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Figure 1: Demonstration of different methods for calculating “average” values on a Flow
Cytometry measurement. Each dot on the plot corresponds to an individual cell. The mea-
surement time frame was divided into 100 time-intervals of the same length and the mean
(continuous curve), geometric mean (dotted curve) and median (dashed line) has been
determined in each interval. The measurement was carried out on human PBMC cells,
CD4+ lymphocytes were selected during the gating procedure. During measurement, first
a 1 minute baseline was recorded, then PHA (phytohemagglutinin) was added to the sam-
ple and recording was stopped after additional 11 minutes.

1 Introduction

Flow Cytometry is a technology capable of detecting light absorption and fluorescence
properties of large amount of cells. It’s main strength is giving information about cells in
an individual way providing data not only about properties of the average cell contained
in the sample but also about the distribution of those properties among all cells. This
allows the identification of sub-populations of cells. Flow cytometry has been used for
the assessment of different cell subsets’ prevalence for decades in medical diagnostics
and research. However, the development of specific dyes sensitive for quickly changing
intracellular analytes provided an opportunity for the real-time monitoring of intracellular
processes with flow cytometry. The topic of this work is the analysis of such, so called
kinetic measurements.
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In order to compare flow cytometric measurements, one has to calculate numerical
attributes from measurement parameters such as the number of cells with a parameter
lower than a given value, mean or median of a parameter, bin counts calculated by the
Probability Binning method etc. In the case of kinetic measurements one of the measured
parameter’s distribution depends on time (kinetic parameter). The common method for
calculating numerical attributes from such a measurement is first smoothing the measure-
ment along time using moving average, moving median or other averaging method (Figure
1), then reading different parameters from the smoothed curve such as maximum, time to
reach maximum, slope etc. The exact values of these parameters depend on the properties
of the smoothing method used and the exact definition of the parameters. Because of this
parameters obtained from measurements recorded or analyzed under different conditions
cannot be compared objectively.
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2 Aims

We aimed to develop an algorithm for the description and comparison of kinetic Flow
Cytometry measurements which has the following properties:

1. Gives objective numeric value providing the opportunity of statistical comparison.

2. Does not depend on ad-hoc user-defined setting and gives reproducible results.

3. Is able to quantify different aspects of the kinetic process (maximum, speed of
response).

4. Is able to describe the kinetics of Calcium flux measurements but is robust enough
to describe other kinetic processes having similar complexity.

5. Can be implemented effectively and used in research.

3 Methods

Smoothing methods are suitable for displaying data, carrying out explorative data analy-
sis and for establishing hypotheses but are not capable of verifying hypotheses. By using
mathematical models our hypotheses about the kinetic process become explicit and hence
verifiable. Models correspond to functions: the main idea of our method was to fit func-
tions to measurement data and describe measurements by the parameters of the fitted
function. We implemented the methods below in R and Java programming languages.

3.1 Substitution

The measurements were divided into 100 time-intervals of equal length and 201 quantiles
were calculated in each interval. Fitting was performed over this modified data set.

3.2 Fitting functions

We fitted the functions corresponding to empirical models:

• Logistic function:

logist(t; b, c, d, e) = c+
d− c

1 +
(
t
e

)b
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• Hormesis function (hormesis is a property of certain dose-response curves having
opposite reactions on low than on high doses; we also used a modified version of
this function):

hormesis(t; b, c, d, e, f) = c+
d− c+ f ∗ exp

( −1
t0,25

)
1 +

(
t
e

)b
• Constant function:

constant(t; y) = y

Parameter constraint: y ≥ 0

• Positive logistic function (this function starts at a given y0 value, it’s value increases
continuously until it reaches a given y2 value in infinity):

logist+(t; y0, y2, x1,m1) =
y0 + (y2− y0)

1 + exp
(

4∗m1∗(−t+x1)
y2−y0

)
Parameter constraints: y0, y2, x1,m1 ≥ 0 and y0 < y2

• Negative logistic function (this function starts at a given y0 value, it’s value de-
creases continuously until it reaches a given y2 value in infinity): it’s formula is
similar to that of the positive logistic function.

• Positive double logistic function (this function starts at a given y0 value, it’s value
increases continuously until it reaches a maximum (y1) at x1, then decreases until
it reaches a given y2 value in infinity):

dlogist+(t; y0, y1, y2, x1, xd0, xd2,m0,m2) =

=


y0 + y1−y0

1+(x1−t
xd0 )

4∗xd0∗m0
y1−y0

if t < x1

y2 + y1−y2

1+( t−x1
xd2 )

4∗xd2∗m2
y2−y1

if t ≥ x1

Parameter constraints: y0, y1, y2,m0, x1, xd0, xd2 ≥ 0, m2 ≤ 0,
xd0 ≤ x1, y1 > y0, y1 > y2

• Negative double logistic function (this function starts at a given y0 value, it’s value
decreases continuously until it reaches a minimum (y1) at x1, then increases until
it reaches a given y2 value in infinity): it’s formula is similar to that of the positive
double logistic function.

