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1. Introduction 

 

1.1. Opioids and analgesia 

Pain is described by Albert Schweitzer as a more terrible lord of mankind than even death 

itself. His thoughts are still apposite. The clinical practice has huge successes in pain 

management but still lacks the proper solution in many cases; mostly chronic painful 

conditions are still a huge challenge. Only in the USA approximately 100 million people 

are suffering from some type of chronic painful condition [1].  

Opioid analgesics are among the oldest pain medications applied by human beings, yet 

they are still the mainstay in the management of moderate to severe pain [2].  

The use of opioids is going back for a long time, ancient Roman and Greek physicians 

described them as a powerful tool to relief pain. The start point in opioid history is the 

cultivation of poppy by Sumerians who described it as Hul Gil, the „joy plant” in lower 

Mesopotamia around 3400 B.C. Then knowledge of poppy cultivation and its euphoric 

effect spread to area governed by Assyrians, who passed it to Egypt and later to China. 

The first opioid agent morphine was isolated by Friedrich Wilhelm Sertürner in the 19th 

century. At this time morphine became available to treat diverse types of occasional pain 

(e.g. pain originated from injuries, toothache etc.). In the same century Alexander Wood 

invented the hypodermic syringe for medical use, which resulted in the growing use of 

opioids leading to an increase in the incidence of morphine addiction especially among 

soldiers in the USA and Europe. As an attempt to overcome the unwanted dependence 

causing effect of morphine, heroin (diacetylmorphine) was developed. The new 

compound was widely used as an anti-cough medication. Despite the goal for which 

heroin was introduced, its use as favorite habit was grown. This led to a strong increase 

of opioid addiction in society and encouraged authorities to issue the opioid control act 

[3–5]. Up to this date the clinical practice still lacks an opioid compound with proper 

efficacy but without the unwanted central nervous system (CNS) effects like addiction or 

respiratory depression.  

Opioid analgesics are well known to exert their antinociceptive action by the activation 

of opioid receptors, particularly µ-opioid receptor (MOR) at spinal and suprasinal regions 

[6]. MOR activation by opioids results in analgesic effect as well as adverse effects. The 

majority of clinically used opioid analgesics have central adverse effects such as 
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respiratory depression, development of opioid tolerance and dependence, as well as 

addiction liabilities. More important, when they are misused or abused, they can cause 

addiction, overdose and death. These effects hamper their clinical use [2, 6, 7, 8]. It is 

important to note that the abuse causing effect of opioids is less when they are prescribed 

for chronic pain management, especially when there is no history of previous drug abuse 

[9]. Still, the over-prescription in the USA led to a national opioid epidemic crisis, the 

use of opioids is estimated to cost over $700 million annually [10].    

Beside the central opioid analgesic effect, several data support that antinociception could 

also be achieved by activation of functional opioid receptors in the periphery as well [11, 

12]. In the late 1980s researchers started to pay attention to the peripheral analgesic effect 

of opioids, growing number of studies were conducted in order to investigate the 

possibility of peripheral antinociception [13].  The most investigated method of peripheral 

opioid analgesia is intra-articular injection of the MOR agonist morphine [13–15]. It has 

been shown that significant pain relief can be achieved after knee surgery or in chronic 

rheumatoid- and osteoarthritis. The effect may last even up to 7 days (similarly to local 

steroid or anesthetic injection). The most limiting factor of intra-articular injections is the 

enhanced risk of local infections [16, 17]. Locally injected morphine was effective in 

patients with chronic inflammatory tooth pain. Submucous injection of morphine also 

effectively alleviated the pain after dental surgery. These effects were absent in patients 

without preexisting inflammation (similarly as in animal studies) [17, 18]. Topically 

applied morphine attenuated pain in patients with unilateral corneal abrasions on the 

lesioned, but not the intact site. Importantly, morphine did not show any detrimental effect 

on wound healing [17, 19]. Locally injected morphine was also effective in postoperative 

visceral pain conditions (in the urinary bladder or after laparoscopic tubal ligation) [17]. 

On the other hand, several studies failed to prove peripheral analgesic effect of applied 

opioids. In the majority of these studies morphine was injected into non-inflamed tissues. 

It further supports the observation, that the peripheral analgesic effect of opioids is highly 

elevated under inflammatory conditions [17]. MOR, δ-opiod receptor (DOR) and also κ-

opioid receptor (KOR) agonists show significantly stronger antinociceptive action in 

injured than in non-injured tissues of animals and also of humans [13].     

Many attempts have been done in order to target the peripheral source of pain (i.e. target 

the peripheral opioid receptors in order to inhibit the pain transmission peripherally) to 
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avoid the CNS adverse effects. However, for long time the chemical modification carried 

out on morphine to limit its central nervous system penetration resulted in morphine 

analogs of weak affinity [20]. In spite the quaternary analogs that showed limited CNS 

penetration and lower affinity for opioid receptors, zwitterionic molecules like morphine-

6-O-sulfate (M6SU) displayed greater antinociceptive effect than morphine [21, 22]. 

M6SU applied as an eye drop showed strong local antinociceptive effect in different 

animal models of corneal injury without any harmful effect on wound healing [23, 24].  

Taken together, targeting peripheral opioid receptors offers a possible new way to treat 

different pain conditions, especially in the case of inflammatory pain.  

 

1.2. Pain transmission 

Nociceptors are located in the peripheral ending of primary afferents. They can be found 

at the end of pseudounipolar sensory neurons with cell bodies in the dorsal root-, 

trigeminal-, or nodose ganglia [25]. To sake of simplicity, based on axon diameter, degree 

of myelination and axonal conduction velocities as well as body sizes, sensory fibers are 

classified as A, Aδ and C. A fibers are stimulated by non-noxious stimuli. Most of 

them have low mechanical thresholds and are described as light-touch receptors. On the 

other hand, Aδ and C fibers carry the noxious sensory information into the spinal dorsal 

horn. These fibers are responsible for transmission of pain resulted from mechanical, 

thermal or chemical noxious stimuli in different parts in our body. Most of the Aδ fibers 

are associated with mechano- or thermoreceptors. C-fibers are polymodal fibers, because 

they are responding to multiple modalities: chemical, mechanical (touch, pressure, 

stretch) and thermal stimuli. Aδ and C primary sensory afferent fibers convey the pain 

from the site of injury into spinal cord, where they synapse with the secondary sensory 

neurons (spinothalamic tract), that further convey the pain to the thalamus, where third 

order neurons pass the information further to the somatosensory cortex. Two categories 

of pain transmission exist: fast and slow. Aδ fibers transmit the information relatively 

quickly (6 to 30 m/sec), C fibers are conducting at a lower speed (0.5 to 2 m/sec). The 

myelinated, large A fibers conduct the information (touch, pressure, vibration) at high 

speed (30 to 70 m/sec) [25].  

The emotional aspect of the pain is conveyed by the spinoreticular tract that terminates in 

the reticular information in the brainstem, where information is further processed to 
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thalamus and hypothalamus. Of note, sensory C fibers are responsible for conveying 

visceral pain and neuropathic pain from the periphery to CNS [25]. Inflammatory 

mediators (e.g. bradykinin, prostaglandin, serotonin, H+, cytokines) that are released from 

damaged tissues surrounding the primary sensory afferents of free endings directly 

stimulate the nociceptors or lower their pain threshold. The later phenomenon is called 

primary sensitization. This will also increase the excitability of spinal neurons which can 

later amplify all sensory inputs including normally non-noxious stimuli conveyed by the 

low threshold A fibers. This central sensitization strongly contributes to the pain 

symptoms like allodynia (non-noxious stimuli experienced as painful stimuli) and 

hyperalgesia (lowered pain threshold) [14, 26].  

Beside the ascending pain pathway, the descending (or inhibitory) pathway also have 

important role in pain sensation. Areas in the brain like the periaqueductal gray (PAG) 

and rostral ventromedial medulla (RVM) hosting high receptor pools and containing high 

endogenous opioid peptide content are major points in the control of descending pain 

pathways. Therefore, activation of this pathway through endogenous opioid-release 

results in analgesia that can explain the lack of pain sensation for example during a shock 

condition [25]. 

 

1.2.1. Opioid receptors and their distribution  

Opioid receptors belong to G-protein coupled receptors (GPCRs), they are Gi-coupled 

inhibitory receptors. Currently, three opioid receptor types exist: μ-opioid receptor 

(MOR), κ-opioid receptor (KOR) and δ-opioid receptor (DOR) named after morphine, 

ketocyclazocine and vas deferens, respectively [27, 28]. The International Union of Basic 

and Clinical Pharmacology Committee (IUPHAR) for the Receptor Nomenclature and 

Drug Classification issued the abbreviations MOR, KOR and DOR. Their mRNAs as well 

as the gene’s structures were cloned and characterized. In addition, they were further 

subdivided into several subtypes as follows: MOR to μ1 (pain management) and μ2 

(respiratory center) and μ3 (immune cells); KOR to κ1a, κ1b κ2, κ3 and DOR to δ1 and 

δ2 [29–34].  

The activation of opioid receptors by opioid agonists results in decrease of intracellular 

cAMP levels through inhibition of adenylate cyclase, close of voltage-dependent Ca2+ 

channels (N type and to a lesser extent P / Q) in presynaptic nerve endings and opening 
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of K+ channels at post-synaptic neurons [35]. Consequently, beside the inhibition of the 

release of transmitters (neurohormones and neuropeptides), such as glutamate and 

substance-P from the presynaptic neurons, they do inhibit the propagation of action 

potential by hyperpolarizing the secondary neuron cells [36]. 

Opioid receptors are widely distributed in the CNS and also on the periphery. 

Opioid receptors in the CNS: In the brain all types of opioid receptors can be found. 

The most abundant opioid receptor with the widest distribution in the brain is MOR. Table 

1 depicts the mRNA distribution of different opioid receptors in the human brain, which 

directly correlates with the receptor distribution [37]. MOR and DOR can be found in the 

whole area of cortical lamina whereas KOR can be found mostly in the deeper regions 

(lamina IV-VI.), which might contribute to the sedative effect of KOR agonists. Opioid 

receptors are also distributed in caudate putamen. The caudate putamen forwards 

information toward the ventral tegmental area and substantia nigra. This indicates the role 

in sensory-motor interactions, motivation and rewarding effects. 

