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Abstract  

Oncogenic mutations of BRAF lead to constitutive ERK activity that supports melanoma cell 

growth and survival. While Ca
2+

 signaling is a well-known regulator of tumor progression, the 

crosstalk between Ca
2+

 signaling and the Ras-BRAF-MEK-ERK pathway is much less explored. 

Here we show that in BRAF mutant melanoma cells the abundance of the plasma membrane Ca
2+

 

ATPase isoform 4b (PMCA4b, ATP2B4) is low at baseline but markedly elevated by treatment 

with the mutant BRAF specific inhibitor vemurafenib. In line with these findings gene expression 

microarray data also shows decreased PMCA4b expression in cutaneous melanoma when 

compared to benign nevi. The MEK inhibitor selumetinib – similarly to that of the BRAF-

specific inhibitor - also increases PMCA4b levels in both BRAF and NRAS mutant melanoma 

cells suggesting that the MAPK pathway is involved in the regulation of PMCA4b expression. 

The increased abundance of PMCA4b in the plasma membrane enhances [Ca
2+

]i  clearance from 

cells after Ca
2+

 entry. Moreover we show that both vemurafenib treatment and PMCA4b 

overexpression induce marked inhibition of migration of BRAF mutant melanoma cells. 

Importantly, reduced migration of PMCA4b expressing BRAF mutant cells is associated with a 

marked decrease in their metastatic potential in vivo. Taken together, our data reveal an important 

crosstalk between Ca
2+

 signaling and the MAPK pathway through the regulation of PMCA4b 

expression and suggest that PMCA4b is a previously unrecognized metastasis suppressor.  



4 
 

Introduction 

Malignant melanoma is a highly invasive and metastatic type of cancer with poor prognosis. In 

melanoma BRAF is the most frequently mutated oncogene - present in up to 60% of tumors - that 

induces the constitutive activation of the RAS-RAF-MEK-ERK signaling cascade 
1, 2

. The 

introduction of vemurafenib – an inhibitor showing considerable selectivity towards the 

predominant V600E mutant form of BRAF – fundamentally changed the therapeutic options for 

melanoma 
3, 4

. Nevertheless, a number of BRAF mutant melanomas show limited response due to 

intrinsic resistance and initially responding patients often relapse due to acquired resistance 
5, 6

.  

Although recent advances in immunotherapy have led to important improvements in clinical 

outcome, monotherapy is often insufficient for melanoma treatment 
7
. Therefore, further studies 

are needed to identify additional molecular targets to fight this malignancy more effectively. 

Cell migration is a prerequisite for invasion that consequently contributes to tumor progression 

and metastasis 
8
. Ca

2+
 signaling regulates several steps in the migratory process, such as 

relocation of focal adhesions, rear-end retraction and cytoskeleton redistribution 
9
. It has been 

shown in several types of cancer that specific mutations and/or changes in subcellular localization 

of certain Ca
2+

 transporting molecules can significantly alter intracellular Ca
2+

 signaling 
10, 11

. 

The expression of Ca
2+

 channels RyR2 and P2X7 was found to be upregulated in BRAF mutant 

melanoma cells; and P2X7 was shown to have an antiapoptotic effect upon simultaneous 

stimulation with apoptosis inducer 2ME (2-methoxyestradiol) and P2X7 agonist ATP. 

Conversely, downregulation of P2X7 expression by siRNA sensitized the cells to 2ME treatment 

12
. Increased Ca

2+
 influx through store operated Ca

2+
 entry was shown to promote the migratory 

and metastatic activity of melanoma cells 
13, 14

. Furthermore, stromal interaction molecule 1 

(STIM1) and Orai calcium release-activated calcium modulator 1 (ORAI1) initiated Ca
2+
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oscillations that were found to promote invadopodium assembly and extracellular matrix (ECM) 

degradation in melanoma cells 
15

. Silencing of ORAI and STIM proteins decreased migratory and 

metastatic potential of melanoma cells 
13-15

. Additionally, T-type channel blockers of clinical use 

(mibefradil and pimozide) reduced the proliferation rate and promoted cell death in a metastatic 

melanoma cell line 
16

. It was also shown that combined treatment of vemurafenib with 

thapsigargin – an inhibitor of the sarco/endoplasmic reticulum Ca
2+

 ATPase (SERCA) and an 

endoplasmic reticulum (ER) stress inducer - could induce apoptosis even in vemurafenib resistant 

cells 
17

. 

The Ca
2+

 extrusion proteins in the plasma membrane, the plasma membrane Ca
2+

 ATPases 

(PMCAs), are critical regulators of the maintenance of cellular Ca
2+

 homeostasis and thus 

regulate vital cellular processes such as cell cycle, apoptosis or migration 
18

. These pumps are 

encoded by four different genes (PMCA1-4), and alternative mRNA splicing results in more than 

20 variants 
19

. Changes in PMCA expression during malignant transformation have been 

described in several tumor types, but not in melanoma so far. Major alterations were identified in 

the expression and activity of certain PMCA isoforms in colorectal 
20, 21

 and breast cancer cells 
22, 

23
. PMCA4 expression was down-regulated in colorectal tumor tissues as compared to normal 

colon tissue 
24

.  

In this study, we investigated the role of PMCAs in the maintenance of intracellular Ca
2+

 

homeostasis in melanoma cells. We show that in BRAF mutant melanoma cells, vemurafenib 

treatment strongly increased the abundance of PMCA4b in the plasma membrane and enhanced 

[Ca
2+

]i  clearance after stimulation. We also demonstrated that both vemurafenib treatment and 

PMCA4b overexpression inhibited the migration of BRAF mutant melanoma cells. Furthermore, 
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we provide in vivo evidence that PMCA4b overexpression decreased the metastatic activity of 

BRAF-mutant melanoma cells. 

