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Recent Developments

Heart failure, a common consequence of ischemic heart 
disease, is a major cause of morbidity and mortality in 

the world.1–3 Pharmacological treatment with β-blockers and 
inhibitors of the renin–angiotensin–aldosterone system has 
improved the clinical outcomes in patients with heart fail-
ure.4–7 Likewise, mechanical unloading with left ventricular 
assist devices and resynchronization therapy have led to par-
tial reversal of cardiac structural and molecular remodeling 
and symptomatic improvement.8–10 Despite these remarkable 
advances, however, mortality and morbidity of patients with 
heart failure, with or without reduced ejection fraction re-
mains high.1,2 Moreover, heart transplantation, while an effec-
tive option, is available only for a selected number of patients 
and is not without considerable negative consequences.11 
Furthermore, gene therapy still remains in early investiga-
tional stages and not yet ready for clinical applications.12 The 
high residual mortality and morbidity of patients with heart 
failure might be inherent to the shortcomings of the current 
therapeutic approaches, as none directly targets the underlying 
causal problem in heart failure, that is, loss of or intrinsically 
dysfunctional myocytes. Consequently, novel therapeutic ap-
proaches are necessary to further improve the clinical out-
comes in patients with heart failure.

The heart is considered, by and large, a terminally differen-
tiated organ with a limited intrinsic regenerative capacity that 
alone is insufficient to compensate for the pathological loss of 
cardiac myocytes during the postnatal period.13–15 The discov-
ery of cardiac progenitor cells (CPCs) in the heart more than a 
decade ago along with the recent data showing that the existing 
myocytes undergo a gradual turnover have raised the poten-
tials for regenerative cardiac repair.16,17 Likewise, the discovery 

of mesenchymal stem cells (MSCs), which was thought to 
have the potential to differentiate to cardiac myocytes, but 
yet to proven, or enhance differentiation of the endogenous 
cardiac stem cells has offered a cell transplantation approach 
for regenerative cardiac repair.18–20 Furthermore, advances in 
generation and characterization of cardiac myocytes from in-
duced pluripotent stem cells using the Yamanaka factors or a 
combination thereof, have expanded the therapeutic options 
for cardiac repair.21–24 In addition, direct reprogramming of the 
resident fibroblasts to myocytes, whether using a defined set of 
transcription factors or microRNAs, has further advanced the 
field of regenerative cardiac repair.25–28 Finally, combination of 
different cell types has been used to gain additive and synergis-
tic effects.29 Recent advances have offered considerable insight 
into molecular biology, self-renewal, and differentiation car-
diac stem cells, as well as phenotypic characteristics that are 
would be expected to offer clinical applications.30–37

The potential use of stem cells in repairing injured myocar-
dium and improving heart failure has raised considered excite-
ment in patients, physicians, and researchers alike.38 The field, 
however, is in infancy and faces considerable challenges in 
attaining its goal of repairing the damaged myocardium and 
restoring cardiac function in ischemic heart disease (Table 1). 
Even the identity of the resident CPCs remains unsettled.39–43 
Resident cells expressing the c-kit antigen but not markers of 
the hematopoietic or mast cells are considered bona fide CPCs 
sufficient and necessary to repair the damaged myocardium.40,44 
And yet, genetic fate mapping experiments have shown mini-
mal contribution of the c-kit+ cells to cardiac myogenesis.45 
Human embryonic stem cells have been shown to differentiate 
to beating cardiomyocytes, SA nodal-like cells and mesodermal 
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cells.46–49 However, their clinical use is overshadowed by the 
occurrence of serious cardiac arrhythmias in the transplanted 
animals, likely because of poor electromechanical coupling 
of the injected cells with the host cells.50 Moreover, the use 
of induced pluripotent stem cell–derived cardiac myocytes for 
cardiac repair is hampered by their immature phenotype and 
the presence of epigenetic and genetic changes.24,51,52 Resident 
and bone marrow cells and cortical bone–derived cells are con-
sidered as potential sources for differentiation to cardiac myo-
cytes but lacking compelling evidence for cardiac myogenesis 
and perhaps exerting their salutary biological effects through 
paracrine mechanisms.19,29,53–58 Equally exciting and chal-
lenging are the discovery and characterization of other CPCs 
that could give raise to various cardiac cells types, including 
smooth muscle cells, endothelial cells, and fibroblasts.59–63 An 
important problem to overcome is the multiple comorbidities 
and their comedications of ischemic heart disease patients with 
heart failure that may affect cytoprotective signaling triggered 

by the different stem cell, as well as survival and differentiation 
properties of such stem cells in the injured tissue.64–66 Clearly, 
the rapid face of discoveries is dazzling and a complete cov-
erage of the recent developments in cardiovascular stem cells 
would be beyond the scope of this article. We regret that many 
valuable works were not covered in part or at all included in the 
present overview on Recent Developments.