The opioid receptors can be found in other regions important in pain transmission, like 

the anterior cingular cortex (ACC), primary and secondary somatosensory cortex, 

ventrolateral orbital cortex (VLO). The ACC is in direct connection with the 

periaqueductal gray (PAG), which has an essential role in the descending inhibitory 

pathway. ACC is a key point in somatic- and also visceral pain processing. Endogenous 

opioids are among the neurotransmitters acting in the ACC. The role of opioids in pain 

transmission/inhibition was shown also in the motor cortex, rostral agranular cortex. In 

conclusion, opioids influence the pain transmission in the brain at every important area 

of pain processing [37–39].  

Opioid neurons are also located at the spinal level. These inhibitory interneurons are 

influenced by the descending inhibitory pathway causing pre- and also post-synaptic 

inhibition. Opioid neurons in the midbrain inhibit GABAergic inhibitory neurons 

activating the descending pathway (inhibition of inhibition). Additionally, opioid 

receptors are also expressed in the dorsal horn and in the gray matter around brain 

ventricle IV and V [25, 40]. In the dorsal root ganglia (DRG) MORs, DORs and also 

KORs can be found. MORs are located on medium and large diameter cells, DORs mostly 

on large diameter neurons and KORs on small and medium neurons. These data suggest 

that these opioidergic neurons are important in the processing of different pain types and 
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they are influencing both the descending- and ascending pain pathways in the spinal cord 

[41].  

 

Table 1. Opioid receptor mRNA distribution in human brain 

Region δ receptor µ receptor κ receptor 

   Prefrontal cortex    

Layers:    

I 0-low moderate 0 

II moderate high moderate 

III high low moderate 

IV moderate moderate high  

V high  high high 

VI high high high 

Striatum    

      Caudate nucleus    

interno-medial        low to moderate* high* moderate to high** 

       Putamen low to moderate* high* moderate to high** 

0 = undetectable; * = diffuse; ** = asymmetric cell clusters 

Low, moderate, and high indicate the relative density of cells expressing receptor mRNA. 

Table 1. was adapted from [37]. 

 

Opioid receptors at the periphery: Beside the central opioid receptors, several data 

support the existence of functional opioid receptors in the periphery as well [12, 42]. 

These receptors are localized on peripheral terminals of sensory nerves. Pharmacological 

evidences – on animal models and also in humans – indicate that activation of these 

receptors on peripheral sensory axons also results in the mitigation of pain [20, 43–45]. 

Based on experimental results, all three types of opioid receptors (MOR, DOR and KOR) 

can be found at the periphery in functionally active state [12]. These receptors can be 

found on small-, medium- and large- diameter sensory neurons of animals or humans. 

The endogenous ligands of these receptors, opioid peptides (endorphin, enkephalin, 

dynorphin) were also found in immune cells infiltrating the inflamed tissues during 
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inflammation. Environmental stress is a strong factor in the mechanism of release of these 

peptides [13, 17, 42].  

In conclusion, the three pillars of the analgesic-antinociceptive effect of opioids are: 

1) Inhibition of the nociceptive stimuli transmission from the periphery to the spinal cord 

2) Activation of the descending inhibitory pathway 

3) Influencing the activity of the limbic system [6, 46, 47]. 

 

1.3. Different pain disorders 

1.3.1. Acute and inflammatory pain disorders 

Nociceptive pain originates from tissue damage surrounding peripheral sensory neurons 

(e.g. postoperative pain; posttraumatic pain, as broken bone pain). Opioids are the most 

effective tools to treat acute pain syndromes but their side effects, especially the centrally 

ones, limit their clinical use. NSAIDs are usually the first choice in acute pain treatment. 

In severe cases they might be used in combination with opioids to achieve a synergistic 

antinociceptive effect, thereby reducing the opioid need [10]. Indeed, NSAIDs are good 

choice in the treatment of mild to moderate pain. However, limiting factors in the use of 

NSAIDs are their gastrointestinal damaging and cardiac adverse effects [48]. Tramadol 

(weak MOR agonist and serotonin- and norepinephrine reuptake inhibitor), the NMDA 

antagonist ketamine and in some cases the anticonvulsant gabapentinoids (gabapentin, 

pregabalin) are also used in the management of acute pain conditions [10].  

The inevitable consequence of tissue damage is the release of inflammatory mediators 

such as bradykinin, serotonin, prostaglandins and cytokines as well as tissue acidification. 

This will lead to the direct stimulation of nociceptors and the above mentioned primary 

sensitization. Beside inflammatory mediators endogenous antinociceptive agents are also 

released at the site of inflammation like opioid peptides, somatostatin, endocannabinoids 

and anti-inflammatory cytokines [14].  

Opioid receptors have been reported to be upregulated in inflamed tissues as well as at 

the spinal level. Potentiated analgesic action of opioids was also observed [49–51]. This 

favorable change stimulates the researchers to develop opioid agents targeting these 

peripheral receptors, hence the peripheral antinociception of opioids in humans has been 

investigated in several randomized controlled clinical trials [52, 53]. Pooled analyses of 

data from 19 studies suitable for meta-analysis showed only a moderate analgesic effect 
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after intra-articular morphine compared with placebo in patients with arthroscopic knee 

surgery. Morphine-6-glucuronide (M6G) has been reported to have peripheral anti-

hyperalgesic effects following its systemic administration in human volunteers [45]. Due 

to its high hydrophilicity it has a considerable delay between peek plasma concentrations 

and peek central opioid effects, so peripheral antinociceptive effect can be detected within 

this time window [45, 54]. Although in the case of M6G central side effects, like 

respiratory depression was observed, design of opioids with high hydrophilicity and high 

efficacy may provide analgesic agents of high clinical value. 

 

1.3.2. Neuropathic pain disorders 

The definition of neuropathic pain (NP) by the International Association for the Study of 

Pain (IASP) is “pain arising as a direct consequence of a lesion or disease affecting the 

somatosensory system” (IASP, 2012). Based on this definition NP is a consequence of 

damage to neurons in peripheral- or central nervous system or both. NP has significant 

undesirable impact on the economic welfare of the society [55, 56]. Therefore, to find 

drugs satisfactory treating NP is a major clinical goal. The management of severe acute 

to moderate and cancer pain by opioids is satisfactory, however opioid effectiveness in 

the treatment of chronic NP is controversial [2, 40, 57–61]. So far the management of NP 

by medication is largely based on the symptoms of disease. These medications are 

categorized into three groups: first, second and third line drugs. The first line medications 

include: tricyclic antidepressants, dual reuptake inhibitors of serotonin and 

norepinephrine, gabapentinoids and 5% lidocaine transdermal patch. The second line 

drugs are classical opioids and drugs having opioid and non-opioid actions like tramadol. 

Third line medications include antiepileptics, topical capsaicin, memantine and 

mexiletine [62]. Of note, medications considered as second line might prescribed as first 

line e.g. during the titration of another drug or acute NP attack.  

In addition, reports have been issued on the equivocal response of NP for opioid 

treatments, although this responsiveness to opioid analgesics may vary across the 

different types of NP syndromes [2, 59, 63]. Data obtained in diabetic animals developed 

NP showed a significant reduction in opioid antinociceptive efficacy following systemic 

administration. The loss of opioid antinociceptive efficacy has been also reported 

following central (spinal or supraspinal) administration in diabetic animals with NP [64–
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66]. It was proposed that the impaired opioid analgesia occurred as a consequence of 

decrease in opioid receptor reserve. In addition, the reduction in opioid receptor density 

in spinal and supraspinal tissues was also demonstrated in diabetic animals [67, 68]. 

In general, less than 50% of patients respond to treatment with all of the above mentioned 

drugs and 40% are inadequately treated. Therefore, treatment of NP so far is considered 

as an unmet medical need and indicates necessity for developing new therapies for these 

types of painful conditions [69]. 
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2. Objectives 

 

Our working group recently designed and synthesized the new MOR agonist, 14-O-

methylmorphine-6-O-sulfate (14-O-MeM6SU; Fig. 1.), which displayed high affinity for 

MOR and strong antinociceptive effect in acute thermal nociceptive tests. Additionally, 

in functional in vitro [35S]GTPS binding assay, 14-O-MeM6SU showed a full agonist 

character whereas morphine or M6SU showed a partial agonist nature [70].  

 To assess the antinociceptive effect of test compounds in inflammatory conditions, 

three different animal models were applied: acetic acid induced writhing test in mice, 

formalin test in rats (acute models) and Complete Freund’s Adjuvant (CFA) induced 

subchronic inflammatory model.  

 The acetic acid-evoked writhing assay is one of the most well-established and 

widely used experimental models of visceral pain to assess the pain relieving 

actions of either NSAIDs or opioids [71, 72]. In this model chemical visceral 

nociception is induced by the injection of diluted acetic acid into the peritoneal 

cavity of the rodents. 

 Formalin test is frequently applied in rats to assess the antinociceptive properties 

of investigated compounds. The test consists of two phases: phase I (0-10 min) 

and phase II (11-60 min). Phase I is a direct consequence of the irritating effect of 

the formalin solution injected intraplantarly (i.pl.) into the hindpaw. In the second 

phase inflammatory mediators (bradykinin, histamine etc.) are released, hence this 

test is suitable to assess the effect of test compounds on acute nociceptive and 

inflammatory pain as well [73].  

 In case of Complete Freund’s Adjuvant (CFA- a mixture of mineral oils, heat-

killed mycobacteria and emulsifying agent) -evoked hyperalgesia the 

inflammation is induced by the application of CFA into the hind paw of animals 

(e.g. rats or mice). This pain model has long been used as a strategy to demonstrate 

the (peripheral) antinociceptive actions of opioid agonists [44, 74]. CFA induces 

subchronic inflammation by enhancing both cell-mediated and humoral immune 

responses, hence modeling the clinical conditions (e.g. rheumatoid arthritis) rather 

properly [75]. 
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Figure 1. The chemical structure of the novel compound 14-O-methylmorphine-

6-O-sulfate (14-O-MeM6SU) 

 Neuropathic pain is one of the hardest painful conditions to treat. Among different 

NP conditions diabetic polyneuropathy deserves particular attention, since it is one of 

the most common NP diseases. Approximately 60-70% of diabetic patients suffer from 

diabetic polyneuropathy (mild to severe forms) [76]. To mimic these clinical 

conditions streptozocin (STZ) treated diabetic rats were investigated. STZ destroys the 

insulin producing  cells, hence causing type 1 diabetes with high blood glucose level. 

