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Tyrosine Kinases in Autoimmune and
Inflammatory Skin Diseases
Kata P. Szilveszter*, Tamás Németh and Attila Mócsai*

Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary

Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune

receptors, and cytokine receptors, and therefore mediate the recruitment and activation

of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and

Btk families play major roles in various immune-mediated disorders, and small-molecule

tyrosine kinase inhibitors are emerging novel therapeutics in a number of those

diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum

of immune-mediated diseases. Genetic and pharmacological studies in humans and

mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic

dermatitis and psoriasis are characterized by an inflammatory microenvironment which

activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are

also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T

lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in

animal models of autoantibody-mediated blistering skin diseases. Here, we review the

various tyrosine kinase signaling pathways and their role in various autoimmune and

inflammatory skin diseases. Special emphasis will be placed on identification of potential

therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment

of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
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INTRODUCTION

Tyrosine kinases are intracellular enzymes mediating tyrosine phosphorylation of downstream
molecules. They play a critical role in signal transduction by various cell surface receptors
including, among others, growth factor receptors, adhesion receptors, immunoreceptors, and
cytokine receptors. Given their role in multiple signaling processes and disease pathogenesis,
tyrosine kinases have emerged as excellent therapeutic targets for the targeted therapy of various
diseases. Indeed, small molecule tyrosine kinase inhibitors became important contributors to the
pharmacological control of a diverse array of diseases including various malignant processes and
immune-mediated diseases such as autoimmune and inflammatory conditions (1).

Inflammatory joint diseases such as rheumatoid arthritis have been in the focus of the
development of tyrosine kinase inhibitors for therapeutic purposes within the area of immune
mediated diseases (2). This has culminated in the regulatory approval of Jak inhibitors for the
treatment of rheumatoid arthritis and certain related disease states (3). Besides inflammatory
arthritis, inflammatory skin diseases are another major group of diseases with a major pathogenetic
component of various immune cells and immunological pathways. Several lines of evidence
indicate the contribution of various tyrosine kinases to the development and progression of diverse
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inflammatory skin diseases. Those issues suggest that
tyrosine kinase inhibitors may provide therapeutic benefit
in inflammatory skin diseases.

In this review article, we summarize our current knowledge
and understanding of the role of tyrosine kinases in autoimmune
and inflammatory skin diseases. We first provide an overview
of the various receptor and non-receptor tyrosine kinases and
their role in immunological and inflammatory processes. We
then summarize the role of the various tyrosine kinases in specific
autoimmune or inflammatory skin diseases. Special emphasis
is placed on genetic studies in mice and humans indicating a
role for tyrosine kinase pathways in inflammatory skin diseases,
as well as the preclinical and clinical development of tyrosine
kinases inhibitors for the targeted pharmacological therapy of
those diseases.

SIGNAL TRANSDUCTION BY TYROSINE
KINASES

Non-receptor Tyrosine Kinases
Non-receptor tyrosine kinases are intracellular tyrosine kinases
without a direct role in sensing extracellular cues. Nevertheless,
these tyrosine kinases are often coupled to various cell surface
receptors and are intimately involved in the transmission
of extracellular signals to downstream intracellular signaling
pathways and cellular effector functions.

There are a total of 10 different non-receptor tyrosine kinase
families. Of those, we will discuss Janus kinases (also known
as Jak-family kinases), Src-family kinases, and the Syk tyrosine
kinase, as well as members of the Btk kinase family.

Janus Kinase Family
The Janus kinase family consists of four members: Jak1,
Jak2, Jak3, and Tyk2. While Jak1, Jak2, and Tyk2 are
ubiquitously expressed, the expression of Jak3 is limited to the
hematopoietic compartment.

These kinases are primarily involved in the signal transduction
of various cytokine receptors which are grouped into type
I (extracellular WSXWS sequence present; e.g., IL-2, IL-6,
GH, EPO, G-CSF, and GM-CSF receptors) and type II (no
extracellular WSXWS sequence; e.g., IFN-α, IFN-β, and IL-
10 receptors) cytokine receptors. Since Jak-coupled cytokine
receptors act as dimers, Jak family kinase activity is also mediated
by involving two Jak-family kinases. In most cases, the two
cooperating kinases are different (“heterodimers,” although they
do not form a firm dimer), although Jak2 can also cooperate with
another Jak2 molecule (“homodimer”). Upon ligand binding,
the conformational changes of the receptor and/or ligand-
induced dimerization promotes Jak activation, which leads to
autophosphorylation of tyrosine residues of the kinase itself,
further augmenting its kinase activity. Jaks then phosphorylate
the receptor chains, allowing the recruitment of various signal
transducer and activator of transcription (Stat) transcription
factors. Stat molecules are then also phosphorylated by Jak
kinases, leading to dimerization and translocation to the nucleus
where they activate or repress gene expression and influence
epigenetic alterations (Figure 1). These basic signaling principles

are conserved across the diverse array of different biological
functions of the Jak-Stat signaling pathway.

Despite the complex and promiscuous nature of receptor
association of the different Jak family kinases, human inherited
traits and mouse genetic studies have revealed several critical
functions of the different Jak kinases. Jak1 is essential for
the signaling through type II cytokine receptors (such as IFN
receptors), as well as through receptors that utilize the common
γ-chain (γc) or the shared gp130 subunit. Jak1 deficiency in
mice leads to defective lymphoid development and neurological
defects resulting in perinatal lethality without disturbing other
hemopoietic lineages (4). Signaling downstream of type II IFNs
and receptors with shared gp130 subunit also require Jak2
(besides Jak1), whereas, Jak2 mediated signaling is not required
for lymphoid development. IL-3 receptor and several hormone-
like receptors (EPO, TPO, GH, PRL) signal through Jak2 alone.
Deletion of Jak2 leads to embryonic lethality due to failure of
definitive erythropoiesis in mice, likely due to the role of Jak2
in signaling by cytokine receptors involved in the regulation
of hematopoiesis and, especially, erythropoiesis (5, 6). Jak3
expression is essentially limited to hematopoietic cells and it
is known that it constitutively and exclusively binds to γc-
containing receptors including IL-2 and IL-4 receptors. Jak3
mutation in humans leads to severe combined immunodeficiency
(7, 8) and studies using Jak3−/− mice further confirmed the
critical role of Jak3 in lymphoid development (9, 10). Tyk2 is
important in IL-12 and IL-23-mediated T cell responses and IFN
signaling (11, 12). Tyk2−/− mice are viable but susceptible to
infections, and macrophages fail to respond to LPS both in vitro
and in vivo (13, 14).

Given their central role in cytokine signaling it is not
surprising that Jaks have a role in several immune mediated
diseases involving autoimmunity, transplant rejection, and
malignancies. Therefore, pharmacological targeting of Jaks was
plausible and Jak inhibitors have been extensively studied in
several clinical studies. A critical aspect of Jak inhibitors is
their selectivity profile for the different Jak family kinases which
determines the spectrum of their biological effects. Table 1

provides a list and the selectivity profile of currently available
Jak inhibitors based on cell-free assays. The mechanism of
action of those drugs is competitive binding to the ATP binding
site of the kinase domain therefore inhibiting phosphorylation
and activation of Jaks, except for the case of PF6615600 and
BMS986165 (15). PF6615600 mediates a covalent, irreversible
Jak3 inhibition through a non-conserved Cys residue in the ATP
binding pocket, whereas BMS986165 binds to the pseudokinase
domain of Tyk2 (15). First generation Jak inhibitors (tofacitinib,
ruxolitinib, baricitinib, and oclacitinib) tend to be less selective
among the Jak family kinases due to structural similarities
in the ATP binding site of different Jaks, whereas more
selective inhibitors were developed during later stages of drug
development. Discrepancies between biochemical and cellular
potencies of Jak inhibitors have been reported, potentially due
to the dominant role of one Jak over another in certain cytokine
signaling pathways (16).

