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Abstract Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in
Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting
with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery,
novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury
(IRI). During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments
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have been tested in the clinic—however, their translation from experimental to clinical studies for improving patient out-

comes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of

Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic condi-

tioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clini-

cal setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial IRI.

Cardioprotection e Ischaemia e Reperfusion e Myocardial Infarction e Ischaemic conditioning
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1. The need for novel
cardioprotective therapies

Although recent advances in treatment have improved survival in patients
presenting with an acute myocardial infarction (AMI),' the number of
patients going on to develop heart failure, a medical condition which
exerts a huge global burden on healthcare and economic resources, has
increased.”® Despite timely reperfusion with primary percutaneous coro-
nary intervention (PPCI), mortality and morbidity following ST-segment
elevation myocardial infarction (STEMI) remain significant, with 7% death
and 22% heart failure hospitalization at 1 year in patients presenting with
an anterior STEML* For STEMI patients presenting with cardiogenic
shock (about 10%), in-hospital mortality has been reported to be as high
as 34%.> Furthermore, in developing countries, where ischaemic heart
disease (IHD) is on the rise and treatment of AMI patients is not optimal,
both mortality and morbidity rates also remain high.

Changes in patient demographics have meant that older and sicker
patients with increasing co-morbidities [diabetes, left ventricular (LV)
hypertrophy, renal failure] are undergoing coronary artery bypass graft
(CABG) surgery, often with concomitant valve and/or aortic surgery,
increasing the risk of peri-operative myocardial injury (PMI) and CABG-
related myocardial infarction (Ml) and worsening clinical outcomes.® A
recent study from the UK reported a 28% rate of major adverse cardiac
and cerebral events (MACCEs) at 1 year following CABG plus or minus
valve surgery (cardiovascular death, non-fatal M, coronary revasculariza-
tion, and stroke at 12 months).”

As such, novel cardioprotective strategies are still required to attenuate
the detrimental effects of acute myocardial ischaemia/reperfusion injury
(IR1), so as to prevent adverse LV remodelling® and reduce heart failure in
patients with IHD. Interestingly, a recent UK cost-effectiveness analysis
has demonstrated that a hypothetical cardioprotective agent capable of
reducing Ml size, preventing heart failure and reducing mortality in ante-
rior STEMI patients treated by PPCI, would be very cost-effective.”

In this regard, the discovery, in 1986, that subjecting the heart to brief
non-lethal cycles of ischaemia and reperfusion prior to a lethal episode
of acute IRl dramatically reduced Ml size, a phenomenon termed ‘ischae-
mic pre-conditioning’ (IPC),'® has provided a powerful endogenous
strategy for cardioprotection. It has evolved from IPC (classical and
delayed, both of which are limited in their clinical application as they are
invasive and need to be applied prior to ischaemia),’®"* to ischaemic
post-conditioning (IPost)13'14 (
applied at the time of reperfusion, but is still invasive), to remote ischae-
mic conditioning (RIC)™ (which has allowed the intervention to be

which allows the intervention to be

applied non-invasively to the arm or leg, even during ongoing myocardial
ischaemia and at reperfusion), making it more clinically applicable.
Although 30 years of research on ischaemic conditioning have provided
important insights into the complex intracellular signalling pathways
underlying cytoprotection at the level of the cardiomyocyte, the transla-
tion of ischaemic conditioning into the clinical setting for patient benefit

has been largely disappointing. A vast number of cardioprotective thera-
pies for reducing Ml size in the laboratory setting have failed to demon-
strate any benefit in the clinical setting; and even for the therapies which
have been shown to reduce Ml size in STEMI patients or reduce PMI in
CABG patients, successful demonstration of improved clinical outcomes
has been elusive.'®?" At this juncture, it is important to assess what we
have learned after 30 years of research on ischaemic conditioning and
what we can do to improve its translation into the clinical setting for
patient benefit. Figure 1 provides an overview of the current state of
ischaemic conditioning.

Therefore, in this Position Paper of the European Society of Cardiology
Working Group on Cellular Biology of the Heart, we critically analyse the
current state of ischaemic conditioning in both the experimental and clini-
cal settings, provide recommendations for improving the translation of
novel cardioprotective therapies into the clinical setting, and highlight
novel therapeutic targets and new treatment strategies for reducing acute
myocardial IRl and improving clinical outcomes in patients with IHD. In
this Position Paper, the focus will be on acute cardioprotective strategies
targeting myocardial IR, rather than primary prevention strategies, and
those therapies directed to preventing adverse post-Ml remodelling.

The current Position Paper will focus on a number of important
recent developments in the field of cardioprotection, which have taken
place in the last 2-3 years, since the publication of our previous two
Position Papers providing recommendations on optimizing pre-clinical and
clinical cardioprotecton studies.'®"” Several neutral large scale clinical out-

o . . 472223
comes studies in cardioprotection

and a number of neutral proof-of-
concept clinical cardioprotection studies in STEMI patients have been
recently published and will be discussed in the current Position Paper. In
addition, several novel targets and new strategies for cardioprotection have

emerged over the last 23 years and are highlighted in this Position Paper.

2. Why have there been so many
recent neutral clinical
cardioprotection studies?

In the last few years, there have been an increasing number of neutral
clinical cardioprotection studies in both STEMI (Table 1) and CABG
patients. The reasons for the neutral outcomes are varied and have been
extensively reviewed and discussed in the recent litera‘cur"e,17‘18‘20‘21‘24

and only an overview is provided here

2.1. Endogenous cardioprotection
strategies

2.1.1 Adenosine

Both experimental and clinical studies of AMI with adenosine adminis-
tered at the time of reperfusion have had mixed results in terms of
reducing Ml size, with post-hoc analyses suggesting beneficial effects in

STEMI patients presenting within 3h of symptom onset.> 2’
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Delayed ischaemic
preconditioning

Present in man

No clinical POC studies

Mo clinical outcome studies
Confounded by comorbidities
and comedications

24to 48 hrs

Ischaemic preconditioning

Present in man

Positive clinicial POC studies
No clinical outcome studies
Confounded by comorbidities
and comedications

0to 3 hrs

Ischaemic postconditioning

Present in man

Positive clinicial POC studies
Neutral clinical outcome studies
Confounded by comorbidities
and comedications

< 1min

15-30 min

Delayed ischaemic
postconditioning

Not tested in man
No clinicial POC studies
No clinical outcome studies

I 1 1 I 1 1
l . . . . . ' l Acute myocardial ischaemia I'I'Illl Acute myocardial reperfusion

Delayed remote
ischaemic preconditioning

Present in man Present in man
Positive clinical POC studies
Mo clinical outcome studies

underway

Remote ischaemic
preconditioning
Present in man
Positive clinicial POC studies
Neutral clinical outcome studies
Confounded by comorbidities
and comedications

Remote ischaemic
perconditioning

Positive clinicial POC studies
Clinical outcome studies

Present in man
Positive clinicial POC studies
Mo clinical outcome studies

Delayed remote
ischaemic postconditioning

Not tested in man
Nao clinicial POC studies
No clinical outcome studies

Remote ischaemic
postconditioning

Chronic (daily) remote
ischaemic postconditioning
Being tested in man
Clinicial POC studies awaited
No clinical outcome studies