Material and methods  

Cell culture: Two BRAF(V600E) mutant (A375, A2058,), an NRAS mutant (MJZJ (VM15)) and 

two BRAF/NRAS wild-type (MEWO,) melanoma cell lines were used. MEWO, A375 and 

A2058 were purchased from ATCC. MJZJ cell line was established at the Institute of Cancer 

Research at the Medical University of Vienna 
25

. All cell lines including the genetically modified 

A375 cells were subjected to STR analysis at the Medical University of Vienna.  Cells were 

cultured in DMEM supplemented with 10% FBS, 100 mg/ml streptomycin, 100 U/ml penicillin 

at 37
o
C and 5% CO2 in a humidified atmosphere. 

Treatment of melanoma cell lines: The BRAF (V600E) specific inhibitors vemurafenib 

(PLX4032) and GDC0879, and the MEK kinase inhibitor selumetinib (Selleck Chemicals, 

Munich, Germany) were dissolved in DMSO and stored at -80
o
C. Cells were seeded 1-2x10

5
 

cells/well in 6-well plates for Western Blot and 1-2x10
4
 cells/well in an Imaging Chamber CG 8 

Well (PAA) for immunofluorescence staining and Ca
2+

 signal measurements. After 24 hours, 

fresh medium was added together with the appropriate drug. The final DMSO concentration did 

not exceed 0.01% in the experiments.  

Western Blot Analysis was performed as described previously 
21

.  Total protein from the cells was 

precipitated by addition of 6% TCA and was analyzed by Western blot as described previously 
21

.  

The following primary antibodies were used: mouse monoclonal anti-PMCA4b (JA3, dilution 

1:1000 The JA3 antibody recognizes the region between residues 1156-1180, which is specific to 

hPMCA4b 
26

. Rabbit polyclonal anti-PMCA1 (Affinity BioReagents, PA1-914, dilution 1:1000), 
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mouse monoclonal anti-SERCA2 (IID8, dilution 1:2500, Sigma-Aldrich, S1439), mouse 

monoclonal anti-SERCA3 (PL/IM430, dilution 1:200) described in Ref. 
21

, rabbit monoclonal 

anti-phospho-p44/42MAPK (ERK1/2) (Cell Signaling, CST4370S, dilution 1:1000), mouse 

monoclonal anti-ERK1/2 (MK1) (Santa Cruz, sc135900, dilution: ), rabbit polyclonal anti-beta-

tubulin (Abcam, ab6046), mouse monoclonal anti-BRAF-V600E (VE1) (Spring Bioscience Corp. 

E19290),. Subsequently HRP-conjugated anti-rabbit and anti-mouse secondary antibodies 

(Jackson ImmunoResearch) were applied and for detection Pierce ECL Western Blotting 

Substrate (Thermo Scientific) and luminography were used. Densitometric analysis was done by 

ImageJ software v1.42q. 

Immunofluorescence: Cells were treated with 0.5 µM vemurafenib for 48 to 72 hours. Cells were 

washed twice with 37
o
C PBS and fixed with 4% paraformaldehyde for 15 min at room 

temperature. Immunostaining experiments using mouse monoclonal anti-PMCA4b antibod JA3 

26
, (dilution: 1:200) was performed as described previously 

23
. Images were taken by an Olympus 

IX-81 and a Zeiss LSM500 confocal laser scanning microscopes. 

Ca
2+

 signal measurements: Cells were treated with 0.5µM vemurafenib for 48/72 hours. Prior to 

the experiment medium was changed to phenol red-free DMEM containing 10 mM Hepes pH 7.4 

and 10% FBS. To measure intracellular Ca
2+

 level we used Fluo-4, AM (Molecular Probes, 

F14201) green fluorescent Ca
2+

 indicator. Cells were washed twice with HBSS supplemented 

with 2 mM CaCl2, 0.9 mM MgCl2 and 20 mM HEPES pH7.4, then incubated with 0.5 µM Fluo-4 

AM for 30 min at RT. Then cells were again washed twice and medium was changed to 

nominally Ca
2+

 free HBSS supplemented with 100 µM EGTA, 100 µM CaCl2, 0.9 mM MgCl2 

and 20 mM HEPES pH 7.4. First we depleted the internal Ca
2+ 

stores by adding 2 µM 

thapsigargin and 2 minutes later 100 µM ATP. After an additional 3 minutes the external Ca
2+

 



8 
 

level was restored to 2 mM with the addition of CaCl2. Ca
2+

 influx through store operated Ca
2+

 

channels was followed for an additional 15 minutes. Ca
2+ 

signals were also induced by A23187. 

After the medium was replaced by HBSS supplemented with 0.9 mM MgCl2, 2 mM CaCl2 and 20 

mM HEPES pH 7.4, Ca
2+ 

influx was triggered by the addition of 2 µM A23187. In order to 

inhibit PMCA activity, 1mM LaCl3 was added at the A23187-induced peak Ca
2+

. Images were 

taken by Olympus IX-81 confocal laser scanning microscope with a 60x (1.4) oil immersion 

objective and Fluoview FV500 software v4.1. Z-resolution was set to 1 µm, images were taken 

every 0.3 s. The relative fluorescence intensities were calculated as F/Fo (where Fo was the 

average initial fluorescence) and data were analyzed with the Prism4 software v4.01 (GraphPad 

Software). 