Clinical Trials In Human Patients
The ClinicalTrials.gov lists >1000 clinical trials including 
>600 studies in the United States alone that tests effects of 
various stem cells in human patients (http://www.clinicaltrials.
gov/). The list includes 71 including 38 active clinical trials 
in patients with heart failure using various stem cells, such as 
adipose-derived, mesenchymal, human embryonic, autolo-
gous CD133+ and CD34+ stem cells among the others.18,67–74 
Autologous skeletal myoblasts were probably the first cell type 
used to regenerate functional myocardium. It was tested initial-
ly in a rabbit model of myocardial cryoinjury, which showed 
incorporation of the injected myoblasts and improved myo-
cardial performance.75 Subsequent observational studies were 
followed by randomized clinical trials in human patients with 
heart failure injected with autologous skeletal myoblasts. The 
results in small size studies were somewhat promising.18,76–78 
However, despite the encouraging results in small and observa-
tional studies, the overall results of larger clinical studies have 
not been impressive but rather null. Given the risk of cardiac 
arrhythmias associated with injection of myoblasts and the 
availability of other cell types, autologous skeletal myoblasts 
are not considered the prime cell type for heart failure therapy.

To date, the initial results of clinical trials with cardiac stem 
cells have been mostly promising, although they remain incon-
clusive in terms of long-term effects and often contradictory. 
The findings of REPAIR-AMI trial showed that intracoronary 
delivery of bone marrow cells in patients with acute myocardi-
al infarction improved cardiac function, which were preserved 
>2 years.79 In contrast, the BOOST trial, which was similarly 
constructed, showed only an initial improvement with little 
sustained effect over the 18-month and 5-year follow-up peri-
ods.80 The differences in the outcome might reflect differences 
in the study population characteristics and subtleties of the ex-
perimental design including preparation and characterization 
of the bone marrow–derived cells. Likewise, the mechanisms 
responsible for the beneficial effects of exogenously applied 
stem cells remain unclear, as data to show fate, function, 
and differentiation of the injected cells to cardiac myocytes, 
as well as production and secretion of paracrine factors are 
lacking. Two recent clinical trials SCIPIO and CADUCEUS, 
which used 2 different sets of CPCs, reported improved car-
diac function.81,82 In both trials, the underlying mechanism(s) 
responsible for improved clinical outcomes remains to be 
determined but is speculated to be secondary to expression 
and secretion of paracrine factors rather than direct differen-
tiation of the injected progenitor cells to cardiac myocytes. 
Paracrine factors released from the injected CPCs might direct 
manyrestorative processes, including myocardial protection, 
neovascularization, and cardiac remodeling.83 Consequently, 
there is considerable interest in identification and character-
ization of secretome of the CPCs for therapeutic gains. For 

Table 1. Some of the Challenges Facing Clinical Use of 
Myocardial Regeneration

1. Does postnatal heart contain bona fide stem cells that could regenerate 
cardiac myocytes?

2. What are the characteristics and markers of bona fide cardiomyogenic 
stem cells?

3. How to provoke controlled proliferation and differentiation of bona fide 
cardiomyogenic stem cells to mature cardiac myocytes?

4.  What are the determinants—transcription factors, noncoding RNA and 
others—of differentiation of bona fide cardiomyogenic stem cells to 
mature myocytes?

5. How to reduce or eliminate aging of the bona fide cardiac stem cells and 
enhance their survival under pathological conditions?

6. How to enhance differentiation of other resident progenitor cells to mature 
cardiac myocytes?

7. How to enhance recruitment and retention of the circulating progenitor 
cells to the heart and enhance their differentiation to mature myocytes?

8. Which type of progenitor cells to inject or implant in the myocardium to 
obtain most efficient differentiation to mature cardiac myocytes?

