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Abstract

Background

Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol

(NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) charac-

terized by liver injury and fibrosis. This study was conducted to further characterize the de-

velopment of NASH in this large animal model.

Methods

Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24

weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8,

16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed

at week 24.

Results

The NASH diet group developed metabolic syndrome and progressive histologic features of

NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive bal-

looning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate

fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed

through week 24. The NASH diet group showed increased hepatocyte apoptosis that corre-

lated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol

or triglycerides.
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Conclusions

This report further characterizes the progression of diet-induced NASH in the Ossabaw

swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can

occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte

ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte

apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic

free fatty acids and had no correlation with hepatic triglycerides.

Introduction
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the Western
world, and it is characterized by intracellular lipid accumulation in hepatocytes that is not due
to a secondary cause such as significant alcohol intake. The prevalence of NAFLD has been es-
timated at 20–34% in the general population, but it is considerably higher in certain popula-
tions such as individuals being evaluated for bariatric surgery [1,2].

NAFLD is composed of a range of disorders from relatively benign simple steatosis to non-
alcoholic steatohepatitis (NASH), which is characterized by lobular inflammation, hepatocellu-
lar ballooning, and pericellular fibrosis that can progress to cirrhosis. NASH is predicted to
become the predominant cause of cirrhosis requiring orthotopic liver transplantation in West-
ern nations within the next two decades [3]. These features highlight the pressing need to im-
prove our understanding of the pathophysiology and progression of NASH.

Animal models hold promise for improving our understanding of the pathogenesis of
NASH and allow the testing of potential therapies. Rodent are widely employed, but there are
some significant differences in the histopathologic and pathophysiologic features seen in ro-
dent models and human NASH. Furthermore, it is difficult to conduct therapeutic investiga-
tions using novel compounds in these small animal models.

Ossabaw miniature swine, sharing many physiological similarities with humans, are an opti-
mal and practical model for preclinical research into the pathophysiology of a variety of dis-
eases including type 2 diabetes mellitus [4–6], metabolic syndrome [7,8], and NASH [9].
Ossabaw miniature swine are derived from feral swine that are descendants of swine from
Spain released on Ossabaw Island off the coast of Georgia in the 16th century. On this island,
food is abundant in the fall with starvation conditions in the winter. The relative isolation of
these swine resulted in a naturally selected “thrifty phenotype” that allows them to store large
amounts of fat to survive the feast and famine ecology. This thrifty phenotype confers a pro-
pensity to long-term complications of food excess such as metabolic syndrome and related dis-
orders [10]. Ossabaw miniature swine fed an excess calorie diet high in fat, cholesterol, and
fructose develop insulin resistance [8,9,11,12]. Using dietary manipulation, we found that
Ossabaw swine fed a “Western” or “NASH diet” develop severe metabolic syndrome with a
markedly abnormal liver histology that mimics human NASH [9].

The current study focuses on further defining the disease progression in the Ossabaw swine
fed the NASH diet as compared to a lean control group fed standard chow. At 0, 8, 16 and 24
weeks after initiating the dietary intervention, these animals were subjected to extensive pheno-
typing including liver histology. We quantified liver triglycerides, free fatty acids, and choles-
terol and examined their relationship with hepatocyte apoptosis. Our primary aim was to
develop a more dynamic picture of NASH development in these animals and make it useful for
future clinical research.
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Materials and Methods

Animal usage
All procedures performed for this study followed the guidelines of the Indiana University Ani-
mal Care and Use Committee and complied with the recommendations outlined by the Na-
tional Research Council Principles of Laboratory Animal Care, and the American Veterinary
Medical Association Panel on Euthanasia [13,14]. Twelve female Ossabaw miniature swine
aged approximately six months at the start of the study were fed either standard chow (5L80)
or NASH diet (5B4L) for 24 weeks.