We used the following iterative methods for fitting the above functions:

6



• Newton-method: capable of minimizing arbitrary functions, the second derivatives
of the function are necessary.

• Gauss-Newton method: minimizes SSD (Sum of Squared Deviation).

• robust version of the Gauss Newton method (Iterated Reweighted Least Squares,
IWLS): minimizes SSD.

• BFGS method: a quasi-Newton method, uses function values and gradients, imple-
mented for quantile regression.

• Nelder-Mead method: simplex algorithm for the minimization of any function.

• SANN (Simulated ANNealing) method as implemented in R.

We fitted more than one function to a measurement and to decide which is the best
fitting function we used SSD and SAD (Sum of Absolute Deviation) values and 10-fold
Cross Validation.

3.3 Standardization

In order to be able to compare measurements recorded under various conditions we
used standardization: the horizontal standardization (which is actually an offset along
the time axis) was performed by the careful selection of parameters, while vertical stan-
dardization was performed by dividing all parameters which have a vertical component
(y, y0, y1, y2,m0 and m2) by one of the following values:

• the starting value of the function: hence the starting value of the new function will
be exactly 1.

• the median value of the initial segment of the measurement. If a separate baseline
measurement was performed we used the median calculated from that. In this case
the starting value of the function can be different from 1, the function will have
value of 1 at the beginning of the measurement (at time point 0).

3.4 Generating distributions of parameters

We define median method as fitting only to the middle of the measurement, that is, to the
medians in each time interval. This way, after selecting the best fitting function, the anal-
ysis results in one value for each parameter of the function: we characterize the average
(middle, median) cells. In order to describe the whole measurement range we used the
following methods to generate parameter distributions:
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Figure 2: The quantile method: fitting double logistic function to different quantiles of a
Calcium flux measurement (left side: the grey dots correspond to the quantile values, the
grey lines are the maximum values of each fitted function) and determining the distribu-
tion of the maximum parameter (right side).

• Distribution of median: using bootstrap method we obtain the distributions for each
median parameter.

• Quantile method: we fit functions to each of the 201 quantiles; assuming that the
kinetic processes are going parallel in each cell, we obtain the full distribution of
each parameter (Figure 2).

• “Reticular” fitting: we fit functions to the whole measurement at the same time by
describing the quantile-dependence of parameters by new meta-functions. While
the quantile method fits a model described by an 8-parameter function with essen-
tially 8 ∗ 201 = 1608 parameters, if we are able to describe to quantile-dependence
of each parameter with a 2-parameter function, we can use a much more robust,
2 ∗ 8 = 16 parameter model. We used first, second and third degree polynomials
and modified normal distribution quantile function as metafunction.
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4 Results

4.1 Substitution

Fitting to the data set obtained after substitution is much more efficient as fitting to the
original measurement data set possibly containing millions of values. Assuming uniform
distribution of cells along time fitting to both data sets result in the same parameters. The
degrees of freedom important from the statistical point of view does not come from the
individual measurements but from the measurement count in each measurement group,
the decrease of the degrees of freedom does not cause trouble.

4.2 Fitting functions

The parameters of the logistic and hormesis function are hard to estimate and not straight-
forward to interpret biologically. The hormesis function is shiftable along the horizontal
axis, however by setting one of it’s parameters to 0, it transforms into the simpler, logis-
tic function. Because we evaluate the goodness of fit by cross validation (see below), we
wouldn’t use this advantage. The function set consisting of the constant, positive and neg-
ative logistic and positive and negative double logistic functions was found to be able to
describe any measurement having a constant, increasing or decreasing (one inflection) or
first increasing then decreasing or first decreasing then increasing (two inflections) kinetic
process.

The algorithm converging the most times was found to be a combination of the Nelder-
Mead and SANN algorithms using many different starting estimations. We found that the
best method of selecting the best fitting function is using 10-fold Cross Validation which
prevents overfit which happens frequently when using such a multiparameter model. This
method provides a numeric value for each function, and the less the value the better the
fit.

4.3 Standardization

If the model (and the corresponding function) does not fit the measurement, standardizing
by the fitted function inserts an additional error into the data set, this is why perform
standardization according to the initial part of the measurement.

4.4 Generating distributions of parameters

We were able to use the maximum, time to reach maximum, slope at 50% value and AUC
parameters of the median function to describe the change of T-lymphocyte activation in
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different diseases (type 1 diabetes, SM, Preeclampsia, RA) and conditions (newborns,
specific inhibition of certain Potassium and Calcium channels). The median method can
be viewed as a straightforward enhancement of the commonly used smoothing methods.
This method, according to our aims has the following properties:

1. calculates objective numeric values from the measurements namely the parameters
of the fitted function which can be used for statistical comparison. To compare
different measurements one has to use the same model.