The most studied Jak inhibitor is tofacitinib, which
ameliorated autoimmune arthritides in various animal models
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FIGURE 1 | Tyrosine kinases and their signaling pathways. Type I and type II cytokine receptors utilize Janus kinases for the initiation of downstream signaling. Type I

cytokine receptor superfamily shares a common amino acid motif WSXWS. Within this family receptors containing the common γ chain (γc) recognize IL-2, IL-4, and

IL-13 among others utilizing Jak1 and Jak3. Cytokines including IL-3 and IL-6 are also recognized by type I cytokine receptors acting through Jak1/Jak2 heterodimers

or Jak2 homodimers, respectively. The type II cytokine receptor family includes receptors activated by interferons (IFNs) and the IL-10 family utilizing heterodimers of

Jak1 along with Jak2 or Tyk2. Ligand binding leads to Jak activation resulting in phosphorylation of the receptor and downstream signal transducers and activators

known as Stats mediating transcriptional changes (more information in the text). Src-family kinases and Syk are involved in several immune cell signaling pathways like

immunoreceptor, integrin and C-type lectin signaling. Upon ligand binding, activation of Src-family kinases leads to the phosphorylation of tyrosine residues in

immunoreceptor tyrosine-based activation motifs (ITAMs), that can be part of a transmembrane adaptor molecule like in case of B cell receptor (BCR), FcεRI, and

certain FcγRs and C-type lectins, or of the receptor chain itself like in FcγRIIa in humans. Syk is recruited to the dually phosphorylated ITAMs and becomes activated

resulting in the recruitment and activation of various further adapter proteins promoting downstream signaling. Receptor tyrosine kinases, for example EGFR and

VEGFR have intrinsic tyrosine kinase activity leading to auto-and transphosphorylation of the receptor chains upon ligand binding. Recruitment of several adaptors

and effector molecules through SH2 and phosphotyrosine binding domains mediate downstream signaling.

(17–20) and proved to be effective in several phase II and
III studies in the treatment of rheumatoid arthritis, leading
to regulatory approval by both the FDA and EMA (2, 21).
Jak inhibitors are also currently under investigation in other
immune mediated diseases like inflammatory bowel disease,
transplant rejection, and multiple dermatological disorders.
Excellent reviews about the current state of Jak inhibitors and
ongoing clinical trials have been published recently (3, 15, 22).

Src-Family Kinases and the Syk Tyrosine Kinase
The Src kinase family includes ninemembers (includingHck, Fgr,
Lyn, and Lck) which are involved in many signaling pathways
in immune cells including immunoreceptor as well as integrin
signaling. Src-family kinase activity is regulated by tyrosine
phosphorylation and Src homology 2 and 3 (SH2 and SH3)
mediated protein-protein interactions with partner proteins
containing phosphotyrosine or proline-rich motifs, respectively.
Src-family kinases are ubiquitously expressed, although different
cells express different family members. Within the immune
system, T cells express Lck and Fyn, B cells express Fyn, Lyn,
and Blk, and myeloid cells express Hck, Fgr, and Lyn (23).
Spleen tyrosine kinase (Syk) is a tandem SH2 domain-containing
enzyme acting mostly downstream of Src-family kinases. Syk is
expressed in most hematopoietic lineage cells except for T-cells
(and, partially, NK-cells) where a closely related kinase, ZAP-70
is expressed and performs a similar function (24).

Immunoreceptors such as B cell receptors (BCR), T cell
receptors (TCR), and various activating Fc receptors of innate
immune cells are physically associated with transmembrane
adapter proteins carrying immunoreceptor tyrosine-based
activation motifs (ITAMs). Ligand-receptor interaction
results in the enzymatic activation of Src-family kinases
phosphorylating the ITAM motifs in the receptor subunits (24).
Dually phosphorylated ITAMs are recognized by the tandem SH2
domains of Syk (or ZAP-70 in T cells and NK cells), leading to the
recruitment and activation of various further adapter proteins
and the activation of several downstream signaling pathways
leading to cellular responses (Figure 1). Leukocyte integrin
“outside-in” signaling also requires Src family kinases and
Syk, resulting in adhesion-induced activation of immune cells
(24–28). Some inhibitory receptors containing immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) also act through Src-
family kinases (mostly Lyn), resulting in phosphatase activation
and downmodulating of activating signals.

T cell development requires TCR-based signaling and Src-
family kinases, particularly Lck. In case of B lymphocytes, Lyn
kinase has primary role in BCR signaling. Paradoxically, B cell-
specific deletion of Lyn not only results in the expected defects
in B cell development, but also leads to autoimmunity (29).
Myeloid cells primarily express Hck, Fgr, and Lyn which have
a critical but overlapping role in the activation of neutrophils
and macrophages through Fcγ receptors, as well as through
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TABLE 1 | Jak inhibitors and their selectivity profile.

Compound Primary target(s) IC50 in cell free assay (nM)

Jak1 Jak2 Jak3 Tyk2

Tofacitinib Jak3, Jak2, and

Jak1

112 20 1 34

Ruxolitinib Jak1 and Jak2 3.3 2.8 428 19

Baricitinib Jak1 and Jak2 5.9 5.7 560 53

Delgocitinib Jak1, Jak2 2.8 2.6 13 58

Momelotinib Jak1, Jak2 11 18 155 n.a

Filgotinib Jak1 > Jak2 10 28 810 116

Solcitinib Jak1 8–9 108 539 225

Upadacitinib Jak1 47 120 2,300 4,700

Itacitinib Jak1 2 63 >2,000 795

Abrocitinib Jak1 29 803 >10,000 1,253

PF-06651600 Jak3 >10,000 >10,000 33,1 >10,000

PF-06700841 Tyk2 > Jak1 n.a n.a n.a n.a

BMS986165 Tyk2 n.a n.a n.a 2–14

SAR-20347 Tyk2 23 26 41 0.6

Obtained from MedChemExpress and Selleckchem. n.a, not available.

β1 and β2 integrins. A prominent feature of Src-family kinases
is a significant functional overlap between individual family
members. Therefore, in contrast to Jak kinases, individual Src-
family kinases are not essential for a given response and complete
inhibition of a signaling pathway often requires combinational
deletion of multiple kinases in myeloid cells. FcγR mediated
phagocytosis is slowed in macrophages lacking Hck, Fgr, and
Lyn (30). Adhesion-induced activation is also abrogated in
neutrophils lacking Hck, Fgr, and Lyn including oxidative burst,
degranulation, and cell spreading (28). Their role has also been
shown in chemokine and cytokine responses (31). Moreover,
Hck−/−Lyn−/−Fgr−/− triple knockout but not single or double
knockout animals were completely protected from autoantibody
induced arthritis due to the defective generation of inflammatory
environment without affecting the intrinsic migratory capacity of
myeloid cells (32).

Currently available Src-family inhibitors have limited
selectivity, also inhibiting various other tyrosine kinases such as
c-Kit, EGFR, or Abl (summarized in Table 2). Those inhibitors
are often used in cancer therapy based on their effects on
kinases other than Src-family kinases. As an example, dasatinib
and bosutinib are potent multi-target inhibitors of Abl, Kit, and
several members of the Src kinase family. Beside their therapeutic
use in hematological malignancies, they have been found to be
relevant in inflammatory conditions as well both in vitro and
in vivo in immune-mediated experimental models (48–51).

Syk and ZAP-70 are also essential for the development of
mature B and T cells, respectively (24, 52, 53). Syk deficiency leads
to perinatal lethality due to defective separation of lymphoid and
blood vessels (54). In the myeloid compartment, Syk is a key
protein mediating Fc receptor and integrin mediated signaling
and also mediates downstream signaling of C-type lectins like
Dectin-1 recognizing fungal antigens (55, 56). Deficiency of the
Syk kinase produces profound defects in neutrophil/macrophage

TABLE 2 | Inhibitors of the Src-family and Syk.

