the non-selective
α2-adrenoceptor antagonist yohimbine, as well as by the α2B/2C

adrenoceptor preferring antagonists prazosin and ARC 239,
indicating that α2B/2C-like adrenoceptor subtypes may mediate the
action (68). The same conclusion could be drawn from the results
of our subsequent study carried out in genetically engineered mice
(69). In addition, naloxone also reversed the mucosal protective

effect of clonidine, rilmenidine and ST-91 suggesting an opioid
component in their action (68, 70). Therefore, we examined the
effect of opioid peptides injected i.c.v. and intracisternally (i.c.) on
ethanol-induced experimental ulcer formation. The results showed
that DADLE, DPDPE and deltorphin II (selective δ-opioid
receptor agonists), DAGO ([D-Ala2,Phe4,Gly5-ol]-enkephalin, a
selective µ-opioid receptor agonist) and β-endorphin (ligand of
both receptor types) produced a dose-dependent inhibition of
acidified ethanol-induced gastric mucosal damage. The ED50

values for β-endorphin, DAGO, DADLE, deltorphin II, and
DPDPE were 3.5 (1.6 – 7.35), 6.8 (2.26 – 20.4), 75 (36 – 144), 120
(40 – 360), and 1100 (458 – 26409) pmol/rat, respectively,
following i.c.v. administration, and 0.8 (0.62 – 1.024), 9.0 (2.4 –
33), 45 (16 – 126), 0.25 (0.08 – 0.775) and 7 (1.66 – 29.4) pmol/rat
following i.c. injection (71).

The above results confirmed the pivotal role of CNS in
regulation of gastric mucosal integrity. In the last two decades
increasing number of evidence suggest that central
administration of different neuropeptides, neurotransmitters and
neuromodulators (either i.c.v, i.c., or directly into specific brain
nuclei, e.g. the dorsal motor nucleus of vagus /DMNV) results in
gastric mucosal protection (3, 10, 72, 73).

Dif ferent brain areas have been suggested to be involved in
the centrally induced gastroprotection. Among them, the
hypothalamus and particularly the dorsal vagal complex (DVC)
(including DMNV, nucleus of the solitary tract /NTS/ and area
postrema) seem to have a prominent role. Vagal dependent
mechanism of gastroprotection was demonstrated e.g. for
thyreotropine-releasing hormone (TRH), adrenomedullin,
peptide YY (74-77), clonidine (78), opioid peptides (71),
nociceptin, nocistatin (79), and angiotensin II (Ang II) (80).
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Fig. 2. The effect of AP-7 (31 nmol/rat i.c.) on the gastroprotective effect of deltorphin II (Delt, 0.56 nmol/rat i.c.v.) and β-endorphin
(β-end, 0.01 nmol/rat i.c.v.). Gastric mucosal injury was induced by acidified ethanol. Opioids were given intracerebroventricularly
(i.c.v.) 10 minutes before ethanol in a volume of 10 µl in conscious rats. AP-7 was injected intracisternally (i.c.) 10 minutes before the
opioids in a volume of 5 µl. Opioids were dissolved in physiologic saline. AP-7 was dissolved in 1 molar equivalent of NaOH, and
then diluted with saline. Control animals received the drug solvents.
Each column represents mean ± S.E.M., n = 5; ***P< 0.001 compared with vehicle-treated group (column 1); #P < 0.05 compared
with deltorphin II-treated group (column 2); +P< 0.05 compared with β-endorphin-treated group (column 3) (ANOVA, Newman-Keuls
post hoc test).



2. Potential role of excitatory amino acids and nitric oxide in
centrally-induced gastroprotection

Signals from sensory receptors in the gastrointestinal tract
via primary afferents terminate in the NTS where they are
integrated and transmitted to parasympathetic preganglionic
neurons of the DMNV. Principally glutamate, GABAand
norepinephrine are involved in synaptic connections between
NTS and DMNVneurons and convey sensory signals to vagal
efferent impulses (81). While less is known about
catecholaminergic transmission between the NTS and DMNV,
many studies have demonstrated that electrical stimulation of
various NTS subnuclei elicits glutamatergic excitatory and
GABAergic inhibitory currents in DMNVneurons (82-85).