Figure | The current state of ischaemic conditioning. This figure provides an overview of the various forms of ischaemic conditioning and their current
states in terms of their translation into the clinical setting. So far, none of these have been implemented as clinical therapy. Cardioprotection can be eli-
cited by applying brief cycles of ischaemia and reperfusion directly to the heart either: (i) 24—48 h prior the myocardial index ischaemia (delayed ischaemic
pre-conditioning); (ii) within 3 h of the index myocardial ischaemia (IPC); (iii) within 1 min of reperfusion following the index myocardial ischaemia (IPost);
and (iv) 15-30min after the onset of myocardial reperfusion following the index myocardial ischaemia (delayed ischaemic post-conditioning).
Cardioprotection can also be induced by applying brief cycles of ischaemia and reperfusion to an organ or tissue (such as the arm or leg) away from the
heart either: (i) 24—48 h prior the index myocardial ischaemia (delayed remote ischaemic pre-conditioning); (i) within 3 h of the index myocardial ischae-
mia (remote IPC); (iii) during the index myocardial ischaemia (remote ischaemic perconditioning); (iv) within 1 min of reperfusion following the index
myocardial ischaemia (remote IPost); and (v) 15-30 min after the onset of myocardial reperfusion following the index myocardial ischaemia (delayed
remote |Post); and (vi) on a daily basis for 1 month (chronic RIC). (POC, proof of concept).

Interestingly, a meta-analysis of clinical studies undertaken in the PPCI
era has demonstrated a beneficial effect of intracoronary adenosine in
terms of less heart failure following STEMI.*

In summary, the results with adenosine have had mixed results in
proof-of-concept clinical cardioprotection studies, but it appears that
STEMI patients presenting with short ischaemic times or those receiving
intracoronary adenosine, may be more likely to benefit.

2.1.2 Atrial natriuretic peptide

Experimental studies have reported cardioprotection with atrial natriu-
retic peptide (ANP) administered at the time of reperfusion,* and a clin-
ical study has demonstrated a modest (15%) reduction in Ml size
(measured by total serum creatine kinase) with an infusion of carperitide
(an ANP agonist) initiated prior to PPClin STEMI patients.**

Therefore, ANP has shown promise as a therapy for reducing Ml size,
but whether it can improve clinical outcomes is not known and needs to
be determined.

2.1.3 Exenatide- a GLP-1 analogue

Exenatide is a synthetic version of the glucagon-like-peptide-1 (GLP-1) ana-
logue, exendin-4, a peptide derived from a lizard venom, which has been
reported to reduce Ml size when administered prior to reperfusion in small
and large animal MI models.**~* Two small proof-of-concept clinical studies
in STEMI patients have reported beneficial effects with either intravenous
or subcutaneous exenatide initiated prior to PPCI***” Most benefit was
observed in those STEMI patients presenting within 132 min of symptom
onset,*® although exenatide was found to not improve long-term clinical
outcomes in this group of patients.> A recent study by Roos et al.* failed
to find any beneficial effect of IV exenatide on Ml size normalized for area-
at-risk (AAR). The ongoing Exenatide for Myocardial Protection During
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Why the clinical study
may have failed to
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CMR)

studies only gave four

cycles

Reperfusion Study is also testing the effect of IV exenatide on final Ml size at
3 months over AAR at 72 h post-randomization (assessed by CMR).

In summary, the results with exenatide have had mixed results in
proof-of-concept clinical cardioprotection studies, in part due to the var-
iable doses tested in each trial. As such, further studies are required to
determine the optimum cardioprotective dose prior to undertaking clini-
cal outcome studies.

2.1.4 Ischaemic post-conditioning

Following the first positive clinical study showing a reduction in Ml size
with IPost (4 x 1min cycles of alternate angioplasty balloon inflation/
deflation),’ the results of subsequent clinical studies have been
mixed.*>™* The reasons for this are unclear, but probably relate to
patient selection and the [Post protocol itself (durations of inflations/
deflations, site of IPost in stent or upstream of stent).”’ The DANAMI-3
IPost study,* which tested the effect of IPost (3- x 30-s cycles of alter-
nate angioplasty balloon inflation/deflation) on long-term clinical out-
comes, found a non-significant reduction in major adverse cardiac events
(all cause death and heart failure hospitalization at 38 months), but this
study was probably underpowered to detect this endpoint, given the
low event rate in this STEMI population.

In summary, the results with IPost have had mixed results in proof-of-
concept clinical cardioprotection studies. Whether IPost can improve
clinical outcomes remains unclear and needs to be tested in a suitably
powered large multi-centre randomized clinical trial.

2.1.5 Remote ischaemic conditioning

RIC, using one or more cycles of brief limb ischaemia and reperfusion,
has been found in both small and large animal Ml models to reduce Ml
size.* 3 At least seven clinical studies have shown RIC to reduce acute
Ml size or increase myocardial salvage in STEMI patients treated by PPCI,
when assessed by serum cardiac enzymes, SPECT, and CMR>*¢°
However, there has been one recently published neutral clinical study by
Verouhis et al. (2016) (RECOND trial),*" in which limb RIC (up to seven
cycles of lower limb RIC) with at least one cycle initiated prior to reper-
fusion failed to reduce Ml size as a percentage of the AAR (assessed by
CMR at 4-7 days) in 93 anterior STEMI patients. Why this study was
neutral is not clear but it may relate to the variable and high number of
RIC cycles used, and the prior treatment with ticagrelor and clopidogrel
in a large number of patients.®’

Whether RIC can improve clinical outcomes is currently unknown,
although it has been shown that STEMI patients undergoing RIC in the
ambulance during transportation to PPCl had reduced MACCEs and
all-cause mortality within 4 years after the index event,®” and lowered
economical expense of medical resources of hospitalization for post-
infarction heart failure.®® However, these studies were not powered for
clinical outcome analyses.* The results of the ongoing CONDI-2/ERIC-
PPCI, which will investigate the effect of RIC on cardiac death and hospi-
talization for heart failure at one year in reperfused STEMI patients, are
eagerly awaited.®®

In summary, limb RIC is the only therapy which has shown largely pos-
itive data in proof-of-concept clinical cardioprotection studies, and the
CONDI-2/ERIC-PPCI trial will determine whether this non-invasive,
low-cost intervention, can improve clinical outcomes in reperfused
STEMI patients.

Downl oaded from https://academ c. oup. contf cardi ovascres/articl e-abstract/ 113/ 6/564/ 3074260

by Hungary EI SZ Consortium user
on 27 August 2018


Deleted Text: (EMPRES) 
Deleted Text: ours
Deleted Text: x
Deleted Text: ,
Deleted Text: .
Deleted Text: .
Deleted Text: ,
Deleted Text: x
Deleted Text:  
Deleted Text: econd
Deleted Text: s
Deleted Text: s
Deleted Text: .
Deleted Text: 7
Deleted Text: .
Deleted Text: ,
Deleted Text: 7
Deleted Text: -
Deleted Text: .
Deleted Text: major adverse cardiac and cerebral events (
Deleted Text: )
Deleted Text: ,
Deleted Text: s
Deleted Text: .
Deleted Text: .
Deleted Text: s
Deleted Text: .