Migration assay: Cell migration was quantified by videomicroscopic measurements as described 

earlier 
27-29

. Briefly, cells were seeded in the inner 8 wells of 24-well plates (Corning 

Incorporated, Corning, NY). Following overnight culture in normal medium, the culture medium 

was changed to CO2-independent medium (Gibco-BRL Life Technologies, Carlsbad, CA) 

supplemented with FCS and 4 mM glutamine. Cell movement was recorded in a custom designed 

incubator built around an inverted phase-contrast microscope (World Precision Instruments, 

Sarasota, FL) at 37°C and room ambient atmosphere. Images of 3 neighboring microscopic fields 

in each well were taken every 5 minutes. In case of treatments, after 24 hours of baseline 

recording, cells were treated with 0.5 µM vemurafenib and images were taken for 72 hours. 

Migration data were retrieved by a custom made cell-tracking program that enables manual 

marking of individual cells. Cell motility was quantified as the net displacement of tracked cells 

between 0-12 and 48-60 hours of recordings with or without treatment using the 15-minute 

interval images.  
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Morphological analysis: Image analysis was performed on the videomicroscopic images of A375 

cells expressing GFP or GFP-PMCA4b. Computer-based analysis of the morphology of 

individual cells was performed with ImageJ 1.47v using the Analyze Particle function. 

Morphological parameters included: cellular area, aspect ratio (defined as (major axis) / (minor 

axis) of the ellipse which best fits the shape of the cell) and circularity (defined as 4π* (cell area) 

/ (cell perimeter)
2
). 

Generation of cell lines: To establish MEWO-GFP, MEWO-GFP-PMCA4b, A375-GFP, A375-

GFP-PMCA4b-I and GFP-PMCA4b–II cell lines, the SB-CAG-GFP-PMCA4b-CAG-Puromycin 

construct was generated which contains a Sleeping Beauty transposon system. The original SB-

CAG-GFP-ABCG2-CAG-Puromycin vector was a generous gift from T. Orban 
30

. From this 

vector, GFP-ABCG2 was excised by the AgeI and BclI enzyme pair. Next, GFP-tagged PMCA4b 

was cut out from the pEGFP-PMCA4b template plasmid 
31

 in two steps; the vector was opened 

by a full digestion with ClaI restriction enzyme, then the GFP-PMCA4b was cut out by a partial 

digest with AgeI and BamHI, and ligated. Stable transfection was performed as described earlier 

23, 32
. 2-3.5x10

5
 MEWO and A375 cells/well were seeded on a 6-well plate. Cells were 

transfected with a mixture of SB-CAG-GFP-PMCA4b-CAG-Puromycin transposon construct and 

SB100x transposase plasmid in a 1:10 ratio using the Fugene HD transfection reagent (Roche 

Applied Science). 48 hours after transfection, the medium was changed to selection medium 

containing 1µg/ml puromycin dihydrocloride. Selection was continued until all non-transfected 

cells had died. 

Cell proliferation: Proliferation was measured by ELISA detection of BrdU incorporation (Roche 

Applied Science, Vienna, Austria, 11 647 229 001) according to the manufacturer’s protocol. 

A375-GFP, A375-PMCA4bI and II cells were seeded in 96-well plates in triplicates (1x10
4
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cells/well). 48 hours later cells were labeled with 10 µM BrdU for 2 hours at 37
o
C. Absorbance 

was measured at 370 nm (reference: 492 nm) and calculated as A370-A492.  

Quantitative real-time reverse transcription PCR (qPCR): In order to compare the mRNA level 

of several Ca
2+

 channels and EMT markers mRNA was isolated with TRIzol reagent (Life 

Technologies) from vemurafenib-treated and control A375 and A2058 cells. Reverse 

transcription was performed with RevertAid Reverse Transcriptase (Thermo Scientific) and 

amplification was done with the Maxima SYBR Green maser mix (Thermo Scientific) on an 

Applied Biosystems® 7500 Real-Time PCR System. Primer pairs for E-cadherin, ZEB1, snail, 

vimentin and GAPDH (for normalization) were used as previously described 
33

. All other primers 

used are found in Supplementary Table 1. For quantification of PMCA4b transcripts, the TaqMan 

assays Hs00608066_m1 (PMCA4b) and Hs99999905_m1 (GAPDH, both from Thermo 

Scientific) were used. 

Lung colonization assay: SCID mice were obtained from the National Institute of Oncology, 

Hungary. A375-GFP, A375-PMCA4bI and II cells were injected (4x10
5
cells/0.2 ml serum free 

DMEM) into the tail veins of 11-week old female SCID mice (10 mice / group). 6 weeks after 

injection, mice were sacrificed and their lungs and the tumor tissue found in the chest cavity were 

removed. Formalin-fixed and paraffin-embedded (FFPE) tissue blocks were prepared from all 

lung and tumor tissue samples for each animal and sections were stained with hematoxylin-eosin. 

Slides were scanned with the TissueFAXS System (TissueGnostics GmbH, Vienna, Austria) 

(20x) and analyzed with the Tissue Quest program 
34

. Tumor regions were marked and their area 

was quantified. The animal-model protocol was carried out in accordance with the Guidelines for 

Animal Experiments and were approved for the Department of Experimental Pharmacology in 

the National Institute of Oncology, Budapest, Hungary (permission number: 22.1/722/3/2010). 
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Results 

PMCA4b is upregulated in BRAF mutant melanoma cells after inhibition of the BRAF-MEK-

ERK pathway 

Vemurafenib (PLX4032) and GDC0879 are low molecular weight inhibitors targeting mutant 

BRAF. They block MEK and ERK signaling selectively in cells with a BRAF
V600E

 mutation 
35

. 

