
Themed Section: Pharmacology of the Gasotransmitters

REVIEW

Cardiac NO signalling in the
metabolic syndrome
O Pechánová1,2, Z V Varga3, M Cebová1, Z Giricz3, P Pacher4 and
P Ferdinandy3,5

1Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of

Nitric Oxide in Civilization Diseases, Slovak Academy of Sciences, Bratislava, Slovak Republic,
2Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic, 3Cardiometabolic

Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University,

Budapest, Hungary, 4Laboratory of Physiological Studies, National Institutes of Health/NIAAA,

Bethesda, MD, USA, and 5Pharmahungary Group, Szeged, Hungary

Correspondence
Olga Pechánová, Institute of
Normal and Pathological
Physiology, Slovak Academy of
Sciences, Bratislava 81371, Slovak
Republic. E-mail:
olga.pechanova@savba.sk
----------------------------------------------------------------

Received
11 February 2014
Revised
9 September 2014
Accepted
28 September 2014

It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood
pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein),
which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species
(ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and
antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic
syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually
favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also
impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental
signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of
redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory
mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling
may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the
modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed
treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the
above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome
metabolic syndrome and its pathological consequences in cardiac NO signalling.
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Introduction
Although NO was discovered decades ago, scientific interest
in this gasotransmitter is continuously increasing. Enzymic
and non-enzymic formation of NO and cGMP-dependent
and independent NO signalling has been reviewed in detail
in the current Themed Issue (Csonka et al., 2015) and else-
where (Ferdinandy and Schulz, 2003; Stasch et al., 2011; Tang
et al., 2013; Rassaf et al., 2014). Intercellular and intracellular
NO signalling is very complex, reflecting its many pathways
and interactions with other free radicals to form additional
signalling molecules. Reactive oxygen species (ROS), espe-
cially the superoxide anion radical, can react with NO non-
enzymically with an extremely high-rate constant limited
only by diffusion. These reactions produce peroxynitrite
(ONOO−) and other highly reactive oxygen and nitrogen
species (ROS/RNS), which in concert with NO act as signal-
ling molecules and also account for oxidative, nitrative and
nitrosative stress (Ferdinandy, 2006; Pacher et al., 2007;
Pechanova and Simko, 2009). Most techniques available for
the measurement of NO and its reactive metabolites have
numerous technical limitations (reviewed in this Themed
Issue by Csonka et al., 2015) which further complicates the
interpretation of results on the role of NO signalling in physi-
ology and pathology.

NO plays an important role in the regulation of cardio-
vascular functions in health and disease by, for example,

promoting vasodilation, inhibiting vascular smooth muscle
cell growth, platelet aggregation, and leukocyte adhesion,
apart from by regulating myocardial function and providing
cardioprotection (see Pacher et al., 2007; Ferdinandy and
Schulz, 2003; and reviewed in this Themed Issue by
Andreadou et al., 2015). The metabolic syndrome, compris-
ing hypertension, hyperlipidaemia and insulin resistance/
diabetes, is the major cardiovascular risk factor and thus
accounts for leading causes of morbidity and mortality in
industrialized societies. Publications on the role of
NO-related pathways in these pathologies are continuously
growing. In this review, we attempt to summarize the knowl-
edge related to the role of NO signalling in the heart in the
presence of the major cardiovascular risk factors that are
associated with the metabolic syndrome. Our review focuses
on the effect of the metabolic syndrome on NO signalling in
the non-ischaemic heart.

The role of NO in myocardial ischaemia/reperfusion
injury and cardioprotection by ischaemic conditioning in the
healthy heart and in different co-morbidities is reviewed in
detail elsewhere (Ferdinandy and Schulz, 2003; Andreadou
et al., 2015). In brief, NO itself protects the heart against
ischaemia/reperfusion injury. However, accumulation of
excess NO during prolonged ischaemia contributes to reper-
fusion injury via an increased oxidative/nitrative stress. The
role of endogenous NO in cardioprotection induced by
ischaemic preconditioning is still controversial (Csonka et al.,
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1999; Nakano et al., 2000; Post et al., 2000). Nevertheless, it
seems that mild oxidative/nitrative stress induced by exog-
enous or endogenous NO is necessary to trigger both pre- and
post-conditioning (Nakano et al., 2000; Csonka et al., 2001;
Heusch, 2001; Kupai et al., 2009).

NO signalling in the heart

In the heart tissue, coronary and endocardial endothelial cells
and cardiac myocytes are major sources of NO. However, NO
may also derive from intracardiac ganglia and some nerve
fibres located close to cardiac blood vessels. Endothelial NOS
(eNOS) is expressed typically in the coronary and cardiac
endothelium, whereas neuronal NOS (nNOS) is mainly
located in the cardiac myocytes (see Pacher et al., 2007; Tirziu
and Simons, 2008). In coronary vascular endothelial cells, the
eNOS-caveolin-1 interaction in the caveolae is important for
normal eNOS activity (Feron and Balligand, 2006). The physi-
ological triggers for NO release from endothelial cells are the
flow-induced shear stress and mechanical deformations of
the endothelium during the cardiac cycle (Michel, 2010). In
cardiac myocytes, eNOS is co-localized with caveolin-3 in the
T tubules of plasmalemmal caveolae, nNOS is localized in the
sarcoplasmic reticulum (Shah and MacCarthy, 2000), and
the putative mitochondrial NOS (mtNOS) in cardiac mito-
chondria (Dedkova and Blatter, 2009). The normal intracel-
lular function of eNOS and nNOS in cardiomyocytes depends
on discrete coupling mechanisms in the local cytosolic envi-
ronments. These mechanisms can be affected by altered
metabolism due to the metabolic syndrome (see Huang,
2009; Pechanova and Simko, 2010).

In fact, NO generated by inducible NOS (iNOS) may have
its origin in the myocytes or neutrophils that migrate in the
proximity of myocytes during inflammation and also in acti-
vated fibroblasts. iNOS, when expressed in cardiac myocytes,
can regulate the response to β-adrenoceptor stimulation.
However, as the neutrophils migrate to sites close to the
myocytes, iNOS becomes essential for the ability of neutro-
phils to damage myocytes (Poon et al., 2003). Indeed, an
increase in iNOS expression in the heart with substrate limi-
tation leads to uncoupled iNOS producing superoxide
anions and contributing to contractile dysfunction (Heusch
et al., 2010). These findings demonstrate that cellular source
and local cytosolic environment strongly modulate the
effects of different NOS isoforms, as reviewed elsewhere
(Tirziu and Simons, 2008; Huang, 2009; Pechanova and
Simko, 2010).

NO may affect myocytes in a number of different ways.
NO signalling via cGMP-dependent or independent pathways
modulates the function of downstream proteins via specific
post-translational modifications, such as phosphorylation by
cGMP-dependent PK (PKG) or S-nitrosylation. Interestingly,
an increase in intracellular cGMP induced by natriuretic pep-
tides or cGMP analogues was recently shown to modulate
both sarcolemmal and mitochondrial ATP-sensitive K+

channel opening in ventricular cardiomyocytes suggesting
further diverse actions of NO (Burley et al., 2014).

NO also affects mitochondrial function and dyna-
mics, thus regulating cardiac energy metabolism. Under

pathological conditions, it may also contribute to the devel-
opment of myocardial dysfunction and heart failure
(Davidson and Duchen, 2006; Azevedo et al., 2013; Dai
et al., 2013; Miller et al., 2013). Localization of NO pro-
duction within mitochondria seems to provide a distinct
reciprocal regulation between mtNOS and intramitochon-
drial Ca2+, pH, L-arginine and oxygen. NO produced by the
putative mtNOS may represent a mechanism of fine regu-
lation of the respiratory complexes, enzymes of the citric
acid cycle and energy metabolism as well (see Zaobornyj
and Ghafourifar, 2012; Csonka et al., 2015; Andreadou
et al., 2015). However, the existence of mitochondrial
mtNOS is still a controversial issue (Pacher et al., 2007),
and NO, which rapidly diffuses into mitochondria from
other cellular compartments or cells, is sufficient to effi-
ciently regulate energy metabolism. Despite these facts,
very few studies investigated the role of NO signalling
in mitochondrial function in hearts with the metabolic
syndrome.