ESC WG Position Paper on cardioprotection

571

2.2. Beta-blocker therapy

2.2.1 Metoprolol

Data from a large-animal MI model found that intravenous administra-
tion of the P1-selective blocker, metoprolol, prior to reperfusion,
reduced Ml size.® In the 270 anterior STEMI patient METOCARD-
CNIC trial, intravenous metoprolol (3 x 5mg) administered in the
ambulance prior to PPCl reduced Ml size, prevented LV adverse remod-
elling, preserved LV systolic function, and lowered hospital re-
admissions for heart failure.*”*® Unfortunately, the EARLY BAMI trial
failed to report a reduction in Ml size at 1 month (assessed by CMR)
with IV metoprolol (2 x 5mg) administered prior to PPCl in STEMI
patients presenting within 12 h of symptom onset.” The reasons for the
neutral results of the EARLY BAMI trial vs. the METOCARD-CNIC trial
include: dosing (10 vs. 15 mg), timing (most benefit observed with meto-
prolol given soon after STEMI onset), patient population (all-comers vs.
anterior STEMI), and endpoint assessment (1 month vs. first week—
CMR performed in the first week following PPCl may over-estimate Ml
size unless long intervals between gadolinium salt injection and image
acquisition are used7°). Therefore, this therapeutic approach may not be
suitable for all STEMI patients, and those with heart failure, hypotension
or presenting with AV-block will not qualify for this therapy. Whether
this therapeutic approach can improve clinical outcomes in reperfused
STEMI patients will be addressed by the MOVE ON! randomized clinical
trial, which will investigate the effect of metoprolol on cardiac death and
heart failure hospitalization.

In summary, the results with metoprolol have had mixed results in
proof-of-concept clinical cardioprotection studies, in part due to the
patient selection and the timing and dose used. As such, further studies
are required to determine the optimum cardioprotective dose prior to
undertaking clinical outcome studies.

2.3. Mitochondria-targeted cardioprotec-
tion strategies

2.3.1 Cyclosporine-A

A proof-of-concept clinical study demonstrated a reduction in Ml size
and less adverse LV remodelling with an IV bolus of Cyclosporine-A
(CsA, 2.5 mg/kg Sandiummune), administered prior to reperfusion, in 58
reperfused STEMI patients (<12 h of symptoms and pre-PPCI TIMI flow
<1).”*72 However, one small clinical study in thrombolysed STEMI
patients,” and two subsequent large multicentre randomized clinical tri-
als have failed to demonstrate a reduction in Ml size or improved clinical
outcomes with CsA administered prior to PPCl in STEMI patients.*** In
the CIRCUS trial, an IV bolus of CsA (2.5 mg/kg Ciclomulsion) adminis-
tered prior to reperfusion failed to reduce Ml size and improve 1 year
clinical outcomes (death, heart failure hospitalization and adverse LV
remodelling) in 791 STEMI patients, when compared with placebo.
Furthermore, in the CYCLE trial, an IV bolus of CsA (2.5mg/kg
Sandimmune) administered prior to reperfusion, failed to improve
ST-segment resolution and reduce Ml size in 410 STEMI patients.”> Why
these large clinical studies were neutral is not clear, but it may have been
due to an inadequate dose and a changing patient population (increased
use of P2Y12 platelet inhibitors).”*”® The fact that studies in large animal
hearts by Jennings’ group’®’” have shown that few cardiomyocytes can
be salvaged by reperfusion in the canine heart after 3 h and none after
6h of ischaemia have passed suggests that patients receiving 612 h of
ischaemia may not respond to therapies applied at the time of
reperfusion.

In summary, the results with CsA have been largely neutral, and this
may have been due to patient selection and the dose of CsA. As such,
mitochondrial permeability transition pore (PTP) inhibition with more
potent and selective agents is required to investigate whether this thera-
peutic strategy is effective in reperfused STEMI patients.

2.4. Clinical cardioprotection studies in
CABG patients

In this section, we review the major factors which may have contributed
to the neutral results of recent clinical cardioprotection studies in CABG
patients and propose strategies for optimizing the design of future clinical
studies, in order to improve the translation of cardioprotection into the
clinical setting. Many of the factors relevant to STEMI patients also apply
to clinical studies in CABG patients and may have contributed to the
neutral results in these studies.

In CABG surgery the magnitude of acute myocardial IRl and infarction
is much less than that which occurs in reperfused STEMI patients, which
may make it more difficult to demonstrate a beneficial effect with a novel
cardioprotective strategy. In addition, the aetiology of PMI following
CABG not only includes acute IR, but also other factors such as directly
handling of the heart, inflammation, and coronary microembolization, and
these may not have been amenable to ischaemic conditioning®
Furthermore, the majority of clinical studies have investigated novel thera-
pies, which were tested in animal models of AMI and which are closer in
design to the STEMI than the CABG setting. Therefore, therapies which
are intended to be investigated in the CABG setting should ideally be
tested using animal models of cardiopulmonary bypass surgery."

Confounding effects of co-medication given to CABG patients, such as
propofol and opioids, may have contributed to the neutral results of the
ERICCA and RIPHeart studies, which failed to demonstrate any beneficial
effects of RIC on clinical outcomes in patients undergoing CABG sur-
gery.”*>’® Other drugs given to patients undergoing CABG surgery,
which may interfere with cardioprotection include nitrates, beta blockers,
inhaled anaesthetics (such as isoflurane) and so on.”*®! Therefore, experi-
mental studies should investigate whether future therapies can protect
against acute myocardial IR in the presence of co-medication used during
CABG surgery.

3. Novel therapeutic targets for
cardioprotection

Targeting standard signalling pathways underlying ischaemic conditioning
has not been successful. As such there is a need to discover and investigate
novel therapeutic targets for cardioprotection (see Figure 2 for overview).
Over the past 30 years of research in this area, enthusiasm for some par-
ticular cardioprotective strategies such as cariporide, erythropoietin, oxy-
gen free radical scavengers or calcium entry blockers has waned, even if
trial design may have accounted for some of the disappointing out-
comes."*"°2 In the case of GIK, the situation may be changing as the only
clinical study in which it was administered systematically before PPCI (in
the ambulance) was positive in STEMI patients.2> However, other targets
have undergone a renaissance as new aspects are discovered. For exam-
ple, despite disappointing clinical trials of ROS scavengers, there is
renewed optimism for a more targeted approach directed to preventing
mitochondrial ROS production at the time of reperfusion.®*®> Nitric
oxide (NO) is fundamental to many protective strategies, and although
NO donors and nitrites have produced disappointing results in the clinical
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Figure 2 Myocardial IRl affects many cell types which then signal to cardiomyocytes. Cardiomyocyte injury occurs at the level of the sarcolemma, myo-
fibrils, SR, mitochondria, and the nucleus. EC, endothelial cells, VSMC, vascular smooth muscle cells.