Experimental groups
Control group: Six swine received standard chow consisting of 18.5% calories from protein,
71% calories from complex carbohydrates, 10.5% calories from fat, and normal concentrations
of methionine and choline (3500 ppm and 1500 ppm, respectively). These swine consumed an
average of approximately 2300 kcal of standard chow per day. NASH diet group (n = 6) swine
fed a fructose-based atherogenic diet (previously termed modified atherogenic diet [9] custom
formulated by Purina TestDiet, Inc., Richmond, IN) providing 18% calories from fructose,
17% calories from protein (added casein), 43% calories from fat (admixture of partially hydro-
genated soybean oil, coconut oil and lard), and methionine and choline at concentrations of
3500 ppm and 700 ppm, respectively [9]. These swine consumed an average of approximately
4500 kcal per day. Swine in both the control and NASH diet groups were given free access to
1000 grams of feed daily and unlimited access to water. Each of the swine completely con-
sumed all of the provided feed within one hour.

Physical measurements and sample collection
At baseline, week 8, week 16 and week 24 of dietary intervention, body weight and anatomical
measurements were obtained, blood pressure was measured using a tail cuff sphygmomanome-
ter, and an intravenous glucose tolerance test (IVGTT) was performed using a previously de-
scribed method [11,12,15,16]. Briefly, swine were feed deprived for 8 hours and then subjected
to blood draw and an IVGTT. Glucose (0.5 g/kg) was injected intravenously and arterial blood
samples were obtained before (-5 min) and at 5, 10, 20, 30, 40, 50, and 60 min after the injec-
tion. Plasma was frozen in liquid nitrogen, then stored at -80°C until analysis for glucose (glu-
cose oxidase; Sigma-Aldrich, St. Louis, MO) and insulin (Millipore, Billerica, MA). Serum
samples were collected at weeks 0, 8, 16 and 24 and liver samples were obtained percutaneously
at weeks 0, 8 and 16 weeks and surgically prior to sacrifice at week 24. At week 24, animals
were sacrificed via excision of the heart under general anesthesia according to a previously de-
scribed protocol [17]. Liver biochemistries, glycemic measurements, and lipid profiles were
measured in fasting serum samples by Antech (Antech Diagnostics, Fishers, IN) at baseline
and at weeks 8, 16 and 24.

Tissue preparation and histological grading
The liver cores obtained at the biopsy time points (baseline, week 8 and week 16) and a portion
of the left lobe of the liver obtained at sacrifice (week 24) were flash-frozen and stored at -80°C
or fixed in formalin, processed and embedded in paraffin for subsequent hematoxylin and
eosin (H&E), trichrome, oil red-O and Periodic acid-Schiff staining. The slides were examined
by light microscopy and blindly scored by one human and one veterinary hepatopathologist as
described previously [9].
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Hepatic fatty acids, cholesterol, triglycerides, and apoptotic
measurements
Liver samples obtained at week 24 were employed. 100 mg of liver tissue was placed in 1 ml of
PBS and homogenized using a Polytron Model PT 10–35 GT-D homogenizer (Kinematica, Lu-
zern, Switzerland). The homogenate was then centrifuged at 10,000 x g for 5 minutes at 4 C
and the supernatant retained for the assays. Liver triglycerides, free fatty acids, total and free
cholesterol were measured using colorimetric assay kits per the manufacturer’s protocol (Biovi-
sion, Milpitas, CA). Caspase 3/7 activity was measured using the Apo-ONE Homogeneous
Caspase-3/7 assay per the manufacture’s protocol (Promega, Madison, WI). Terminal deoxy-
nucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed on a paraffin
embedded sections using the fluorescein In Situ Cell Death Detection Kit, POD combined with
DAB substrate per the manufacturer’s protocol (Roche Applied Science, Indianapolis, IN). He-
patocyte apoptosis was quantified by counting the number of TUNEL positive cells in twenty
representative 200x microscopic fields across the section and the total number of cells per field
was determined by counting the number of nuclei present in a representative quadrant in each
field and multiplying by four. The apoptotic index was calculated as the number of TUNEL
positive cells per 1000 cells.

Data analysis
Data are expressed as mean ± standard deviation. Student’s t-test was used to detect significant
differences between two intervention groups. Significant differences between different time
points and baseline were also compared within each group. Linear mixed effect with random
intercept and slope model was used for intravenous glucose tolerance test (IVGTT) data analy-
sis. Data from -5 min and 0 min baseline time points were averaged and subtracted from other
time points. In an attempt to avoid a type II interpretive error (a false negative), significance
was reported at the P<0.05 and P<0.10 levels [18].