Since the expression of plasma membrane Ca
2+

 ATPases are often altered in cancer 
20, 21

, we 

tested if treatment of BRAF mutant and wild type melanoma cells with these BRAF specific 

inhibitors would affect their expression pattern. We treated two BRAF wild type (MEWO, MJZJ) 

and two BRAF mutant (A375, A2058) melanoma cell lines with vemurafenib (0.5 M) and 

GDC0879 (0.5 M), and determined the level of PMCA proteins by Western blot analysis (Fig. 

1A 1and 1A2). Using isoform-specific anti-PMCA antibodies, we identified PMCA1 and 

PMCA4b proteins in these cells. While the protein level of PMCA1 was not modified by the 

treatment in any of the cell lines tested, the level of PMCA4b increased exclusively in the BRAF 

mutant cell lines. Semi-quantitative densitometric analysis of the Western blots revealed a 4-10 

fold increase in the protein level of PMCA4b in these cells (Fig. 1A2, bar graphs). Figures 1B1 

and 1B2 show PMCA4b protein level changes in A375 cells treated with increasing 

concentrations of vemurafenib. Marked upregulation of PMCA4b was seen at the 0.5 µM 

vemurafenib concentration.  Therefore, in further experiments, we treated the cells with 0.5 µM 

vemurafenib to reach maximal PMCA4b upregulation.  

The sarco/endoplasmic reticulum Ca
2+ 

ATPases (SERCAs) also play a major role in maintaining 

intracellular Ca
2+ 

homeostasis. Accordingly, we examined the changes in SERCA2 and SERCA3 

protein levels in vemurafenib treated A375 cells (Fig. 1B1) and found that only SERCA2 was 

present in this melanoma cell line, and its protein level was not modified by the treatment.  
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We also tested the effect of vemurafenib treatment on the mRNA expression of PMCA4b in the 

A375 BRAF mutant cell line (Supplementary Fig. S1) and found that vemurafenib greatly 

enhanced the mRNA expression of PMCA4b (a time-course is shown in Supplementary Fig. 

S1A). We also examined the expression of a number of Ca
2+

 channels and found that 

vemurafenib treatment did not affect that of the inositol 1,4,5-triphosphate receptor type 1-3 

(IP3R1, IP3R2, IP3R3), ORAI calcium release-activated calcium modulator 1 (ORAI1), 

ryanodine receptor 2 (RYR2) and stromal interaction molecule 1 and 2 (STIM1, STIM2) 

(Supplementary Fig. S1B) in both BRAF mutant cell lines. The mRNA level of transient receptor 

potential cation channel subfamily M member 1 (TRPM1) was strongly increased in A2058 cells 

by the treatment while its amount was negligible in A375 cells even after vemurafenib treatment. 

These results underline the selectivity of PMCA4b upregulation among the Ca
2+ 

signaling 

molecules in response to BRAF inhibition.  

MEK1 and MEK2 enzymes lie downstream of BRAF and upstream of ERK1/2 in the 

Ras/Raf/MEK/ERK signal transduction pathway 
36

 therefore we treated BRAF mutant melanoma 

cell lines (A375, A2058) with selumetinib (AZD6244) (0.5 M), a highly selective MEK1/2 

inhibitor 
37

. We found that it upregulated PMCA4b to a similar extent as the BRAF selective 

inhibitor, vemurafenib (Fig. 1C1 and 1C2). Furthermore, selumetinib treatment enhanced 

PMCA4b protein level not only in the BRAF mutant cells but also in an NRAS mutant cell line 

(MJZJ) suggesting that the BRAF/MEK signaling pathway has a key function in the altered 

protein level of PMCA4b. The relative amount of PMCA4b protein increased 3-5 fold upon 

selumetinib treatment in both cell types (Fig. 1C2).  

Increased plasma membrane abundance of PMCA4b in vemurafenib-treated BRAF mutant 

cells is associated with enhanced Ca
2+ 

clearance 
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Confocal microscopy analysis demonstrated that vemurafenib treatment substantially increased 

the level of PMCA4b protein in the plasma membrane of BRAF-mutant melanoma cells (Fig. 

2A). To study how changes in PMCA4b abundance affected Ca
2+

 signaling in these cells, we 

performed Ca
2+

 signal measurements by confocal imaging. In order to induce store-operated Ca
2+

 

entry (SOCE), the extracellular Ca
2+

 concentration was restored to 2 mM free Ca
2+

 after the 

intracellular Ca
2+

 stores were depleted in nominally zero Ca
2+

 environment
38

. In vemurafenib-

treated BRAF mutant cells, intracellular Ca
2+

 concentration declined to basal level clearly faster 

after the SOCE peak than in the untreated cells, whereas vemurafenib had no effect on Ca
2+

 

clearance in BRAF wild type cells (Fig. 2B,C1,2 and Supplementary Fig. S2). Similar results 

were obtained when the Ca
2+

 signal was initiated independently of the Ca
2+

 entry machinery 

using the Ca
2+

 ionophore, A23187 (Fig. 2D1,2,3 and Supplementary Fig. S2A). To further verify 

the role of PMCA in Ca
2+

 clearance, we used lanthanum which is a well-known inhibitor of 

PMCAs. In order to avoid altering the Ca
2+

 entry pathways we added LaCl3 immediately after the 

ionophore induced Ca
2+

 peak and found that lanthanum strongly inhibited the decay phase of the 

transient (Fig. 2D1,2). These results indicate that the up-regulated PMCA4b in BRAF mutant 

cells was fully functional and it was mostly responsible for the faster Ca
2+

 clearance after 

stimulation. 