The main physiological role of NO derived from eNOS
and nNOS includes reduction of contractile frequency of
cardiomyocytes, attenuation of cardiac contractility, accelera-
tion of relaxation and increasing distensibility of cardiomyo-
cytes, and improvement of the efficiency of myocardial
oxygen consumption. In conditions of enhanced cardiac
reserve and cardiac hypertrophy, NO derived from eNOS
modulates receptor-mediated signalling which ultimately
leads to a moderate inhibition of cardiac contractility (Shah
and MacCarthy, 2000; Yue and Yu, 2011). NO derived from
the complex of nNOS-ryanodine receptor (RyR) stabilizes RyR
calcium release and increases the efficiency of Ca2+ cycling in
sarcoplasmic reticulum by the inhibitory effects (Yue and Yu,
2011). In swine, intracoronary infusion of an NO synthesis
inhibitor, N-ω-nitro-L-arginine, markedly decreased left ven-
tricle (LV) function, while peak LV pressure and mean coro-
nary arterial pressure were increased (Post et al., 2001).
Similarly, in healthy humans, inhibition of endogenous NO
release also reduced, whereas replenishment with exogenous
NO increased left ventricular function, further emphasizing
that NO contributes to normal left ventricular function
(Rassaf et al., 2006). Thus, dysfunction of NOS induced by
altered expression, location, coupling and activity may con-
tribute to the contractile dysfunction, adverse remodelling
and myocardial hypertrophy – changes associated with
various cardiac disease conditions, such as heart failure and
infarction (Tang et al., 2013).

Interestingly, eNOS expression was not affected by cardio-
vascular risk factors like hypertension, obesity and insulin
resistance (Fulton et al., 2004; Bouvet et al., 2007), and para-
doxically was found to be increased in various pathological
states associated with oxidative stress (Li et al., 2002; Ding
et al., 2007; Zhen et al., 2008). This effect may be partly medi-
ated by limiting the availability of NO, thereby exerting a
negative feedback on NOS expression through activation of
NF-κB (Zhen et al., 2008; Pechanova and Simko, 2009; 2010;
Vrankova et al., 2009) (Figure 1).

In conclusion, signalling functions of NO produced by
specific NOS isoforms seem to be compartmentalized in dis-
tinct cellular microdomains and thus modulate cardiac func-
tion differently. Moreover, they may be further affected by
risk factors of the metabolic syndrome.

BJPHeart, NO and metabolic syndrome
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NO signalling in the
hypertensive heart

Left ventricular remodelling and heart failure represent major
pathological consequences of chronic arterial hypertension.
During the development of hypertension, differential signals
and metabolic abnormalities lead to the structural remodel-
ling of the cardiovascular system, as characterized by myo-
cardial hypertrophy and/or fibrosis, and coronary artery wall
hyperplasia which finally result in heart injury known as
cardiomyopathy (Kristek and Gerová, 1996; Babal et al., 1997;
Pechanova et al., 1997; Tribulova et al., 2000; Cebova and
Kristek, 2011). Pathological remodelling of the hypertensive
heart is due to an imbalance of stimulatory and inhibitory
signals of tissue proliferation. Angiotensin II (Ang II), aldos-
terone or endothelin, with their vasoconstrictor and pro-
proliferative effects, stand on one side of the balance and NO,
prostacyclin, bradykinin or atrial natriuretic peptide, exerting
vasodilating and antiproliferative activities, provide the
counteracting factors (Swynghedauw, 1999; Cuspidi et al.,
2006; Pechanova and Simko, 2010). NO antagonizes the
effects of Ang II on vascular tone, cell growth and renal
sodium excretion, while it down-regulates the synthesis of
ACE and angiotensin AT1 receptor. On the other hand, Ang II
decreases NO bioavailability by promoting oxidative stress
(Zhou et al., 2004). Mice infused with Ang II displayed an
increase in blood pressure, cardiac hypertrophy and fibrosis
associated with enhanced collagen I content, TGF-β1 activity
and endoplasmic reticulum stress markers, which were,
however, blunted after endoplasmic reticulum stress inhibi-
tion (Kassan et al., 2012). Recently, however, Jin et al. (2012)

demonstrated that myocardial nNOS is up-regulated by Ang
II which functions as an early adaptive mechanism to attenu-
ate NADPH oxidase activity and facilitate myocardial relaxa-
tion by promoting the cGMP/PKG pathway. It was also
documented that activation of this pathway by novel soluble
guanylate cyclase (sGC) stimulators, including riociguat (BAY
63-2521), attenuates systemic hypertension and systolic dys-
function, as well as fibrotic tissue remodelling in the myocar-
dium in a rodent model of pressure and volume overload
(Geschka et al., 2011). This is in line with earlier data showing
impaired NO-sGC signalling pathways in hypertension and
heart failure, and beneficial effects of sGC stimulators/
activators in preclinical models of hypertension in attenuat-
ing myocardial hypertrophy and remodelling (Evgenov et al.,
2006; Stasch et al., 2011). Validating this concept, recent
clinical trials with riociguat in pulmonary hypertension and
chronic thromboembolic pulmonary hypertension showed
encouraging results, which lead to the FDA approval of the
drug for these indications (Ghofrani et al., 2013a,b).

It is generally believed that increased production of ROS
plays an important role in the pathology of hypertension, but
so far the limited number of clinical studies using non-
specific antioxidants yielded mixed results. Complicating the
picture, it should also be noted that temporarily increased
ROS generation in hypertension is not necessarily harmful, as
it may stimulate the activity of the antioxidant defence
system and improve the NO signalling pathway, resulting in
the establishment of a new equilibrium between increased
oxidative load and the stimulated NO pathways, thus main-
taining sufficient NO availability (Dröge, 2002). However, in
hypertension associated with obesity or diabetes, ROS may
favour activation of pro-inflammatory NF-κB-dependent

Figure 1
NO signalling and metabolic syndrome-related pathways. ROS generated by NADPH oxidases and other sources (e.g. mitochondria, XO,
uncoupled NOS, among others) leads to increased NF-κB activity followed by eNOS and iNOS up-regulation. eNOS produces NO which prevents
activation of both NADPH oxidase and NF-κB. The leptin/STAT3 pathway may also up-regulate the gene for iNOS whereas the leptin/JAK2/IRS-1
pathway increases eNOS activity via Akt stimulation, as does insulin. Increased circulating free fatty acids lead to ceramide elevation with increasing
effects on NADPH oxidase activity and diminishing effects on Akt activation. NO produced by neuronal NOS (nNOS) and putative mtNOS may
affect heart function in metabolic syndrome by different specific routes.
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pathways (Figure 1). In these conditions, activation of NF-κB
increases levels of cytokines such as IL-6 and TNF-α that may
affect the phosphorylation of tyrosine kinases and decrease
NOS activity with a final decrease in NO generation (see Belin
de Chantemele and Stepp, 2012).

In conclusion, increased ROS formation during hyperten-
sion may activate NF-κB and promote pro-inflammatory and
pro-oxidant changes (increased expression of TNF-α, COX2,
iNOS, NADPH oxidase, etc.) or compensatory adaptive
mechanisms (increased expression of eNOS and antioxidant
enzymes). Prolonged ROS/RNS formation may also lead to
uncoupling of eNOS/iNOS and impaired NO-sGC signalling
in hypertensive cardiovascular system.