9.  How to enhance engraftment of injected/implanted progenitor cells in the 
myocardium?

10.  How to reduce or eliminate antigenicity of the progenitor cells into the 
myocardium, and reduce or eliminate rejection?

11. How to enhance survival of the injected/implanted cells in the heart?

12.  How to enhance cell–cell communications and electromechanical coupling 
among the transplanted cells as well as among the transplanted and the 
host cells?

13.  How to generate induced pluripotent stem cell–derived cardiomyocytes 
with molecular and phenotypic characteristics closer to mature cardiac 
myocytes?

14. Is the recovery of myocardial function because of myocardiogenesis or 
secondary to expression and secretion of paracrine factors? And if the 
latter, what are these paracrine factors and how to garner their effects to 
enhance cardiomyogenesis?

Nonstandard Abbreviations and Acronyms

CPC cardiac progenitor cell

MSC mesenchymal stem cell
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example, fibroblast growth factor 9, which is secreted from 
bone marrow cells, has been shown to promote myocardial 
vascularization and myocytes hypertrophy, preserves cardiac 
function, and reduce mortality in an experimental model of 
myocardial infarction.84 Fibroblast growth factor signaling is 
also implicated in suppression of autophagy and prevention of 
premature differentiation of CPCs.85 It is anticipated that sev-
eral paracrine factors contribute to improvement in cardiovas-
cular function in clinical trials of cardiac stem cells. Overall, 
the results of the clinical trials performed to date have been 
less than spectacular, despite the plausible rationale, which 
raises the necessity of novel approaches. Table 2 provides a 
partial summary of the published clinical trials of patients 
with heart failure using various types of progenitor cells.

Rejuvenation of Cardiac Stem Cells
Stem cells are not exempt from senescence.100,101 As a result, 
resident cardiac stem/progenitor cells in older humans are ex-
pected to have a decreased reparative capacity in response to 

myocardial injury. Consequently, there is considerable interest 
in rejuvenating the endogenous CPCs.102 Several molecules are 
implicated in rejuvenation of CPCs, including Pim-1 kinase, 
NOTCH1 signaling, and telomerase, just to name a few. Pim-
1 kinase has been shown to impart antisenescence and anti-
apoptotic effects in CPCs, as well as in MSCs.103–107 Genetic 
modification of aged human CPCs with Pim-1 kinase results in 
remarkable rejuvenation of the CPCs associated with enhanced 
proliferation, increased telomere lengths, and decreased sus-
ceptibility to replicative senescence.104,105 Likewise, activation 
of NOTCH1 signaling pathway is implicated in rejuvenation 
of myogenic responses to satellite muscle cells.108 Activation 
of telomere–telomerase axis is known to contribute to cell sur-
vival and proliferation, and to prevent cellular senescence.109 
Madonna et al109 recently identified a subpopulation of adipose 
tissue–derived MSCs that expresses high levels of myocar-
din (MYOCD), a nuclear transcription cofactor for myogenic 
genes, and telomerase reverse transcriptase, the catalytic sub-
unit of telomerase. Adipose tissue-mesenchymal stem cells 

Table 2. A Partial Summary of Controlled Clinical Trials of Stem Cell Delivery in Ischemic Heart Disease

Cell Type Study Design
Route of 

Administration Sample Size Number of Cells Follow Up Outcome

Skeletal myoblasts Nonrandomized Transendocardial Treated: 6; Controls: 6 210±150×106 12 mo Improved LVEF and walking distance86

Skeletal myoblasts Nonrandomized Intramyocardial Treated: 12; Controls: 14 5×106 12 mo Improved myocardial viability, 
reperfusion, and function87

Skeletal myoblasts Nonrandomized Transendocardial Treated: 14; Controls: 28 3±50×106 4 y No benefits, increased risk of 
arrhythmias88

Skeletal myoblasts Randomized Intramyocardial Treated: 97; Controls: 30 400–800×106 6 mo Improved cardiac function77

Skeletal myoblasts Double-blind 
randomized

Transendocardial Treated: 12; Controls: 11 30–600×106 12 mo Improved myocardial viability  
and function89

BM-MNC Double-blind 
Nonrandomized

Transendocardial Treated: 14; Controls: 7 25.6±6.3×106 4 mo Improved myocardial function  
and perfusion67