Vemurafenib inhibits the migration of BRAF mutant melanoma cells 

Activation of the BRAF/MEK/ERK pathway changes the expression of several proteins involved 

in the migratory process 
39, 40

. Therefore, we examined the effect of vemurafenib treatment on the 

migratory activity of a BRAF wild type (MEWO) and two different BRAF mutant melanoma cell 

lines (A2058, A375) (Figure 3). The migration of the cells was recorded by time-lapse video 

microscopy for 72 hours. Representative trajectories of single cells after 48 hours of vemurafenib 
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treatment clearly show that vemurafenib slows down the migration of the BRAF mutant A375 

cell line (Figure 3A). The graphs in Figure 3B show that the inhibition of migratory activity of 

BRAF mutant cells was more pronounced after treating the cells for 48 hours (48-60 hours) while 

short (0-12 hours) exposure to the drug did not reduce (A2058) or only slightly (A375) decreased 

cell migration. The rate of inhibition coincided with the vemurafenib-induced increase in 

PMCA4b abundance that reached saturation at 48-72 hours after exposure to the drug 

(Supplementary Fig. S1A). BRAF wild type cells (MEWO) migrated much slower than the 

BRAF mutant cells and their migratory activity did not change in response to vemurafenib 

treatment, as expected (Fig. 3B).  

PMCA4b overexpression decreases the migratory activity of BRAF mutant A375 cells 

The role of store operated Ca
2+

 entry (SOCE) in melanoma migration has been proposed, but the 

role of Ca
2+

 extrusion molecules such as the PMCA has not been addressed in this respect 
13, 14

. 

Since vemurafenib markedly enhanced the abundance of PMCA4b in the plasma membrane and 

decreased cell migration, we investigated how overexpression of the PMCA4b protein affected 

melanoma cell motility. To address this we stably transfected MEWO (BRAF wild type) and 

A375 (BRAF mutant) cell lines with GFP (control) and GFP-PMCA4b (Fig. 4A, B). Western 

blot analysis showed that the newly introduced GFP-PMCA4b protein was expressed in the 

physiological range both in the two independently generated PMCA4b overexpressing A375 

(GFP-PMCA4b-I and GFP-PMCA4b-II; Fig. 4A) and the BRAF wild type MEWO cell lines. 

Confocal imaging demonstrated that the overexpressed pump localized mostly in the plasma 

membrane (Fig. 4B). Next we examined whether PMCA4b overexpression affects the 

proliferation of the BRAF-mutant cells using the BrdU incorporation assay. While 48-hour 

vemurafenib treatment strongly decreased proliferation, there were no significant differences 
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between control and PMCA4b overexpressing A375 cells (Fig. 4C).We also showed that the 

expression levels of BRAFV600E, pERK  and the Ca
2+

 pump of the internal Ca
2+

 stores SERCA2 

were not altered by PMCA4b overexpression (Fig. 4A, Supplementary Fig. S3A).  

Next we compared cell motility of A375-GFP and A375-GFP-PMCA4b cell lines and found that 

PMCA4b strongly decreased the migratory activity of A375 cells (Fig. 5A1,2 and Supplementary 

Movies S1 and S2). Similarly to the vemurafenib-treated control cells, GFP-PMCA4b 

overexpressing A375 cells migrated significantly shorter distances in the given time frame than 

the untreated GFP-expressing A375 cells (Fig. 5A1,2).  

Changes in motility can be correlated with alterations in cytoskeletal and morphology properties 

of cells 
41

. Remarkably, the reduced migratory activity of GFP-PMCA4b BRAF mutant cells 

associated with a profoundly altered cell shape. Figure 5B1 show that the GFP-PMCA4b 

expressing cells are more round, with a typical front-to-rear polarity, in contrast to the slender 

shape of GFP expressing control cells showing more outgrowth that also changes frequently 

during migration (compare Supplementary Movies 1 and 2). Significant differences were found 

among the morphological parameters of the different types of cells; PMCA4b expressing cells 

showed significantly larger area and circularity, and smaller aspect ratio than control A375 cells 

(Fig. 5B2, bar graphs).  

Because of this change in morphology, we analyzed the expression of certain EMT marker 

proteins, such as E-cadherin, ZEB1, Snail and vimentin 
42

 by real-time quantitative PCR but no 

difference in their mRNA expression was found between control and PMCA4b overexpressing 

A375 cells. Of note, there was no detectable E-cadherin expression in the A375 cells with or 

without GFP-PMCA4b either (Supplementary Fig. S3B).  
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Altogether, these data demonstrate that overexpression of PMCA4b changes morphology and 

reduces migratory activity of BRAF mutant A375 cells without having any significant anti-

proliferative effect. It is important to note that selective inhibition of BRAF by vemurafenib 

inhibits both proliferation and migratory activity of these cells.  

PMCA4b overexpression decreases the metastatic activity of BRAF mutant A375 cells in vivo 

Since migration is a key step in metastasis formation, we compared the metastatic activity of 

A375-GFP and A375-GFP-PMCA4b cell lines in vivo by performing a lung colonization assay. 6 

weeks after tail vein injection, the number of animals with lung metastasis was significantly 

lower in the groups injected with PMCA4b overexpressing A375 cells as compared with controls 

(Fig. 6A). The total area of tumors was dramatically reduced in mice injected with the A375-

GFP-PMCA4b cells than in the control group (Fig. 6B), as representative pictures of cross 

sections of lungs from A375-GFP-, A375-GFP-PMCA4b-I- and A375-GFP-PMCA4b-II-injected 

mice show. Of note, control A375 cells could establish tumors in the lung parenchyma and 

smaller groups of tumor cells invaded the normal lung tissue along blood vessels or bronchioles 

in five out of the 8 tumor bearing mice. In contrast, A375-GFP-PMCA4b-I and-II cells formed 

smaller tumors and their majority was growing on the surface or in the connective tissue 

compartment of the lungs. Five out of the six tumor-bearing mice injected with A375-GFP-

PMCA4b-I or -II cells showed no sign of invasion of the lung parenchyma. This is the first 

demonstration that PMCA4b has the ability to reduce the metastatic potential of a BRAF-mutant 

melanoma cell line. 

