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1. Introduction  

Genetic composition of tumors dynamically changes during tumor growth. Novel 

genetic alterations are acquired which leads to genetic diversity of tumors between 

patients, as well as spatial heterogeneity within one tumor.  The acquired alterations 

may affect efficiency of therapies, as well as survival of patients. Examples include 

emergent resistance against receptor tyrosine kinase treatment in patients with mutations 

in the KRAS oncogene, as well as worse overall survival in case of high expression of 

the KI67 proliferation marker. 

Next-generation sequencing techniques are increasingly used in clinical 

diagnostics. These techniques usually involve analysis of thousands of genes or whole 

genomes, enabling identification of previously unknown, and clinically relevant 

alterations.   

Biomarkers are generally used to predict therapeutic efficiency and patient 

survival. Many recent studies have shown that mutations of one gene usually can not 

efficiently predict response to targeted therapies, since alterations in other genes can 

similarly affect the same pathway. For instance, resistance against receptor tyrosine 

kinase treatment can emerge via alterations in BRAF, NRAS or PI3KCA genes, which, 

same as KRAS, are all downstream in the growth signaling pathway. Similarly, PARP 

inhibitors seem to be a promising therapy in breast and ovarian cancer patients with 

deficient homologous recombination, which may be caused by mutation of BRCA1/2, 

PALB2, ATM or CHEK2 genes. 
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2. Objectives 

The objectives of my PhD work are as follows: 

• Analyzing the effects of cell dispersal on mutation detection using in vitro 

experiments via 

1. Detection of cellular composition shift from in vitro cell line invasion assays 

using next-generation sequencing 

2. Assessing the reproducibility of next-generation sequencing and data analysis by 

sequencing cell line mixtures with known composition. 

3. Analyzing the effect of sequenced tumor sample size on the detected genetic 

composition in next-generation sequencing of ovarian cancer patients. 

 

• Identify a relationship between genetic mutations and gene expression changes by: 

4. Examining the effect of mutation-induced gene expression changes on the 

survival of breast cancer patients 

5. Analyzing and interpreting gene expression changes associated with TP53 

mutations 
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3. Methods  

3.1. Database construction 

Whole exome sequencing data and RNA-seq data for breast cancer patients were 

obtained from The Cancer Genome Atlas (TCGA). The data obtained consisted of 762 

patients from the breast cancer cohort, and 555 samples from the non-small cell lung 

cancer cohort. Mutations were identified using the Mutect algorithm. The mutations 

identified were annotated with known genes using the SNPeff program. Raw gene 

expression data deriving from RNA-seq experiments were normalized using RSEM. 

 Microarray gene expression data for 5,934 patients were obtained from the EGA 

(European Genome-Phenome Archive) and GEO (Gene Expression Omnibus) 

databases. The downloaded raw Affymetrix CEL files were normalized using the MAS5 

algorithm from the Bioconductor Affy package in R.   

 

3.2. Genotype-2-outcome algorithm 

The algorithm utilizes three datasets: TCGA gene mutation, TCGA gene 

expression, and independent microarray data for survival analysis. There are two major 

steps in the analysis, by which the algorithm takes an input gene name, and outputs 

Kaplan-Meier survival plots. 

In the first step, the algorithm identifies genes with altered expression levels based 

on the mutation status of the selected input gene. This is achieved by comparing the 

expression level of each gene between the two patient groups (mutant vs, wild type with 

respect to the input gene) using an ROC (Receiver Operating Characteristic) analysis.  

The second step involves survival analysis based on the independent microarray 

data. Genes with altered expression in a given patient are merged into a “surrogate 

gene” and the median expression value of the surrogate gene is used to split patients 

into ‘high’ and ‘low’ expression categories for survival analysis. 
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3.3. Cell line invasion and calibration experiments 

We selected four melanoma cell lines for the experiments (A375, MEL-JUSO, 

SK-MEL-28 and MEWO). Three cell line specific mutations were validated using 

Sanger sequencing in each case. For the next-generation sequencing experiments, we 

selected A375 / MEWO and SK-MEL-28 / MEWO pairs, and the A375 / MEL-JUSO 

cell line pairs for fluorescent video microscopy experiments. 

The ring invasion experiments were performed using FlexiPERM ® conB cell 

exclusion silicone rings. The first cell line was added to the inner segment of the 

silicone ring, after incubation and attachment, the ring was removed, and the second cell 

line was added to the entire surface of the plate. DNA was isolated from around the 

perimeter of the silicone ring, and a control sample was isolated from the perimeter 

around the edge of the plate after a 72h incubation and invasion period. 