Compound Primary target(s)

(IC50 in cell free

assay)

Other targets

(IC50 in cell free

assay)

Clinical

relevance

Dasatinib Src (0.8 nM), Abl

(<1 nM)

c-Kit (79 nM) Approved in

chronic myeloid

leukemia and

acute

lymphoblastic

leukemia (33)

Bosutinib (34) Src (1.2 nM), Abl

(1 nM)

n.a Approved in

chronic myeloid

leukemia (35)

PP1 (36) Lck (5 nM), Fyn

(6 nM)

Hck (20 nM), Src

(170 nM), Bcr-Abl

(1µM), Kit (75 nM),

EGFR (250 nM)

–

PP2 (36) Lck (4 nM), Fyn

(5 nM), Hck (5 nM)

EGFR (480 nM),

other 56 kinases

at 10µM (37)

–

Fostamatinib

(38)

Syk (41 nM), Flt3 79 kinases

<100 nM (39)

Approved in

immune

thrombocytopenia

(40)

Entospletinib

(41)

Syk (7.7 nM) TNK1 (<100 nM)

(39)

Investigated in

hematological

malignancies (42)

P505-15 (43) Syk (1–2 nM) Fgr (81 nM), Yes

(123 nM), MLK1

(88 nM)

–

RO9021 (44) Syk (5.6 nM) n.a –

PRT318 (45) Syk (4 nM) n.a –

TAK-659 (46) Syk (3.2 nM) Flt3 (4.6 nM),

ZAP-70 (75 nM),

Jak3 (114 nM),

VEGFR2 (135 nM)

Investigated in

hematological

malignancies and

solid tumors (47)

Obtained from MedChemExpress and Selleckchem. n.a, not available.

integrin signaling and responses to immune complexes, resulting
in significantly reduced stimulation of respiratory burst,
degranulation and cell spreading (57–59). Syk-deficient bone
marrow chimeras proved to be completely protected from
autoantibody-induced arthritis that is due to enzymes specifically
expressed in neutrophils (60–62). The partially selective Syk
inhibitor fostamatinib showed clinical benefit in rheumatoid
arthritis patients (63) and has been also investigated in other
autoimmune and allergic diseases but considerable adverse
events possibly due to its poor selectivity profile led to the
suspension of further investigations in RA. New and more
specific Syk inhibitors have been developed in the past few
years (summarized in Table 2) that show promising results in
this regard according to in vitro results, animal models of
autoimmune arthritis and phase I clinical trials (41, 43, 44, 64).

Cerdulatinib and gusacitinib represent dual inhibitors of
Syk and Jak kinases and cerdulatinib demonstrated efficacy in
experimental arthritis (65). The concept that dual inhibition may
result in a stronger therapeutic response is favorable, however it
can also represent a limitation by the increased risk of toxicity.
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Bruton’s Tyrosine Kinase
Bruton’s tyrosine kinase (Btk) is involved in the development
and activation of B cells through BCR and Toll-like receptor
(TLR) signaling (66). Patients with loss-of-function mutations in
the Btk gene suffer from immunodeficiency due to the absence
of mature B cells and immunoglobulins (67, 68). Similarly,
deficiency of Btk in mice results in an impaired differentiation of
B cells (69). In addition, transgenic mice that overexpress human
Btk display systemic autoimmune response with spontaneous
germinal center formation, increased cytokine production (IFNγ

and IL-6) and anti-nuclear autoantibodies (ANAs) (70). Btk
and other members of the Btk family like Tec kinase are also
expressed in myeloid cells regulating maturation and effector
function (71). Btk inhibitors interacting with the ATP binding
site have been developed and proved to be effective in several
systemic autoimmune mouse models like arthritis and lupus
models (72, 73).

Receptor Tyrosine Kinases
Receptor tyrosine kinases represent a large family of receptors
recognizing various hormones, cytokines, and growth factors
(74). They form dimeric combinations upon ligand binding
resulting in auto- and transphosphorylation and the recruitment
and activation of effectors containing SH2 and phosphotyrosine
binding domains, leading to multiple downstream signaling
(Figure 1).

EGFR and its related receptors, PDGFRs, VEGF receptors
and their intact signaling are essential for normal embryonic
development and adult tissue homeostasis including cell survival,
proliferation, adhesion and migration. Their deregulation has
been associated with many human diseases, including immune-
mediated disorders and cancer. Targeted therapy by receptor
tyrosine kinase inhibitors revolutionized cancer therapy (75).
VEGF receptors mediate angiogenesis and lymphangiogenesis
during the inflammation process regulating immune cell
recruitment and resolution of inflammation.

TYROSINE KINASES IN INFLAMMATORY
SKIN DISEASES

Atopic Dermatitis
Atopic dermatitis (AD) is the most common inflammatory skin
disease. A TH2 dominated immune response is essential in
the pathogenesis causing eczematous dermatitis with intense
pruritus accompanied by elevated serum concentrations of IgE.
AD is commonly associated with other TH2 mediated allergic
diseases called the “atopic-allergic march” (76).

Pathogenesis—Pivotal Role of Barrier Disruption and

Subsequent TSLP Production
The fundamental lesion is currently thought to be an impaired
barrier function that can be due to disrupted expression of
essential barrier proteins like filaggrin (77, 78). Subsequent
increased penetration of cutaneous and environmental antigens
leads to the production of keratinocyte-derived cytokines
including thymic stromal lymphopoietin (TSLP). TSLP is
thought to be a critical factor driving the pathogenesis of

atopic diseases. TSLP receptor is widely expressed in cells
that contribute to AD (dendritic cells, T cells, B cells, mast
cells, eosinophils, epithelial cells, and sensory neurons) utilizing
the Jak-Stat pathway in humans. However, interestingly, it
seems that murine TSLP receptor activates Stats by the
Btk-family kinase Tec without the involvement of Janus
kinases (79). Tamoxifen-induced keratinocyte-specific TSLP-
deficient mice displayed drastically reduced allergic skin
inflammation in a tape-stripping- and ovalbumin-induced AD
model accompanied by the impairment of TH2 response and
allergen-induced sensitization (80). In contrast, overexpression
of TSLP in keratinocytes triggered massive itching behavior
together with the development of AD-like dermatitis (81).
Therefore, intradermal TSLP injection is often used to induce
AD-like dermatitis in mice. Wilson et al. showed that it triggers
itch sensation within minutes independently from the presence
of adaptive immunity or mast cells (82). They also showed that
TSLP receptors are present in sensory neurons innervating the
skin and TSLP-evoked neuronal activation was responsible for
itch sensation.

TH2 Mediated Allergic Responses—Key Role of TH2

Cytokines in AD
The importance of the TH2 pathway is further supported by
the observation that transgenic mice overexpressing the TH2
cytokines IL-4 or IL-13 spontaneously develop skin inflammation
that is frequently used as an animal model for AD (83). IL-
4 and IL-13 are recognized by the type I cytokine receptor
(IL-4 receptor) containing the γc subunit that signals through
Jak1 and Jak3. Besides regulating IgE production in B cells
and promoting the differentiation of TH2 lymphocytes, the
IL4 receptor is also constitutively expressed by keratinocytes.
Stimulation of IL-4 receptors leads to cytokine and chemokine
production and downregulation of genes involved in keratinocyte
differentiation (such as filaggrin) in vitro. This suggests that IL-
4 receptor signaling in keratinocytes can further contribute to
barrier impairment and inflammation in AD (84–87). Moreover,
type 2 cytokines are also capable of activating sensory neurons
directly depending on IL-4 receptor and Jak signaling, thus
contributing to the development of chronic itch in AD (88).
Dupilumab, a monoclonal antibody against the α subunit of the
IL-4 receptors that blocks signaling from both IL-4 and IL-13 was
effective in phase III studies (89, 90) and it was the first biologic
agent approved by the FDA and EMA in the treatment of adults
with moderate-to-severe atopic dermatitis (91).

Contribution of IgE-Mediated Signaling to the Allergic

Response in AD
Elevated IgE levels and IgE autoreactivity were also suggested
to contribute to the development and severity of AD. Beside
mast cells and basophils, significant FcεRI expression has been
shown in professional antigen presenting cells in atopic skin
lesions. FcεRIs crosslinked with IgE are expected to use ITAM-
dependent pathways including Src-family kinases and Syk to
facilitate degranulation, internalization of allergens and antigen
presentation promoting TH2 immunity (92).
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Chronic Phase—Transition Into TH1-Type

Inflammation
TH1 and IFNγ-mediated responses are thought to dominate the
chronic phase of the disease (83). Animal models of hapten-
, or allergen-induced contact dermatitis resemble pathogenetic
features of both acute and chronic AD involving the disruption
of the barrier as a primary event followed by sensitization,
inflammation, increased epidermal proliferation, and changes in
keratinocyte-differentiation (83).