setting, optimism remains for approaches that manipulate tetrahydrobiop-
terin and particulate or soluble guanylate cyclase.®

Initial trials of broad anti-inflammatory agents have been disappointing,
perhaps unsurprisingly, given what we now know about its Jekyll-and-
Hyde nature.®” New evidence suggests potential roles for neutrophils
and platele'cs.87'88 The discovery of novel regulatory mechanisms such as
IncRNA and miRNA has presented new opportunities,89 although a
causal role for miRNA in cardioprotection is still controversial.”>”"

To date, most cardioprotective strategies have either been designed
to target and inhibit a crucial cell death pathway, or to activate a specific
endogenous cardioprotective pathway. The major mechanism of cell
death occurring rapidly after reperfusion is necrosis, as demonstrated by
tetrazolium staining of animal hearts or cardiac biomarker release in clini-
cal studies. The role of apoptosis is less clear. Although it may be involved
in infarct expansion, the evidence for its involvement in early reperfusion
injury is controversial "> A recent experimental study has shown that
cardiac-specific deletion of caspase 3 and 7 had no impact on Ml size and
subsequent LV remodelling, indicating no role of apoptosis in IRL’® Ml size
can also be significantly reduced by inhibitors of necroptosis%'97 or
pyroptosis,”! implicating these forms of cell death and their underlying
mechanisms as potential targets. Autophagy is also involved, although it
may play opposing roles during ischaemia and reperfusion‘98 Matrix
metalloproteinase-2 (MMP2) inhibition by ischaemic conditioning or
MMP inhibitors has been demonstrated to reduce Ml size in experimental
studies, even in the presence of hypercholesterolaemia, and MMP seems
to be a promising biomarker for the development of IHD.”* %"

In terms of activating cardioprotective pathways, there is an abun-
dance of literature demonstrating cardioprotection in cell or animal
models by receptor ligands that activate the reperfusion injury salvage
kinase (RISK) or survival activating factor enhancement (SAFE) path-
ways."9271% However, novel pathways or combinations of pathways
should also be considered. For example, PKG has been validated as a tar-
get for cardioprotection in humans, in studies using exenatide®® or
ANP,*? although cGMP-PKG signalling has been shown to be blocked in
the presence of hypercholesterolaemia in rats.'® It is becoming clear
that in addition to cardiomyocytes, cardioprotection should also target
other cardiac or circulating cell types including endothelium, pericytes,
smooth muscle, nerves, platelets, neutrophils, mast cells, fibroblasts, and
resident stem cells'®'%(see Figure 3). These may provide direct or
paracrine benefits, for example via production of exosomes. Similarly,
other physiological aspects of acute IRl are emerging as potential targets,
including oedema'” 108

A crucial issue is timing. Ischaemic time is a critical determinant of car-
diomyocyte death and the latter is exacerbated by reperfusion injury.
Most evidence suggests that cardioprotective pathways must be targeted
during the first minutes of reperfusion."™®" Similar to the wave-front

and microvascular dysfunction and obstruction.

of injury occurring during ischaemia, there is believed to be a wave-front
of injury during reperfusion. Indeed, several early studies in dogs and rab-
bits suggested that Ml size increases during the early hours of reperfusion
up until 48 h, suggesting that reperfusion injury may remain a therapeutic
target during this time."™""> Although several successful examples of

this approach have been published,"’®""® the concept remains
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Connexin
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inhibitors
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Figure 3 Promising new targets for cardioprotection: ROS scavengers, NO/nitrite, non-coding RNAs, Cx stimulators, MMP inhibitors, TLR modula-
tors, mTOR signalling modulators? (the background image on NO-cGMP-PKG, RISK and SAFE pathways has been modified from?').

Table 2 Checklist of criteria to consider when identifying a functionally important therapeutic target for clinical translation

Is the target present and functional at or before reperfusion?

Has the target been validated in large animal models that simulate the clinical setting?

Has the target been validated in human myocardium?
Is the target affected by age or gender?

Is the target functional in the presence of co-morbidities and co-medications (including anaesthetics)?

Is the target amenable to drug-based or physical manipulation?
Is the appropriate drug concentration achieved within limits of toxicity?

Is the target appropriate in isolation or should it be combined with another target (i.e. broad spectrum approach)?

somewhat controversial. Whether or not late reperfusion injury can be
targeted is an important but unresolved question, as are the targets of
such late reperfusion injury.

In identifying a new target for cardioprotection, crucial, but frequently
overlooked steps are to prove the presence of the target in the heart
and its activation (or downregulation) at or before early reperfusion
(Table 2). When considering a therapeutic target, its presence in humans
must be kept in focus. For example, cardiac expression of some

receptors can differ between rodents and humans, as for GLP-1 R 120121

In addition, rodents may differ from humans regarding the relative
importance of intracellular pathways such as  RISK and SAFE
pa’chways.122 Validation of a target in the myocardium of the target
patient population can be challenging, but ex vivo organ-bath models
such as the human atrial-appendage model can be informative in this
regau*d.n3‘124 A therapeutic target must remain valid in the setting of cur-
rent clinical practise, specifically in the complex settings of PCl and
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cardiac surgery, the latter of which already incorporates cardioprotec-
tive strategies such as cardioplegia and hypothermia.

In addition to targets mentioned above, novel therapeutic targets cur-
rently under investigation include the immune system (particularly
monocytes, macrophages, extracellular DNA and RNA, inflamma-
somes), platelet—inflammatory cell interactions, exosomes and micro-
vesicles, G-protein coupled receptor (GPCRs), Toll-like receptors
(TLRs), and proteases such as MMPs and calpains.'®”"*® It may be time
to look beyond the mitochondrial PTP to other mitochondrial targets
such as the mitochondrial calcium uniporter, mitochondrial fission and
fusion proteins, Connexin 43/20, mitochondrial metabolism and mitoph-
agy, and to understand the crosstalk between the mitochondria and the
sarcoplasmic reticulum (SR). The pathways of caloric restriction includ-
ing sirtuins and mammalian target of rapamycin (mTOR) present inter-
esting potential targets. Thinking towards the future, other therapeutic
pathways that would be likely to be of enormous benefit include the pro-
phylactic stimulation of new collateral vessels, drugs that can simulate
the benefits of exercise, or—perhaps even more optimistically—treat-
ments that stimulate cardiac regeneration or reverse the age-related
phenotype,'*® as was recently, and controversially, suggested for
GDF11.127128

A checklist of important criteria when considering target develop-
ment is included in Table 2. An overriding consideration is whether a sin-
gle target is likely to be effective in isolation, or whether multi-targeted
approaches are more consistent with the multiple mechanisms of
IRI,>"? 2 question which will be discussed in the following section.