To examine the reproducibility of sequencing, we created a calibration set using 

two cell lines. During the experiments, two cell lines were combined in 2%, 5%, 10%, 

25% and 50% compositions, were the MEWO cell line was selected as the major clone. 

The DNA isolated during the invasion and calibration experiments was sequenced 

on an Ion 314 chip using an Ion PGM 200 sequencer with a mean coverage of 600x 

reads. Sequencing was performed using a custom targeted panel of 25 cell line specific 

mutations. 

 

3.4. Sample collection and preparation from ovarian cancer patients 

Tumor regions were collected from each of five ovarian cancer patients from the 

National institute of Oncology (Budapest). In case of each patient, three spatially 

separated tumor regions and one (control) normal blood sample was obtained. DNA 

isolation was performed using the DNeasy Blood and Tissue Kit from Qiagen. 

Tumor DNA isolation was performed in three manners: 1) biopsy sample 

representing the clinical setting; 2) local sample, where DNA was extracted from three 

segments adjacent to the biopsy sample; 3) Global sample where DNA isolation was 

performed from all three regions of the tumor and combined prior to sequencing. 

 



5 

 

3.5. Bioinformatics analysis of next-generation sequencing data 

Quality control of raw sequencing reads was performed using the FastQC 

program. Reads were trimmed using the trimmomatic package. Alginment was 

performed using the BWA MEM algorithm against the human reference genome. 

Aligned reads were processed by sorting and conversion to BAM format using 

samtools. 

The sorted and aligned reads were deduplicated using the picard-tools software 

package. Indel realignment was performed using the GATK realignertargetcreator and 

indelrealigner in order to increase sensitivity of indel identification. 

 Mutations from the cell line sequencing data were identified using the samtools 

mpileup program. In short, we selected regions where mutations were expected from the 

mpileup output using reads with alignment quality above 2. Mutation frequencies were 

calculated based on the number of reads supporting either the reference or alteration 

group. 

Somatic mutations were identified using the GATK mutect2 algorithm for the 

ovarian cancer patient sequencing data. Since multiple samples were available for each 

patient, we created a program that performs joint somatic genotyping based on the 

individual mutations identified by mutect2. Germline mutations were identified using 

the GATK haplotypecaller algorithm. Functional mutation annotation was performed 

using SNPeff. Identified mutations were further annotated with the ClinVar database. 

Copy-number alteration analysis, tumor purity and ploidy estimation were performed 

using the sequenza program. 
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4. Results  

 

4.1. Analyzing effects of cellular movement on next-generation sequencing 

By utilizing next-generation sequencing, we were capable of following cell 

composition changes caused by cell motility and invasion. Based on the detected 

mutation frequencies, invasion of A375 into the MEWO section reached 18,6%, while 

invasion of SK-MEL-28 into the MEWO was only 8,6%. Interestingly, while cellular 

movement (velocity and displacement) of A375 and SK-MEL-28 was grossly similar in 

monoculture conditions, the two cell lines displayed significant differences in the 

invasion experiments (p=0,011) when comparing homozygous mutation frequencies. In 

contrast, this difference was not captured when utilizing heterozygous mutations for the 

analysis (p=0,39). 

In order to better understand the relationship between mutation frequencies and 

composition, we performed calibration sequencing using known mixtures of the two 

cell lines. We found that standard deviation of mutation frequencies increased as the 

composition of the cell lines evened out. Highest standard deviations were calculated 

when the composition of the two cell lines was 50%-50%, which further increased when 

utilizing only heterozygous mutations. 

Standard deviation of mutation frequencies between biological replicates 

reached 17% in the invasion and calibration sequencing as well. When comparing single 

mutation frequencies between technical replicates, deviations decreased to 5,6%. Our in 

silico results also showed that in cases where sequencing coverage decreased below 

50x, standard deviations could reach 12,9%, while increasing coverage to 1000x 

decreased deviations below 2%. 

 

4.2. Effects of sequenced tumor size on somatic mutations 

We identified heterozygous germline mutations in genes associated to 

homologous recombination repair in three patients. In these cases, somatic loss of 

heterozygosity was identified in the tumor, and in addition, the “signature 3” somatic 

mutation signature associated with BRCA-deficiency was identified. Copy-number 

analysis revealed that these patients harbored many deletions and amplifications that 
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affected smaller segments of chromosomes. Clonal somatic TP53 mutation was present 

in each patients’ tumor, which is commonly partnered with DNA-repair deficiency. 

 One further patient was affected only by one major copy-number alteration event 

on chromosome 1. Somatic mutations of the tumor displayed the signature associated 

with the APOBEC deaminase mutation signature resulting in higher frequency of C>T 

and C>G mutations. Multiple somatic mutations were identified in genes associated to 

the PI3K pathway, such as the inactivation of the PTEN tumor suppressor, a common 

(activating) mutation of the FGFR2 receptor tyrosine kinase gene, as well as two 

heterozygous inactivating mutations in the PIK3R1 gene. 