The vagal afferent-vagal efferent reflex (vagovagal reflex)
plays a crucial role in upper gastrointestinal reflexes, and in
regulation of gastric motor activity (81). Activation of both non-
NMDA (kainate) and NMDAreceptors in the DMNVin vivo
increases gastric contractility, and this effect was blocked by the
appropriate antagonists (86).

Activation of vagal efferent cholinergic nerves may affect
gastric mucosal integrity e.g. through stimulation of gastric
motor activity (87, 88). On the other hand, cholinergic activation
was shown to stimulate the release of gastric mucosal PGs and
NO, as well as the effector function of capsaicin-sensitive
afferent fibers containing CGRPresulting in enhanced mucosal
microcirculation, and consequently gastric mucosal protection
(51, 89-91).

Based on these data the question was raised if
glutamatergic/GABAergic system may be involved in centrally
initiated gastroprotection. As described above, central δ-opioid
receptors may mediate gastric mucosal protection (71). The site of

action is most probable in the brainstem, since δ-opioid receptor
agonists proved to be more effective and potent given i.c. than
i.c.v. injection. Since δ-opioid receptors were identified in the
NTS, but not in the DMNV(92), (while µ-opioid receptor was
shown in both DMNVand NTS (93)), NTS was supposed to be
the site of action of δ-opioid receptor stimulants. We wondered if
glutamatergic pathway would play a role in conveying the opioid-
receptor induced action to the DMNV. As Figs. 1and 2 show, AP-
7 (DL-2-amino-7-phosphonoheptanoic acid), a competitive
antagonist of the NMDAreceptors blocked the gastroprotective
effect of the δ-opioid receptor selective ligand deltorphin II and
that of β-endorphin given both i.c.v. and i.c. These findings
suggest that glutamate through NMDAreceptors might play a role
in the δ-opioid receptor-induced gastroprotective action. If
NMDA receptors are involved indeed in mediation of the effect of
opioid peptides, NMDAitself should induce mucosal protective
effect as well. Accordingly, as Fig. 3shows, NMDAinjected i.c.v.
exerted mucosal protective action in the doses of 5 and 10 pmol.

In accordance with this finding, L-glutamate injected into
the lateral hypothalamus was shown to increase defensive
mechanisms (e.g. mucosal blood flow) (94). Moreover, the
injection of kainate (a specific agonist for the kainate receptor,
that mimics the effect of glutamate) into the raphe pallidus
exerted gastroprotective action as well (95).

Furthermore, co-localization of neuronal nitric oxide
synthase and NMDAreceptorsubunit 1 in NTS was described,
which provides anatomical support for the hypothesis that
NMDA receptoractivation can affect NTS-controlled functions
via actions on neurons that synthesize nitric oxide (NO) (96).
The NO production after NMDAreceptor activation in the NTS
was markedly reduced by prior i.c. injection of L-NAME (NG-
nitro-L-arginine methyl ester), an NO synthase inhibitor,
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Fig. 3. The inhibitory effect of NG-nitro-L-arginine (LNNA, 670 nmol i.c.v.) on the gastroprotective effect of NMDA. Gastric mucosal
injury was induced by acidified ethanol. NMDA(0.005 and 0.01 nmol/rat) was given intracerebroventricularly (i.c.v.) 10 minutes
before ethanol in a volume of 10 µl in conscious rats. LNNAwas injected 10 minutes before NMDA. Both NMDAand LNNAwere
dissolved in saline.
Each column represents mean ± S.E.M., n = 5; *P< 0.05, ***P< 0.001 compared with vehicle-treated group (column 1); ###P< 0.001
compared with NMDA(0.01 nmol)-treated group (column 3); †P < 0.05 compared with LNNA+ vehicle-treated group (column 4)
(ANOVA, Newman-Keuls post hoc test).



suggesting that the increase in NO level after NMDAreceptor
activation is caused by activation of NO synthase in the NTS
(97). Further studies confirmed that NO has prominent role in
NMDA-mediated actions (97, 98).