Results

Body characteristics
Phenotypic characteristics of the swine are displayed in Table 1. At the 8, 16, and 24 week time
points, the NASH diet group weighed significantly more than the control group (Table 1.
p = 0.04, p = 0.02, p = 0.026, respectively). Mean body circumference (a measurement analo-
gous to waist circumference) was significantly increased in the NASH diet group compared to
the control group at weeks 8 and 16 (p = 0.002 and 0.012, respectively) (S1 Table). Compared
to the control group, the NASH diet group had significantly increased systolic (p = 0.01 and
p = 0.003, respectively) and diastolic blood pressure at weeks 16 and 24 (p<0.001 and
p = 0.014, respectively). Liver weight at week 24 was significantly higher in swine fed NASH
diet compared to controls (2073 ± 921 vs. 844 ± 191 gm, p = 0.01).

Serum chemistry
The NASH diet group displayed transaminase elevations after 16 weeks of feeding and a trend
of increasing serum AST and ALT levels (p<0.1) was also observed (Table 1). At week 24,
serum AST, ALT, triglyceride levels in the NASH diet group were more than double those of
control swine (Table 1). While serum cholesterol progressively increased in the NASH diet
group. At week 24, serum cholesterol in the NASH diet group was dramatically higher than in
the control group (610.5 ± 121 vs. 79 ± 7 mg/dL, p = 0.006) (Table 1).
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Serum glycemic measures by IVGTT
Blood glucose levels for 60 minutes following IV glucose challenge were not different at base-
line (p = 0.7) and at week 8 (p = 0.9) between two groups. Blood glucose levels were higher in
the NASH diet group with statistical significance at week 16 (p = 0.009) and borderline signifi-
cance at week 24 (p = 0.1) (Fig 1). While serum insulin levels did not change significantly in ei-
ther group throughout the intervention period, swine in the NASH diet group had significantly
higher HOMA-IR score at week 24 compared to baseline (Table 1).

Liver histology
Serial liver biopsies of swine in the NASH diet group demonstrated progressive histological
changes as described in Table 2 and Fig 2. Feathery and enlarged hepatocytes, consistent with
hepatocyte ballooning, started to appear at week 8 and became more prominent at weeks 16
and 24. By week 24, five out of six swine receiving NASH diet exhibiting extensive hepatocyte
ballooning (>90% of the hepatocytes). Kupffer cell vacuolization was first observed at week 8,
and it became progressively more prominent at weeks 16 and 24. Pericellular fibrosis was first
evident at week 16 and it became more prominent at week 24. At week 16, 3 out of 6 swine in
the NASH diet group exhibited mild fibrosis but by week 24, 5 out of 6 swine showed moderate
fibrosis (Fig 2). Of note, the NASH diet group demonstrated no evidence of significant macro-
vesicular steatosis or lobular inflammation throughout the dietary intervention. Liver histology
of swine in the control group remained largely unchanged throughout the intervention period.
Electron microscopic examination at week 24 revealed normal hepatocytes in control group
(Fig 3A and 3C), but swine hepatocytes in the NASH diet group had copious membrane-
bound vesicles consistent with autophagolysosomes filled with electron-dense material ar-
ranged as whorled lamellar structures (Fig 3B and 3D).

Apoptosis
Apoptosis was measured in the liver at week 24 through TUNEL assay which detects nuclear
DNA fragmentation which is an important hallmark of the late stages of apoptosis. The hepatic
apoptotic index (TUNEL positive cells per 1000 cells) was significantly higher in the NASH

Fig 1. IV glucose tolerance tests of control and NASH diet swine. Time is indicated as minutes following
glucose injection. Blood glucose during the first 60 minutes after IV glucose challenge was higher in swine fed
NASH diet at weeks 16 and 24.

doi:10.1371/journal.pone.0124173.g001
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diet group compared to swine in the control group (Fig 4A) (p = 0.0125). Similarly, hepatic cas-
pase 3/7 activity at week 24 was significantly higher in the NASH diet group compared to the
control group (Fig 4B) (p = 0.0397).

Liver lipid measurements
Changes in hepatocyte lipid species have been proposed to play an important pathophysiologic
role in NASH. To further examine this we determined the level of total cholesterol, free choles-
terol, esterified cholesterol, free fatty acids, and triglycerides in the liver at week 24 (Table 3).
These measurements could not be performed at other points because insufficient liver tissue
was available from percutaneous liver biopsy.