3.1 Multi-omics strategies to identify novel
therapeutic targets and signalling pathways
in an unbiased way

Since the pathophysiology of IHD and cardioprotection is extremely com-
plex, it is conceivable that large scale, unbiased, global approaches capable
of detecting multiple branches of the signalling networks activated in the
ischaemic heart with the presence of several co-morbidities and co-
medications might be more successful in the search for novel therapeutic
targets. High-throughput techniques now allow high-resolution, genome-
wide investigation of genetic variants, epigenetic modifications, and associ-
ated gene expression profiles, as well as proteomics and metabolomics
(although the latter techniques need further technological development).
These techniques offer simultaneous readouts of hundreds of proteins
and metabolites in an unbiased, non-hypothesis driven way. ‘Omics’ analy-
ses usually provide a huge amount of information requiring large data stor-
age, advanced computational resources and complex bioinformatics tools.
The possibility of integrating different ‘omics’ approaches into ‘multi-omics’
gives new hope to better understand the signalling network responsible
for IHD and cardioprotection.’**'*!

As an example, metabolomic profiling of biological samples from
patients during myocardial IRI"**7"** has highlighted specific metabolic
‘profiles’ that might be used to identify novel biomarkers or therapeutic
targets.">>™"*® Using a comparative metabolomic approach, Chouchani
et al® discovered an evolutionarily conserved biochemical ‘fingerprint’
of ischaemia characterized by elevated intracellular levels of succinate, an
intermediate of the citric acid cycle. Selective accumulation of succinate
is a universal metabolic signature of ischaemia in several tissues and cell
types, enhancing mitochondrial ROS production during reperfusion®>#*
and promoting tissue inflammation.”* Preventing succinate accumula-
tion and/or oxidation might represent a novel and more effective target

: . 8485
for cardioprotection.

4. New treatment strategies for
cardioprotection

4.1 Combination therapy—multi-targeted
approach directed to different intracellular
signalling pathways within the

cardiomyocyte

Many of the cardioprotective strategies which have failed in the clinical
setting have relied upon using a single-targeted approach, directed to
one specific molecule or intracellular signalling pathway. However, a
multi-targeted approach directed to more than one intracellular signal-
ling pathways may be a more effective cardioprotective strategy, espe-
cially if one of the signalling cascades is impaired due to the presence of a
co-morbidity such as diabetes.'* A number of experimental studies
have investigated the cardioprotective effect of combining one or more
ischaemic conditioning strategies. Some studies have demonstrated a

synergistic effect between RIC and IPost,"*"%?

a finding which has been
replicated in the clinical setting with a reduction in Ml size with RIC and
IPost combined but no cardioprotective effect with IPost alone.> This
may suggest that although some of the signalling cascades are shared
between RIC and IPost, there are sufficient differences to mediate a syn-
ergistic cardioprotective effect.

It may also be possible to combine the use of ‘old’ drugs to repurpose
them for cardioprotection, such that the combination may have new or
greater efficacy than the component drugs alone. The combination of
adenosine and lidocaine may be an example. Each component alone has
equivocal or controversial efficacy, but has greater efficacy with some
new actions when combined in caridoplegic solution."**. However, Ml
size reduction by combined adenosine and lidocaine has always
remained controversial."**'* Most recently, it has been shown that
combining limb RIC with insulin or insulin mimetics (such as exenatide)
has a synergistic effect in terms of reducing Ml size in the porcine model
of acute MI, and this was demonstrated to be mediated by targeting 2 dif-
ferent pro-survival intracellular signalling pathways."* This therapeutic
approach will be tested in the COMBAT-MI trial (NCT02404376) which
will investigate whether combining RIC with exenatide is more effective
that either treatment alone in terms of reducing Ml size in reperfused
STEMI patients.

4.2 Combination therapy—multi-targeted
approach directed to other players in IRI
Since cell death caused by acute myocardial IRl occurs as a result of the
combined action of multiple cellular players in cardiac tissue (i.e. cardio-
myocytes, microvasculature, fibroblasts, inflammatory cells, and plate-
lets), additive protection might be achieved from a multi-targeted
approach directed to different cell types. This may be achieved using
either one agent known to have two different unrelated targets or two
or more agents in combination directed to two or more different unre-
lated targets.

4.2.1 Coronary microvasculature- endothelial cells,
vascular smooth muscle cells, and pericytes

Microvascular injury due to microembolic obstruction of the coronary
microcirculation may amplify the damage caused by the obstruction of
the epicardial arteries and nullify the result of reperfusion therapies in
STEMI patients." ™" The contractile phenotype of vascular smooth
muscle cell (VSMC) secretes adiponectin, a compound also shown to be
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cardioprotective.”' However, VSCMCs as well as fibroblasts might
transform under stress to the synthetic phenotype and to myofibro-
blasts, respectively.152 Preliminary experimental data have implicated a
potential role of pericytes as mediators of microvascular obstruction fol-
lowing AML">? In addition, the pericardium has been also suspected to
be involved in acute myocardial IR

4.2.2 Platelets

Anti-thrombotic therapy is a cornerstone in post-reperfusion therapy.
Platelet activation is a consequence of endothelial injury, and activation
of platelet adhesion and aggregation increase cell death independently of
any effect on myocardial flow and microvascular obstruction.'*>">
Thromboxane A2, e.g. has been reported to activate cardiac afferent
nerves and promote a sympathetic cardiac response.”” Moreover, pla-
telets are the source of multiple bioactive components including extrac-
ellular vesicles released into the bloodstream with the potential to affect
cells and tissue at a distance.'*® Recent experimental data have demon-
strated that the platelet P2Y12 inhibitors are able to reduce Ml size
when administered at the onset of reperfusion via ‘conditioning’ signal-
ling pathways."*”™"¢" Although IPost provided no added protection over
that achieved with a P2Y12 inhibitor alone, hypothermia or a sodium-
hydrogen exchanger did induce additional protection.’®’

4.2.3 Fibroblasts

Cardiac fibroblasts are an essential component of cardiac tissue and con-
stitute about 11% of total cell numbers in the adult heart.'®* Cardiac
fibroblasts can originate from primary mesenchymal cells, from circulat-
ing cells such as mesenchymal stem cells or through endothelial-
mesenchymal transition."®® Thus, cardiac fibroblasts represent a hetero-
geneous cell population with distinct developmental origin, which may
also determine their basal functions as well as their responses to stress
such as IRI. Cardiac fibroblasts produce the extracellular matrix and
secrete cytokines, chemokines and growth factors, and thereby interact
with cardiomyocytes. For example: hypoxic fibroblast-conditioned
medium enhanced the susceptibility of cardiomyocytes to ROS-induced
mitochondrial permeability transition opening and reduced cardiomyo-
cyte viability."** The adenosine triphosphate (ATP) release by cardio-
myocytes through the large conductance channel pannexin 1 is involved
in the early phase of fibroblast activation during ischaemia.'®® The low
molecular weight isoform of fibroblast growth factor (FGF) 2 is released
from the adult mouse heart during IR and mediates cardioprotective
effects during IRl independent from its pro-angiogenic effects even when
delivered only during reperfusion.”®®"®” In response to myocardial IRl in
the mouse, FGF21, another member of the FGF family of growth factors,
is upregulated and released from adipocytes (and from hepatocytes) into
the circulation and induces cardioprotective effects.'®® Fibroblasts and
their involvement in post-infarct inflammation can serve a cardioprotec-
tive function."®” Thus, there is a close interplay between cardiomyocytes
and fibroblasts in IRl and protection from it.