BM-MNC Open-label 
randomized

Intracoronary Treated: 52; Controls: 23 205±110×106 3 mo Improved myocardial function90

BM-MNC Randomized Intramyocardial Treated: 10; Controls: 10 60±31×106 4 mo Improved regional but not global  
cardiac function91

BM-MNC Randomized Intracoronary Treated: 14; Controls: 14 20–32×106 3 mo Improved myocardial viability  
and function92

BM-MNC Randomized  
single-blind

Intracoronary Treated: 24; Controls: 23 12×106 6 mo Improved diastolic function93

BM-MNC Randomized  
single-blind

Intramyocardial Treated: 42; Controls: 23 84–56×106 6 mo No effects on infract size or  
cardiac function94

BM-MNC Randomized 
double-blind

Transendocardial Treated: 20; Controls: 10 30×106 6 mo Symptomatic improvement95

BM-PC Randomized 
double-blind

Intramyocardial Treated: 10; Controls: 10 22×106 6 mo Improved cardiac function96

BM-PC Nonrandomized 
double-blind

Intramyocardial Treated: 20; Controls: 20 5.8×106 6 mo Improved cardiac function97

BM-PC Randomized 
double-blind

Intracoronary Treated: 28; Controls: 27 123×106 12 mo Improved cardiac function, exercise 
tolerance, and reduced mortality98

CD34+ Randomized 
double-blind

Intracoronary Treated: 55; Controls: 55 113±26×106 5 y Improved cardiac function, exercise 
tolerance, and survival74

CSCs Randomized  
open-label

Intracoronary Treated: 16; Controls: 7 1×106 12 mo Improved cardiac function and  
reduced infract size81

CSCs Randomized  
open-label

Intracoronary Treated: 17; Controls: 8 12.5–25×106 12 mo Increased viable myocardium  
and reduced infract size99

BM-MNC indicates bone marrow–derived mononuclear cells; BM-PC, bone marrow progenitor cells; CSCs, cardiac stem cells; and LVEF, left ventricular ejection fraction.
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(AT-MSCs) that coexpress telomerase reverse transcriptase and 
MYOCD show increased levels of endogenous octamer-bind-
ing transcription factor 4, myocyte-specific enhancer factor 2c, 
and homeobox protein NKX2-5, and exhibit high cardiovascu-
lar regenerative potential.109,110 These cells also show decreased 
frequencies of both spontaneous cell death and Fas-induced 
apoptosis.109 The delivery of the telomerase reverse transcrip-
tase and MYOCD genes into AT-MSCs was shown to restore 
MSCs from aged mice by increasing cell survival, prolifera-
tion, and smooth muscle myogenic differentiation in vitro.109 
The therapeutic efficacy of these rejuvenated cells was further 
demonstrated in an in vivo hindlimb ischemia model.109

Novel Delivery Systems for Stem Cell Therapy
Although encouraging results have been reported in cardiac 
cell therapy, only a few of the transplanted cells survive in 
the myocardium and integrate into the host myocardium.111,112 
Transplanted cells quickly disappear from the site of injection 
because they are removed by the blood flow and degraded by 
specific enzymes located in the extracellular microenviron-
ment.111 However, despite a quick disappearance from the 
myocardium, CPCs impart considerable improvement on 
cardiac function, implying a paracrine mechanism.111 Several 
approaches have been suggested to overcome these hurdles. 
Conventional strategies such as overexpression of prosurvival 
genes, such as Akt, β adrenergic stimulation, cotransplanting 
with others, such as the endothelial cells, modification of the 
extracellular matrix and immune system are used to enhance 
survival and retention of CPCs in the heart.113–119 Recently, 
there has been increasing focus on development of novel bio-
materials that are coated with stem cells are functionalized 
with growth, mitotic and chemotactic factors, cytokines, and 
other biologically active materials. These new biomaterials are 
biocompatible and biodegradable polymers made of poly (d, 
l-lactide-co-glycolide acid) or poly(lactic-co-glycolic acid) 
that allow prolonged and controlled delivery of growth factors 
in situ and better cell retention in the transplanted area.120–122 
The combination of the stem cells, biomaterials and growth 
factors may enhance the efficacy of cell therapy by mobiliz-
ing endogenous stem/progenitor cells in vivo, promoting cell 
proliferation and differentiation, and augmenting cell engraft-
ment and survival in the injured myocardium120–122 (Figure). 
Likewise, transplantation of AT-MSCs coated on fibrin poly-
mers and CPCs with immobilized insulin growth factor type 
1 on peptide nanofibers has been shown to be beneficial.123,124 
The use of cardiac-specific decellularized matrices125–127 might 
also serve as platforms for injectable biomaterials to deliver 
stem cells in a more sustainable and effective manner.125,126 
The so-called environmentally responsive systems are de-
signed to match the release of the functional molecular with a 
patient’s physiological need at the appropriate time or the cor-
rect site.127,128 They are constituted of sensitive hydrogels that 
can control the release of drugs by changing the gel structure 
according to environmental stimulation, such as temperature, 
pH, or ion concentration.127,128 Poly N-isopropylacrylamide 
hydrogel is a typical example of temperature-sensitive hydro-
gels, which shows sol-to-gel transformation at a critical solu-
tion temperature of ≈35°C.129 This polymer releases the drug 
when it transforms from gel-to sol-and is of particular interest 