Based on these data we wondered if NO may also be
involved in the centrally-induced effect of opioid peptides. As
Figs. 3and 4 demonstrate, the NO synthase inhibitor NG-nitro-
L-arginine (LNNA, 670 nmol i.c.v.) blocked the gastroprotective
effect of NMDA, as well as that of deltorphin II and β-
endorphin, and the effect was reversed by L-arginine, but not by
D-arginine (not shown) indicating that NO is likely to mediate
the gastroprotective effect of both NMDAand opioid peptides.

On the basis of these findings it might be speculated that
opioid peptide-induced gastroprotecive effect is mediated, at
least partly by an NMDA-NO pathway. To answer the question,
whether this chain of events - according to our original
hypothesis - occurs within the DVC, and activation of δ- (µ)-
opioid receptor results in activation of DMNVthrough NMDA-
NO pathway, further studies are needed.

3. Gastroprotective effect of endogenous substances:
neuropeptides and non-neuropeptides

The role of CNS in mucosal injury/protection has been
raised already in the 19th century. However, systematic analysis
of the mechanism of centrally initiated gastric mucosal
protection started only about 20 years ago.

As depicted above, DVC has a prominent role in the
regulation of gastrointestinal functions. Different receptor
populations have been identified in the DVC, such as µ- and δ-
opioid receptors (92, 93), α2-adrenoceptors(99, 100),

cannabinoid CB1- and CB2 receptors (101-104), angiotensin II
AT1 receptor (105, 106), nociceptinNOP receptor (107) and
tachykinin NK1, NK2 and NK3-receptors (108-111) (Table 2).

Our research in the last decade focused on the mechanism of
centrally initiated gastric mucosal protection. As a first step we
examined which of the receptors localized in the DVC may have
a role in gastric mucosal defense/injury. Our results showed that
activation of opioid-, (10, 71) α2-, (68-70, 78) nociceptin- (79)
cannabinoid CB1 (111), neurokinin NK1-, NK2-, NK3-receptors
(112) and angiotensin II AT1-receptors(80) initiated a chain of
events resulting in stimulation of mucosal protective processes.
Further studies are needed to clarify whether gastroprotection
can be induced also by elevation of the endogenous level of
neuropeptides, e.g. via increase of the endogenous opioid levels
by opiorphin or its synthetic analogue, inhibitors of enkephalin-
inactivating peptidases (113).

The mechanism of centrally initiated mucosal protection is
under an intensive analysis. Our results suggest a vagal
dependent mechanism of centrally induced gastroprotective
action for α2 stimulants (78), opioid peptides (71), angiotensin II
(80) as well as nociceptin and nocistatin (79), in accordance with
the results of Polidori et al. (114).

However, sympathetic nervous system may also be involved in
the gastroprotective effect of opioid peptides and α2-adrenoceptor
agonists, since their effect markedly decreased following i.c.v.
administration of the catecholaminergic neurotoxine, 6-
hydroxydopamine, that reduced the noradrenaline concentration in
a significant manner in the NTS (73). In the periphery, the
decreased gastric mucosal level of CGRPand partly somatostatin
due to ethanol administration was restored by i.c.v. administration
of endomorphins (3), substance P(112)and cannabinoids (80).

324

Fig. 4. The inhibitory effect of NG-nitro-L-arginine (LNNA, 670 nmol i.c.v.) on the gastroprotective effect of deltorphin II (Delt, 0.56
nmol/rat i.c.v.) and β-endorphin (β-end, 0.01 nmol/rat i.c.v.). Gastric mucosal injury was induced by acidified ethanol. Opioids were
given intracerebroventricularly (i.c.v.) 10 minutes before ethanol in a volume of 10 µl in conscious rats. LNNAwas injected 10
minutes before the opioids. Opioids and LNNAwere dissolved in physiologic saline.
Each column represents mean ± S.E.M., n = 5; ***P< 0.001 compared with vehicle-treated group (column 1); ###P< 0.001 compared
with deltorphin II-treated group (column 2); +++P< 0.001 compared with β-endorphin-treated group (column 3); ††P< 0.01 compared
with LNNA + vehicle-treated group (column 4) (ANOVA, Newman-Keuls post hoc test).