Liver cholesterol levels were nearly four-fold higher in the NASH diet group compared to
control group (10.4 ± 1.5 vs 2.6 ± 0.23 nmol/mg, p<0.0001) (Fig 5A). Liver free cholesterol was
significantly higher in the NASH diet group (6.2 ± 3.4 vs 2.0 ± 0.4 μg/mg, p = 0.03) (Fig 5B)
and esterified cholesterol was also higher in the NASH diet group but this difference was of
borderline statistical significance (4.22 ± 4.04 versus 0.59 ± 0.33 μg/mg, p = 0.08) (Fig 5C). He-
patic free fatty acid levels were higher in the NASH diet group but this difference did not reach
statistical significance (144.7 ± 137 versus 28 ± 22, p = 0.09) (Fig 6A). As described previously

Table 2. Histologic features of NASH in serial liver biopsies of both groups of swine.

Baseline Week 8 Week 16 Week 24

CONTROL

Macrovesicular steatosis 0/4 0/6 0/6 0/6

Hepatocyte ballooning 0/4 1*/6 0/6 1*/6

Kupffer cell vacuolization 0/5 0/6 0/6 0/6

Lobular Inflammation 1/5 0/6 0/6 0/6

Extramedullary hematopoiesis 0/4 0/6 0/6 1/6

Fibrosis 0/4 0/6 0/6 0/6

NASH

Macrovesicular steatosis 0/3 1/6 0/6 0/6

Hepatocyte ballooning 1/5 1/6 4/6 5/6

Kupffer Cell vacuolization 1/5 5/6 5/6 5/6

Lobular Inflammation 0/3 0/6 0/6 0/6

Extramedullary hematopoiesis 1/3 0/6 1/6 5/6

Fibrosis 1/3 1/6 3/6 5/6

¶Several percutaneous liver biopsy specimens from baseline were gelatinous and bloody precluding

adequate examination

*One swine in the control group at week 8 and another swine in the control group at week 24 showed <5%

hepatocyte ballooning. The NASH diet group demonstrated progressive histological changes of NASH. In

the NASH group, feathery and enlarged hepatocytes, consistent with hepatocyte ballooning, started to

appear at week 8 and became more prominent at weeks 16 and 24. By week 24, five out of six swine

receiving NASH diet exhibiting extensive hepatocyte ballooning (>90% of the hepatocytes). Kupffer cell

vacuolization was first observed at week 8, and it became progressively more prominent at weeks 16 and

24. Pericellular fibrosis was first evident at week 16 and it became more prominent at week 24. At week 16,

3 out of 6 swine in the NASH diet group exhibited mild fibrosis and by week 24, 5 out of 6 swine showed

moderate fibrosis. Of note, the NASH diet group demonstrated no evidence of significant macrovesicular

steatosis or lobular inflammation throughout the dietary intervention. Liver histology of swine in the control

group remained unchanged throughout the intervention period.

doi:10.1371/journal.pone.0124173.t002
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[17], hepatic triglyceride concentration was not significantly different between the two groups
(76.3 ± 28 versus 50.5 ± 38. 8, p = 0.2) (Fig 6B).

Hepatic caspase 3/7 activity significantly correlated with total (R2 = 0.37, p = 0.03) and free
hepatic cholesterol (R2 = 0.49, p = 0.01) but not with esterified cholesterol (R2 = 0.01, p = 0.76)
(Fig 5D, 5E, and 5F). Hepatic caspase 3/7 activity had no correlation with hepatic triglyceride
levels (R2 = 0.07, p = 0.41) but a trend towards correlation with hepatic free fatty acids (R2 =
0.31, p = 0.06) (Fig 6C and 6D).