The Jak-Stat Pathway in Preclinical Studies
The above mentioned pathogenetic features strongly suggest the
role of the Jak-Stat pathway in AD (Figure 2). Accordingly,
Yasuda et al. showed that gain of function mutation in Jak1
resulted in a spontaneous dermatitis phenotype (93). Generation
of bone marrow chimeras revealed that Jak1 expression in
non-hematopoietic cells was responsible for the development
of dermatitis, but Jak1 acting in immune cells exacerbated the
dermatitis symptoms and disease severity. They claimed that
a possible molecular mechanism behind these findings was
that hyperactivation of Jak1 pathway in epidermal keratinocytes
resulted in a skin barrier defect due to the overexpression of
serine proteases (93). The Jak3 inhibitor tofacitinib reduced
ear-swelling and scratching behavior in an allergen-induced
dermatitis model, especially upon topical application (94).
Inhibition of Jak1 and Jak2 by topically applied ruxolitinib or
momelotinib successfully decreased inflammation in a hapten-
induced hypersensitivity model as well as in TSLP-induced
dermatitis in mice together with the down-regulation of mRNA
expression of IL-4, IL-5, IFNγ, and TSLP in the skin (95,
96). Oral administration of delgocitinib (JTE-052) efficiently
reduced inflammation in a murine model of hapten-induced
hypersensitivity. Moreover, delgocitinib inhibited proliferation
and activation of T cells, but did not affect the number
of DCs migrated to the draining lymph node during the
sensitization phase (97). Delgocitinib was even found to be
superior to conventional therapeutic agents like cyclosporine or
tacrolimus ointment in hapten- and in TSLP-induced murine
dermatitis models with respect to ear thickness, microscopic
phenotype, inflammatory cytokine production, and serum IgE
level (98). Another study suggested that delgocitinib might
directly enhance keratinocyte differentiation in vitro (87).
Delgocitinib treatment increased the expression of filaggrin and
loricrin, genes that are known to be involved in keratinocyte
differentiation, in primary human keratinocytes. In addition,
IL-4 receptor-mediated downregulation of these genes was
reversed upon delgocitinib treatment. Transepidermal water
loss was also reduced upon delgocitinib treatment in vivo in
a murine dry skin model which does not induce immune
cell infiltration, indicating that Jak inhibition can improve
skin barrier function independently of affecting immune
cell activation (87). Taken together, the Jak-Stat pathway
seems to be a central component of AD development,
mediating multiple aspects of the pathogenesis such as type II
cytokine signaling and TSLP-mediated inflammation, itching,
keratinocyte disruption, and barrier impairment together with
IFNγ-driven responses in the chronic phase. These findings

strongly suggest a therapeutic utility of Jak inhibitors in
human AD.

Jak Inhibitors in Clinical Trials
Given the substantial interest toward Jak inhibitors, a large
amount of data is available from case reports, retrospective
studies and open-label studies in the field of treatment of
inflammatory skin diseases. In this review we are focusing
on randomized, placebo-controlled phase II-III clinical trials
that meet the standards of accepted evidence-based medicine
(Table 3).

Both topical tofacitinib and ruxolitinib treatment significantly
improved skin inflammation and pruritus in AD patients in
phase II studies (99, 100). In addition, the TRuE-AD phase
III clinical trial has just started with the aim of assessing the
efficacy of topical ruxolitinib treatment with long-term safety
extension period in a larger cohort (101). Studies evaluating
efficacy and safety of novel, more selective Jak inhibitors have
also shown promising results. Patients treated with baricitinib
in combination with topical corticosteroids achieved greater
reduction in disease severity than corticosteroids alone (102).
In another phase III trial, baricitinib as a monotherapy met
its primary endpoint in AD patients (103). Per os abrocitinib
and upadacitinib also significantly improved the Eczema Area
and Severity Index and reduced pruritus compared to placebo
[NCT02780167, (104), respectively]. Emerging number of studies
are currently recruiting patients to evaluate efficacy and long-
term safety up to 2 years in AD patients (Table 3).

Psoriasis
IL-23 Is Crucial to Activate IL-17-Mediated Effector

Responses
Psoriasis is a common chronic inflammatory skin disease
characterized by epidermal hyperplasia and parakeratosis
together with the accumulation of inflammatory cells in the
dermis, clinically causing red scaly papules and plaques.
Activation of the IL-23/IL-17 axis plays a pivotal role in the
pathogenesis of the disease (Figure 3). Resident immune cells
such as dendritic cells and macrophages are considered to
be initially activated through Toll like receptors that lead
to the production of cytokines including IL-23 and TNFα
that are known to be critical for IL-17 production in human
psoriatic skin (105, 106). In fact, intradermal injection of IL-23
alone results in a skin pathology that strongly mimics human
disease and is therefore commonly used as an animal model
of psoriasis (107). IL-23 is known to induce the differentiation
of TH17 cells that are considered as a major source of IL-17
in humans (106). However, activated dermal γδ T cells were
also implicated as major IL-17-producing cells upon IL-23
stimulation in mouse models of psoriasis (108). IL-17 and
IL-22 (another TH17 cytokine) then act as effectors inducing
keratinocyte proliferation and hyperkeratosis. They also enhance
the production of inflammatory cytokines and chemokines
(including IL-1β, CCL20, and IL-8) by keratinocytes, leading
to recruitment of other effector cells like neutrophils, further
contributing to tissue damage and establishing the inflammatory
milieu (109).
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FIGURE 2 | Tyrosine kinases in the development of atopic dermatitis. Barrier impairment is one of the initial steps in the pathogenesis of atopic dermatitis which leads

to the production of TSLP by keratinocytes that activates dendritic cells in a Jak1/Jak2 dependent manner in the skin. Proinflammatory mediators produced by

dendritic cells and keratinocytes drive the activation and differentiation of CD4+ T cells toward the TH2 phenotype. Activated TH2 cells produce several cytokines

including IL-4 and IL-13 which promote isotype switch and IgE production in B cells acting through receptors with the common γ chain (γc) utilizing the Jak1/Jak3

heterodimer. Additionally, intact B cell receptor (BCR) signaling involving Src-family kinases (SFK) and Syk is essential for normal B cell development. Downstream

effector cells like mast cells recognize IgE through FcεRI in a Src-family and Syk dependent manner leading to degranulation and the production of proinflammatory

mediators contributing to the development of atopic dermatitis. There are several feedback loops and shortcuts in this pathway facilitating inflammation utilizing

tyrosine kinases. TH2 cytokines also promote the activation of keratinocytes and effector immune cells like mast cells requiring intact Jak signaling. Activation of mast

cells through IL-3R/Jak2/Stat5 pathway was also found to be important in allergen-induced dermatitis in mice. Furthermore, TSLP and TH2 cytokines acting through

a Jak dependent manner in sensory neurons were found to mediate pruritus in atopic dermatitis in addition to mast cell-derived compounds such as histamine.