NO signalling in the
obese/hyperlipidaemic heart

In obesity, cardiac output increases to serve the larger body
mass of the obese individual (Kardassis et al., 2012). The
increase in cardiac output is due to a larger blood volume
resulting in elevated venous return and an increased activa-
tion of the sympathetic nervous system, both prevalent in
the obese population. An increase in cardiac output elevates
cardiac oxygen consumption. Consequently, the need for
perfusion is increased (Alvarez et al., 2002; Frohlich and Susic,
2008). In mice fed a high-fat diet, obesity suppressed left
ventricular ejection fraction, increased left ventricular
remodelling, and led to diminished circulating endothelial
progenitor cells level and impaired recovery of damaged
endothelium (Tsai et al., 2012).

The importance of two adipocyte-derived hormones –
leptin and angiotensinogen – in the pathological conse-
quence of obesity has been highlighted (Coatmellec-Taglioni
and Ribière, 2003). Leptin regulates energy balance and
metabolism by a variety of peripheral and central mecha-
nisms through specific cell surface receptors (Koh et al.,
2008). Leptin infusion was shown to reduce blood pressure
and heart rate, which may be reversed by an increased NO
synthesis (Frühbeck, 1999). In vitro studies demonstrated that
leptin elicited endothelium-dependent NO-mediated vasore-
laxation in rats (Lembo et al., 2000). In the mouse heart,
disruption of leptin signalling may contribute to obesity-
related cardiac disease, as leptin-deficient (ob/ob) mice display
cardiac hypertrophy, increased cardiac apoptosis and reduced
survival. These changes were linked to decreased cardiac
expression of nNOS and NO production, with a concomitant
increase in xanthine oxidase (XO) activity and oxidative
stress, resulting in nitroso-redox imbalance (Saraiva et al.,
2007). Furthermore, cardiac β3-adrenoreceptor expression
and function were shown to be dependent on leptin as they
were severely diminished in the same model (ob/ob mice). It
was proposed that diminished β3-adrenoreceptor signalling
may be the critical element to explain the direct effects of
leptin on the myocardium and suggest an important role of
leptin in obesity-related cardiac hypertrophy and heart
failure (Larson et al., 2012). Leptin may up-regulate iNOS to
generate large amounts of NO that induce nitrosative and
nitrative stress and impair endothelial and myocyte functions
(Koh et al., 2008). In ventricular myocytes isolated from male

Sprague-Dawley rats, leptin-induced NO generation inhibited
myocyte contraction which was prevented by the NOS
inhibitor L-NAME (Nickola et al., 2000). In addition, hyper-
leptinaemia may result in the overdrive of hypothalamus-
pituitary-adrenal axis (HPA axis) and the sympathetic
nervous system, as well as in impaired insulin secretion and
insulin resistance. HPA axis overdrive would account for
metabolic abnormalities such as central adiposity, hypergly-
caemia, dyslipidemia, hypertension and other cardiovascular
diseases which are well-known clinical aspects of the meta-
bolic syndrome (Peters et al., 2002).

Cardiac lipotoxicity caused by the accumulation of lipids
has been well described in rodent models of obesity, hyper-
lipidaemia and diabetes (Zhou et al., 2000; Chiu et al., 2001;
2005; Young et al., 2002). Feeding mice a palmitate-rich diet
led to the accumulation of medium- and long-chain cera-
mides and sphingomyelins, which were incorporated into
cellular membrane, thus changing the micro-domain struc-
ture of the plasma membrane of cardiomyocytes. The
palmitate-rich diet also resulted in a decreased expression of
caveolins, structural components of plasmalemmal rafts, the
caveole (Knowles et al., 2011; 2013). In addition, ceramides
may activate NADPH oxidase leading to an increased oxida-
tive stress (Zhang et al., 2003) (Figure 1). In cardiomyocytes,
eNOS localizes to caveolae, which contains β-adrenoceptors
and L-type calcium channels as well (Garcia-Cardena et al.,
1996; Feron and Balligand, 2006). The co-localization of
caveolin-3 and eNOS may facilitate both eNOS activation by
cell surface receptors as well as NO release at the cell surface
for intercellular signalling (Feron and Balligand, 2006).
Immunohistochemistry findings in human cardiac tissue
samples from obese humans showed a drastic reduction of
caveolin-3 expression in cardiomyocytes (Knowles et al.,
2013), further signifying the role of caveolin proteins in
obesity.

In conclusion, it seems that the dual effect of leptin in the
obese heart depends on eNOS or iNOS activation by different
mechanisms. Elevation of ceramide levels in obesity may
inhibit eNOS activity by decreasing caveolin proteins and
promoting oxidative stress.

NO signalling in the
hypercholesterolaemic heart

It is well documented that hypercholesterolaemia profoundly
affects cardiac NO metabolism. It has been previously
reported that in cholesterol-fed rats, cardiac NO level
decreases (Ferdinandy et al., 1997; Giricz et al., 2003; Onody
et al., 2003) and that hypercholesterolaemia blunts activity of
downstream signalling elements of NO as indicated by a
lower PKG activity (Giricz et al., 2009). Reports on the effect
of hypercholesterolaemia on the phosphorylation of myocar-
dial eNOS, which reflects its activity, however, are controver-
sial. In cholesterol-fed rats, Zhang showed a decreased
p-eNOS level in parallel with an elevated apoptosis (Zhang
et al., 2012); meanwhile, in hearts of hypercholesterolaemic
LDLr(−/−) mice, eNOS phosphorylation was unchanged
(Ou et al., 2011). Similarly, eNOS protein concentrations
were found to be unchanged in cholesterol-fed rabbits
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(Rajamannan et al., 2005) and rats (Giricz et al., 2003). These
discrepancies might be attributed to the vast differences
between the animal models. It has been also uncovered
that the decrease in NO content in hypercholesterolaemic
animals is supposedly not due to a decreased activity of NOS
isoenzymes, but instead a result of an increased clearance of
NO, as assessed by elevated markers of oxidative stress, such
as dityrosine, nitrotyrosine (Giricz et al., 2003) and superox-
ide anion formation due to at least, in part, XO activity
(Onody et al., 2003), and elevated expression and activity of
NADPH oxidase (Onody et al., 2003; Varga et al., 2013). These
reports were confirmed by Stokes et al. (2009) who found
cardiac S-nitrosothiol (SNO) levels elevated and cardiac
nitrite levels decreased in hypercholesterolaemic mice. In
genetic models of hypercholesterolaemia, similar findings
were reported. In human apoB100 transgenic mice,
cholesterol-enriched diet increased cardiac superoxide anion
generation and NADPH oxidase expression in parallel with an
elevated cardiac nitrotyrosine level (Csont et al., 2007).
LDLr(−/−) mice also have a higher net production of ROS and
susceptibility to develop membrane permeability transition,
and increased ROS production in mitochondria can be
observed (Oliveira et al., 2005). These findings strongly
emphasize that cardiac NO production is diminished, while
its elimination is accelerated in diet-induced and genetic
models of hypercholesterolaemia as well. Meanwhile, there is
an apparent dearth of reports on the successful pharmaco-
logical restoration of hindered NO-related mechanisms:
fasudil, a selective Rho-associated PK (ROCK) inhibitor
elevated activity of antioxidant enzymes and the expression
of eNOS as well as cardiac NO, and elsewhere atorvastatin
increased eNOS protein concentrations and serum nitrite
concentrations in cholesterol-fed rabbits (Rajamannan et al.,
2005). This scarcity of direct evidence is quite interesting,
especially in view of the high number of antioxidant and
anti-hyperlipidaemic treatments that have been under devel-
opment recently. Therefore, it is likely that novel pharmaco-
logical targets will have to be explored aiming to restore
cardiac NO homeostasis in hypercholesterolaemia.