 First the symptoms of diabetes were confirmed: blood glucose levels, animal 

weights and the amount of water- and food consumption was investigated at 

numerous time points. Since diabetes can impair gastrointestinal motility [77], the 

gastric emptying of diabetic and control rats was also assessed.   The elevated 

glucose concentration in the blood leads to neuron damage and therefore 

neuropathic pain, indicated by mechanical allodynia [64, 78].  

 In neuropathic conditions the effectiveness of different opioids is reduced [68]. 

Therefore, we also assessed and compared the degree of antinociception 

impairment of the novel compound (14-O-MeM6SU) and morphine.  

 The number of MOR was evaluated in DRG and dorsal horn tissues of diabetic 

and non-diabetic rats. G-protein coupled receptor activity was also measured in 

vitro to determine the efficacy of test compounds in diabetic and control rat spinal 

cord and brain homogenates.  

 We also aimed to assess the side effect profile of the novel compound in comparison 

with other known agents. The tail-flick test is one of the most commonly used methods 

to assess the acute nociceptive potency and efficacy of different opioids against 
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thermal stimuli [43, 79]. Beside the advantages of this test, like being relatively quick 

and easy to perform, it might be an adequate method to predict analgesic efficacy both 

in humans and in other more complex pain models, as well [80]. With the tail-flick  

test – performed after 3 days administration of test compounds – we aimed to assess 

the analgesic-tolerance profiles. The effects on gastrointestinal transit and respiratory 

functions were also investigated, since opioid induced constipation and the respiratory 

depressive effects of opioids are among the main limiting factors of their use [81]. 

Sedative effects of test compounds were also evaluated by the assessment of their 

anesthesia potentiating effects.  

 

In summary, the main aims of the thesis are: 

1. To assess the antinociceptive efficacy and potency of the novel compound 14-O-

MeM6SU in comparison with known reference compounds (morphine or morphine-6-O-

sulfate) under: 

 acute and subchronic inflammatory pain conditions: mouse writhing test, 

rat formalin test, rat CFA model 

 neuropathic pain conditions: rat model of diabetic polyneuropathy 

2. To determine the degree of antinociception impairment in advanced diabetic 

neuropathy in rats 

3. To investigate the peripheral component in the antinociceptive action of 14-O-

MeM6SU and reference compounds in above mentioned pain conditions 

4. To further analyze the actions of test opioid agonists at the spinal and supraspinal level 

under NP conditions applying biochemical assays 

5. To investigate the side effect profile of 14-O-MeM6SU in comparison with reference 

compounds by analyzing the: 

 effects on gastrointestinal transit in mice 

 effects on respiratory functions in rats 

 sedative effects in rats 

 tolerance profile in mice 
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3. Materials and methods 

 

3.1. Experimental animals 

Animals (male Wistar rats or NMRI mice) were housed in the local animal house of the 

Department of Pharmacology and Pharmacotherapy, Semmelweis University (Budapest, 

Hungary) or Charité University Berlin, Campus Virchow Klinikum and Campus Charite 

Mitte, Berlin, Germany in the case of immunohistological assay. Housing and 

experiments were performed according to the European Communities Council Directives 

(2010/63/EU), (86/609/ECC), German science-based guidelines for laboratory animal 

care of the National Research Council (2003), the Hungarian Act for the Protection of 

Animals in Research (XXVIII.tv. 32.§) and local animal care committee (PEI/001/276-

4/2013). Animals were kept in standard cage (5 or 6 animals/cage) in a room of 20 ± 2°C 

temperature, 12-hour/12-hour light/dark cycle (light on at 6 A.M.). Diabetic and their 

control animals were kept in mash bottomed cage. Water and standard food were 

available ad libitum.  

The animal weights, phenotypes and sources are presented under appropriate method 

section. Each animal was used for one experiment and only once. During work 

researchers did the best effort to minimize the number of animals and their suffering. 

 

3.2. Materials 

The novel compound (14-O-MeM6SU) and the reference compound M6SU used in the 

present work were synthesized by Sándor Hosztafi in Department of Pharmaceutical 

Chemistry, Semmelweis University (Budapest, Hungary) as previously described [70]. 

Morphine hydrochloride was obtained from Alkaloida-ICN (Tiszavasvári, Hungary). The 

MOR agonist enkephalin analog Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO) was 

obtained from Bachem Holding AG (Bubendorf, Switzerland). The radiolabeled GTP 

analog, [35S]GTPγS (specific activity: 1000 Ci/mmol) was purchased from Hartmann 

Analytic (through Izotóp Intézet Kft., Budapest, Hungary). The UltimaGoldTM MV 

aqueous scintillation cocktail was purchased from PerkinElmer (through Per-Form 

Hungária Kft., Budapest, Hungary). Naloxone methiodide (NAL-M) and all other 

chemicals were of analytical grade and purchased from Sigma–Aldrich, Budapest, 

Hungary. Drugs were dissolved in 0.9% solution of NaCl with the exception of STZ, 
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which was dissolved in ice-cold distilled water right before injection (less than 10 min 

before injection). NAL-M was dissolved in saline, also right before the experiment. 

 Drugs or vehicle were delivered as follows: s.c. administration (under skin over the neck) 

2.5 or 5 ml/kg for rats and 10 ml/kg for mice; intravenous (i.v.) injections 2.5 ml/kg for 

rats; intraperitoneal (i.p.) injections 2.5 ml/kg for rats; intraplantar (i.pl.) administration 

100 µl/rat; intracerebroventricular (i.c.v.) injection 5 µl/animal for mice. For each dose a 

separate group of animals was used. All compounds were stored and handled as described 

in the product information sheet.  

Experiments were performed in a blinded way to the drugs and doses applied. In in vivo 

tests morphine or morphine-6-O-sulfate (M6SU) was used as reference compound. 

 

3.3. Acute inflammatory pain models 

3.3.1. Experimental paradigm for mouse writhing test 

Male NMRI mice (20-30 g) were used. The acetic acid-induced writhing test was 

performed as previously described [71]. Mice were injected i.p. with 0.2 ml of 0.6% acetic 

acid aqueous solution to induce the writhing reaction which is characterized by 

contractions of the abdominal musculature followed by extension of the hind limbs. 

Groups of mice were injected s.c. or i.c.v. with different doses of 14-O-MeM6SU or 

M6SU followed 15 min later by an intraperitoneal (i.p.) injection of 0.6% acetic acid 

solution. Each mouse was then placed in individual transparent Plexiglass chambers, and 

5 min after acetic acid injection the number of writhes was counted during a 10 min 

observation period. That is, assessments started 20 min after s.c. opioid agonist 

administration. For determination of writhes in control groups, animals were s.c. or i.c.v. 

injected with 0.9% saline solution before i.p injection of 0.6% acetic acid using a similar 

protocol as for the test drugs. In experiments when the antagonist action was assessed, 

s.c. NAL-M was co-administered with the respective agonist.  

 

3.3.2. Experimental paradigm for rat formalin test 

Male Wistar rats (200–300 g) were used. The test was performed as described previously 

[82]. Briefly, before the experiments the animals were daily wrapped in cloth 

(„handling”) except their right hindlimb, which was left free, for three constitutive days 

in order to habituate them to the experimental conditions. On the fourth day animals were 
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wrapped in cloth and 2.5% formalin solution was injected into the plantar surface of the 

right hind paw in a volume of 50 µl/rat. Immediately after the injection, animals were 

placed into Plexiglass observation chambers fixed above a mirror of 45 degree angle 

position allowing free viewing of the paws. Then, the antinociceptive action of the 

investigated agents was assessed by counting the number of nociceptive behaviors 

(shaking, flinching, licking and elevating the painful paw) for 60 min of 5 min time 

periods. The observation peridod was subdivided into two phases: Phase I: 0-10 min 

(caused by the irritant effect of formalin) and Phase II: 11-60 min (caused by the release 

of inflammatory mediators) to determine the pain events.  

The test compounds were injected s.c. (2.5 ml/kg) 15 min prior to formalin injection. In 

order to assess the peripheral opioid system’s contribution to the whole antinociceptive 

action of systemically applied opioids NAL-M was co-administered. In an other set of 

experiments, the test compounds were injected intraplantarly into the ipsilateral or 

contralateral paw (100 µl/animal) 5 min prior to the i.pl. formalin solution injection.  

 

3.4. Subchronic inflammatory pain model: Complete Freund’s Adjuvant induced  

       inflammation in rats 

Male Wistar rats (200–300 g) were used. Rats under brief isoflurane (Willy Rüsch GmbH, 

Böblingen, Germany) anesthesia received i.pl. injection of 0.15 ml Complete Freund’s 

Adjuvant (CFA) (Calbiochem, San Diego, CA), a water-in-oil emulsion of killed 

mycobacteria, into the right hind paw. On the fourth and seventh day after i.pl. CFA-

injection, baseline (pre-test compound) paw pressure thresholds (PPT) of inflamed and 

non-inflamed paws were assessed by paw pressure algesiometry (modified Randall-

Selitto test; Ugo Basile, Comerio, Italy) as earlier described in [83]. Then, PPTs were 

reevaluated at 30, 60 and 120 min after s.c. drug administration, using an arbitrary cut off 

weight of twice the baseline. The cut off time was considered 100% and values are 

expressed as percentages. 

In these experiments the antinociceptive effects of s.c. 14-O-MeM6SU and M6SU were 

examined. After baseline measurements separate groups of animals for each s.c. dose 

were used. The antinociception assessed with respect to the change in PPT of both paws 

after s.c. administration of drug was compared with the baseline value obtained before 

drug treatment in ipsilateral or contralateral paws. The doses of each drug that produced 

DOI:10.14753/SE.2019.2219



21 

 

a 60-80% antinociceptive effect in inflamed paws, without a significant effect on the 

contralateral non-inflamed paws, were selected for experiments designed to analyze the 

antagonism by NAL-M. In these experiments NAL-M was co-administered with the test 

compounds when the peak effect was at 30 min, or 30 min after the agonist 

administration, when the peak effect was achieved at 60 min. In other series of 

experiments, NAL-M was injected locally 5 min prior to measurement (at 25 min or 55 

min, when the peak effect was achieved at 30 and 60 min, respectively). 