Jak-Stat Signaling in Psoriasis
A number of novel biological therapies (including monoclonal
antibodies against IL-23, IL-17, and IL-17R) have been approved
for the treatment of psoriasis in the last few years (110). IL-
23 receptors rely on Jak2/Tyk2 heterodimer-mediated signaling,
implicating their role in the pathogenesis of the disease. Several
genes of Jak-Stat signaling pathway have also shown to be
associated with psoriasis (111). This was further supported
by a genetic approach showing that Tyk2-deficient mice had
significantly reduced ear swelling and epidermal hyperplasia
upon injection with IL-23. In addition, infiltration of various
leukocytes (including different T cell subsets, neutrophils, and
macrophages) and the production of the pro-inflammatory
cytokines IL-17 and IL-22 were also impaired in the absence
of Tyk2 (112). Downstream signaling components like Stat3,
a key factor in TH17 differentiation, was also found to be
upregulated in human psoriatic lesions (113). Sano et al. showed
that constitutive expression of Stat3 in keratinocytes resulted

in a dermatitis phenotype closely resembling psoriasis (113).
Epidermal hyperplasia, parakeratosis and dermal infiltration of
immune cells occurred upon tape stripping or wounding of
the skin, and in some mice, it occurred even spontaneously.
The development of psoriatic lesions in these mice required
both hyperactive Stat3 in keratinocytes and activated T cells
in the dermis. Furthermore, inhibition of Stat3 with decoy
oligonucleotides successfully inhibited disease development and
even reversed disease severity showing that Stat3 may be an
important regulator of genes in keratinocytes in the development
of psoriasis cooperating with T cells (113).

Jak Inhibitors in the Treatment of Psoriasis
Pharmacological inhibition of the Jak-Stat pathway showed
promising results in murine models of psoriasis reducing
disease pathology, keratinocyte-activation, and proinflammatory
cytokine levels (95, 98, 114). In addition, a number of
clinical trials investigate the effect of different Jak inhibitors in
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TABLE 3 | Phase II and III clinical trials studying Jak inhibitors in atopic dermatitis.

Drug name Identifier Status Phase, administration Enrollment Duration

Tofacitinib NCT02001181 Completed (99) IIa, topical 69 4-week

Ruxolitinib NCT03011892 Completed (100) IIb, topical 307 8-week dose-ranging and additional

4-week optional open-label treatment

NCT03745638; NCT03745651 Underway (101) III, topical 1,200 8-week and long-term safety extension

period

Delgocitinib NCT03725722 Recruiting IIb, topical 250 8-week dose-ranging

Baricitinib NCT02576938 Completed (102) II, per os 124 16-week in combination with TCS

NCT03334396; NCT03334422 Met primary endpoint

(103)

III, per os 1,350 16-week

NCT03334435 Recruiting III, per os 1,500 52-week to evaluate long-term safety

NCT03428100 Recruiting III, per os 500 16-week in those who cannot have

cyclosporin

NCT03435081 Recruiting III, per os 450 16-week dose-ranging study

NCT03559270 Recruiting III, per os 300 2-year in those who have completed

NCT03435081

NCT03733301 Recruiting III, per os 300 16-week in combination with TCS

Abrocitinib NCT02780167 Completed, results

online

IIb, per os 269 12-week dose-range study

NCT03796676 Recruiting III, per os 225, adolescents 12-week with other topical therapy

NCT03575871; NCT03349060 Recruiting III, per os 375 12-week

NCT03422822 Recruiting III, per os 2,300 Approximately 2 years who have

completed a qualifying phase III study

NCT03627767 Recruiting III, per os 1,370 Over 40 weeks in those who responded

well to an initial 12-week treatment

NCT03720470 Recruiting III, per os 700 12-week, efficacy compared to dupilumab

at 2 weeks

Upadacitinib NCT02925117 Completed (104) III, per os 166 16-week

NCT03738397 Recruiting III, per os 650 24-week treatment, 12-week follow-up

NCT03661138 Recruiting III, per os 264 Up to 141 weeks, evaluating safety

NCT03568318 Recruiting III, per os 810 16-week combined with TCS

NCT03607422; NCT03569293 Recruiting III, per os 810 16-week

psoriasis (Table 4). Short-term oral tofacitinib therapy resulted
in significant clinical improvement in patients with moderate-
to-severe plaque psoriasis (116) along with reducing epidermal
thickness, DC and T cell numbers and the expression of psoriasis-
related genes in the lesional skin (115). Several additional
phase III studies were completed evaluating the long-term
safety and efficacy of the treatment. Oral administration of
tofacitinib was non-inferior to parenteral etanercept indicating
that tofacitinib may provide a more convenient therapeutic
option (117). Tofacitinib also demonstrated sustained efficacy
in patients with psoriasis through up to 52 months and was
well-tolerated with an acceptable safety profile detailed later
(118, 121, 122, 130). In a 56-week withdrawal and retreatment
study, patients who received continuous treatment maintained
a response more effectively, however, 60% of patients who
relapsed upon tofacitinib withdrawal recaptured a response with
tofacitinib (119).

Topical treatment provides an excellent opportunity to
overcome possible systemic adverse effects. Tofacitinib ointment
also showed greater efficacy compared to vehicle at week 8, but
failed to be superior to placebo at week 12 in a phase IIb study

(123). Topical ruxolitinib was found to be well-tolerated, safe,
and efficacious in short-term treatment in a smaller cohort of
patients (124).

Oral treatment of novel, more selective inhibitors also
improved symptoms and were well-tolerated in patients with
psoriasis in phase II trials (125–127, 129). Since IL-12/IL-23-
mediated signaling relies on Jak2/Tyk2 heterodimers, specific
inhibition of these kinases may provide further improvement in
psoriasis patients. Due to the critical role of Jak2 in hemopoietic
development, inhibition of Tyk2 seem to be plausible in the
treatment of psoriatic patients. Indeed, BMS986165 showed
promising results in a 12-week phase II trial enrolling 267
patients (128) and a phase III study is currently recruiting
patients to compare oral BMS986165 treatment to placebo
and currently available treatment apremilast (NCT03624127
and NCT03611751).

Syk Tyrosine Kinase in IL-17-Mediated Inflammation
Little is known about the role of Syk in psoriasis. The pattern
recognition receptor Dectin-1 was implicated in the disease
process, suggesting that recognition of fungal antigens in a
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FIGURE 3 | Tyrosine kinases in the IL-23/IL-17 axis during psoriasis pathogenesis. IL-23 is a key mediator driving psoriasis pathogenesis. It is expressed by dendritic

cells upon their activation through Toll-like receptors (TLR) and Dectin-1, the latter one utilizing Syk. IL-23 promotes the differentiation of CD4+ T cells and γδT cells as

well toward TH17 and γδT17, respectively via a Jak2/Tyk2-Stat3-mediated pathway and also induces the expression of IL-17. TCR activation in γδ T cells was also

proposed to be important for mediating IL-17 production and psoriatic skin lesions, utilizing Syk and probably the PI3K/Akt pathway. In addition to TH17 and γδT17

cells, other sources of IL-17 include neutrophils, mast cells, and innate lymphoid cells. IL-17 then acts as an effector acting mainly on keratinocytes mediating

hyperproliferation, parakeratosis, and production of several inflammatory chemokines and cytokines like IL-1β, IL-8, and CCL20.

Syk and CARD9 dependent manner promotes the maturation
of DCs and their ability to induce IL-17 production by TH17
cells (55). In addition, another source of IL-17 is γδ T cells,
which utilize Syk as a dominant proximal kinase of the γδ

TCR signaling pathway. Furthermore, skin inflammation was
ameliorated in mice lacking the adaptor molecule RhoH that
recruits Syk to the TCR in imiquimod-induced psoriasis model
(131). These findings suggest that Syk may contribute to IL-17
production, but its actual relevance in case of psoriasis needs
further investigation.

Role of Growth Factor Receptors in AD and Psoriasis
EGF receptor family members in keratinocytes facilitate
epidermal differentiation and plays a crucial role in wound
healing as well as in carcinogenesis. Though epidermal
hyperplasia is a hallmark of both AD and psoriasis, the
contribution of EGF receptor signaling to inflammatory

skin disorders is poorly understood. Psoriatic lesions are
known to overexpress EGFR and ligands like amphiregulin.
Transgenic overexpression of amphiregulin in either basal or
suprabasal epidermis causes severe psoriasis-like hyperplasia
and skin inflammation in mice (132, 133). In line with that,
neutralizing antibodies against amphiregulin reduce epidermal
thickness of human psoriatic lesions transplanted onto mice
with severe combined immunodeficiency (134). However,
mice lacking another EGFR ligand epiregulin develop severe
chronic dermatitis showing complicated modulating role of
EGFR signaling pathways in the epidermis (135). Mice lacking
epidermal EGFR spontaneously develop skin inflammation,
decreased host defense and deficient skin barrier function (136).
Proinflammatory cytokines such as IFNγ was also suggested
to transactivate EGFR leading to the downregulation of the
expression of chemokines like CCL2, CCL5, and CXCL10. In line
with that, EGFR inhibition resulted in the aggravation of allergic
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TABLE 4 | Phase II and III clinical trials studying Jak inhibitors in psoriasis.