One can speculate that disturbed NO metabolism might
affect cardiac function. Indeed, it has been demonstrated in
guinea pigs fed with a cholesterol-enriched diet that
increased plasma XO activities were associated with a pro-
found myocardial and coronary endothelial dysfunction
(Schwemmer et al., 2000). Similarly, cholesterol feeding
resulted in the deterioration of cardiac function in rats
(Onody et al., 2003). This notion is further supported by
other studies where positive chronotropic effect of atropine
was selectively lost in genetically hypercholesterolaemic
apoE−/− mice, which was restored after a rosuvastatin treat-
ment (Pelat et al., 2003). This latter paper also reported that
cardiac expression of caveolin-1 was elevated in apoE−/− mice,
further evidencing a disturbed NO metabolism in hypercho-
lesterolaemia. Similarly, LDLr(−/−) mice demonstrated a
decrease in left atrial contractility and eNOS expression rela-
tive to wild-type mice. Interestingly, LDLr(−/−) mice fed with
an atherogenic diet for 15 days showed increased left ven-
tricular mass and enhanced expression of NOS isoforms,
which was reversed by the administration of S-nitroso-N-
acetylcysteine (Garcia et al., 2008). These results highlight
that, although it is well studied, the contribution of disturbed

NO signalling to the deteriorated cardiac function in hyper-
cholesterolaemia is not completely understood.

Isolated hypercholesterolaemia in humans is rarely seen;
however, it is a major contributor to numerous pathological
conditions, such as atherosclerosis and diabetes. NO metabo-
lism in the human heart has been studied in even rarer cases.
In hypercholesterolaemic patients, tetrahydrobiopterin (BH4)
attenuated acetylcholine (ACh)-induced decrease in coronary
diameter and restored ACh-induced increase in coronary
blood flow, which was not shown in normocholesterolaemic
patients (Fukuda et al., 2002). Asymmetric dimethylarginine
(ADMA) is an endogenous NOS inhibitor and an established
cardiovascular risk factor in adults (Wu, 2009; Wu et al.,
2009). Serum concentration of ADMA is elevated in hyperc-
holesterolaemic adults, which contributes to NO-dependent
endothelial dysfunction (Böger et al., 1998; for review, see
Horowitz and Heresztyn, 2007), but not in children with
hypercholesterolaemia type II, possibly due to an increase
in dimethylarginine dimethylaminohydrolase activity
(Chobanyan-Jürgens et al., 2012). However, whether ADMA
influences NO bioavailability in the heart, it has yet to be
assessed.

In addition to decreased NO bioavailability, the NO-sGC
signalling is also pathologically impaired in atherosclerosis,
which can be successfully restored by novel sGC stimulators/
activators in preclinical rodent models of atherosclerosis and
restenosis, where these drugs attenuate inflammation and
other pathological changes (Evgenov et al., 2006; Stasch et al.,
2011).

In conclusion, in animal models and humans, hypercho-
lesterolaemia hinders cardiac NO metabolism and, in these
conditions, increased oxidative stress plays a major role. Fur-
thermore, diminished NO availability and, most likely,
impaired NO-sGC signalling in the heart tissue manifests in
deteriorated cardiac function and would contribute to the
development of other cardiovascular pathologies.

NO signalling in the diabetic heart

In diabetic patients, independent of vascular complications, a
specific form of cardiomyopathy develops known as diabetic
cardiomyopathy. Many factors may contribute to the evolu-
tion of this pathology, including metabolic disturbances
(glucotoxicity, lipotoxicity), inflammatory processes, mito-
chondrial uncoupling, enhanced oxidative stress and deterio-
rated NO signalling (Pacher et al., 2005). Several publications
highlight the role of altered NO metabolism in diabetic car-
diomyopathy, but surprisingly there is limited information
on the direct measurement of cardiac NO levels obtained by
strictly NO-specific methods (see Csonka et al., 2015). As
assessed by electron paramagnetic resonance spectrometry, a
gold standard NO-specific method, NO level was increased in
the hearts of streptozotocin-induced diabetic rats (Amour
et al., 2007). In line with this finding, an increase in cardiac
NO metabolites (nitrite, nitrate) has been reported in the
Goto-Kakizaki rat model of type 2 diabetes (Desrois et al.,
2010). Although these reports indicate that cardiac NO
metabolism is influenced by diabetes, to date no data have
been published on cardiac levels or bioavailability of NO
from diet-induced animal models, let alone diabetic patients.
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Diverse mechanisms have been proposed in diabetes-
induced dysfunction of NO signalling. The pivotal role of
altered eNOS function as the rate-limiting step in NO bio-
availability is emphasized in the pathomechanism (Münzel
et al., 2005; Zhang et al., 2011). The mechanisms responsible
for eNOS dysfunction, however, remain elusive. Availability
of cofactors for the eNOS complex, especially of BH4, deter-
mines the ratio of NO or superoxide anion produced by the
enzyme (Gielis et al., 2011). Furthermore, a decrease in the
dimer to monomer eNOS ratio within the myocardium of
diabetic animals has been reported (Zou et al., 2002; Jo et al.,
2011). Monomerization and subsequent uncoupling of NOS
results in increased oxidative stress and decreased NO bio-
availability that has been implicated in the pathophysiology
of many cardiovascular diseases.

Of the three major NOS isoforms, two (iNOS and
eNOS) are known to be increased in the diabetic heart
(Stockklauser-Färber et al., 2000; Farhangkhoee et al., 2003;
Jesmin et al., 2006; Rajesh et al., 2012). The increase in NOS
expression in the diabetic heart is associated with an increase
in lipid peroxidation and nitrotyrosine formation, which
might be related to the uncoupled and monomer state of the
enzyme. Indeed, inhibition of NOS activity in diabetes (by
L-NAME or L-NMMA) improves myocardial function, sug-
gesting that the increased production of superoxide anion
and peroxynitrite rather than NO is a major contributor of
suppressed contractile function (Smith et al., 1997; Esberg
and Ren, 2003). Moreover, it seems that peroxynitrite-
induced nitrative stress contributes to inactivation of
succinyl-CoA:3-oxoacid CoA transferase causing deteriora-
tion of energy metabolism of the diabetic heart (Turko et al.,
2001). In addition, restoration of iNOS coupling by BH4
administration improves ischaemic tolerance, reduces iNOS-
derived superoxide anion generation, and increases NO bio-
availability in the diabetic heart. The authors also imply that
iNOS-derived NO-mediated cardioprotection occurs through
protein S-nitrosylation but not cGMP-dependent signalling
in the diabetic heart (Okazaki et al., 2011). The central role of
oxidative stress in impaired NO bioavailability and signalling
in diabetic hearts is further substantiated by Rajesh et al.
(2009), demonstrating that the XO inhibitor allopurinol not
only attenuated the myocardial oxidative stress, but also
attenuated the pathologically increased nitrosative/nitrative
stress, cell death, remodelling and cardiac dysfunction in
diabetic mice hearts (see Ansley and Wang, 2013).

Much less is known about the NO-related downstream
pathways (cGMP-PKG and NO-dependent post-translational
modifications) in the diabetic heart. Recently, in patients
with heart failure with preserved ejection fraction (obese and
diabetic subjects), myocardial cGMP content as well as PKG
activity is decreased, which might be related to the increase
in oxidative/nitrosative stress (van Heerebeek et al., 2012).
However, it seems that natriuretic peptide-induced cGMP-
PKG signalling is not affected by diabetes, as shown by
Rosenkranz et al. (2003). They reported that B-type natriu-
retic peptide is a suitable anti-hypertrophic strategy in the
diabetic myocardium, where NO-dependent (bradykinin –
ACE inhibitor) mechanisms fail to positively affect the
development of hypertrophy (Rosenkranz et al., 2003).
cGMP-independent effects of NO are mainly mediated by
S-nitrosylation, the covalent modification of a protein

cysteine thiol by an NO group to generate SNO. Puthanveetil
et al. reported recently that in the diabetic myocardium,
iNOS-dependent S-nitrosylation of GAPDH and caspase-3
contributes to increased poly[ADP-ribose] polymerase-1
(PARP-1) activity, and thereby initiates cell death activation
in hyperglycaemia (Puthanveetil et al., 2012). This is also in
line with data confirming the central role of PARP in diabetic
cardiac complications (Pacher et al., 2002; Pacher and Szabó,
2005).