 

3.5. Neuropathic pain model: experimental paradigm for streptozocin induced  

       chronic diabetic neuropathy in rats 

Male Wistar rats of 200-300 g were used for STZ-induced diabetes model. Diabetes was 

provoked by i.p. administration of 60 mg/kg streptozocin (STZ) in a 2.5 ml/kg volume. 

Vehicle treated group was used as absolute control. 

The blood glucose level, the weight change, the consumption of water- and food was 

checked at numerous time points. 

To justify the alteration in mechanical pain thresholds caused by the difference in the 

weights of diabetic (STZ treated) and non-diabetic (vehicle treated) animals (i.e. higher 

weight results in higher threshold values, data not shown), weight match control animals 

were used. Weight match animals were handled and kept under the same conditions 

described for the diabetic (and non-diabetic control) animals. The only exception was 

that, weight match animals were kept only for one or two weeks prior to experiments. 

 

3.5.1. Monitoring of diabetic and control animals 

Measuring the blood glucose levels: The rat blood glucose levels were determined by 

Accu-Chek Active blood glucose meter (Roche Diagnostics GmbH, Germany). The 

animals were slightly anesthetized with 3% isoflurane in oxygen via nose cone and one 

drop of blood was taken from the tail veins. The maximum concentration of blood glucose 

that is measurable is 33.3 mmol/l therefore this value was used as a maximum. The 

animals were considered diabetic if the value was above 14 mmol/l [78]. The blood 

glucose was measured before and 72 hours after the STZ treatment and on the 1st, 2nd, 

3rd, 9th and 12th week after the STZ injection. Vehicle treated group was used as absolute 

control. 
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Measuring of animal weight and food and water consumption: In the first series of 

experiments control (vehicle treated) and diabetic (STZ treated) animals were kept 

individually. The water and food consumption of the animals was measured separately 

for each animal before and after the STZ treatment each day for 4 weeks and at least two 

times a week until the 7th week. The weight of the animals was checked during the 7 week 

period in the same way. 

Gastric emptying assay: Phenol red method was performed as described earlier [84], 

with some minor modifications. Briefly, after 24 h of fasting, diabetic and non-diabetic 

rats received 1.5 ml of 1.5% methylcellulose solution containing 0.5 mg/ml phenol red (a 

non-absorbable marker compound) by intragastric gavage. After 20 min the rats were 

sacrificed, the pylorus and cardia were clamped and the stomach was removed. The 

content of stomach was mixed with 40 ml of 0.1 N NaOH, then 0.6 ml of this mixture 

was added to 1.2 ml of 7.4% trichloroacetic acid solution to precipitate proteins. 

Following centrifugation (15 min, 3000 g) 1.2 ml of the supernatant was added to 0.6 ml 

of 1 N NaOH, and the absorbance was read spectrophotometrically in triplicates at 560 

nm. Gastric emptying (%) was calculated as follows: [1 – (absorbance of sample / 

maximal absorbance)] x 100. Maximal absorbance was measured by processing the test 

meal alone, as described above. 

In a separate experiment, weight-matched animals were treated either with saline, or with 

clonidine (0.1 mg/kg) subcutaneously 30 min before the methylcellulose administration. 

Clonidine is an alpha2 adrenoceptor agonist, which is a well-known inhibitor of gastric 

emptying [85]. 

Assessment of neuropathic pain with Dynamic Plantar Aesthesiometer (DPA): In 

order to determine the allodynia caused by advanced diabetes we used the Dynamic 

Plantar Aesthesiometer (DPA) (Ugo Basile, Italy) as described previously [86] with slight 

modifications based on our pilot experiments. The animals were placed in the plastic 

cages of the DPA once daily for 3 subsequent days (“handling”). In addition before the 

experiments the animals were kept in the cages also for 5 min before starting the 

measurement in order to habituate them.  The equipment raises a straight metal filament 

with a 0.5 mm diameter until it touches the paw. Then it puts pressure on the paw with an 

increasing force from 1 to 50 grams (cut off).  
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The withdrawal threshold was measured and expressed in grams, before and after the STZ 

treatment on every 3rd week. In the first series of experiments the animals were measured 

every week after STZ treatment in order to determine the peak of allodynia. Each of the 

hind paws were measured 3 times alternately and the average data of the 3 measurements 

were used for each animal. Both vehicle treated and weight match (i.e. animals with 

weights matching the diabetic ones) groups were used as control. After determination the 

time point of the peak effect further analyses were made at this time point. An animal was 

considered neuropathic, when the threshold value was decreased at least by 20% 

compared to weight match animals as prescribed previously [87]. Diabetic rats that did 

not develop allodynia by the 9th week were excluded from further experiments. 

 

3.5.2. Investigation of the analgesic action of different opioids in rats with 

          diabetic neuropathy 

Data were obtained 9 and 12 weeks following STZ treatment i.e. 6 and 9 weeks after the 

appearance of allodynia, a major sign of painful diabetic neuropathy. The baseline of 

withdrawal thresholds was measured before s.c. agonist treatment. The antiallodynic 

action of test compounds was assessed 30, 60 and 120 min after treatment. On the 9th 

week after STZ treatment dose-response curves were constructed. Data (100%: mean 

baseline values of diabetic or non-diabetic rats) were converted to log dose units and were 

analyzed with linear regression. The effective doses producing 30% effect (ED30; 30% 

elevation in the threshold after treatment in comparison with the baseline) were 

determined. Since DPA elevates pressure on the paws only until 50 grams to avoid tissue 

damage, ED50 values could not be accurately determined. To analyze the changes in 

antinociceptive potency of test compounds the calculated ED30 values were compared 

(ED30diabetic/ED30non-diabetic). Weight match animals were used as absolute control in DPA 

measurement. In another set of experiments the opioid antagonist, NAL-M was co-

administered with the investigated agonist.  

 

3.6. Experimental paradigms for the assessment of side effects of test compounds  

3.6.1. Determination of the effect of test compounds on gastrointestinal transit 

The effect of 14-O-MeM6SU and M6SU compared to that of morphine on gastrointestinal 

transit was measured in vivo, by using the charcoal meal method [88]. Briefly, male 
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NMRI mice (20-25 g) were fasted 6 h prior to the experiments, with free access to water. 

At the time of the experiment, a charcoal suspension (10% charcoal in 5% gum arabic) 

was given in a volume of 0.25 ml/mouse by an oral gavage, followed by s.c. 

administration of test compounds (0.1 ml/10 g). Then, 30 min after drug or saline 

administration mice were decapitated, their small intestines were removed, and the 

distance travelled by the charcoal suspension was expressed as a percentage of total small 

intestine length. The doses caused 50% inhibition on gastrointestinal transit (ID50) were 

calculated from the linear regression of dose-response curves. 

 

3.6.2. Respiratory function tests 

Respiratory function measurements were performed by unrestrained whole-body 

plethysmography (WBP) in conscious, spontaneously breathing male Wistar rats (200-

300 g) 30 and 60 min after s.c. injection of saline, 14-O-MeM6SU, M6SU or morphine. 

Rats were placed in the chamber of a whole-body plethysmograph (PLY 3213, Buxco 

Europe Ltd., Winchester, UK). The flow transducers (TRD5700, Buxco Europe Ltd., 

Winchester, UK) were connected to the preamplifier module, which digitized the signals 

via an analog-to-digital converter (MAX2270 Buxco Europe Ltd., Winchester, UK). 

Ventilation parameters (frequency: f, tidal volume: TV, minute ventilation: MV, time of 

inspiration: Ti, peak inspiratory time: PIF, time of expiration: Te, peak expiratory flow: 

PEF and relaxation time: RT) were measured every 10 seconds during the 15-minute-

long acquisition times and averaged by the BioSystem XA Software for Windows (Buxco 

Research Systems). 

 

3.6.3. Determination of sedative effects of test compounds  

To assess the anesthesia potentiating effect of test compounds righting reflex method was 

applied in male Wistar rats (200-300 g). The sleeping time (righting reflex, when the 

animals turned back on all four legs) was determined. To strengthen our results the novel 

compound’s potentiating effect was investigated with two different anesthetics of 

different routes of administration (i.v. and inhalational) and different pharmacokinetic 

properties.  

Thiobutabarbital-induced sleeping time: Animals received i.v. saline or 

thiobutabarbital (153 µmol/kg), then were placed on the left side on a pillow of 30 C. 
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The sleeping time in minutes was documented. Anesthesia-potentiating effects of test 

drugs were studied by their s.c. administration. Thiobutabarbital was i.v. injected at the 

time of peak antinociceptive action of test compounds (60 min after s.c. 14-O-MeM6SU 

and 30 min after s.c. M6SU). 

Isoflurane-induced sleeping time: The sleeping time was induced by inhaled 3% 

isoflurane in oxygen for 2 min with a 2 liters/minute flow rate via nose cone using a 

vaporizer (Eickemeyer Isoflo Vaporiser; Eickemeyer Veterinary Equipment Inc). The 

sleeping time was determined as described above. The animals were treated s.c. with 14-

O-MeM6SU or morphine 60 or 30 min before inhaled anesthetic, respectively. Control 

groups were treated with saline. 

 

3.6.4. Induction of tolerance in mice 

Male NMRI mice (18–28 g; Toxicoop, Hungary) were used. Radiant heat tail flick test 

was used to assess antinociceptive effect of test compounds. The assay was carried out as 

described by Tulunay and Takemori [79] using an ITC Life Sciences equipment. Briefly, 

the light intensity was adjusted to set the control tail-flick latency between 1.3 and 2.8 

sec. Mice failed to respond within this range were excluded from the experiments. Cut 

off time was set to 6 s to avoid tissue damage. A baseline latency was measured before 

and 30, 60, 120, 180 min after s.c. drug or saline administration. A saline treated group 

was used for each experiment as control. Maximal possible effect (MPE) % was 

calculated for each mouse as follows: [Latency after treatment–Basal Latency]/[Cut off–

Basal Latency] × 100%. For each dose a separate group of animals (n = 5–12) was used.  