Drug name Identifier Status Phase, administration Enrollment Duration

Tofacitinib NCT01710046 Completed (115) IIa, per os 12 12-week

NCT00678210 Completed (116) IIb, per os 197 12-week

NCT01241591 Completed (117) III, per os 1,101 12-week non-inferiority trial compared

to etanercept

NCT01519089 Completed (118) III, per os 95 52-week evaluating long-term safety

NCT01186744 Completed (119) III, per os 666 56-week withdrawal and retreatment

study

NCT01276639 and NCT01309737 Completed (120) III, per os 901 and 960 52-week

NCT01815424 Completed (121) III, per os 266 52-week

NCT01163253 Terminated as it met its

objectives (122)

III, per os 2,867 median duration 35.6 months

open-label extension study who

completed qualifying phase

II/III studies

NCT01831466 Completed (123) IIb, topical 430 12-week

Ruxolitinib NCT00820950 Completed (124) II, topical 29 28-day

NCT00778700 Completed, no results

available

II, topical 199 12-week

Baricitinib NCT01490632 Completed (125) IIb, per os 271 12-week

Abrocitinib NCT02201524 Terminated (126) II, per os 59 4-week terminated due to changes in

sponsors development priorities

PF-06700841 NCT02969018 Completed IIa, per os 212 12-week, results online

NCT03850483 Not yet recruiting IIb, topical 240 12-week

Itacitinib NCT01634087 Completed (127) II, per os 50 28-day

BMS986165 NCT02931838 Completed (128) II, per os 267 12-week

NCT03624127 and NCT03611751 Recruiting III, per os 600 and 1,000 Non-inferiority study compared to

apremilast

Solcitinib NCT01782664 Completed (129) IIa, per os 68 12-week

contact dermatitis in mice by enhanced chemokine production
of keratinocytes, promoting subsequent leukocyte recruitment
(137). In contrast, IL-8 gene expression is actively induced by
the EGFR ligands in keratinocytes (135, 137). In turn, IL-8 could
contribute to activating the metalloprotease-dependent release
of EGFR ligands by acting on its specific receptor in cancer cells
(138), indicating the possibility of a positive feedback loop both
for epidermal hyperplasia and neutrophil accumulation.

It is also well-known that EGFR inhibitor therapy in
malignancies often causes inflammatory or toxic effects on the
skin, and such side effects even act as strong predictors of good
response to treatment (139).

Psoriasis and atopic dermatitis are both characterized by
altered angiogenesis and lymphangiogenesis (140). Hyperplastic
hyperpermeable dermal blood vessels can be detected in
psoriatic skin lesions and transgenic delivery of VEGF to
the skin results in a profound inflammatory skin condition
resembling psoriasis (141) while topical application of VEGFR
inhibitor successfully prevented disease development in the
mouse model of psoriasis (142). Interestingly, stimulation of
lymphangiogenesis by VEGFR-3 or via administration of its
ligand VEGF-C inhibited inflammatory cell infiltration by
oxazolone-induced skin inflammation (143, 144). This indicates
that blood vessels contribute to the development of inflammatory
environment by helping inflammatory cell infiltration while

lymphatic vessels may limit skin inflammation by helping their
elimination. Thus, selectivity can be especially important upon
targeting VEGFRs in malignancies.

Alopecia Areata and Vitiligo
Both alopecia areata and vitiligo are characterized by IFNγ

producing autoreactive cytotoxic T lymphocytes that attack hair
follicles and melanocytes, respectively.

Alopecia areata (AA) is the main cause of non-scarring hair
loss most commonly occurring in the scalp. The upregulation
of several Jak-Stat pathway components downstream of γ-chain
containing cytokines (which are known to promote the activity
and survival of IFNγ-producing cytotoxic T cells) was detected
in AA skin both from humans and mice. In a mouse model
of AA, systemic administration of Jak inhibitors successfully
prevented the development of disease. Moreover, both systemic
and topical administration was able to reverse established disease
and even promoted hair regrowth (145). Gene expression
and immunofluorescent studies from mouse skin showed that
expression and activity of the Jak-Stat pathway is dynamically
changing during the hair follicle cycle. Moreover, Jak inhibition
promoted the entry into the hair cycle and subsequent hair
regrowth by activating hair follicle stem cells in healthy mice
and also in lymphocyte-deficient mouse strains (146). This dual
effect further justifies the investigation of Jak inhibitors in the
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treatment of AA. Some open label phase II clinical studies showed
that Jak inhibitor treatment resulted in significant hair regrowth
and improvement of AA in patients with better response if
administered orally instead of topical formulations. Hair loss
typically reoccurred after discontinuation of therapy within
months (147–149). There are several active randomized, double-
blind, placebo-controlled phase II clinical trials on the efficacy
and safety of topical and oral Jak inhibitors in AA (Table 5),
promising further insight into these issues in the near future.

In case of vitiligo cytotoxic T cell-mediated melanocyte
destruction causes depigmentation leading to the occurrence
of white spots throughout the body surface of patients.
IFNγ produced by activated melanocyte-specific cytotoxic T
lymphocytes is strongly implicated in the disease pathogenesis by
promoting further T cell accumulation in the skin through IFNγ-
dependent chemokines like CXCL10 (150). In addition, IFNγwas
found to directly induce melanocyte senescence and apoptosis
of primary human melanocytes which could be attenuated by
siRNA against Jak2 and Stat1, but not Jak1. IFNγ treatment
also resulted in the accumulation of reactive oxygen species and
the production of proinflammatory cytokines like IL-6 which
are considered as important contributing factors facilitating a
vitiligo-prone environment in the skin (151).

Given the multiple role of IFNγ in vitiligo, inhibition of the
Jak-Stat pathway may represent a promising therapeutic strategy.
Beside some case reports and retrospective studies showing
benefits of Jak inhibitors treating vitiligo patients (152, 153),
so far only one open label phase II proof of concept pilot
trial has been completed. This showed that topical ruxolitinib
treatment provided significant repigmentation in facial vitiligo
in a small cohort of patients (154). A randomized double-
blind, dose-ranging, placebo-controlled phase II trial is now
ongoing for evaluating the efficacy of ruxolitinib cream in
vitiligo (NCT03099304). Another randomized controlled phase
IIb trial is currently recruiting patients for evaluating per os
treatment with novel selective Jak inhibitors (NCT03715829, also
see in Table 5).

An additional important aspect of AA and vitiligo is that
these diseases mostly cause cosmetic concern with emotional
problems. Therefore, analyzing the safety and benefit profile of
potential treatments is extremely important and Jak inhibitors
should be very carefully tested in this regard.

Pemphigus
Pemphigus vulgaris and foliaceus are severe autoimmune
blistering skin diseases with autoantibodies that are directed
against the desmosomal cadherins, mainly desmoglein 3 (Dsg3)
and Dsg1. These are required for the proper intercellular
adhesion of keratinocytes and autoantibody deposition results
in flaccid blister formation within the epidermis affecting
mucous membranes and skin. Pemphigus vulgaris (PV) can
be life threatening causing significant loss of the physical
barrier. Application of artificial barriers like ointments can
improve barrier function but there is an unmet need for
definitive treatment.

Given the central role of Btk and Syk in B cell development
and activation, these kinases may promote pathogenic antibody

production in pemphigus. An inhibitor of Btk is under
current evaluation in an open-label phase II clinical trial in
pemphigus (NCT02704429) moreover, a randomized, double-
blind placebo-controlled phase III study is already recruiting
patients (NCT03762265).