2. apart from the measurement data it does not depend on other settings and gives
reproducible results: analyzing the same measurement 40 times the parameters of
the double logistic functions were in 36 cases the same in their first 3 decimals, in
4 cases there was hardly any difference in the parameters that could be estimated
from the measurement time frame.

3. by providing a Cross Validation value it is able to determine the best fitting model
hence group measurements by their kinetic character and characterizes measure-
ments according to different aspects of the kinetic process by different parameters

4. it is suitable to describe Calcium flux and other kinetic Flow Cytometry measure-
ments: we fitted the function set comprising of 5 functions to the median values of
1846 measurements (the majority of which were Calcium flux measurements) and
determined the best fitting function by Cross Validation. Out of these we observed
that in 2 cases (0.07 %) the function did not converge to the minimum, in 68 (3.68
%) cases the measurements displayed such a kinetic process which neither func-
tion was able to describe. Our method was applicable to describe the kinetics of
mitochondrial Calcium levels, ROS production and plasma membrane potential.

5. Together with the quantile method we implemented the median method in a user
friendly computer program named FacsKin (Figure 3). We made the software avail-
able to the scientific community on the http://www.facskin.com URL. 76
researchers registered on the website and between 27 January 2011 and 26 Septem-
ber 2012 they performed the analysis of 1846 measurements with our method. Us-
ing out algorithm Toldi et al investigated the changes in lymphocyte Calcium flux
in neonate, Type 1 Diabetes, Preeclampsia, Sclerosis Multiplex and in Rheumatoid
Arthritis. Toldi et al provided information about the differences in Calcium kinetics
between the Th1 and Th2 lymphocyte sub populations of healthy individuals using
out program.

We found that the bootstrap parameter distributions are useful for determining relia-
bility of the parameters. The quantile method is able to describe the whole measurement
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range with functions but gives different results as the median method. The “reticular” fit-
ting method decreases the deviation of the parameters artificially, hence we found that it
is not capable to describe kinetic measurements in it’s current form.

Figure 3: User interface of FacsKin version 0.6.4. 8 measurements are open, 4 of which
classified as A and the 4 others classified as B. The kinetic model logist+ (positive lo-
gistic function) is selected and the parameter distributions given by the quantile method
are displayed as median [quartiles]. One row corresponds to one measurement and one
column (right from the column titled SAD) corresponds to one parameters. The “starting
value” parameter is selected and it’s distribution is plotted in the right upper corner with
box and whisker’s diagrams. The upper left corner shows the median values and the func-
tions fitted to them for each measurement. The measurement was carried out on human
PBMC cells, CD4+ lymphocytes were selected during the gating procedure.
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5 Conclusions

1. We developed a set of functions which is able to describe the majority of kinetic
Flow Cytometry measurements. Each function corresponds to a kinetic model: the
constant function corresponds to the lack of kinetic process, the positive logistic
function corresponds to processes starting from a given value, increasing and reach-
ing a given value, the negative logistic function describes the inverse of this process,
the positive double logistic function describes a combined positive and negative lo-
gistic process, while the negative double logistic function describes the inverse of a
process corresponding to the positive double logistic function.

2. Our algorithm is able to select the best fitting kinetic function by 10-fold Cross Val-
idation, hence qualitatively grouping measurements. To quantify the predictability
of each parameter we use relative standard deviations.

3. Different parameters of a fitted function describe different aspects of the kinetic
process corresponding to distinct biological meaning: the maximum parameter de-
scribes the size of the kinetic reaction, the time to reach parameter gives it’s speed,
the distances of the 50% values from the maximum give the speed of the increas-
ing and decreasing phase, while the slope values describe it’s suddenness. From the
starting and ending values one can deduce the level of the kinetic parameter before
and after measurement. The AUC parameter gives the summated size of the kinetic
process, e.g. in the case of Calcium flux it is proportional to the time that Calcium
ions spent in the cytoplasm during measurement.

4. On the basis of different parameters we are able to compare different aspects of
the measurements thus refining the summated differences such as that given by the
AUC parameter. This allows us to detect differences that are not visible when doing
rough, summated comparisons.

5. Our method was used in several cases to analyze Calcium flux data and draw bio-
logical conclusions. In the last 3 years 6 publications using our program appeared
in international journals.

6. The algorithm implementing our method is available to the scientific community on
the http://www.facskin.comwebsite in the form of a user friendly program.
The program is capable of manually gating measurements, fitting functions, giving
the parameters of the fitted functions, grouping and comparing measurements based
on these parameters.
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7. The not yet validated so called quantile method is capable of describing not only
the middle (median) of the measurements but it’s whole range.
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