Mice were rendered tolerant to morphine hydrochloride (200 µmol/kg) or 14-O-

MeM6SU (12 µmol/kg) by twice daily (7 AM and 7 PM) s.c. injections for 3 days. Saline 

injections (10 ml/kg twice daily) were used in the control animals. The degree of 

tolerance was determined as the ratio of the ED50 value of the agonist in morphine or 14-

O-MeM6SU injected mice to that in saline injected mice. The experiment was done on 

the fourth day as described previously [89]. Tolerance inducing treatment dose of 14-O-

MeM6SU was calculated by using the following equation: [morphine dose] × [14-O-

MeM6SU naive ED50]/ [morphine naive ED50]. 

Dose response curves for each drug were determined on the fourth day, following three 

days of chronic s.c. saline or drug treatments. Dose response curves for morphine and 
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14-O-MeM6SU were constructed in morphine or 14-O-MeM6SU treated mice. Control 

ED50 values for morphine and 14-O-MeM6SU were calculated from dose response 

curves constructed in saline treated mice. At least three groups of 5–12 mice were used 

to establish dose-response curves and to estimate ED50 values. 

MPE% was calculated in MS Excel; for the further analysis Graph-Pad Prism 5.0 

software was used. ED50 values and confidence intervals were calculated by non-linear 

fit (normalized response – variable slope). Differences in ED50 values were considered 

significant when confidence intervals did not overlap. 

 

3.7. In vitro receptor binding assays 

Male Wistar vehicle treated or STZ treated (diabetic) rats (250-400 g) were used. 

Animals were decapitated and their brains and whole spinal cords were quickly removed 

and prepared for receptor binding assays as previously reported [90, 91]. 

 

3.7.1. Radioligand competition binding assay 

The experiments were carried out as described previously [92, 93]. Specific binding of 

[3H]DAMGO was performed by incubating 50-100 μg of membrane protein of lumbar 

dorsal horn with 0.1- 4 nM [3H]DAMGO in the presence or absence of 10 μM unlabelled 

naloxone to determine non-specific binding. Membranes were incubated for 1 hour at 22 

°C in assay buffer. The reactions were terminated by rapid filtration under vacuum 

through Whatman GF/B glass fibre filters, followed by four washes with cold buffer (50 

mM Tris–HCl, pH 7.4). Bound radioactivity was determined by liquid scintillation 

spectrophotometry (Perkin Elmer, Rodgau, Germany) at 60% counter efficiency after 

overnight extraction of the filters in 3 ml of scintillation fluid. Unbound radioligand was 

separated from the receptor bound radioligand by rapid filtration under vacuum through 

glass fiber filter. The radioactivity of the specifically bound radioligands was determined 

by liquid scintillation spectrophotometry. 

All experiments were performed in duplicate and carried out at least five times. Bmax and 

Kd values in saturation binding assays were determined by nonlinear regression analysis 

of concentration-effect curves using GraphPad Prism (GraphPad Software Inc., CA, 

USA).  
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3.7.2. Immunohistochemistry  

Rats were deeply anaesthetized with isoflurane and transcardially perfused with 100 ml 

of phosphate buffered saline (PBS) pH 7.4, then followed by 500 ml of 4% (w/v) 

paraformaldehyde in phosphate buffer pH 7.4. After perfusion, DRG and spinal cord were 

removed from STZ treated and control animals, postfixed in the same fixatives for 90 

min, and then cryo-protected overnight at 4°C in PBS containing 10% sucrose. DRGs (10 

m thick) were mounted onto gelatin coated slides. DRG mounted or spinal cord floating 

tissue sections were incubated with the following primary antibody rabbit polyclonal 

MOR antibody (1:1,000, Gramsch Laboratories, Schwabhausen, Germany). The tissue 

sections were washed with PBS prior to incubation with Alexa Fluor 594 donkey anti-

rabbit secondary antibody (Invitrogen, Germany). Finally, the tissues were washed in 

PBS, mounted on vectashield (Vector Laboratories, Burlingame, CA) and viewed under 

a Zeiss LSM 510 laser scanning microscope (Carl Zeiss, Göttingen, Germany). To 

demonstrate specificity of staining, the following controls were included as mentioned in 

detail elsewhere [94, 95]: 1) Preabsorption of the primary antibody against MOR was 

verified by preabsorption with 5 µg/ml of synthetic peptide antigen for MOR (Gramsch 

Laboratories, Germany), for 24 hours at 4oC; 2) Omission of either the primary antisera 

or the secondary antibodies. 

 

3.7.3. G-protein activity assay  

In [35S]GTPγS binding experiments the GDP→GTP exchange of the Gαi/o protein is 

measured by a radioactive, non-hydrolysable GTP analog, [35S]GTPγS. First the brain 

and spinal cord were homogenized, centrifuged in ice-cold 50 mM Tris-HCl (pH 7.4) 

buffer and incubated at 37 oC for 30 min in a shaking water-bath (for details see [96]). 

After incubation the centrifugation was repeated as described before and the final pellet 

was suspended in ice-cold TEM (Tris-HCl, EGTA, MgCl2) buffer and stored at –80 oC 

for further use. The nucleotide exchange is measured in the presence of a given ligand in 

increasing concentrations to measure ligand potency and the maximal efficacy. The 

experiments were carried out as described previously [97]. Agonist potency and 

maximum G-protein stimulation of reference and test compounds (see results section) 

were investigated in [35S]GTPγS binding assays. In the diabetes induced neuropathic pain 

model control and STZ treated rat whole brain, spinal cord and lumbar dorsal horn 
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membrane homogenates were examined for MOR activity. [35S]GTPγS was incubated 

together with the appropriate membrane homogenate together with increasing 

concentrations of unlabeled reference and test compounds, with excess GDP in a special 

buffer containing Tris, MgCl2, EGTA, NaCl, and dithiothreitol.  

Total binding was measured in the absence of the test compounds, while non-specific 

binding was determined in the presence of 10 µM unlabeled GTPγS. The bound and 

unbound [35S]GTPγS were separated by rapid filtration under vacuum (Brandel M24R 

Cell Harvester), and washed three times with 5 ml ice-cold 50 mM Tris-HCl through 

Whatmann GF/B glass fibers (GE Healthcare Life Sciences through Izinta Kft., Budapest, 

Hungary). [35S]GTPγS binding experiments were performed in triplicates and repeated at 

least three times. Bound radiochemical separation and radioactivity detection were the 

same as discussed in radioligand competition binding assays. 

 

3.8. Analysis of data 

All the analysis was performed with a professional statistical software: GraphPad Prism 

version 5.00 or 6.00 for Windows (GraphPad Software, San Diego, California, USA, 

www.graphpad.com). 

For the comparison of more than 2 groups one- or two-way ANOVA was applied with 

post hoc test based on the experimental setup (see Results section). Vehicle treated groups 

were used as control in order to decide if the applied treatment significantly influenced 

the parameters. 

All data are represented as mean ± SEM. The results were considered to be statistically 

significant when p < 0.05. 
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4. Results 

 

4.1. Acute inflammatory pain models 

4.1.1. Mouse writhing test 

4.1.1.1. Antinociceptive effects of 14-O-MeM6SU compared to M6SU  

Injection of 0.6% acetic acid solution into the peritoneal cavity of mice administered s.c. 

or i.c.v. saline resulted in an average of 43.9 ± 1.5 (n = 43) writhes during the 10 min 

observation period. As shown in Fig. 2., s.c. or i.c.v. administration (20 min before 

testing) of both agonists produced a dose-dependent antinociceptive action. The 

calculated ED50 values with 95% confidence intervals at 20 min are shown in Table 2. 

14-O-MeM6SU produced more potent inhibitory effect than M6SU on acetic acid-

induced writhing in mice both after s.c. and i.c.v. routes (Table 2).  

After s.c. administration, 14-O-MeM6SU was 23- fold more potent than M6SU, while 

after i.c.v. administration 14-O-MeM6SU was proved to be only 5-fold more active than 

M6SU in inhibition of writhing. The calculated large s.c./i.c.v. potency ratios for M6SU 

or 14-O-MeM6SU indicate limited CNS penetration (Table 2). 

 

Table 2. Antinociceptive potencies of 14-O-MeM6SU and M6SU against acetic acid 

induced nociception in mouse writhing test after 20 min of s.c. or i.c.v. administration. 

Compound ED50 (nmol/kg, s.c.) ED50 (pmol/mouse, i.c.v.) s.c./i.c.v.a 

M6SU 
1993 

(1282–3101) 

9 

(15-54) 

221444 

14-O-MeM6SU 
87 

(47–163) 

1.7 

(0.3-9.5) 

51177 

At least 4 animals per dose group and 3-4 doses were used for each ED50 

determinations. 

as.c./i.c.v. was calculated as the ratio of ED50 nmol/kg, s.c./ED50 pmol/mouse, i.c.v 
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Figure 2. Antinociceptive dose-response curves of s.c. (panel A) or i.c.v. (panel B) 

injected 14-O-MeM6SU and M6SU in mice writhing test.  

Points represent the mean ± S.E.M. (n= 4-5) 
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4.1.1.2. NAL-M antagonism on systemic 14-O-MeM6SU or M6SU antinociception 

To evaluate the opioid specificity and the site of action of 14-O-MeM6SU and M6SU in 

acetic acid-induced writhing in mice, the effects of the agonists were assessed after 

systemic co-administration with the quaternary opioid antagonist NAL-M (21.3 µmol/kg, 

s.c). Our results show that s.c. equipotent analgesic dose of 14-O-MeM6SU (136 

nmol/kg), and M6SU (3043 nmol/kg) significantly decreased the number of writhes at 20 

min after administration. Co-administration of NAL-M antagonized the antinociceptive 

effect of the test opioids, as presented in Fig. 3. NAL-M treatment alone failed to affect 

the number of writhes (Fig. 3). Higher dose of 14-O-MeM6SU (272 nmol/kg) showed 

also NAL-M reversible antinociception (Fig. 3). 