IgG4 is the major subclass of autoantibodies in pemphigus
and it is known to have limited ability to activate complement.
Accordingly, acantholysis in pemphigus has been demonstrated
to be independent from complement and Fc receptors (155, 156).
Anti-Dsg3 IgG was able to directly induce the destruction of
desmosomes by steric hindrance, promoting the internalization
of Dsg3 (157, 158) and interfering with desmosome turnover
(159). Recently it has been shown that Dsg3 transcription is
negatively regulated by Stat3 in keratinocytes and corticosteroid
treatment upregulates Dsg3 expression by inhibiting Stat3
through a yet unknownmechanism possibly involving Jaks (160).
Those results suggest that specific inhibition of the Jak-Stat3
pathway may also be beneficial without the known adverse effects
of steroids. TH2 cytokines like IL-4, IL-9, and IL-21, that utilize
Jak-family kinases are known to contribute to the induction and
regulation of autoantibody production in pemphigus (161, 162)
therefore Jak inhibitors also serve as a potential treatment, but
preclinical or clinical studies are yet to be done (163).

Binding of pathogenic IgG can also trigger outside-in
signaling in keratinocytes eliciting acantholysis and apoptosis.
Moreover, autoantibody binding also promoted secretion of
inflammatory cytokines from keratinocytes, which may augment
the pathogenic autoimmune response (164). However, the precise
molecular mechanism is at present unclear. Several downstream
mediators were implicated involving activation of EGFR-
mediated signaling and focal adhesion kinase in keratinocytes
(165–169). In a recent report, Src family kinases were
implicated in autoantibody-mediated desmosome disassembly
(170). Src phosphorylation was induced in keratinocytes upon
in vitro antibody treatment obtained from PV patients.
Loss of cell cohesion caused by anti-Dsg3 antibody was
abolished upon Src inhibition by PP2 both in vitro and
in vivo in a neonatal mouse model. However, inhibition of
Src was not protective in some cases against PV-Ig-induced
loss-of-keratinocyte-cohesion in keratinocyte monolayer, nor
in intact human skin (170). These results underlie the
need for further investigations of keratinocyte signaling in
pemphigus pathogenesis.

Pemphigoid Diseases
Pemphigoid diseases are characterized by autoantibody
production against distinct components of the dermal-epidermal
junction leading to dermal-epidermal separation and tense
blister formation (171).

Bullous pemphigoid (BP) is the most prevalent autoimmune
bullous disease. Antibody formation directed against key
hemidesmosomal components BP180 (also called type XVII
collagen), and/or BP230 results in subepidermal blistering
phenotype. Urticarial plaques and pruritus are also present in
most of the cases which is a unique symptom among the
pemphigoid group. Epidermolysis bullosa acquisita (EBA) is a
very rare disease characterized by autoantibodies directed against
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TABLE 5 | Phase II and III clinical trials studying Jak inhibitors in alopecia areata and vitiligo.

Disease Drug name Identifier Status Phase, administration Enrollment Duration

Alopecia areata Baricitinib NCT03570749 Ongoing II/III, per os 725 36-week

PF-06651600 and

PF-06700841

NCT02974868 Ongoing IIa, per os 142 24-week with extension period

up to 2 years

Delgocitinib NCT02561585 Results submitted II, topical 31 12-week

Vitiligo Ruxolitinib NCT03099304 Ongoing II, topical 157 1-year with 1 year open-label

extension

PF-06651600 and PF06700841 NCT03715829 Recruiting IIb, per os 330 60-week with 24 weeks dose

ranging and 24 week extension

period

type VII collagen (C7), the key anchoring fibril in the upper
dermis, also causing subepidermal blister formation (172).

Essential Role of Antibody-Deposition in Pemphigoid

Diseases
Antibody deposition to the basement membrane is the key
feature in the pathogenesis, demonstrated by the fact that passive
transfer of either anti-BP180 or anti-C7 antibodies isolated either
from human patients or generated against human or murine
antigens result in a severe blistering phenotype in mice (173–
176). These approaches became useful experimental models
to investigate the effector phase of autoantibody-mediated
pemphigoid diseases. Several studies showed that deposition of
antibodies are followed by the activation of the complement
system and the recruitment of neutrophils mediating tissue
damage and blister formation (177–181). Eosinophils and mast
cells are also considered as contributors of blister formation by
producing mediators facilitating further neutrophil recruitment
and tissue damage (182–184). However, there are controversies
in the literature especially regarding the role of mast cells (185).
It has been proposed that autoantibodies can also directly affect
epidermal cell—extracellular matrix integrity (186–188) and can
trigger morphological and functional changes in keratinocytes
(189) including IL-6 and IL-8 production (190) which can
promote the recruitment of neutrophils (Figure 4).

Pathways Mediating Immune-Complex Recognition

and Leukocyte Migration
Signaling through complement receptors and recognition of
deposited immune complexes by neutrophils through activating
Fcγ receptors was essential for blister formation both in vitro
using human cryosections and in in vivo mouse models (191–
193). FcεRI signaling inmast cells, eosinophils and basophils have
also been implicated in immune complex recognition because
IgE isotypes of autoantibodies can also be detected in many
patients in addition to IgG (194, 195). Actual pathogenetic
relevance of IgE and FcεRI was further supported by the fact that
omalizumab treatment was able to reduce the number of blisters
and itching in BP patients (196). However, the role of other
potential participants, namely β2 integrins, which are known to
be involved in the migration of neutrophils to the inflamed area,
is not entirely clear. Mac-1-deficient neonatal mice developed
impaired neutrophil infiltration and were resistant to blister

formation after 24 h of a single anti-BP180 treatment (197).
In contrast, another study in the experimental model of EBA
induced by repeated anti-C7 injections found that the absence
of Mac-1 led to an even exacerbated disease phenotype (198).
Therefore, further experiments are needed to reveal the role of
β2 integrins in pemphigoid diseases.

Src-Family Kinases and Syk in Pemphigoid Diseases
Fc receptor-mediated signaling is strongly dependent of
intracellular tyrosine kinases like Src-family kinases and Syk
(24, 25). Given the central role of immune complex recognition
by Fc receptors of resident and recruited innate immune
cells, Src-family kinases and Syk may have an important role
in the development of pemphigoid diseases. Indeed, triple
knockout mice lacking Hck, Fgr, and Lyn, three Src-family
kinases expressed in the myeloid compartment, were completely
protected in an autoantibody induced model of EBA (32).
Neutrophils lacking Hck, Fgr, and Lyn also failed to produce
superoxide in response to C7-containing immune complexes
(199), which has been shown to be important in mediating
tissue damage in the skin (200). The Syk tyrosine kinase, which
is recruited to ITAM sequences phosphorylated by Src-family
kinases, was also found indispensable for the effector phase of
the disease (199, 201). Analysis of Syk-deficient bone marrow
chimeras revealed that Syk deficiency completely protected
mice from anti-C7 antibody-induced skin disease and abrogated
the accumulation of key cytokines and chemokines, as well as
the infiltration of leukocytes, at the site of inflammation (199).
Moreover, Syk deficient neutrophils failed to release CXCL2
or leukotriene B4 upon activation by immobilized C7-anti-C7
immune complexes in vitro. Integrin signaling also acts through
Src kinases and Syk, however, in vivo migratory capacity either
of Syk deficient or Src-family triple knockout neutrophils
remained unaffected (199). Furthermore, neutrophil-specific
expression of the CARD9 adaptor protein was also found to
contribute to the development of the disease, as complete or
neutrophil-specific CARD9 deletion partially protected mice
from anti-C7 antibody-induced skin inflammation, likely due
to CARD9-dependent regulation of neutrophil gene expression
changes (202).