In conclusion, diabetes markedly decreases NO availabil-
ity in the heart that is related to increased superoxide (from
various sources including uncoupled NOS) and peroxynitrite
formation. As a consequence of increased oxidative/
nitrosative stress, downstream signalling of NO (cGMP-PKG
and protein S-nitrosylation) is also profoundly affected.

Cardiac NO signalling as a
pharmacological target

NO donors
NO donors are pharmacologically active substances that
spontaneously release NO, or are metabolized to NO or its
redox congeners and provide a wide scope for pharmaco-
therapy in cardiovascular medicine (Ignarro et al., 2002).
Several NO donors have been used in clinical settings for
decades, such as nitroglycerin and sodium nitroprusside.
Nitrate tolerance, however, has become a limiting factor
for their clinical use (Kojda et al., 1995; 1998; Csont and
Ferdinandy, 2005). The underlying mechanisms responsible
for nitrate tolerance may include neurohormonal counter-
regulatory factors, intravascular volume or intrinsic abnor-
malities such as desensitization of the target enzyme
guanylate cyclase or a decrease in biotransformation of NO
donors (Munzel et al., 1995; Dikalov et al., 1997; 1998; 1999).
Molsidomine and pentaerythrityl tetranitrate (PETN) repre-
sent more effective tolerance-devoid NO donors with a phar-
macodynamically beneficial effect. Molsidomine is one of the
sydnonimines and it is metabolized to the active linsidomine.
PETN is the nitrate ester of pentaerythritol, structurally very
similar to nitroglycerin. It was found to be the most active
drug in cGMP production (Hinz et al., 1998; Mollnau et al.,
2005). Despite these facts, neither molsidomine nor PETN
was able to improve pathological changes of the cardiovas-
cular system in adult spontaneously hypertensive rats
(Kristek et al., 2003).

The compound LA-419 is an analogue of isosorbide mon-
onitrate containing a protected thiol group in its molecular
structure. Preclinical studies have shown that this compound
has anti-atherogenic and antioxidant properties that make it
applicable for the treatment of chronic cardiovascular disor-
ders (Megson and Leslie, 2009). Ruiz-Hurtado and Delgado
(2010) demonstrated that LA-419 prevents left ventricular
remodelling in rats with aortic stenosis at doses not affecting
arterial blood pressure. In their experiment, LA-419 even
restored cardiac eNOS expression and enhanced the interac-
tion between eNOS and its positive regulator, heat shock
protein 90, and re-established the normal cardiac levels of
cGMP. The thiol group of LA-419 improved also NO stability
by converting NO into nitrosothiols and protecting the
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formed NO from reaction with ROS (Ruiz-Hurtado et al.,
2007; Ruiz-Hurtado and Delgado, 2010).

In conclusion, there are very few data about the effects of
NO donors on heart and/or cardiomyocyte functions in the
metabolic syndrome. Nevertheless, the beneficial effect of
compound LA-419 seems to be a promising therapeutic
approach against cardiac remodelling due to the metabolic
syndrome and the associated risk factors as well. However,
the impaired NO-sGC signalling in the metabolic syndrome
by oxidative stress is likely to represent a major obstacle for
the success of this approach.

ROS scavengers
ROS are involved in several physiological cellular signalling
mechanisms. However, pathological increase in oxidative
stress contributes to different pathologies including themeta-
bolic syndrome and cardiovascular disorders. Accordingly,
one of the most powerful antioxidants, 4-hydroxy-2,2,6,6,-
tetramethylpiperidine-1-oxyl (tempol), prevents cardiovascu-
lar damage in different experimental hypertension and
diabetes models (Ebenezer et al., 2009; Hasdan et al., 2002;
Nagase et al., 2007), decreases hypertrophic responses to
atrial natriuretic peptide in neonatal rat cardiac myocytes
(Laskowski et al., 2006), and reduces apoptosis in cardiac cells
exposed to hyperglycaemia or in diabetic rats (Fiordaliso
et al., 2007). Tempol decreased apoptosis in response to
increased aldosterone signalling via a non-genomic pathway
in cardiomyocytes (Hayashi et al., 2008) and inhibited the
Ca2+ transient within cardiac myocytes stimulated by
pressure-flow stress (Belmonte and Morad, 2008). Tempol
improved insulin sensitivity and dyslipidemia, reduced
weight gain and diastolic dysfunction and heart failure in
diet-induced preclinical models of the metabolic syndrome
(see Wilcox, 2010). Moreover, infusion of tempol into hyper-
glycaemic dogs normalized their coronary endothelial dys-
function and coronary wall shear stress in type 1 and 2
diabetes models (Gross et al., 2003). Chronic treatment with
another antioxidant, N-acetylcysteine (NAC), partially
attenuated the increase in blood pressure in young, but not in
adult spontaneously hypertensive rats (SHR). The antioxidant
action of NAC on lipid peroxidation, inhibition of NF-κB
expression and eNOS activation was greater in young than in
adult SHR, indicating preventive rather than therapeutic
effect of NAC (Pechánová et al., 2006). Melatonin, an indola-
mine with antioxidant properties, has been shown do
decrease blood pressure even in the established form of the
spontaneous hypertension. An in vitro study revealed that
melatonin lowered the tone of phenylephrine-precontracted
femoral artery via both NO-dependent and NO-independent
components since vasorelaxation was preserved even after
the blockade of sGC by oxadiazolo[4,3-a]quinoxalin-1-one
(Pechánová et al., 2007). Melatonin treatment also prevented
the development or induced a reversal of left ventricular
fibrosis in the model of L-NAME-induced hypertension or in
spontaneously hypertensive rats (see Simko and Pechanova,
2010). It has been documented that melatonin reduces blood
pressure in patients with hypertension or non-dipping blood
pressure (Reiter et al., 2009). Interestingly, melatonin, leptin
and insulin have been found to activate the same intracellu-
lar signalling pathways, particularly PI3K and STAT-3
(Carvalheira et al., 2001). As a consequence, melatonin may

attenuate or reverse insulin resistance in obesity by mimick-
ing the actions of insulin and leptin signalling via crosstalk
between these pathways (see Nduhirabandi et al., 2012).

Several studies described positive effects of different poly-
phenolic compounds on the heart by restoring the balance
between ROS and NO production, in hypertension as well as
in other components of the metabolic syndrome (Pechánová
et al., 2004; Galleano et al., 2010). Sutra et al. (2008) showed
the preventive effects of different polyphenolic molecules,
like catechin, resveratrol, delphinidin and gallic acid, on
cardiac fibrosis associated with the metabolic syndrome.
Similarly, protection of ROS/NO balance was suggested to be
involved in the beneficial effect of resveratrol. The results of
Penumathsa et al. (2008) suggested that the effect of resvera-
trol is non-insulin-dependent but triggers some of the intra-
cellular insulin signalling components such as eNOS and Akt
through the AMPK pathway in the myocardium. Further-
more, resveratrol was shown to regulate the caveolin-1 and
caveolin-3 status that might play an essential role in GLUT-4
translocation and glucose uptake in streptozotocin-induced
type 1 diabetic myocardium (Penumathsa et al., 2008). Simi-
larly, olive leaf extract containing polyphenols, such as ole-
uropein and hydroxytyrosol, was shown to reverse chronic
inflammation and oxidative stress in rat model of diet-
induced obesity and diabetes (Poudyal et al., 2010). Resvera-
trol also protected against diabetic cardiac dysfunction by
inhibiting oxidative/nitrative stress and improving NO avail-
ability (Zhang et al., 2010).