In our further experiments we aim to analyse the
interactions between different neuropeptides and other
neurotransmitters/neuromodulators in gastroprotection. Some
data of the literature suggest interaction of neuropeptides in
gastric mucosal defense. For example TRH-enkephalin
interaction was observed in the amygdaloid complex during
gastric stress ulcer formation in rats (115), or stress induced
the release of CRF, that stimulated the release of β-endorphin

and somatostatin, and reduced that of TRH (116, 117). Our
results suggest that endogenous opioids seem to be involved in
the gastroprotective process of α2-adrenoceptor agonists (68,
78), nociceptin, nocistatin (79) and cannabinoids (111). The
production of the endocannabinoid 2-arachydonoylglycerol
(2-AG) and transactivation of the CB1 receptors may also
contribute to the gastric mucosal protective mechanism of Ang
II (80).
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Compound / Receptor Mechanism References 

Bicarbonate, mucus, 

phospholipids 

- form an unstirred layer on the mucosal surface, which 

acts as a physical barrier against luminal pepsin 

- this layer retains secreted bicarbonate to maintain a 

neutral pH at the epithelial cells 

1, 2, 3, 4, 5 

Prostaglandins - increase bicarbonate and mucus secretion 

- reduce the permeability of the gastric epithelium and 

the back-diffusion of acid 

- enhance mucosal blood flow 

- inhibit acid secretion and motility 

- inhibit inflammatory mediator release from mast cells 

4, 5, 6, 7 

Calcitonin gene-related 

peptide (CGRP) and nitric 

oxide (NO) 

- increase mucin synthesis 

- induce submucosal vasodilation and enhance mucosal 

blood flow 

- inhibit acid secretion 

- induce anti-inflammatory effect 

8, 9, 10, 11 

Somatostatin - reduces the elevated level of substance P, VIP and 

leukotriens 

- has antioxidant, anti-inflammatory and 

anti-apoptotic actions 

12, 13 

Protein- and non-protein 

sulfhydryls 

- antioxidant or reactive metabolite-eliminating effects, 

counteract oxidative stress 

14, 15 

Hydrogen sulfide (H2S) - increases mucosal blood flow 

- stimulates bicarbonate secretion 

- reduces proinflammatory cytokine production and 

leukocyte-endothelial adherence 

- increases prostaglandin synthesis 

- decreases reactive oxygen metabolite production 

- enhances tissue repair 

18, 19 

Heme oxygenase-1  

(HO-1) 

- counteract oxidative stress, catalyzes the oxidative 

degradation of the pro-oxidant heme to antioxidant and 

cytoprotective CO and biliverdin 

- promotes tissue repair 

22, 25, 26 

Matrix metalloproteinases 

(MMPs) 

- involved both in the pathogenesis and healing of 

peptic ulcers 

30, 31, 32, 33 

Trefoil factor family 

(TFF) proteins (TFF1-3) 

- enhance mucosal barrier functions by stabilizing the 

mucus gel and promoting epithelial restitution 

34, 35 

TRPV1 receptors - their activation on sensory neurons and epithelial cells 

stimulates the efferent function of afferent nerve 

endings and releases CGRP / NO, which is manifested 

in gastric mucosal protection 

50, 51, 52 

Toll-like receptors (TLRs) - play an essential role in the host microbial interaction 

by sensing conserved microbial structures 

- induce inflammatory responses and may delay ulcer 

healing 

53, 54, 55, 56, 

57 

Proteinase-activated 

receptors (PARs) 

- increase mucus secretion 

- enhance mucosal blood flow 

- inhibit gastric acid secretion 

58, 59, 60 

Adenosine A2A receptors - their activation reduces the elevated proinflammatory 

cytokine level in gastric mucosa following NSAID-

induced lesions 

62, 63, 64 

Table 1. Some local mechanisms involved in mucosal defense or injury.



The role of CNS in gastric mucosal homeostasis has been
well documented in the last 15 – 20 years. Analysis of the central
regulation of gastric functions, identification of endogenous
substances and their receptors that may influence the central and
peripheral mechanisms of gastric mucosal defense, clarification
of the interaction of neuropeptides (brain-gut peptides) with each
other and with other endogenous substances, all may serve as a
basis for better understanding of the complex mechanism of the
maintenance of gastric mucosal integrity as well for the
development of new strategies to enhance gastric mucosal
resistance against injury.
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