Discussion
This study confirms that Ossabaw swine fed NASH diet consisting of excessive fructose, satu-
rated fat and cholesterol is a reproducible model for inducing liver cell injury and fibrosis asso-
ciated with metabolic syndrome (obesity, dyslipidemia, hypertension, and glucose intolerance)
in a large animal. Although not described in this paper, these animals developed severe truncal

Fig 2. Liver histology of representative control diet (control swine # 957) and NASH diet swine (NASH
diet # 954 and 943). For each animal, top row is H&E and bottom row is trichrome staining; the columns are
weeks 8, 16 and 24, respectively. All sections are at 200x magnification except for all week 24 H&E staining,
and week 8 and 16 for NASH 943 which are 400x magnification. Control 957 swine showed no evidence of
liver injury or fibrosis throughout the experiment. Livers from swine fed NASH diet showed progressive
hepatocyte ballooning degeneration (as evidenced by wispy clear cytoplasm), Kupffer cell accumulation, and
fibrosis (indicated by an arrow).

doi:10.1371/journal.pone.0124173.g002
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Fig 3. Liver histology by electronmicroscopy (EM) (A-D 21,400X). A and C: An EM section from a control swine hepatocyte at week 24 shows no
accumulation of abnormal material.B and D: An EM section of the liver from a swine fed NASH diet at week 24. Hepatocytes were filled with electron-dense
material arranged as whorled lamellar structures, located within membrane-bound vesicles (white arrows) consistent with autophagolysosomes.

doi:10.1371/journal.pone.0124173.g003
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obesity and extensive coronary artery disease, two additional features of NAFLD in humans.
There are numerous small animal models of NAFLD, NASH and even hepatocellular carcino-
ma described in the literature [19], but a large animal model, while expensive and difficult to
develop, offers certain benefits such as the ability to perform serial liver biopsies, investigating
multiple organ systems simultaneously, and test novel agents to prevent or reverse NASH
[20,21]. In addition, a large animal model is essential to obtain Food and Drug Administration
approval for clinical studies in humans [22].

The main observations in this study are that: (a) hepatocyte injury and fibrosis in response
to NASH diet can occur in the absence of macrovesicular steatosis or excess triglyceride accu-
mulation; (b) in general, hepatocyte ballooning precedes the development of fibrosis; (c) there
is increased hepatocyte apoptosis in the animals fed the NASH diet; and (d) hepatocyte apopto-
sis correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and
had no correlation with hepatic triglycerides.

There is an evolving body of literature suggesting that hepatic triglyceride accumulation is
not relevant in the overall pathogenesis of steatohepatitis and progressive fibrosis. Our study
provides compelling evidence supporting this notion. To our knowledge, our animal model
may be the first of its kind to exhibit extensive cell injury and fibrosis and yet not show

Fig 4. Quantification of hepatic apoptosis at week 24. A: TUNEL assay was performed on paraffin embedded sections. The NASH diet group had
significantly higher apoptotic index (number of TUNEL positive cells per 1000 cells) (p = 0.0125). B:Hepatic caspase 3/7 activity shown in fluorescence
arbitrary units. Caspase 3/7 activity is significantly higher in NASH diet group than the control diet fed group (p = 0.0397). All data was presented as
Mean ± SEM. * indicates statistically significance difference between the NASH diet and the control diet groups.

doi:10.1371/journal.pone.0124173.g004

Table 3. Liver Lipid Quantification in NASH and Control Swine at Week 24.

NASH diet group (n = 6) Control group (n = 6) p value

Free fatty acids (pmol/mg liver) 144.7 ±137 28.1 ± 22 0.09

Triglycerides (nmol/mg liver) 76.3 ± 28 50.5 ± 39 0.2

Total Cholesterol (μg/mg liver) 10.4 ± 1.5 2.6 ± 0.2 <0.0001

Free Cholesterol (μg/mg liver) 6.2 ± 3.4 2.05 ± 0.4 0.03

Esterified Cholesterol (μg/mg liver) 4.22 ± 4.04 0.59 ± 0.33 0.08

Quantification of lipid species in livers of NASH and control group swine at Week 24 of dietary intervention.

Shown is the mean ± standard deviation.

doi:10.1371/journal.pone.0124173.t003
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significant hepatic macrovesicular steatosis. It remains to be determined whether longer dura-
tion studies in the Ossabaw swine model would reveal macrovesicular steatosis which is one of
its defining components human NAFLD syndrome.

Although it is long believed that fibrosis is a long term consequence of hepatocyte injury, it
is possible that lipotoxic mediators such as free fatty acids and free cholesterol may injure hepa-
tocytes and may simultaneously activate stellate cells. Therefore we explored the temporal rela-
tionship of fibrosis with hepatocyte ballooning and found that in general ballooning preceded
fibrosis and severity of fibrosis correlated with severity of ballooning.