4.2.4 Inflammation

Acute IRl in the setting of an AMI induces an initial inflammatory
response (the purpose of which is to remove necrotic debris from the
Ml zone), followed by an anti-inflammatory phase which permits wound
healing to occur. The transition between these two phases is orches-
trated by a finely regulated but complex interaction between multiple
players within the heart itself (including cardiomyocytes, endothelial
cells, fibroblasts) and components of the immune response (including

neutrophils, platelets, monocytes, macrophages, dendritic cells and lym-
phocytes)."”®"7? Treatment addressing inflammation has been disap-
pointing overall, and as such, newer treatments or the use of
combination therapy are needed to target novel inflammatory mediators
of acute IRl such as inflammasomes,’”? extracellular nucleic acids (RNA,
DNA),174'175 and neutrophil extracellular traps,”’® in order to attenuate
the initial inflammatory response and/or upregulate the anti-
inflammatory response to acute IRI.

4.2.5 Nerves

Local sensory innervation of the heart was shown in the 1990s to play a
crucial role in IPC,"”” myocardial function, and the transcriptomic profile
of the heart."”® Autonomic reflexes and the autonomic nerve terminals
introduce variability in response to IRl in the human heart. The sympa-
thetic nerve terminals also participate in paracrine signalling in the heart
as well. Norepinephrine, neuropeptide-y, calcitonin gene-related peptide
and ATP have all been proposed to have a direct cardioprotective
potential‘179 Presynaptic beta-receptors might facilitate release of these
mediators.'®® The widespread use of beta blockade in the clinical setting
and the proposed role of the vagal nerve'®" in RIC'®? reflect our lack of
complete understanding of the details of innervation in the human heart
and the impact of innervation on acute IRI.

4.2.6 Extracellular vesicles

Unfortunately, so far the knowledge on the interaction between the dif-
ferent cell types within the cardiac tissue as well as on inter-organ com-
munication is very limited. Extracellular vesicles (exosomes and
microvesicles) are potential players in intercellular and inter-organ
communication.'®® Accordingly, exosomes have been shown as poten-
tial players of cardioprotection by RIC."*® However, it needs to be estab-
lished if therapy by extracellular vesicles may confer cardioprotection.®*

5. Optimizing the design of
experimental studies to improve
the translation of cardioprotection
into the clinical setting

Most proof-of-concept and confirmatory experimental studies were
performed in healthy and young animals, and demonstrated a reduction
of irreversible myocardial injury by ischaemic conditioning inter-
ventions."® In addition, the AMI model most often relies upon external
occlusion of a healthy coronary artery, whereas in patients, AMI is an
inflammatory condition heralded by the rupture of an atherosclerotic
plaque. However the extent of protection varied depending on the ani-
mal species, the experimental set-up (including the algorithm of the con-
ditioning stimulus,'® the extent and duration of the sustained (index)
ischaemia, the mode of reperfusion, anaesthesia, etc.).103 Subsequently,
many investigators realized that many of the signalling pathways involved
in the protection by ischaemic conditioning interventions'*3%18187 3¢
also affected by sex, age, the presence of pre-existing coronary artery
disease, co-morbidities and co-medications (again depending on the
severity and duration of the disease and/or co-medication).>*"®’
Furthermore, some co-medications per se can reduce the extent of irre-
versible myocardial injury, thereby making the delineation of any addi-
tional cardioprotective effect by ischaemic conditioning strategies
difficult."®® Table 3 provides a summary of the co-morbidities (such as
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Table 3 Summary of major counfounders reported to influence the cardioprotective effiacy of ischaemic conditioning

Confounders
Age Young
Co-morbidities
0 Most
1 Some
>1 None
Duration of disease and co-morbidities Short

Co-medications for co-morbidities

0 Most

1 Some

>1 None
Acute treatments related to intervention None
Anaesthesia Most
Endpoints

Function Many

Infarct size Most

Prognosis Rare

Animal studies on conditioning

Human trials on conditioning

Middle aged, old

Rare
Some
Most
Long

Rare

Some

Most

Most (except CABG)
Some (CABG)

Many
Many
Rare, mostly retrospective

hypertension, LV hypertrophy, hypercholesterolemia, diabetes, etc.) and
co-medications used to treat co-morbidties which can confound cardio-
protection and illustrates how these have been taken into account
in experimental and clinical studies of cardioprotection. Although most
animal experiments on IRl and protection from it were performed in
young and otherwise healthy (therefore un-treated) animals, patients
recruited into clinical cardioprotection trials are usually of advanced
age and have numerous co-morbidities and related co-medications as
well as acute treatments related to AMI. Therfore, more studies in
adequate animal models, more closely mimicking the clinical situation,
are required.

Indeed, aging'® and many co-morbidities (mostly of short duration,
such as LV hypertrophy, hyperlipidaemia or diabetes) attenuated or com-
pletely abrogated the cardioprotective effect of interventions when com-
pared with healthy animals'®’; however, it should be noted that most of
the (single, individual) co-morbidities were again induced in young animals,
thereby not mimicking what does normally occur in humans (except
for type 1 diabetes or homozygous familiar hypercholesterolemia).
Furthermore, in animal experiments co-morbidities usually remained
untreated, again not reflecting what is normally observed in clinical practise
where patients will receive at least some medication (although many of
them are not treated according to guidelines and to target values).

When comparing animal studies to patients undergoing CABG sur-
gery, anaesthesia per se might be a confounding factor for the results
obtained by cardioprotective interventions. In fact, propofol in contrast
to isoflurane specifically abrogated the protection by RIC interven-
tions."”®"* Also, patients undergoing CABG surgery in contrast to
animals will receive cardioplegia, which impacts on the extent of irrever-
sible injury per se and might affect signal transduction pathways. On the
other hand, patients suffering an AMI undergoing PCl will not receive
anaesthetics but instead will receive anti-platelet therapy (some of which

acts directly as a cardioprotectant1 94196

), which is not normally applied
in animal experiments.
Another major shortcoming of animal studies is the lack of long-term

follow-up of the benefits of conditioning interventions. Most animal

studies determine Ml size, extent of arrhythmias or contractile dysfunc-
tion between 2 and 24 h after the onset of reperfusion and the beneficial
effect of conditioning on left LV remodelling and subsequent mortality is
largely unknown, although of utmost clinical relevance.®'?

There is significant inter-species variabili‘cy53 in signalling events leading
to cardioprotection by ischaemic conditioning in healthy or diseased ani-
mals, and it remains to be established whether signalling events demon-
strated to be involved in most animal species can easily be transferred to
cardioprotection obtained by conditioning interventions in humans.