Despite the fact that antioxidants represent great promise
in the treatment of hypertension and other components of
the metabolic syndrome, data from clinical studies and trials
with non-specific antioxidants are not conclusive. For
example, in the HOPE (Heart Outcomes Prevention Evalua-
tion) study, involving patients with atherosclerotic complica-
tions or diabetes mellitus, vitamin E in the dose of 400 IU
daily, was not able to reduce blood pressure and morbidity
and mortality from cardiovascular reasons (Yusuf et al., 2000;
Ward and Croft, 2006). In contrast, a more recent study
confirmed that subjects with type 2 diabetes after a 3 month
long supplementation of vitamins C and E or their combina-
tion demonstrated significantly lower level of hypertension,
decreased levels of blood glucose, and increased superoxide
dismutase (SOD) and GSH enzyme activity that could prob-
ably reduce insulin resistance by attenuating oxidative stress
(Rafighi et al., 2013). Vitamin C was also shown to increase
BH4 levels by preventing its oxidation, which reduced eNOS
uncoupling (Landmesser et al., 2003). Thus, preservation of
BH4 may also explain the effects of long-term ascorbate treat-
ment on blood pressure in patients with hypertension (Duffy
et al., 1999).

Several studies suggest that imbalance between ROS pro-
duction and mitochondrial antioxidants also contributes to
the pathogenesis of hypertension and associated vascular
pathologies. Ito et al. (1995) found that hypertension and
cardiac hypertrophy were associated with decreased expres-
sion of SOD1 and SOD2 in spontaneously hypertensive rats
compared with Wistar-Kyoto rats. Indeed, overexpression of
mitochondrial SOD2 and thioredoxin 2 reduced the produc-
tion of both mitochondrial and cytoplasmic ROS (Widder
et al., 2009). SOD2 overexpression also attenuated H2O2-
induced apoptosis, decreased lipid peroxidation, reduced
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age-related decline in mitochondrial ATP levels and decreased
blood pressure (see Dikalov and Ungvari, 2013).

Recently, extracellular antioxidant enzymes like EC-SOD
or covalent bienzymes like SOD-CHS-CAT conjugate (super-
oxide dismutase-chondroitin sulphate-catalase) started to be
of particular interest, as they demonstrated protective
actions against development of hypertension, heart failure
and diabetes mellitus in vivo (see Maksimenko and Vavaev,
2012).

Taken together, based on numerous promising preclinical
studies with mitochondrial antioxidants, XO and/or NADPH
oxidase inhibitors in models of hypertension, diabetes and
atherosclerosis, it appears that, instead of using non-specific
antioxidants, selectively targeting the sources of ROS with
more specific drugs may represent a better approach to over-
come metabolic syndrome and its complications.

PDE inhibitors
The cGMP-dependent NO signalling is largely influenced by
the family of PDEs that control cGMP levels and therefore
affect the downstream effects of NO including PKG stimula-
tion. Several PDEs, including PDE1, PDE2 and PDE5, play a
role in the regulation of cGMP in both vascular smooth
muscle cells and cardiac myocytes. PDEs are compartmental-
ized providing selective interactions of a certain source of
cGMP and PDE hydrolysis. PDE1 and/or PDE5 are
up-regulated in chronic disease conditions such as atheroscle-
rosis, cardiac pressure-load stress, and heart failure, as well as
in response to long-term exposure to nitrates. In pathophysi-
ological states with reduced NO availability, such as, for
example, diabetes and hyperlipidaemia (see above), using
selective PDE inhibitors may be particularly helpful (see Kass
et al., 2007). Because PDE-5 is widely distributed in the body,
selective PDE-5 inhibitors have been extensively developed.
The first PDE-5 inhibitor sildenafil on the market is used for
the indication of erectile dysfunction. However, recent
studies revealed several beneficial pleiotropic cardiovascular
effects of PDE-5 inhibitors in patients with erectile dysfunc-
tion and multiple co-morbidities, including coronary artery
disease, heart failure, hypertension and diabetes mellitus (see
Chrysant and Chrysant, 2012). For example, tadalafil attenu-
ates oxidative stress and inflammation and induces cardio-
protection in type 2 diabetic mice models (Varma et al., 2012;
Koka et al., 2013). Moreover, vardenafil attenuated diabetes-
induced cardiac dysfunction in type 1 diabetic rats (Radovits
et al., 2009).

In conclusion, PDE inhibition is a promising tool to
restore the downstream signalling pathway of NO in the
metabolic syndrome.

sGC stimulators and activators
Activation of sGC has traditionally been achieved with
nitrovasodilator drugs extensively used in ischaemic heart
disease. However, these drugs are associated with the rapid
development of tolerance and potentially deleterious cGMP-
independent actions (see Csont and Ferdinandy, 2005). Fur-
thermore, the NO-sGC signalling pathway is impaired in
hypertension, heart failure and atherosclerosis by ROS/RNS,
limiting the ability of NO to activate its own signalling
machinery (Evgenov et al., 2006; Stasch et al., 2011). There-

fore, NO- and haem-independent sGC activators have been
developed, such as, for example, cinaciguat and ataciguat.
These compounds selectively activate the oxidized/haem-free
enzyme via binding to the haem pocket of the enzyme,
thereby causing strong vasodilatation. Accordingly, activators
of sGC may be beneficial in the treatment of a variety of
pathologies including systemic and pulmonary hyperten-
sion, heart failure, atherosclerosis and peripheral arterial
disease (Evgenov et al., 2006; Stasch et al., 2011). Indeed,
NO-insensitive sGC activators attenuated left ventricular
hypertrophy, preserved cardiac function, and increased sur-
vival in spontaneously hypertensive stroke-prone rats with
high-salt high-fat diet (Costell et al., 2012), in salt-sensitive
Dahl rats (Geschka et al., 2011), as well as in chronic L-NAME-
treated rats (Zanfolin et al., 2006). sGC activators have dem-
onstrated beneficial effects not only in hypertension and
heart failure models but also in models of atherosclerosis
and restenosis (see Evgenov et al., 2006; Stasch et al., 2011).
Following successful recent clinical trials, riociguat received
FDA approval for the treatment of pulmonary hypertension
and chronic thromboembolic pulmonary hypertension in
humans, and clinical trials with other similar drugs are
ongoing in heart failure.

In conclusion, the pharmacological activation of sGC
may be the most promising tool to restore the downstream
signalling pathway of NO in the metabolic syndrome, which
should be validated in future clinical trials.

Interaction of pharmacological
treatment of metabolic syndrome with
cardiac NO signalling

Interaction of antihypertensives with cardiac
NO signalling
Three approaches have been developed to correct the imbal-
ance between increased oxidative stress and simultaneously
decreased NO synthesis in the cardiovascular system: (1)
reducing ROS bioavailability by administration of antioxi-
dant compounds; (2) increasing NO levels via administration
of NO donors such as nitroglycerin or mono/dinitrates; and
(3) reducing ROS production and stimulating NO production,
for example, by treatment with statins, ACE inhibitors, angio-
tensin AT1 receptor antagonists, or β-adrenoceptor antago-
nists (β-blockers) with NO-dependent properties such as
nebivolol (see Münzel et al., 2010).