Apoptosis was significantly increased in the livers of swine fed the NASH diet compared
with controls based on the TUNEL assay and caspase 3/7 measurement reinforcing the hypoth-
esis that apoptosis plays an important pathophysiologic role in NASH. Increased hepatocyte
apoptosis was correlated with increased liver free fatty acids, total cholesterol, and free choles-
terol, but not with esterified cholesterol or liver triglyceride levels. The results highlight the im-
portant role of free fatty acids and free cholesterol in mediating hepatocyte injury in NASH
and lend support to the concept that triglycerides and esterified cholesterol are not the media-
tors of hepatocyte injury.

Two additional features of our swine model are extensive Kupffer cell accumulation in the
liver tissue of swine fed NASH diet and electron dense material in the hepatocytes by electron
microscopy (EM). While Kupffer cells may not be readily evident on routine H&E staining of
liver samples from patients with NASH, their accumulation is a common feature among rodent
models of steatosis induced by cholesterol atherogenic diets. In our swine fed NASH diet, we
observed vacuolated Kupffer cells accumulate as early as 8 weeks and their accumulation

Fig 5. Liver total, free, and esterified cholesterol measurement and their correlation with liver caspase 3/7 activity at week 24. Total cholesterol (A),
free cholesterol (B) and esterified cholesterol (C) were higher in the NASH diet fed group than control group. Positive correlations were observed between
caspase 3/7 activity and total cholesterol (R2 = 0.3770, p = 0.0338) (D) and free cholesterol (R2 = 0.4961, p = 0.0105) (E) levels, but not esterified cholesterol
(R2 = 0.0098, p = 0.7593) (F). * indicates statistically significance difference between the NASH diet and the control diet groups.

doi:10.1371/journal.pone.0124173.g005
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progressed through 24 weeks. It is unclear if these vacuoles represent cholesterol and cholester-
ol crystal accumulation in the Kupffer cells as it previously has been described in some rodent
models of NASH. Despite this extensive Kupffer cell accumulation, it was surprising that little
hepatic inflammation was observed in these swine. Electron dense material in the hepatocytes
appears to be autophagolysosomes, and although we did not specifically characterize it we
speculate this material represents cholesterol and cholesterol esters.

A limitation of this study was the small sample size of each group (N = 6). Although the
swine model is the preferred model to use for this study because serial biopsies can be obtained
from the same animal, there are budgetary restraints that limit the number of large animals
that can be studied. Because there was large variation in some measurements, we reported sig-
nificance at P<0.05 and a trend of difference at P<0.10 levels to avoid a type II interpretive
error (a false negative) [18].

Fig 6. Correlation of hepatic free Fatty acid and triglyceride levels with apoptosis at week 24. A:Hepatic free fatty acid levels were more than 5-fold
higher in the NASH diet group than control group although it did not reach statistical significance (p = 0.0667).B: There was no difference in hepatic
triglyceride concentration between two groups (p = 0.2134).C: A positive correlation was observed between caspase 3/7 activity and fatty acid levels (R2 =
0.3096, p = 0.0603).D: There was no correlation between hepatic triglyceride concentration and hepatic caspase 3/7 activity (R2 = 0.0684, p = 0.4115).

doi:10.1371/journal.pone.0124173.g006
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In summary, this report further characterizes a more detailed time course of liver injury and
fibrosis induced by NASH diet in the Ossabaw swine model. These data provide a solid, funda-
mental basis for future studies to better understand the mechanisms of cell injury and fibrosis
in this model.

Supporting Information
S1 Table. Morphometric characteristics of swine in the control group (n = 6) and NASH
diet group (n = 6) at baseline and at weeks 8, 16 and 24.Morphometric characteristics of
swine in the control group (n = 6) and NASH diet group (n = 6) at baseline and at weeks 8, 16
and 24. Mean body circumference (a measurement analogous to waist circumference) was sig-
nificantly increased in the NASH diet group compared to the control group at weeks 8 and 16
(p = 0.002 and 0.012, respectively). Shown is the mean ± standard deviation.
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