 In the last patient we identified multiple large copy number alterations, affecting 

several complete chromosomes. This tumor had a hypermutating phenotype as it had 

three times the commonly expected level of somatic mutations. Two signatures with 

unknown aetiology were identified in the somatic mutations. In addition, two clonal 

mutations were identified, the most common p.G12D mutation in the KRAS gene, and 

the most common p.E454K mutation in the PI3KCA gene. 

 In case of non-hypermutating tumors, the percentage of common mutations was 

substantially higher compared to the hypermutating tumor, ranging between 69,3%-

93,8%. The mean number of identified mutations was 149. Of the four non-

hypermutating tumor patients, we found that more mutations could be identified in the 

biopsy in two cases, and more in the global sample in two cases.  

 We identified 688 mutations in the biopsy sample of the hypermutating tumor, 

of which 15,5% were identifiable in the other tumor regions as well. As sample size 

increased, the percentage of common mutations increased to 25%, while the overall 

mutation count decreased to 392 mutations. In case of the global sample, we identified 

140 mutations, a substantial decrease compared to the biopsy sample, of which 71,4% 

were common in the other tumor regions.   

 

4.3. Identifying gene expression changes associated to gene mutations 

By utilizing gene mutation and gene expression data, the Genotype2Outcome (G-

2-O) algorithm is capable of performing survival analysis by identifying genes 

displaying altered expression based on mutation, and performing survival analysis on an 

independent microarray dataset. Survival analysis based on the surrogate expression 

associated to the gene mutation of GATA3 (HR=1,66; p<E-16) outperforms survival 

analysis performed solely using gene mutation (p=1,3E-08) or gene expression 



8 

 

(HR=0,71; p=1,3E-08) status in breast cancer. Similarly, the surrogate expression 

associated to MAP3K1 outperforms (HR=1,8; p<E-16) the survival analysis performed 

only based on its expression (HR=1,6; p<E-16). 

In the case of TP53 mutation we identified 23 genes with increased expression, 

which were associated to the cell cycle pathway in breast (p=1,3E-16) as well as in lung 

cancer data (p=1,1E-23). A subsequent survival analysis of these genes showed that in 

most cases, high expression of identified genes was associated with worse prognosis. 

By combining the top 10 genes into a surrogate gene, survival analysis showed 

substantially worse prognosis (HR=2,43, p<E-16) as compared to survival analysis 

performed on individual genes (HR<2.1, p<E-16). Interestingly, when performing the 

analysis on patient subgroups, we found a similar trend was observed on only wild type 

TP53 patients (HR=2,36, p=1,8E-3), but an inverted result was obtained when only 

TP53 mutant patients were included (HR=0,52, p=3,7E-2). I.e. in the latter case high 

expression was associated with better survival. 
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5. Conclusions 

1. Somatic mutations usually affect not only a single gene, but may also indirectly 

affect gene expression levels and signaling pathways. Using the Genotype2Outcome 

system, we can identify prognostic gene expression changes (as surrogate genes) 

associated to a genetic alteration. We found that survival analysis using the surrogate 

gene could outperform survival analysis solely based on a single genes’ expression or 

mutation status, thus the system can serve as an alternative for identification of 

biomarkers in cancer patients. 

2. In breast cancer patients harboring TP53 mutations, the expression of several 

genes associated to cell cycle is increased. High expression of these genes was 

previously reported in publications as a prognostic factor in breast cancer patients. In 

our survival analyses, this association was found only in patients carrying a wild type 

TP53 gene, but better survival was found when only TP53 mutant patients were 

included in the analysis. In other terms, the effect of the expression of these genes on 

survival is apparently strongly influenced by the mutation status of TP53.  

3. Using next-generation sequencing, we were able to follow the invasion of cell 

lines in in vitro experiments. Composition detection was more reliable when one of the 

cell lines was predominant.  

4. The standard deviation of detected mutation frequencies was high in case of 

biological and technical replicates analyzed during the invasion and calibration 

experiments. High deviations can affect interpretation, and post-analysis (such as 

inferring of tumor evolution based on identified mutations). These results were also 

found in the in silico models, where deviations decreased as sequencing coverage 

increased, thus sequencing with high coverages can help misinterpretation in clinical 

sequencing. 

5. Increasing the size of the sequenced tumor size does not strongly affect detected 

mutations during clinical sequencing. In other terms, current sampling practices used in 

clinical sequencing are satisfactory even though high sequence coverage seems to be 

important for optimal results. . 
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