Where do we stand?—Conditioning interventions protect young and
healthy hearts from subsequent IRI of almost all animal species. Age and
more or less acutely induced (single) co-morbidities or administered co-
medications attenuate the observed beneficial effect of conditioning
interventions. Of note, however, in patient studies, post-hoc analyses
reveal that apart from age, none of the co-morbidities and
co-medications found to be of importance in animal experiments signifi-
cantly attenuate the cardioprotection obtained by conditioning interven-
tions'””1%%; whether these discrepant findings are related to the fact
that medical treatment of co-morbidities normally occuring in patients
blunts their otherwise detrimental effect or whether the involved signal-
ling pathways differ between animals and humans remains unanswered
at present. Finally, the neutral result of clinical trials may be explained in
many cases by the insufficient, inconsistent pre-clinical data on the inves-
tigated interventions.

6. Optimizing the design of clinical
studies to improve the translation
of cardioprotection

In this section, we review the major factors which may have contributed

to the neutral results of recent clinical cardioprotection studies in STEMI
patients (Table 12"°7*?) and propose strategies for optimizing the design
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of future clinical studies, in order to improve the translation of
cardioprotection.

6.1 Only investigate those therapies which
have shown robust and consistent
cardioprotection in experimental studies
In many cases, the clinical study may have been neutral because it tested
a therapy which had shown inconsistent cardioprotection in experimen-
tal studies. Furthermore, the experimental data may have been limited
to small animal models of acute myocardial IRl (such as mice, rats and
rabbits), and lacked testing in clinically relevant large animal Ml models of
acute myocardial IRl (such as pig and dog).”®

As such, future clinical studies should only test those therapies which
have clearly demonstrated robust and consistent cardioprotection in
both small and large animal models of acute myocardial IRl including at
least one or more major comorbidities and co-medications (see

later)."®”

6.2 Adoption of a multi-targeted approach

to cardioprotection
In many cases, the clinical study may have been neutral because it was
based on a pharmacological strategy directed to a single target, an
approach which may be ineffective given that acute myocardial IRl is a
complex process with different signalling cascades and multiple cellular
players (cardiomyocytes, endothelial cells, fibroblasts, inflammatory cells,
platelets).

As such, a multi-targeted approach using a combination of therapies
may be a more effective approach to cardioprotection in the clinical
setting.

6.3 Inclusion of STEMI patients most likely

to benefit from a cardioprotective therapy
In many cases, the clinical study may have been neutral because it
included an unselected cohort of patients. This may have included STEMI
patients less likely to benefit from a novel cardioprotective therapy
administered prior to PPCI, such as those with pre-PPCI TIMI flow >2
(patients who have spontaneously reperfused prior to PPCI),112
small AAR (right and circumflex coronary artery STEMI)!
ischaemic times (up to 12 h).>%

As such, future clinical studies should select those STEMI patients pre-
senting with: a completely occluded coronary artery (pre-PPCI TIMI flow
<1), a large AAR [>30% of the LV, usually proximal or mid left anterior
descending (LAD) STEMI], and shorter ischaemic times (<4h).
However, this will clearly impact on study feasibility in terms of reducing
the number of eligible patients for inclusion in the study.

and a
or longer

6.4 Optimize the timing of the
cardioprotective therapy

In some cases, the clinical study may have been neutral because of the
incorrect timing of the intervention. For example, although experimental
data had suggested that therapeutic hypothermia was only effective
when applied prior to the index ischaemia and not at the onset of
reperfusion,”® clinical studies tested therapeutic hypothermia as a cardi-
oprotective strategy at the time of reperfusion. In order to prevent myo-
cardial reperfusion injury, which occurs in the first few minutes of
reperfusion, it is essential to apply the cardioprotective intervention
prior to PPCl; most clinical studies have taken heed of this but it is

unclear whether or not the dose achieved is optimal at the time of
reperfusion.

As such, future clinical studies should take into account the results of
experimental studies with respect to timing of the cardioprotective
therapy.

6.5 Optimize the dose of the
cardioprotective therapy

In many cases, the clinical study may have been neutral because of an
incorrect dose of the cardioprotective therapy. It is clear from experi-
mental studies that the dose of the novel therapy can impact on its cardi-
oprotective efficacy.'®2%* In most cases the most effective dose of the
novel cardioprotective therapy has not been optimized in either experi-
mental or clinical studies—crucially there is an obvious lack of phase Il
studies in the field of cardioprotection.

The optimum dose for cardioprotection in experimental studies must
be determined and adequate phase 2 dosing clinical studies be under-
taken in order to increase the likelihood of translating cardioprotection
into the clinical setting.

6.6 Take into account the confounding
effects of co-morbidities and co-

medications given to STEMI patients
In many cases, the clinical study may have been neutral because of multi-
ple comorbidities, and co-medications that are commonly given to
STEMI patients treated by PPCI the presence of which may have either
attenuated the beneficial effects of the cardioprotective therapy or might
have induced cardioprotection themselves. These include drugs such as
nitrates, P2Y12 platelet inhibitors, statins, opioids, and so on, all of which
have been shown to exert cardioprotection by themselves and thereby
mask any additional beneficial effects of endogenous cardioprotective
strategies such as ischaemic conditioningjsw6’1'187 However, in future
clinical cardioprotection studies, it will not be possible to omit co-
medications such as platelet inhibitors, given that they are essential for
the management of STEMI patients treated by PPCI. What can be done
is to test the proposed cardioprotective therapy in animals treated with
these co-medications to ensure an additive effect can be achieved."®"

As such, experimental studies should take into account comorbidities
and co-medications when testing novel cardioprotective therapies (also
see section 6).

6.7 Use relevant endpoints for
cardioprotection

In some cases, the clinical study may have been neutral because of the
wrong choice of endpoint used to assess the cardioprotective efficacy of
the novel therapy. In proof-of-concept clinical studies of cardioprotec-
tion in STEMI patients, acute Ml size measured by serum cardiac bio-
markers, myocardial SPECT or more recently CMR, has been used to
assess the cardioprotective efficacy of novel therapies. For assessing
long-term effects of cardioprotection, echocardiography and CMR have
been used to assess final Ml size and adverse LV remodelling (LV vol-
umes and ejection fraction). Although myocardial salvage (AAR subtract
Ml size) is a more sensitive measure than absolute reduction in Ml size
for assessing cardioprotection, there is currently no generally accepted
and available in vivo measure of the AAR in reperfused STEMI patients.
Myocardial SPECT is the only validated measure of myocardial salvage,
and it has been utilized in multiple randomized clinical trials. However,
SPECT is logistically challenging, expensive, and includes radiation
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exposure. Limitations include: No distinction between new and old per-
fusion defects; lack of resolution to detect subendocardial infarcts;
and requirement for two examinations. T2-weighted CMR has been
more recently proposed to retrospectively delineate the AAR in reper-
fused STEMI patients although there is controversy over the use of
oedema-based AAR by T2-weighted CMR 2% As such, the most robust
measurement for acute Ml size is mass of new late gadolinium contrast
enhancement on CMR as a percentage of LV mass. After establishing
efficacy with a particular intervention, it is necessary to demonstrate
improved clinical outcomes before changing clinical practise. In clinical
outcome studies of cardioprotection in STEMI patients, it is essential to
focus on endpoints such as cardiac death and hospitalization for heart
failure which are more relevant to cardioprotection, although one may
consider also potential vascular effects of ischaemic conditioning on
other MACCE such as repeat M| and coronary revascularization.
Furthermore, how concomitant microvascular disease (hypertension,
diabetes, rheumatoid arthritis) affects the techniques that are used for
endpoint evaluation in humans is not known and requires further
investigation.