 

Figure 3. The antagonist action of co-administered NAL-M (21.3 µmol/kg) on the 

antinociceptive effect of 14-O-MeM6SU or M6SU after 20min s.c. administration in the 

writhing response induced by acetic acid (i.p.) in mice.  

Data are expressed as mean ± SEM  

*: significant difference versus other groups (**: p<0.01; ***: p<0.001)  

(one-way ANOVA, Newman-Keuls post hoc test). 
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4.1.2. Rat formalin test 

4.1.2.1. Antinociceptive effect of 14-O-MeM6SU compared to morphine 

Subcutaneous 14-O-MeM6SU (253, 506 and 1012 nmol/kg) or morphine (3884, 7769, 

15538 and 31075 nmol/kg) attenuated the formalin-induced pain in a dose-dependent 

manner (Fig. 4., panel A and B).  

When both phases are considered, 14-O-MeM6SU in doses 506 and 1012 nmol/kg 

produced antinociception (Fig. 4., panel A), whereas 253 nmol/kg was effective only in 

the second phase. On the other hand, s.c. morphine caused antinociception in all tested 

doses in phase I and apart from the lowest dose in phase II (Fig. 4., panel B). Based on 

equianalgesic doses after systemic administration 14-O-MeM6SU was approx. 15 and 31 

more potent than morphine in phase I and II, respectively. 

The locally (i.pl.) administered (into the ipsilateral paw) 14-O-MeM6SU at doses of 

(25.3, 50.6 and 101.2 nmol/rat) or morphine (971 and 1942 nmol/rat) were also tested. 

The lowest dose that significantly reduced the pain in phase I was 25.3 nmol/animal for 

14-O-MeM6SU and 1942 nmol/animal for morphine (Fig. 5.). When both phases 

considered, 14-O-MeM6SU alleviated the pain reactions in a dose of 50.6 nmol/rat and 

morphine only at the dose of 1942 nmol/rat (Fig. 5.). Based on equianalgesic doses after 

local administration 14-O-MeM6SU was approx. 77 and 38 more potent than morphine 

in phase I and II, respectively. 
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Figure 4. The antinociceptive effect of 14-O-MeM6SU and morphine after s.c. 

administration in rat formalin test, in phase I (0-10 min) and phase II (11-60 min). Each 

column represents the cumulative data of the given phase (number of nociceptive 

reactions). Drugs were administered in a 2.5ml/kg volume.  

Each value represents the mean ± SEM.  

*: significant difference vs. vehicle treated group in Phase I (p<0.05) 

+: significant difference vs. vehicle treated group in Phase II (p<0.05) 

(one-way ANOVA followed by Fisher’s LSD post hoc test, n= 4-11) 
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Figure 5. The antinociceptive effect of 14-O-MeM6SU and morphine after local (i.pl.) 

administration in rat formalin test applying 50µl 2.5% formalin into the right hind paw, 

in phase I (0-10 min) and phase II (11-60 min). Each column represents the cumulative 

data of the given phase (number of nociceptive reactions). Drugs were administered in 

a 100 µl/animal volume.   

Each value represents the mean ± SEM. (n=4-11) 

*: significant difference vs. vehicle treated group in Phase I (p<0.05) 

+: significant difference vs. vehicle treated group in Phase II (p<0.05) 

(one-way ANOVA followed by Fisher’s LSD post hoc test, n= 4-11) 
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4.1.2.2. NAL-M antagonism on systemic 14-O-MeM6SU or morphine  

              antinociception 

Co-administered opioid antagonist NAL-M (10.6 µmol/kg, s.c.) abolished the 

antinociceptive effect of s.c. 506 nmol/kg 14-O-MeM6SU in both phases (Fig. 6., panel 

A). On the other hand, NAL-M failed to antagonize the effect of 1012 nmol/kg 14-O-

MeM6SU in phase I, yet partially affected the antinociceptive effect in phase II (Fig. 4, 

panel A).  

In case of morphine, NAL-M antagonized its antinociceptive effect of (15 538 nmol/kg, 

s.c.) morphine in phase I (Fig. 6., panel B). In phase II NAL-M only partially antagonized 

the antinociceptive action of the same dose of morphine.  

 

4.1.2.3. The antinociceptive effects of 14-O-MeM6SU or morphine after 

              administration into the contralateral paw 

Intraplantar (i.pl.) administration of 50.6 nmol/rat 14-O-MeM6SU into contralateral paw 

failed to affect formalin-induced pain in ipsilateral paw in either phases (Fig. 7., panel 

A), though it was effective when administered into ipsilateral (formalin treated) paw (Fig. 

5.). At a higher dose (101.2 nmol/rat) 14-O-MeM6SU showed antinociception only in 

phase I. However, 1942 nmol/animal morphine injected into the contralateral paw (i.pl.) 

produced antinociceptive effect on both phases (Fig. 7., panel B). This effect is in 

accordance with that obtained following s.c. 7769 nmol/kg (Fig. 4., panel B). 

The antagonist effect of NAL-M (section 4.1.2.2.) and these data indicate the presence of 

peripheral antinociceptive component of both compounds, but only 14-O-MeM6SU 

showed action that was of completely peripheral origin at the dose of 506 nmol/kg. 
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Figure 6. The antagonist effect of s.c. co-administered NAL-M (10.6 µmol/kg) on the 

antinociceptive effect of s.c. 14-O-MeM6SU (panel A) and morphine (panel B) in rat 

formalin test. Each column represents the cumulative data of the given phase (number 

of nociceptive reactions). Drugs were administered in a 2.5 ml/kg volume.  

Each value represents the mean ± SEM.  

*: significant difference vs. vehicle treated group in Phase I (p<0.05)  

+: significant difference vs. vehicle treated group in Phase II (p<0.05) 

#: significant difference between the signed groups (p<0.05) 

(one-way ANOVA followed by Fisher’s LSD post hoc test, n= 5-11) 
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Figure 7. The antinociceptive effect of 14-O-MeM6SU (panel A) and morphine  

(panel B) after administration into the contralateral paw. Drugs were administered in a 

100 µl/animal volume. Each column represents the cumulative data of the given phase 

(number of nociceptive reactions). Each value represents the mean ± SEM.  

*: significant difference vs. vehicle treated group in Phase I (p<0.05) 

+: significant difference vs. vehicle treated group in Phase II (p<0.05) 

(one-way ANOVA followed by Fisher’s LSD hoc test in the case of 14-O-MeM6SU 

and unpaired t-test with two-tailed p value in the case of morphine; n= 4-5) 
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4.2. Subchronic inflammatory pain model: CFA induced inflammation in rats 

4.2.1. Antinociceptive effects of 14-O-MeM6SU and M6SU after systemic   

          administration in CFA model in Randall-Selitto test 

CFA treatment reduced the PPT to approximately 65  2 % (n=70) and 70  2 % (n=55) 

of baseline response on the 4th and 7th days after the treatment, respectively. The s.c. 

doses of 14-O-MeM6SU (32 - 1012 nmol/kg) and M6SU (137 – 8758 nmol/kg) were 

tested for their analgesic actions in CFA-induced inflammatory pain (Fig. 8). M6SU 

produced peak analgesic effect at 30 min, while 14-O-MeM6SU did so at 60 min (Table 

3, Fig. 8.). The antinociceptive action of the test compounds was significantly more 

marked in inflamed paws compared to non-inflamed paws in doses presented in Fig. 9. 

The analgesic effects of s.c. 14-O-MeM6SU and M6SU did not differ between inflamed 

and non-inflamed paws at doses over 506 nmol/kg and 4379 nmol/kg, respectively. The 

antinociceptive actions of s.c. 14-O-MeM6SU (126, 253 and 506 nmol/kg) and M6SU 

(547, 1095 and 2189 nmol/kg) were further tested for their peripheral analgesic actions 

in inflamed paws in separate experiments (see chapter 4.2.2.).  

 

Table. 3. Antinociceptive potencies of 14-O-MeM6SU and M6SU in inflamed              

and non-inflamed paws in the Randall-Selitto test in rats after s.c. administration. 

 

 

Compound 

ED50 (95% confidence limits) 

30 min 60 min 120 min 

L R L R L R 

14-O-

MeM6SU 

305 
(155-601) 

86 
(33-220) 

388 
(201-751) 

45
a 

(22-92) 

792 
(388-1620) 

110 
(47-258) 

 

M6SU 

2313 
(1226-

4364) 

292
a 

(114-749) 

2931  

(1434-

5998) 

520 
(222-1216) 

8920 
(1100-

72318) 

1651 
(583-4673) 

ED50 (nmol/kg, s.c.); aPeak of effect; L: left paw (non-inflamed paw); R: right paw 

(inflamed paw) 
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Figure 8. 

Time-course of the 

antinociceptive effect of s.c. 

administered 14-O-

MeM6SU and M6SU in 

non-inflamed and inflamed 

rat hind paws. Drugs were 

delivered in a volume of 

5ml/kg body weight.  

Each point represents the 

mean ± SEM (n= at least 4). 
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Figure 9. The antinociceptive effects of s.c. administered 14-O-MeM6SU and M6SU. 

Drugs were delivered in a volume of 5 ml/kg body weight. Data were obtained 30 min 

after injection of M6SU and 60 min after injection of 14-O-MeM6SU. Each value 

represents the mean ± SEM.   

#: significant differences between the lowest and highest doses. (p<0.05) 

(Two-way ANOVA with Bonferroni’s post hoc test, n= 5-12) 
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4.2.2. Antagonist effects of s.c. and i.pl. NAL-M on the antinociceptive actions of  

          s.c. 14-O-MeM6SU or M6SU 

The analgesic effects produced by s.c. 126 nmol/kg 14-O-MeM6SU and 547 nmol/kg 

M6SU were antagonized both by s.c (21.3 µmol/kg) or i.pl. (0.43 µmol/rat) administration 

of NAL-M. No differences in PPTs were observed between saline and NAL-M injected 

animals (Fig. 10.). In an other experiment set we also tested the antagonist effect of s.c. 