Among antihypertensives, the third-generation β-
blockers with stimulating effect on NOS and/or β3-
adrenoceptors have the best described effect on cardiac NO
signalling. Nebivolol achieved a marked improvement on
cardiac mass, coronary flow, mRNA expression levels of sar-
coplasmic reticulum Ca2+ ATPase (SERCA2a), and atrial
natriuretic peptide and phospholamban (PLN)/SERCA2a and
phospho-PLN/PLN ratio in rats treated with isoprenaline
(Ozakca et al., 2013). In Zucker diabetic fatty rats, nebivolol
and atenolol showed a comparable reduction in blood pres-
sure; however, nebivolol appeared to achieve a better lipid
profile, left ventricular function and less left ventricular
hypertrophy, compared with atenolol. Moreover, a reduction
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in platelet aggregation and an increased endothelium-
dependent and endothelium-independent relaxation were
observed in the nebivolol group versus the atenolol group.
Together with an attenuation of oxidative stress parameters,
nebivolol also better preserved antioxidant defence markers
(Toblli et al., 2010). Concerning NO signalling, nebivolol has
been shown to stimulate endogenous production of NO by
inducing phosphorylation of eNOS (Maffei et al., 2006)
which determines its favourable effects on cardiac function in
patients with heart failure when compared with classical
β-blockers. The action of nebivolol on iNOS was also con-
firmed by real-time PCR experiments, showing cardiac
overexpression of iNOS, but not nNOS or eNOS, in male
C57BL/6N mice (Maffei et al., 2007).

Among other promising antihypertensives with NO
increasing and ROS reducing effect are the ACE inhibitors
with a thiol group such as captopril and the newer zofenopril.
In our earlier studies, both captopril and enalapril increased
NOS activity in the heart of spontaneously hypertensive
animals but did not increase the expression of eNOS. Both
ACE inhibitors increased the level of cGMP. However, cGMP
levels were significantly higher in the captopril group. Cap-
topril, besides inhibition of ACE, prevented hypertension by
increasing NOS activity and by simultaneous decrease of oxi-
dative stress which resulted in increase of cGMP concentra-
tion (Pechánová, 2007). Most of the clinical studies revealed
that captopril, besides decreasing blood pressure, has also
vasodilator effects and attenuates left ventricular hypertro-
phy (Konstam et al., 2000). The SMILE (Survival of Myocar-
dial Infarction Long-term Evaluation) program indicates that
zofenopril may favourably affect the prognosis of patients
with a recent myocardial infarction (Lombardi et al., 2012)
and even of patients with the metabolic syndrome (Borghi
et al., 2008). Accordingly, a 12 week zofenopril treatment
significantly decreased lipid peroxidation, reduced cardiac
hypertrophy and improved NO pathway in patients with
essential hypertension (Napoli et al., 2004).

In conclusion, antihypertensive drugs, such as β- blockers
with NO-dependent effects and ACE inhibitors with a thiol
group, may successfully restore NO signalling in the heart in
the metabolic syndrome.

Interaction of antidiabetic drugs with cardiac
NO signalling
For the treatment of diabetes, several classes of drugs are
available with markedly different mechanisms of action.
Besides various synthetic insulin analogues, several other
non-insulin-related drugs were developed and marketed in
the last years. The mechanism of action involves the stimu-
lation of endogenous insulin secretion, the sensitization of
peripheral tissues to insulin or the increase in incretin levels.
Although these mechanisms are directly not related to NO
signalling, all of these drugs have some degree of interaction
with NO-related pathways.

Insulin itself is a strong regulator of cardiac NO level by
affecting eNOS phosphorylation. Administration of insulin in
vivo to healthy rats activates Akt through a PI3K-dependent
mechanism. Phosphorylation of the eNOS and the concur-
rent increase in NO production is a result of Akt activation
(Gao et al., 2002). However, this NO-related effect of insulin is
attenuated in the diabetic myocardium (Zakula et al., 2011).

Sulfonylurea drugs are potent stimulators of endogenous
insulin secretion by acting on ATP-sensitive K+ channels.
Although these drugs do not interact directly with myocar-
dial NO production, experimental and clinical data suggest
considerable interaction with NO signalling. Cardioprotec-
tion mediated by NO is mainly related to the opening of
mitochondrial ATP-sensitive K+ channels (Han et al., 2002;
Ljubkovic et al., 2007). The non-selective nature of K+

channel inhibition results in the attenuation of NO-mediated
cardioprotection by sulfonylureas, limiting their clinical
applicability in diabetic patients with ischaemic heart dis-
eases (Garratt et al., 1999).

Insulin-sensitizing drugs include biguanides (metformin
is the most often used) and the thiazolidinedione class of
antidiabetic drugs (rosiglitazone and pioglitazone). These
drugs mainly act at peripheral tissues by sensitizing them to
the action of insulin. Metformin facilitates the activation of
AMP-activated PK (AMPK) in the heart that has been shown
to be cardioprotective during heart failure. Metformin-
induced positive effects were associated with increased AMPK
and eNOS phosphorylation, and reductions in insulin, TGF-
β1, basic fibroblast growth factor, and TNF-α levels in the
circulation and/or in the myocardium (Gundewar et al.,
2009; Wang et al., 2011). Withdrawal of rosiglitazone from
the market due to adverse cardiovascular effects (increased
mortality, accentuation if ischaemic heart diseases) high-
lighted the controversial cardiovascular effects of thiazolidin-
ediones. In experimental studies, both rosiglitazone (Gonon
et al., 2007) and pioglitazone (Ye et al., 2008a) reduced infarct
size possibly via increased eNOS phosphorylation. However,
the mechanisms that resulted in adverse effects in humans
are still not known.

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a relatively
new class of antidiabetics. By the inhibition of DPP-4, they
increase the level of incretins (GIP and GLP-1), inhibiting
glucagon release, which in turn increases insulin secretion,
decreases gastric emptying and decreases blood glucose level
(Figure 2). DPP-4 inhibitors were proven to be atheroprotec-
tive (Matheeussen et al., 2013) and to affect positively dias-
tolic function in the insulin-resistant Zucker diabetic fatty rat
model by increasing phosphorylation of eNOS (Ser1177) and
the expression of total eNOS (Aroor et al., 2013).

In conclusion, antidiabetics (except for sulfonylureas)
may positively affect tissue NO availability and NO signal-
ling, thereby providing a promising tool to treat cardiac com-
plications of the metabolic syndrome.

Interactions of anti-hyperlipidaemic
treatments and the cardiac NO signalling
Statins are the most frequently prescribed anti-
hyperlipidaemic medications. Apart from their HMG-CoA
reductase inhibitory function, statins reduce cardiovascular
risks associated with hypercholesterolemia via a wide range of
well-documented pleiotropic effects. For instance, in the
heart, atorvastatin increases phosphorylation of a host of
mediators associated with NO signalling, such as ERK, PDK-1,
Akt and eNOS itself, plausibly via an adenosine receptor-
dependent mechanism (Merla et al., 2007; Ye et al., 2008b).
Direct modulation of NO signalling by statins downstream of
NOS was also suggested by another study, where rosuvastatin
administration reverted the elevation in mean arterial blood
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pressure and cardiac remodelling caused by a treatment with
a NOS inhibitor, L-NAME (Baraka et al., 2009). Statins modu-
late cardiac NO metabolism under hyperlipidaemic condi-
tions as well. In OLETF rats, both atorvastatin and pravastatin
up-regulated cardiac eNOS expression compared with their
genetic controls (Yu et al., 2004; Chen et al., 2007). Interest-
ingly, not all statins are equally effective in the modulation of
cardiac NO metabolism. For example, pravastatin induced
eNOS more effectively than atorvastatin (Chen et al., 2007),
and we have previously shown that the first-generation
statin, lovastatin, does not affect NO production or NOS
activity in cholesterol-fed animals (Giricz et al., 2003). Simi-
larly, in spontaneously hypertensive rats, pravastatin treat-
ment failed to modulate the expression of nNOS, eNOS, sGC
or the NADPH oxidase subunits p40Phox and Gp91 in myo-
cardial tissue (Herring et al., 2011), which highlights that NO
modulation is not a general characteristic of the whole class
of statins and the effects are strongly model dependent.
Newer statins have been also shown to alter cardiac NO
bioavailability in other pathologies unrelated to hyperlipi-
daemia. For instance, in a hypertension model of rats over-
expressing renin, rosuvastatin decreased the accentuated
myocardial gp91(phox), p40(phox), p22(phox) expression
and reduced the myocardial lipid peroxidation, nitrotyrosine
formation and malondialdehyde content, suggesting that it
increased NO bioavailability by reducing ROS formation
(Habibi et al., 2007). Elsewhere, simvastatin reduced iNOS
expression in cytokine-treated H9C2 cardiac myoblasts,
which appeared to be related to the cholesterol biosynthesis-
modulating effect of statins, since mevalonate, and gera-
nylgeranyl pyrophosphate could reverse these effects
(Madonna et al., 2005). However, other statins exerted