in those clinical situations, such as tissue ischemia, character-
ized by low temperature in the tissue.130 The interest in pH-
sensitive polymers is in their capability of releasing a drug 
when the environmental pH decrease and hence, promoting 
proliferation and differentiation of CPCs on such conditions.

Stem Cell Therapy Without the Cells
The improved cardiac function observed in preclinical stud-
ies using traditional stem cell transplantation is in discord with 
the data showing poor long-term stem cell engraftment.111 
Systemically administered c-kit+ cells, bone marrow cells, adi-
pose tissue–derived cells and blood-derived endothelial progen-
itor cells exhibit low homing efficiency, and limited capacity 
for transdifferentiation into cardiomyocytes post transplanta-
tion.111 Thus, the prevailing assumption is that the injected stem 
cells do not contribute directly to replenishing cardiomyocyte 
populations in the heart. This notion has shifted the focus on 
paracrine effects derived from the stem cell secretome, such 
as growth factors, microRNA, antioxidants, proteasomes, and 
exosomes, as the underpinning mechanisms responsible for 
improved cardiac function after stem cell transplantation.131,132 
Consequently, there is a considerable interest in identification 
and characterization of the paracrine factors, which might offer 
the opportunity to achieve the effects of stem cell transplanta-
tion without truly injecting them, and hence, the so called stem 
cell therapy without the cells. Current secretome-based ap-
proaches have shown some promise in preclinical models. For 
example, exosomes have been implicated in mediating some of 
the proangiogenic paracrine effects of CD34+ stem cells133 and 
cardioprotection by remote conditioning.134

The Road Ahead: Toward Clinical Application
There are currently several clinical studies that are investigat-
ing clinical uses of various stem cells in myocardial repair and 
regeneration.79–82,99,135 The ongoing multicenter trials, such as 
ADVANCE (NCT 2010-022153-42), BAMI-01 (NCT 2012-
001495-11), or 2011-01-01REPEAT (NCT 2011-000595-33), 
are expected to provide more compelling evidence for the 
clinical use of stem cells and offer insight into the mechanisms 
of their effects (reviewed in the study by Sanganalmath and 
Bolli18). Currently, the paracrine mechanisms are considered 

Functionalized with
Drugs, cocktail of 

Growth factors
or gene therapy

PLGA coatingStem cell 
attachment

biomaterial
Cardiomyocyte

Capillary
Stem cell

MYOCARDIAL
REGENERATION

Figure.  Potential use of PLGA (poly[lactic-co-glycolic 
acid]) biomaterials in enhancing effects of stem cell 
transplantation. PLGA microparticles can be functionalized with 
drugs and growth factors or gene therapy, externally coated with 
stem cells and injected/transplanted into the myocardium for 
optimizing therapeutic benefits.
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the key events responsible for neoangiogenesis and cardiopro-
tection imparted by the transplanted stem cells in the ischemic 
myocardium. New insights in the nature of the secretome and 
their mechanisms of effects might further enhance the clinical 
use of cardiac regeneration. Likewise, alternative approaches 
to enhance differentiation of the endogenous CPCs and direct 
reprogramming of the resident noncardiac cells to cardiac 
cells would be expected to offer further opportunities to treat-
ment of human patients with ischemic heart disease and con-
sequent heart failure.
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