NAL-M (21.3 µmol/kg) on the antinociceptive effects produced by s.c. 253 or 507 

nmol/kg 14-O-MeM6SU and 1095 or 2189 nmol/kg M6SU (Fig. 11.). In these 

experiments, NAL-M partially reversed the antinociceptive effect of 14-O-MeM6SU and 

totally the antinociceptive effect of 1095 nmol/kg M6SU. However, NAL-M failed to 

reverse the antinociceptive effect of 2189 nmol/kg M6SU (Fig. 11.).  

These results indicate the contribution of CNS to the total antinociception of systemically 

administered test compounds at higher doses. 
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Figure 10. The antagonist effect of (21.3 µmol/kg, s.c.) (panel A, B) or (0.43 µmol/rat, 

i.pl.) (panel C, D) naloxone methiodide (NAL-M) against s.c. antinociceptive effects of 

14-O-MeM6SU (126 nmol/kg) and M6SU (547 nmol/kg) in rat inflamed paws. Drugs 

were delivered in a volume of 5 ml/kg body weight and 100 µl/rat for s.c. and i.pl. 

administration, respectively. Each data point was obtained 30 min after injection of 

M6SU, saline or NAL-M and 60 min after injection of 14-O-MeM6SU, saline or  

NAL-M.  

Each value represents the mean ± SEM 

*: significant difference versus the effect of agonist in inflamed paw  

(*: p<0.05; ***: p< 0.001) 

(one-way ANOVA, Newman-Keuls post hoc test, n= 6-35)  
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Figure 11. The antagonist effect of (21.3 µmol/kg, s.c.) naloxone methiodide (NAL-M) 

against s.c. antinociceptive effects of 14-O-MeM6SU (253 and 506 nmol/kg) and M6SU 

(1095 and 2189 nmol/kg) in rat inflamed paws. Drugs were delivered in a volume of 5 

ml/kg body weight. Each data point was obtained 30 min after injection of M6SU or 

saline and 60 min after injection of 14-O-MeM6SU or saline.  

Each value represents the mean ± SEM. 

*: significant difference versus saline in inflamed paw (**: p<0.01; ***: p< 0.001) 

#: significant difference versus 14-O-MeM6SU + NAL-M (###: p< 0.001) 

+: significant difference versus M6SU (1095 nmol) + NAL-M (++: p<0.01) 

(one-way ANOVA, Newman-Keuls post hoc test, n= 4-9) 
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4.3. Neuropathic pain model: diabetic polineuropathy 

4.3.1. The development of diabetic symptoms and neuropathic pain (allodynia) in  

           STZ treated rats 

Significant increase in blood glucose concentration of STZ-treated rats compared to 

vehicle treated animals was achieved 72 h following intraperitoneal STZ injections. This 

hyperglycaemia was maintained during the entire experimental period indicating the 

development of diabetes (Fig. 12, panel A).  

Water intake of STZ treated rats was significantly increased in comparison with the 

vehicle treated group 48 h following treatment (Fig. 12., panel B). The food consumption 

of rats with hyperglycaemia reached a significant increase 5 days after treatment and this 

increase was kept during the experimental period (data not shown). Significant decrease 

in body weights of diabetic rats compared to age matched rats was also observed. 

Therefore, weight matched non-diabetic rats were used for a comparison when the 

antinociceptive effects of test compounds were measured.  

No differences were found between the rates of gastric emptying in 12-weeks diabetic 

(80 ± 2%, n=23) and non-diabetic weight matched rats (82 ± 2%, n=20), whereas 0.1 

mg/kg clonidine, an alpha2-adrenoceptor agonist used as a positive control, markedly 

delayed the emptying in weight-matched control animals (55 ± 2%, n=7, p<0.01 vs. 

saline-treated rats). 

Figure 12 panel C depicts significant decreases in paw withdrawal thresholds in the DPA 

test 3 weeks following STZ injection indicating the development of mechanical allodynia, 

which is a key symptom in the diagnosis of neuropathic pain. At the 9th or 12th week, the 

nociceptive thresholds of diabetic animals were significantly lower compared to the 

baseline measured prior to STZ-treatment, indicating the peak of allodynia. No significant 

difference in developed allodynia was observed between the 9th and 12th week following 

STZ-treatment. Therefore, in our subsequent studies the analgesic action of test 

compounds, as well as MOR functioning, were analysed in the 9th and 12th weeks after 

induction of diabetes.  
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Figure 12. The changes in blood glucose levels in mmol/ml (panel A, n=10-81), water 

consumption in grams (panel B, n=11-32) and hind paw withdrawal thresholds (panel 

C, n=11-67) in grams prior to and after STZ- or vehicle treatments.   

Each value represents the mean ± SEM. w: week 

*: significant difference between the signed groups (p<0.05) 

#: significant difference between the signed groups (p<0.05) 

+: significant difference vs. all other groups (p<0.05) 

&: significant difference vs. all other groups except the 12th or 9th week diabetic animals     

(in the case of the 9th and 12th week, respectively; p<0.05) 

(one way ANOVA followed by Newman-Keuls post hoc test)  
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4.3.2. The impairment of the antinociceptive effect of systemic 14-O-MeM6SU and  

          morphine in advanced diabetes in rats  

Prior to detailed analysis of the antinociceptive and anti-allodynic effects, the peak 

antinociceptive effects of 14-O-MeM6SU and morphine were established (60 min for 

14-O-MeM6SU and 30 min for morphine). Thus, these times of peak effects were 

chosen for further analysis in the entire pain study by DPA.  

The calculated ED30 values of 14-O-MeM6SU were 434 nmol/kg and 335 nmol/kg for 

diabetic and non-diabetic animals, respectively. In the case of morphine the ED30 values 

were 20692 nmol/kg and 6589 nmol/kg for diabetic and non-diabetic animals, 

respectively. Based on the calculated ED30 values (ED30diabetic/ED30non-diabetic) there was 

no significant change in the antinociceptive effect of 14-O-MeM6SU in diabetic 

animals. On the other hand, morphine was 7 times less effective in diabetic, than in non-

diabetic ones. In addition, these data demonstrate, that 14-O-MeM6SU displayed a 48 

times higher potency than morphine in diabetic conditions based on the compared ED30 

values (Fig. 13). 

 

 

Figure 13. Dose-response curves of 14-O-MeM6SU and morphine in diabetic and non-

diabetic animals obtained with DPA. Data is represented as mean ± SEM (n= 5-10).  
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4.3.3. The antiallodynic effects of systemic 14-O-MeM6SU and morphine in 

          diabetic rats 

The following data were obtained on the 9th and 12th weeks after STZ treatment that is, 6 

and 9 weeks after the significant appearance of allodynia, a major sign of painful diabetic 

neuropathy. 

Subcutaneous 14-O-MeM6SU (253, 506 and 1012 nmol/kg) and morphine (10000, 20000 

and 40000 nmol/kg) were tested for their antiallodynic actions in diabetic rats with 

allodynia (Fig. 14.). 14-O-MeM6SU in all tested doses significantly ameliorated the 

allodynia (Fig. 14., panel A), whereas morphine only at the highest dose (40000 nmol/kg) 

attenuated it significantly (Fig. 14., panel B).  

When we compared the effects of 14-O-MeM6SU and morphine doses in diabetic and 

non-diabetic rats, morphine in lower doses (from 1250 nmol/kg) induced significant 

antinociceptive actions in weight match rats. 14-O-MeM6SU at the 253 nmol/kg dose, 

which already produced antiallodynic effects in diabetic rats, failed to show any 

significant antinociceptive action in weight match animals. However, at higher doses (506 

nmol/kg) it produced antinociception in weight match rats. This means that 14-O-

MeM6SU, but not morphine did produce antiallodynic effects in a dose devoid of 

antinociception in naïve rats. This effect might be attributed to the decrease in number of 

opioid receptors, which in turn affects the action of morphine but not that of 14-O-

MeM6SU.   

We analysed the lowest antiallodynic dose of 14-O-MeM6SU and morphine (253 and 

40000 nmol/kg, respectively) at 12th weeks advanced diabetic rats, also. Both compounds 

produced antiallodynic effects in accordance with 9th week data at the same doses (data 

not shown). 
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Figure 14. The systemic analgesic effects of 14-O-MeM6SU (panel A, n=5-29) and 

morphine (panel B, n=5-34) in STZ treated diabetic rats with neuropathy on DPA test 

following systemic (s.c.) administration at 9th week. Data were obtained 60 min after 

the injection of 14-O-MeM6SU and 30 min in the case of morphine injection (time of 

peak effect). Drugs were administered in a 2.5ml/kg volume.  

Each value represents the mean in grams ± SEM. 

*: significant difference vs. diabetic baseline or saline treated group (p<0.05)  

#: significant difference vs. weight match control group (p<0.05) 

(one way ANOVA followed by Newman-Keuls post hoc test)  
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4.3.4. The antagonist effect of co-administered NAL-M on the systemic analgesic  

           effect of 14-O-MeM6SU or morphine in diabetic rats 

The antagonist action of NAL-M (10.6 µmol/kg, s.c.) was tested against s.c. 14-O-

MeM6SU and morphine doses producing antiallodynic effect. In these experiments NAL-

M failed to alter the antiallodynic action of test compounds (Fig. 15), indicating the 

contribution of the central nervous system. NAL-M alone had no effect (n= 5, data not 

shown).  

 

Figure 15. The antagonist effect of s.c. co-administered NAL-M (10.6 µmol/kg) on the 

analgesic effect of s.c. 14-O-MeM6SU (panel A, n=5-20) and morphine (panel B, n= 5-

20) in STZ treated neuropathic animals in doses that reversed the allodynia and 

elevated PPT on diabetic and weight match animals. Data were obtained 60 min after 

14-O-MeM6SU and 30 min after morphine injection. Drugs were administered in a 

2.5ml/kg volume. NAL-M failed to antagonize the effect of the compounds.  

Each value represents the mean in grams ± SEM. 