In order to demonstrate that PMCA4 expression is related to the malignant progression of 

melanoma, we analyzed two datasets in the ONCOMINE database 
43

 where benign nevi and 
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melanoma specimens could be directly compared (Suppl. Fig. 4). In both datasets the proportion 

of cases with high PMCA4 expression was higher in benign nevi than in melanoma cases 
44, 45

. 

Pooling the data from the two cohorts, 21 out of 27 (77%) benign nevi had high PMCA4 

expression in contrast to 26 out of 69 (38%) melanomas.  

Discussion 

In this paper we describe for the first time that a particular variant of the plasma membrane Ca
2+

 

transport ATPase, PMCA4b, regulates cell motility and metastatic capacity of BRAF mutant 

melanoma cells. We showed that PMCA4b is upregulated upon inhibition of mutant BRAF. 

Further, we demonstrated that both vemurafenib treatment and PMCA4b overexpression 

inhibited migration of BRAF mutant cells and the reduced motility of PMCA4b expressing cells 

was accompanied by a profound change in cell shape. Moreover, we found that overexpression of 

PMCA4b suppressed metastatic activity of the invasive BRAF mutant A375 cell line. While 

PMCA4b inhibited motility and metastatic activity of BRAF mutant cells, it did not affect cell 

growth which by definition is a characteristic of metastasis suppressor genes 
46, 47

.  

It has been suggested that enhanced Ca
2+

 signaling through store-operated Ca
2+

 entry can increase 

cell motility and metastasis. Increased expression of STIM and ORAI proteins caused increased 

migratory activity of breast cancer 
48

, rat aortic vascular smooth muscle 
49

 and melanoma cells 
50, 

51
. Inhibition of SOCE by knockdown of STIM and ORAI proteins caused a marked decrease in 

the migratory and metastatic potential of tumor cells. In good accordance with these findings the 

down-regulation of cGMP-specific phosphodiesterase PDE5A induced elevated cytosolic Ca
2+

 

levels specifically in BRAF mutant melanomas that resulted in increased contractility and 

induction of invasion 
52

. We may hypothesize that down-regulation of PMCA4b expression also 
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contributes to the elevated cytosolic Ca
2+

 levels and enhanced cell motility of malignant cells. In 

our study we demonstrated that in BRAF mutant cells PMCA4b enhanced cytosolic Ca
2+

 

clearance induced either through the activation of the store operated channels or by the 

ionophore, A23187. We showed previously that PMCAs can influence the pattern of SOCE 

mediated Ca
2+

 signals 
38

. These findings support the notion that PMCA4b decreases the 

migratory activity of melanoma cells at least partially through opposing the SOCE mediated Ca
2+

 

signal. This is supported by the fact that the expression level of store operated Ca
2+

 channels 

(ORAI1, STIM1 and 2) and inositol 1,4,5-triphosphate receptors type 1-3 (IP3R1, IP3R2, IP3R3) 

were not altered by vemurafenib treatment. 

Our data is in line with other recent observations on endothelial cell migration. It has been shown 

that PMCA4 localizes mostly at the cell front of migrating human umbilical vein endothelial 

(HUVEC) cells and that it is essential in maintaining the Ca
2+

 gradient necessary for directed cell 

migration 
53

. Another group demonstrated that PMCA4 inhibited the motility of VEGF-activated 

endothelial cells through its inhibitory effect on the calcineurin/NFAT pathway 
54

. This is the 

first time, however, to show that PMCA4b changes shape and motility of a highly aggressive 

tumor cell line. 

Identification of metastasis suppressor genes is of utmost importance since more than 90 % of 

cancer patients die from metastasis. Our findings suggest that PMCA4b is a major regulator of 

cell migration and thus of metastatic potential in an exceedingly metastatic malignancy. We 

found that both mutant BRAF and MEK inhibitor treatment increased PMCA4b abundance in 

malignant melanoma cells. Furthermore, there were a significantly lower number of cutaneous 

melanoma cases with high PMCA4b expression when compared to benign nevi in two gene 

expression microarray datasets available through the ONCOMINE database. These finding 
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further supports the association of malignant progression with the decrease of PMCA4b 

expression in melanoma.  