Although in this section we list those factors which should be taken
into consideration when designing clinical cardioprotection studies, this
may not always be possible or feasible in the clinical setting, highlighting
the challenges in trying to balance optimizing study design and clinical
reality.

7. Recommendations for improving
future experimental
cardioprotection studies

As discussed in the earlier chapters, most patients suffering from acute
myocardial IRl are of advanced age and have multiple co-morbidities,
including hypertension, LV hypertrophy, hypercholesterolemia, diabetes,
have had a previous MI with subsequent LV remodelling, have developed
heart failure, or all of the above. Given their multiple co-morbidities,
patients also receive extensive chronic medication [B-blockers,
angiotensin converting enzyme inhibitors, AT1 (angiotensin Il type 1)-
receptor antagonists, L-type calcium channel antagonists, statins, sulfony-
lureas, metformin, GLP-1-antagonists, aspirin, etc]. In addition, during the
acute ischaemic event they will probably receive nitrates, P2Y12-
receptor antagonists, and opioids."® '8’

These patients may or may not benefit from cardioprotective inter-
ventions, but the prediction of protection derived from experimental
research is difficult since adequate animal models mimicking the clinical
scenario do not exist and are difficult to develop.19 As such, the transla-
tion from bench to bedside could be improved if experimental studies
d’%; eg. by the selection of an
adequate animal species: there is no doubt that a large animal model of

were more appropriately designe

MI that better mimics the clinical situation (taking into account sex, age,
co-morbidities, co-medications and long term reperfusion models).>*
Furthermore, selection bias and publication of only positive results
should be avoided which could be achieved by pre-registration of experi-
mental studies (like done in clinical trials). Also in experimental
trials the use of appropriate statistical tests needs to be assured.’””
Below is a list of recommendations for studies to be performed in the
experimental work-up of a novel cardioprotective therapy after target
validation using in vitro/ex vivo models but prior to testing in the clinical

setting.

7.1 Recommendations

(1) In vivo small animal (acute and chronic Ml size, heart failure develop-
ment, mortality).

(2) Invivo large animal model of acute myocardial IRl (acute and chronic Ml
size, heart failure development, mortality).

(3) Investigate whether age or treated major co-morbidities such as
diabetes mellitus, hypercholesterolemia, or obesity confound
cardioprotection.

(4) Consider human heart tissue models of acute IRI (such as e.g. human
atrial tissue, cell-based human heart tissue models or include human
stem cell-derived cardiomyocytes).'¢*%

(5) Multicentre experimental testing of novel cardioprotective therapy
using standardized protocols in small and large animal MI models with
one or more co-morbidities (such as age and/or diabetes) (see below).

7.2 Adopting a multicentre approach to
cardioprotection

Due to the competitive nature of innovation at early pre-clinical stages,
collaborative pre-clinical development is challenging. Nevertheless, using a
multi-centre blinded placebo-controlled approach, the NIH Consortium
for Preclinical Assessment of Cardioprotective Therapies consortium'®
failed to find a reduction in Ml size by sildenafil or sodium nitrite when
administered at reperfusion in either mice, rabbit, or porcine Ml mod-
els,*2”?"% despite several single centre studies in small animal MI models
reporting cardioprotection with these agents, suggesting inadequate blind-
ing in the latter studies and that the therapies did not confer robust cardio-
protection. This may explain, in part, why the corresponding clinical
studies in STEMI patients failed to find a positive cardioprotective effect
with sodium nitrite.>"'? So, why have we not moved forward with such
an investigative team model yet? The need for extensive funding and facili-
ties to develop such models could only be made feasible if researchers in
the field join forces together and apply for a specific large funding scheme
such as HORIZON 2020. The neuroprotection field has come to the
same conclusion, with the Multicentre Preclinical Animal Research Team,
which is an international collaborative approach to overcome the transla-
tional roadblock in neuroprotection and neuroregeneration research, and
whose overall objective was to discuss how to develop the capacity to
undertake international multicentre animal studies. Thus, although pre-
clinical studies may demonstrate the therapeutic potential of an interven-
tion, clinical trials should not be initiated before their cardioprotective
effects are confirmed in multi-centre pre-clinical studies.

8. Recommendations for improving
future clinical cardioprotection
studies

The design of the clinical cardioprotection study is crucial to the success
of the study. In this section, we provide a list of recommendations for
improving the translation of cardioprotection in the clinical setting for
patient benefit.

8.1 Proof-of-concept efficacy Phase 2
studles in STEMI patients

® Only investigate those treatment strategies, which show robust and
consistent cardioprotection in the experimental settings detailed
above.

® Consider the influence of major co-morbidities and co-medications
on the cardioprotective efficacy in patient selection. Pre-specified,
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adequately powered, subgroup analyses may determine the effects of

these confounding factors on cardioprotection. Be sure to measure

haemodynamic parameters at the time of treatment as well as time of
reperfusion.

® Where possible use multicentre randomized placebo-controlled dou-
ble blind trial design.

® Only include STEMI patients with the following inclusion criteria:

— <4h of ischaemic symptom onset.

— Large AAR (e.g. proximal to mid-LAD STEMI).

— Completely occluded coronary artery (pre-PPCI TIMI flow <1) with
post-PPCI TIMI flow > 2.

— Consider excluding patients with significant coronary collateralization
to the AAR as this may attenuate the cardioprotective effects of the
therapy.

— Consider including high-risk STEMI patients with cardiogenic shock, if
technically possible, given that they benefit most from a cardioprotec-
tive therapy.

® Consider phase 2 studies to optimize the most effective dose before
testing for clinical efficacy.

® Ensure that the therapy is administered prior to reperfusion and that
it achieves therapeutic concentrations at the time of PPCI.

® Use clinical endpoints which are relevant to cardioprotection for
acute studies (i.e. acute and chronic Ml size, adverse LV remodelling

(LV size and ejection fraction).

8.2 Clinical outcome Phase 3 studies in
STEMI patients

As above plus

® Use clinical endpoints which are relevant to cardioprotection for
clinical outcome studies i.e. cardiac death and hospitalization for
heart failure.

9. Conclusions

The translation of cardioprotection into the clinical setting for patient
benefit has been both challenging and disappointing. However, the failure
to find a cardioprotective therapy despite 30 years of research should
not put into doubt the existence of myocardial IRI as a viable target for
cardioprotection, but should rather highlight the difficulties in translating
novel cardioprotective therapies from the over-simplified animal Ml
models we all use into the complex clinical reality of a reperfused STEMI
patient. Therefore, in order to improve the translation of cardioprotec-
tion into the clinical setting, we need to improve the design of the exper-
imental and clinical studies, and in this Position Paper we have proposed
some recommendations for working towards this. However, the feasibil-
ity of achieving this has to be counterbalanced by the reality of undertak-
ing experimental and clinical Ml studies.
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