Taken together, Fc receptors and β2 integrins signal through
Src-family kinases and Syk which are indispensable for immune-
complex and adhesion-induced activation of effector cells
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FIGURE 4 | Antibody-mediated signaling in pemphigoid diseases. Pemphigoid diseases are characterized by autoantibody production against components of the

dermal-epidermal junction (DEJ) like BP180 and BP230 in case of bullous pemphigoid, or against type VII collagen in patients with epidermolysis bullosa acquisita

(Structure of the DEJ with special attention to the above-mentioned autoantigens is shown on the upper right panel). Autoantibody deposition along the DEJ results in

the activation of the complement system (indicated with green dots) and initiation of keratinocyte-responses involving IL-6 and IL-8 production. This leads to

recruitment of innate effector cells like neutrophils, eosinophils, and mast cells. Recognition of deposited immune complexes through Fc receptors utilizing Src-family

kinases (SFK), Syk, and CARD9 is critical for the development of pemphigoid diseases, as shown by genetic studies using transgenic animals (see more detail in the

text). Immune complex-mediated activation of effectors leads to the release of reactive oxygen species, proteases, and the production of proinflammatory mediators

culminating into blister formation.

(neutrophils, macrophages and, possibly, eosinophils and mast
cells) without affecting their intrinsic migratory capacity. Src
and Syk kinases are also responsible for the amplification of
the inflammation process through the release of mediators that
recruit neutrophils and/or directly damage dermal-epidermal
junction in experimental pemphigoid models like proteases and
superoxide. Therefore, these non-receptor tyrosine kinases may
be good candidates for therapeutic intervention in the future,
even though the development of specific inhibitors has yet to
be solved.

Presence of Jaks in Pemphigoid Diseases
Several proinflammatory cytokine levels are elevated in blister
fluid of BP patients such as IL-1β, IL-4, IL-6, IL-8, and TSLP
(172, 203–205), and many of them act through the Jak-Stat
pathway. In line with that, the expression of Jak-Stat proteins was
found to be also elevated in skin lesions of BP patients (206).
A meeting abstract discussed that pharmacological inhibition
of Jak2 impaired the induction of EBA by antibody transfer
and had therapeutic effects too in immunization-induced EBA
model (207). However, there are no clinical studies using Jak
inhibitors in pemphigoid diseases. A case report has been
published about successfully treating a BP patient with anti-
IL-4 antibody (208). The low number of clinical studies in
general with novel therapeutic options is possibly due to the

fact that BP usually affects elderly patients, therefore one
should very carefully balance risk-benefit ratio in case of novel
systemic treatments with special attention to inflammation
and carcinogenesis.

Systemic Lupus Erythematosus
Almost all patients with systemic lupus erythematosus (SLE)
develop lupus-specific cutaneous symptoms at some point
in the disease course. There are also patients with cutaneous
lupus that do not meet other diagnostic criteria for SLE. SLE
is characterized by autoreactive B cells and autoantibody
formation which proposes the role for Syk and Btk, non-
receptor tyrosine kinases mediating BCR signaling, in disease
development. The partially selective Syk inhibitor fostamatinib
prevented the development of skin disease and significantly
reduced established skin disease in lupus-prone mice (209).
In addition, Btk inhibiton significantly attenuated the lupus-
associated cutaneous disease phenotypes in mice (210).
Systemic inflammatory conditions mediated by secretion
of proinflammatory cytokines that act through Jaks is also
important in SLE cutaneous manifestations (211–215). Indeed,
Jak inhibition by ruxolitinib prevented the development of
cutaneous lupus lesions in lupus-prone mice (216). However,
baricitinib failed to improve skin manifestations in systemic
lupus patients in a phase II trial, despite the fact that the
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overall systemic symptoms were effectively reduced by the
drug (217).

Neutrophilic Dermatoses
Neutrophilic dermatoses represent a group of disorders
characterized by massive neutrophil infiltration in the skin
without evidence of infection. Signs of systemic inflammation
often accompanies skin pathology and they are often associated
with malignancies and autoimmune diseases like RA and
inflammatory bowel diseases. Interestingly, autoinflammatory
diseases share various common features with neutrophilic
dermatoses suggesting some similarities in the pathogenesis
(218). Since an excellent review has been currently published
about mechanisms of inflammation in neutrophil dermatoses
(219), here we are focusing on evidence about the importance of
tyrosine kinases.

Abnormalities in neutrophil function is obviously implicated
in the pathogenesis. The SH2 domain-containing tyrosine
phosphatase SHP-1 is essential for inhibiting proinflammatory
signal transduction and loss-of-function mutation of SHP-
1 in mice causes severe cutaneous inflammation resembling
human neutrophilic dermatoses. Kanneganti and her group
showed that IL-1α signaling through IL-1R and adaptor protein
Myd88 drives inflammation in this model where tyrosine
phosphorylation of Myd88 is counterregulated by SHP-1 and Syk
(220). Dysfunction of SHP-1 leads to the release of Syk from
inhibition resulting in excessive expression of proinflammatory
mediators and other effector molecules. Downstream of Syk,
the CARD9 adaptor protein was also found to be a key
mediator in cutaneous inflammation in the aforementioned
model (221).

Cytokine dysregulation are considered as contributing factors
to the development of the disease. Elevation of serum G-
CSF was detected in patients with active disease of unknown
origin (222), moreover, G-CSF is a common cause of drug-
induced neutrophilic dermatosis (223). G-CSFR signals through
Jak2 suggesting a possible role of Jak2 creating cytokine
dysregulation. In addition, increased expression of IFNγ was
also described in patients and rare genetic autoinflammatory
diseases characterized by high IFNγ production also represent
neutrophilic dermatosis where Jak inhibitor therapy significantly
improved symptoms in some cases (224).

ADVERSE EVENTS DURING JAK
INHIBITOR TREATMENT IN
INFLAMMATORY DISEASES

Safety information from long-term studies of Jak inhibitor
treatment are limited due to the novelty of these drugs. Most data
are available from RA patients (225), but there is slowly emerging
information from patients with skin inflammation and several
long-term safety-assessing trials are currently recruiting patients
(Tables 3–5).

Safety profile is considered generally acceptable, infections
and laboratory abnormalities can be observed as major adverse
events (226). The increased risk of infections was similar to

that observed by the use of biologics, with the exception
of higher risk for varicella zoster infection which should
be taken into consideration. Cytopenias, mostly anemia and
neutropenia relatively often occur likely due to Jak2 inhibition
but rarely severe. Elevated serum cholesterol level has been
also mentioned in patients treated with Jak inhibitors (227).
It was usually sustained after the first few months and was
controllable by statin therapy. Among less frequent adverse
events thromboembolism was documented, however most
patients already suffer from increased risk due to chronic
systemic inflammation which further complicates the picture
(228). One of the most serious concerns is the possibility
of the development of malignancies upon long-term Jak
inhibitor treatment. Current studies have not shown higher
risk (225), but longer follow-up is needed to properly address
this matter.

Taken together, Jak inhibitor treatment has not higher risk
than biologics overall. However, skin diseases often present as
less severe but chronic symptoms where risk/benefit ratio should
be carefully considered upon choosing appropriate treatment.
Nevertheless, the possibility of topical application represents an
excellent opportunity which deserve further elaboration.

CONCLUSION AND FUTURE DIRECTIONS

The highly effective treatment of various malignancies by
tyrosine kinase inhibitors and the regulatory approval of Jak
inhibitors for the targeted therapy of rheumatoid arthritis
has generated major interest in the therapeutic targeting
of other diseases, including inflammatory skin diseases, by
tyrosine kinase inhibitors. Besides the most extensively studied
Jak inhibitors, compounds targeting other kinases such as
Syk, Src-family kinases, or Btk are also expected to emerge
as new therapeutics for inflammatory dermatitis. The more
and more detailed understanding of individual kinase family
members and the development of novel inhibitors with more
specifically tailored specificities toward individual kinases are
expected to lead to more refined therapies driving the field
toward personalized targeted therapeutic approaches. Skin
diseases also provide unique opportunities for the development
of novel small molecule therapeutics, mostly through the
opportunity of topical application without systemic side effects.
On the other hand, the cosmetic aspects of skin diseases
and the role of skin and mucous membranes as critical
barriers between the internal and external environment also
present substantial challenges during the development of novel
therapeutics. Taken together, the scientific community may
expect exciting major advances in the field of understanding and
targeting tyrosine kinases in inflammatory skin diseases in the
coming years.
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