In summary, here we demonstrate for the first time that PMCA4b is a metastatic suppressor 

protein. We discovered that enhanced PMCA4b abundance induced significant changes in cell 

shape and motility of a BRAF mutant cell line without affecting proliferation. The pronounced 

change in cell shape and motility suggest that PMCA4b expression can alter actin polymerization 

dynamics in highly metastatic cell types and hence inhibit metastasis. Our data support the idea 

that the enhanced Ca
2+

 clearance contributes to the anti-metastatic function of the pump.  
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Figure legends 

Figure 1. PMCA4b is upregulated in BRAF mutant melanoma cells after inhibition of the 

BRAF-MEK-ERK pathway 

  (A1) Two BRAF wild type (MEWO, MJZJ) and two BRAF mutant (A375, A2058,) cell lines 

were treated with mutant BRAF inhibitor vemurafenib (V; 0.5 µM, 72 h) or GDC0879 (G; 0.5 

µM, 72 h), and the protein level of PMCA4b, PMCA1, pERK1,2 and ERK1,2 proteins were 

analyzed by Western Blotting of total cell lysates (20 µg per sample). (A2) Densitometric 

analysis of the Western Blots. Changes in PMCA4b protein level were expressed as fold increase 

over the untreated controls. (B1) Change of PMCA4b, SERCA2 and SERCA3 proteins in the 

BRAF mutant A375 cell line upon treatments with the indicated amounts of vemurafenib for 72 

hours. (B2) Concentration dependent change of PMCA4b protein in the BRAF mutant A375, 

A2058 and the BRAF wild type MEWO cell lines. Changes in PMCA4b protein level were 

expressed as fold increase over the untreated controls. Bars represent means ± SE from three to 

five independent experiments. Based on these results, 0.5 µM vemurafenib concentration was 

chosen for further experiments.(C1) BRAF mutant (A375, A2058), BRAF wild-type but NRAS 

mutant (MJZJ) and BRAF and NRAS wild-type (MEWO) cell lines were treated with MEK 

inhibitor  selumetinib (0.5 µM) for 72 hours. (C2) Densitometric analyses of PMCA4b levels of 

total cell lysates (20µg per sample). Data are expressed as fold increase over the untreated 

controls. Bars represent means ± SE from two to three independent experiments. 

Figure 2. Enhanced abundance of PMCA4b in BRAF mutant cells is associated with an 

enhanced Ca
2+ 

clearance. (A) Immunofluorescence staining of BRAF mutant (A375, A2058) 

and BRAF and NRAS wild-type (MEWO) melanoma cells. Cells were treated with 0.5 µM 

vemurafenib for 72 hours, then immunostaining was performed with anti-PMCA4b antibody 
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(JA3). Images were taken by confocal microscopy with 60X magnification. (B, C1) Ca
2+

 

signaling measurement in vemurafenib-treated (0.5µM, 48hours) melanoma cells. Intracellular 

Ca
2+

 level was detected by Fluo-4 Ca
2+

 indicator. After Ca
2+

- store depletion by thapsigargin (Tg) 

and ATP, a transient increase in intracellular Ca
2+

 was generated by allowing Ca
2+

 entry through 

the store operated Ca
2+

 channels (SOCs). Data represent fluorescent intensity values (F/F0) of 10-

30 cells and are representative of three independent determinations. (D1, 2) Intracellular Ca
2+

 

signal was initiated by the Ca
2+

 ionophore A23187 in control and vemurafenib-treated A375 

cells. External media was changed to HBSS supplemented with 2 mM Ca
2+

 and 2µM A23187 

was added as indicated. Treatment with Lanthanum (1mM, LaCl3) was applied when peak 

intensity was reached. Data represent fluorescent intensity values of 10-15 cells. (C2, D3) Half 

peak decay time of the second phase of the transients (SOCE) and of the A23187 induced 

transient in control and vemurafenib-treated A375 cells were determined. Bar graphs are mean ± 

SD of individual cells taken from two to three independent experiments. Significances between 

control and vemurafenib-treated cells are denoted by *** (P<0.001); two-tailed unpaired t-test. 

Figure 3. Vemurafenib inhibits the migration of BRAF mutant melanoma cells. Migration of 

BRAF wild type (MEWO) and BRAF mutant (A2058, A375) cell lines was followed by time-

lapse video microscopy for 72 hours in the presence or absence of vemurafenib (0.5 µM). (A) 

Single cell migration trajectories of untreated A375 (left graph) and vemurafenib-treated A375 

(right graph) between 48-72 hours. Plots show migration trajectories of 20 -24 cells with the 

starting position of each trajectory translated to the origin of the plot. (B) Net displacement was 

determined between 0-12 and 48-60 hours. Data shown is mean +/- SEM of at least four 

independent measurements. ** (P<0.01), ** (P<0.01); two tailed Student’s t-test.  
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Figure 4. Generation of PMCA4b expressing cell lines. Wild type BRAF (MEWO) and mutant 

BRAF (A375) cells were stably transfected with GFP or GFP-tagged PMCA4b. (A) A375-

GFP4b-I and A375-GFP4b-II cell lines were generated independently from each other. (B) GFP-

PMCA4b localized mainly in the plasma membrane. Images were taken by confocal microscope 

with 60X magnification. Scale bar, 20 µm. (C) Cell proliferation was analyzed by measuring 

BrdU incorporation. Data shown is the mean +/- SEM of three independent measurements. 

Asterisks denote significant differences between vemurafenib treated versus untreated cells 

(*: P<0.05; **: P<0.01, two tailed Student’s t-test).  