seemingly opposing effects on the cardiac NO production
modulated by pro-inflammatory signals: lipophilic statins
fluvastatin and lovastatin increased IL-1β-induced nitrite pro-
duction by cardiac myocytes, whereas hydrophilic pravasta-
tin did not. Fluvastatin also increased iNOS expression (Ikeda
et al., 2001). These data demonstrate clearly that, before ini-
tiating a statin treatment, compounds must be evaluated
individually in the view of the other coexisting pathologies.
Statins might have positive effects on age-related disturbance
of cardiac NO metabolism as well. In 20-month-old rats,
atorvastatin administration for 4 months reversed the age-
related increase in cardiac malondialdehyde and decrease of
SOD, catalase and NOS activity (Han et al., 2012). Direct
effects of statins on cardiac NO signalling have been studied
in humans in a few publications. Perioperative simvastatin
therapy of patients undergoing non-coronary cardiac surgery
increased nitrite and nitrate levels, expression and phospho-
rylation of eNOS at Ser1177, phosphorylation of Akt, HSP90,
and its association with eNOS in right atrial appendage
(Almansob et al., 2012). Furthermore, atorvastatin induced a
mevalonate-reversible inhibition of NOX2-NADPH oxidase
activity in right atrial samples from patients who developed
post-operative atrial fibrillation (AF); however, it did not
affect ROS, or NOS uncoupling in patients with permanent
AF (Reilly et al., 2011). Although the general notion is that
statins improve cardiac NO metabolism, these data also
suggest that differences in the biochemical background of
diverse pathologies might profoundly influence the benefi-
cial pleiotropic effects of several of the statins.

The PPAR family of nuclear receptors has been a target for
numerous antidiabetic and anti-hyperlipidaemic agents,
many of which are shown to modulate NO metabolism.

Figure 2
Effect of drugs used in the metabolic syndrome on cardiac NO signalling. Antihypertensives activate primarily eNOS or potentiate the release of
NO from SNOs. Antidiabetics activate predominantly the kinases AMPK and Akt upstream of eNOS to induce its phosphorylation. Sulfonylureas
may, however, interfere with NO-related downstream effectors (i.e. mitochondrial KATP channels). Anti-hyperlipidaemic drugs have pleiotropic
effects on NO signalling, serving as antioxidants and inducers of eNOS phosphorylation.
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GW7647, a potent PPARα inducer, enhanced cardiac eNOS
activation in isolated papillary muscles of rat hearts (Xiao
et al., 2010). WY-14643, another PPARα agonist, has also been
shown to increase the expression of eNOS and iNOS, as well
as nitrite/nitrate levels in the ischaemic myocardium of Goto-
Kakizaki and Wistar rats (Bulhak et al., 2009). This publica-
tion also demonstrated that PPARα activation leads to the
induction of the downstream mediators of NO, as shown by
an elevated cardiac phosphorylation of Akt at Ser473 and
Thr308. However, elsewhere, fenofibrate, also a PPARα inducer,
did not alter cardiac NO or its metabolites in LPS-treated
Wistar rats (Jozefowicz et al., 2007). Similarly, PPARβ/δ
agonist GW0742 reduced the ischaemia/reperfusion-induced
increase in the expression of iNOS and normalized the phos-
phorylation of Akt and glycogen synthase kinase-3β in a rat
model of regional myocardial I/R in vivo (Kapoor et al., 2010),
demonstrating the involvement of these PPAR isoforms in
NO metabolism. More information is available on the effects
of PPARγ induction on cardiac NO balance. The endogenous
PPARγ ligand, 15-deoxy-Δ12,14-PGJ2 (15D-PGJ2), attenuated the
cardiac ischaemia/reperfusion-induced increase in iNOS
mRNA expression in rats (Wayman et al., 2002). The inhibi-
tion of iNOS expression by 15D-PGJ2, but not by rosiglita-
zone, a synthetic PPARγ agonist, was confirmed in neonatal
cardiomyocytes pretreated with LPS (Hovsepian et al., 2010)
or IL-1β (Mendez and LaPointe, 2003). Negative correlation
between the activity of PPARγ and NOS enzymes was con-
firmed in another study, where pioglitazone down-regulated
iNOS expression in a murine cardiac allotransplantation
model (Hasegawa et al., 2011). However, pioglitazone seems
to have opposing effects on eNOS. In diabetic OLETF rats,
cardiac expression of eNOS and phosphorylation of Akt was
reduced compared with non-diabetic controls, which was
reversed by the induction of PPARγ by pioglitazone (Makino
et al., 2009). The notion that disturbed eNOS signalling is
restored by PPARγ activation seems to be strengthened by
other experiments. Phosphorylated eNOS was increased in
mice receiving rosiglitazone before ischaemia/reperfusion
(Gonon et al., 2007), and in diabetic db/db mice, the reduced
dilations of coronary arterioles in response to ACh and the
NO donor NONOate were augmented by rosiglitazone (Bagi
et al., 2004).

There is only a limited amount of data on the effect of
other less frequently prescribed anti-hyperlipidaemic agents
on cardiac NO signalling. Although dietary supplementation
of niacin is often recommended for obese patients, its effect
on the NO-cGMP-PKG system has been revealed indirectly in
a single publication. Niacin-bound chromium induced
myocardial phosphorylation of Akt, AMPK and eNOS
in streptozotocin-induced diabetic rats after ischaemia-
reperfusion injury, suggesting that beneficial effects of niacin
and chromium are mediated not only through the modula-
tion of metabolic pathways, but via the activation of the NO
pathway as well (Penumathsa et al., 2009). Inhibition of cho-
lesterol absorption by ezetimibe, an inhibitor of the intestinal
Niemann-Pick C1-like 1 protein, has been shown to decrease
cardiac NADPH oxidase-mediated oxidative stress in hyper-
lipidaemic db/db mice (Fukuda et al., 2010), therefore, plausi-
bly increase NO bioavailability, known to be depressed in
hyperlipidaemia (Ferdinandy et al., 1997; Giricz et al., 2003;
Onody et al., 2003).

In conclusion, experimental evidence shows that admin-
istration of various cholesterol-reducing medications leads to
a restoration of the balance in NO metabolism disturbed by
hyperlipidaemia.

Conclusions and perspectives

Published data show that NO availability and its signalling in
the heart is impaired in the presence of risk factors associated
with the metabolic syndrome. The decreased tissue availabil-
ity of NO is a consequence of increased oxidative and
nitrosative/nitrative stress rather than a decreased cardiac NO
synthesis. The impaired NO signalling in the heart due to the
metabolic syndrome leads to different pathophysiological
processes including myocardial hypertrophy, fibrosis and
eventually heart failure. Therefore, in addition to treating the
individual risk factors related to the metabolic syndrome,
restoration of NO signalling in the heart by pharmacological
tools may be a promising therapeutic avenue to alleviate
cardiac pathologies related to the metabolic syndrome.
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