Figure 5. PMCA4b overexpression decreased the migratory activity of BRAF mutant A375 

cells. (A) The migratory activity of A375-GFP, A375-GFP-PMCA4b-I, A375-GFP-PMCA4b-II, 

MEWO-GFP and MEWO-GFP-PMCA4b cells was analyzed by time-lapse video microscopy for 

16 hours, as described above. (A1) shows single cell migration trajectories of A375-GFP (left 

graph) and A375-GFP-PMCA4b (right graph). Plots show migration trajectories of 25 -30 cells 

with the starting position of each trajectory translated to the origin of the plot. (A2) Net 

displacement of cells was evaluated for 12 hours of migration. Data shown is mean +/- SEM of at 

least four independent measurements. Significances between control and vemurafenib-treated 

cells are denoted by ** (P<0.01) *** (P<0.001); two-tailed unpaired t-test.  (B) Cell-shape 

analysis of the A375-GFP and A375-GFP-PMCA4b cells. (B1) Images show contours of GFP- 

and GFP-PMCA4b-expressing A375 cells. (B2) Area, circularity and aspect of ratio ((major axis) 

/ (minor axis)) parameters of A375 cells expressing GFP (n = 249) or GFP-PMCA4b (n = 204) 

were compared. Bars represent means ± SEM from 3 independent experiments. Asterisks (***) 

denote significant differences compared to cells expressing GFP (p<0.0001, two-tailed unpaired 

t-test).  
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Figure 6. PMCA4b overexpression decreased the metastatic potential of BRAF mutant 

A375 cells. For in vivo colony formations assays, 4x10
4
 cells / mouse (n=10) were injected into 

the tail-vein and mice were sacrificed after 6 weeks. (A) The number of animals with lung 

metastasis was significantly reduced in groups injected with PMCA4b overexpressing A375 cells 

as compared with controls (Chi-square test, P=0.034) (B) The graph shows the total area of 

tumors in each group after the analysis of hematoxylin-stained tissue sections. (C) Representative 

images of hematoxylin-eosin sections from mice injected with A375-GFP, A375-GFP-PMCA4b-

I or A375-GFP-PMCA4-II cells. White and black asterisks indicate tumors growing in the lung 

parenchyma and in the associated connective tissue, respectively. Black arrows indicate tumor 

cell invasion along vessels and bronchiole. Black arrowheads show tumors growing in the 

interlobular space.  

 

 















Supplementary Figures and Legends:  

 
 

Figure S1. Effect of vemurafenib on mRNA expression of Ca
2+

 channels and PMCA4b in 

A375 cells. (A) Expression of PMCA4b was analyzed at mRNA and protein levels after 

0.5 M vemurafenib treatment at the indicated time points by quantitative real-time PCR and 

Western Blot analysis, respectively. (B) A2058 and A375 cells were treated with 0.5 µM of 

the mutant BRAF inhibitor vemurafenib (V) or solvent as control (C) for 48 h. Expression of 

inositol 1,4,5-triphosphate receptor type 1-3 (IP3R1, IP3R2, IP3R3), ORAI calcium release-

activated calcium modulator 1 (ORAI1), ryanodine receptor 2 (RYR2), stromal interaction 

molecule 1 and 2 (STIM1, STIM2), transient receptor potential cation channel subfamily M 

member 1 (TRPM1was analyzed by quantitative real-time PCR analysis. Expression was 

normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and bars represent 

means and SEM of two independent experiments performed in duplicates. N.D., not 

detectable.  

 

 



 

Figure S2. Ca
2+

 signaling measurement in control or 0.5 µM vemurafenib treated (48 hours) 

non-BRAF mutant melanoma cell lines MZJZ and MEWO. Measurement was performed as 

described in figure 2.  

 

 

Figure S3.  (A) Expression of SERCA2 in vemurafenib treated and control GFP and GFP-

PMCA4b expressing cell lines. (B) EMT marker proteins (E-cadherin, ZEB-1, Snail and 

vimentin) were compared between A375-GFP and A375-GFP-PMCA4b cells by quantitative 

real-time PCR analysis. N.D., not detectable. 



 

Figure S4. Gene expression microarray data analysis for PMCA4b expression. (A,B) 

Using the ONCOMINE platform, cutaneous melanoma samples showed a decreased 

PMCA4b expression when compared to benign nevi in two gene expression microarray 

dataset where direct comparison was possible. (C) After pooling the data from the two cohorts 

there was a significantly higher number of cases with low PMCA4b expression in the 

cutaneous melanoma group (p= 0.0006).    

Supplementary movies: 

Supplementary Movie S1. Three-day long time-lapse videomicroscopy measurement of 

A375-GFP- cells. Most cells display an elongated shape with pronounced extensions and 

demonstrate very high migratory activity.  

Supplementary Movie S2. Three-day long time-lapse videomicroscopy measurement of 

A375-GFP-PMCA4b cells. Note the altered morphology of the cells and the profound 

decrease in migratory activity as compared to Supplementary Movie S1.  

 

 



Supplementary table S1: 

Primers used for SYBR Green expression analysis 

Oligo Name Sequence (5'-3') 

IP3R1 forward  TTG GGC CTG GTT GAT GAT CG 

IP3R1 reverse  TTT GGG CAG AGT AGC GGT TC 

IP3R2 forward  AGA AGA ATG CCA TGC GTG TG 

IP3R2 reverse  ACC CTC GCT TCT CAG TTT CC 

IP3R3 forward  CCT AAG AAG TTC CGT GAC TG 

IP3R3 reverse  TCC TTG TCC TGC TTA GTC TG 

ORAI1 forward  TGG ACG CTG ACC ACG ACT AC 

ORAI1 reverse  CCT CGA TGT TGG GCA GGA TG 

RYR2 forward  ATG TAT CTG TGC TGC CTG TC 

RYR2 reverse  CTT CTG ATC GCT GCT TAG AG 

STIM1 forward  GAT GGA CGA TGA TGC CAA TG 

STIM1 reverse  GAA GGT GCT GTG TTT CAC TG 

STIM2 forward  AAC GAC ACT TCC CAG GAT AG 

STIM2 reverse  ACC ACA TCC AAT GCC TTG AG 

TRPM1 forward  GTG TCA GCA CAG GTG TTA TC 

TRPM1 reverse  TCC TTT CCA ACC AGG TCT TC 
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