*: significant difference vs. saline treated diabetic group (p<0.05) 

#: significant difference vs. weight match control group (p<0.05) 

(one way ANOVA followed by Newman-Keuls post hoc test) 
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4.4. Side effect profiles of test products 

4.4.1. Inhibitory effect of systemic 14-O-MeM6SU, M6SU and morphine on  

          gastrointestinal transit in mice 

S.c. administered 14-O-MeM6SU, M6SU and morphine in dose-dependent manner 

inhibited the gastrointestinal transit of charcoal. The calculated ID50 (nmol/kg) and 

confidence  intervals were 250 (205-305), 325 (70-1517) and 2228 (666-7455) for 14-

O-MeM6SU, M6SU and morphine, respectively. These results indicate that the test 

compounds inhibit the gastrointestinal transit in antinociceptive doses. 

 

4.4.2. Respiratory effects of 14-O-MeM6SU and M6SU compared to morphine in  

           awake unrestrained rats 

The effects of 14-O-MeM6SU (253 nmol/kg), M6SU (1095 nmol/kg) and morphine 

(7776 nmol/kg) on rat pulmonary parameters were analyzed. None of the respiratory 

parameters determined by unrestrained WBP (f, MV, TV, Ti, Te, PIF, PEF, RV) showed 

significant differences between the saline-treated control or drug-treated groups 30 and 

60 minutes following their s.c. injection. None of the drugs caused any sedative effect, 

the animals were at rest by the end of the measurements, but when the WBP chambers 

were opened they became vivid. 

 

4.4.3. Sedative effects of test compounds 

The effect of systemic 14-O-MeM6SU and M6SU on thiobutabarbital-induced 

sleeping: Thiobutabarbital (153 µmol/kg, i.v.) produced a sleeping time of 10 ± 3, 10 ± 

5 and 8 ± 4 min in the presence of s.c. saline, 14-O-MeM6SU (126 nmol/ kg) and M6SU 

(547 nmol/ kg), respectively (Fig. 16.). At higher agonist doses the sleeping time was 

longer than that of saline (Fig. 16). 

The effect of systemic 14-O-MeM6SU and morphine on isoflurane induced sleeping: 

The impact of 14-O-MeM6SU and morphine on rat sleeping time initiated by inhaled 

isoflurane was investigated. Subcutaneous 506 nmol/kg but not 1012 nmol/kg of 14-O-

MeM6SU failed to affect the sleeping time in rats evoked by inhaled isoflurane (Fig. 17.). 

Morphine significantly prolonged the sleeping time in doses of 7769 nmol/kg and 15538 

nmol/kg (Fig. 17.). Longer sleeping time evoked by test compounds compared to saline 

indicates the CNS effects (sedation). 
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Figure 16. The effect of s.c. 14-O-MeM6SU and M6SU on thiobutabarbital (153 

μmol/kg, i.v.) induced sleeping time 

Each value is represented as mean ± SEM, 

*: significant difference versus saline (p<0.05) 

(one-way ANOVA followed by Fisher’s LSD post hoc test, n=5-10) 
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Figure 17. Sleeping time of animals anaesthetized with inhaled isoflurane. Data were 

obtained 60 min after the injection of 14-O-MeM6SU and 30 min in the case of 

morphine injection (times of peak effect). Drugs were administered in a 2.5 ml/kg 

volume.  

Each value represents the mean ± SEM. 

*: significant difference vs. saline treated control group (p<0.05) 

+: significant difference vs. saline treated control group (p<0.05) 

(one way ANOVA followed by Fisher’s LSD post hoc test, n= 4-10) 
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4.4.4. Analgesic tolerance of 14-O-MeM6SU compared to morphine in mouse tail- 

          flick test 

The dose-effect relationships for s.c. administered 14-O-MeM6SU and morphine were 

determined in the mouse tail-flick test in the dose range 0.25–2 µmol/kg and 2.5–20 

µmol/kg in 3 days saline treated mice, respectively. As shown in Fig. 18. and Table 4. 

s.c. administered 14-O-MeM6SU achieved peak analgesic effect at 60 min while 

morphine at 30 min. The calculated ED50 values reveal that 14-O-MeM6SU is a 17-fold 

more potent analgesic agent than morphine in mouse tail-flick test. 

 

Table 4. Antinociceptive potencies of 14-O-MeM6SU and morphine in mouse tail-flick 

test after 30 or 60 min of s.c. administration in saline, morphine or 14-O-MeM6SU 

treated mice. 

 

Compound 

Time 

(min) 

ED50 (µmol/kg, s.c.) 

Saline 

treated 

Morphine 

treated 
Shift 

14-O-

MeM6SU 

treated 

Shift 

 

Morphine 30 

8.01  

(6.54-

9.82) 

27.34 

(20.25–

36.91) 

3.41 46.95  

(33.24–66.30) 

5.86 

 

 

14-O-

MeM6SU 

30 

0.52  

(0.37-

0.74) 

0.83 

(0.67–

1.04) 

1.59* 1.46  

(1.15–1.84) 

2.78 

60 

0.47  

(0.35-

0.64) 

0.95 

(0.74–

1.24) 

2.02 1.58  

(1.29–1.93) 

3.34 

Shift: ED50; treated/ED50; control (saline) 

*: not significant compared to saline (no overlap in confidence intervals) 

 

3 days treatment of mice with 200 µmol/kg s.c. morphine resulted in a 3.41-fold increase 

of the morphine ED50 value after systemic administration. The calculated ED50 value for 

morphine in saline, morphine and 14-O-MeM6SU treated mice are shown in Fig. 18 and 

Table 4. 3 days treatment with morphine resulted in a 3.41− and a 2.02-fold decrease of 

the antinociceptive effect of morphine and 14-O-MeM6SU, respectively (Table 4.). 

Treatment for 3 days with 12 µmol/kg, s.c. 14-O-MeM6SU resulted in a 5.86− and 3.34-

fold decrease in the antinociceptive effect of morphine and 14-O-MeM6SU, respectively. 
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The calculated ED50 values and the rightward shifts of the dose response curves are shown 

in Fig. 18. and Table 4. 

 

 

Figure 18.  Dose–response curves of morphine at 30 min (A) and 14-O-MeM6SU at 60 

min (B) after treatment with saline, 200 µmol/kg morphine or 12 µmol/kg 14-O-

MeM6SU twice daily for three days. Each point represents the mean ± S.E.M. (n=5-12) 

 

4.5. In vitro receptor binding assays 

4.5.1. MOR immunoreactivity and binding sites in the spinal cord and DRG of  

          diabetic and non-diabetic rats 

Constant hyperglycemia resulted in apparent decrease in the number of MOR positive 

DRG neurons in rats developed allodynia (Fig. 19.). In parallel, there is apparent 

reduction in the MOR immunoreactivity within superficial layer of dorsal horn in spinal 

cord of diabetic rats (Fig. 19.).  

Indeed, the radioligand binding assay demonstrated that the maximal of [3H]DAMGO by 

membrane spanning MOR (Bmax) was significantly decreased in the dorsal horn of 

diabetic rats (13.11±1.85 fmol/mg) compared to controls (23.55±4.36 fmol/mg) (P < 

0.001; Fig. 20.). The dissociation constant (Kd) was 0.49 ± 0.18 for diabetic and 0.29 ± 

0.17 for control rats. These data indicate no significant difference in the affinity of 

DAMGO to MOR between diabetic and control rats.. 
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Figure 19. Immunohistological assay shows reduction in MOR number in DRG and 

spinal tissues of STZ treated diabetic rats in comparison with non-diabetic animals.  

(n= 5) 

 

Figure 20. [3H]DAMGO binding in membrane tissues from dorsal spinal cord of 

diabetic and non-diabetic rats. Data are shown as mean ± SEM.  

*: significant difference vs. non-diabetic control group (*: p<0.05; **: p< 0.01) 

(Two-way ANOVA followed by Fisher’s LSD post hoc test, n= 3-5) 
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4.5.2. The G-protein coupling activity in presence of 14-O-MeM6SU, or morphine  

           in spinal homogenates prepared from diabetic or control rats  

MOR specific G protein coupling was measured by MOR agonist-stimulated [35S]GTPS 

binding assay. 14-O-MeM6SU produced similar G-protein coupling in spinal cord tissues 

prepared from STZ or vehicle treated rats after 9 or 12 weeks of treatment (Fig. 21.). On 

the other hand, morphine showed significantly reduced efficacy (Emax) of G-protein 

coupling in spinal cord tissues of diabetic rats. The calculated Emax for test compounds 

are presented in Table 5 and 6. The reduction in [35S]GTPS specific binding of morphine 

was also observed at certain concentration points of the concentration-response curves 

(Fig. 21.). In general, 14-O-MeM6SU showed significantly higher efficacy than morphine 

in the spinal cord samples (Table 5., 6.). Taken together, no difference exists in 14-O-

MeM6SU-stimulated coupling but there is significant difference in morphine-stimulated 

coupling between diabetic and control rats. 

 

4.5.3. The G-protein coupling activity in presence of 14-O-MeM6SU, or morphine  

           in brain homogenates prepared from diabetic or control rats 

MOR G-protein coupling in the presence of 14-O-MeM6SU or morphine was also 

determined in brain membrane homogenates from STZ or vehicle treated rats. Neither 

compounds showed significant differences in maximal efficacy (Emax) and ligand potency 

(EC50) 9 or 12 weeks after STZ treatment (Table 5. and 6., Fig. 22.). Additionally, in the 

control brain samples, 14-O-MeM6SU showed significantly higher maximum efficacy 

compared to morphine. In the STZ treated brain samples this significance disappeared, 

though the tendency remained (Table 5., and 6., Fig. 22.). 
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Figure 21. Agonist activity of 14-O-MeMSU (A, C) compared to morphine (B, D) in 

vehicle and STZ treated rat whole spinal cord membrane homogenates in [35S]GTPS 

binding assay. Figure represent the specific binding of [35S]GTPS in the presence of 

increasing concentrations (0.1 nM-10 µM) of the indicated ligands. Points represent 

means  S.E.M. for at least three experiments performed in triplicate. “Basal” on the x-

axis indicates the basal activity of the monitored G-protein, which is measured in the 

absence of the compounds and also represents the total specific binding of [35S]GTPS. 

The level of basal activity was defined as 100% (indicated by dotted line). 

*: significant reduction of specific [35S]GTPS binding in STZ treated samples 

compared to control within the given concentration point with both compounds (Two-

way ANOVA, uncorrected Fisher’s LSD; *: p<0.05; **: p<0.01).  

The calculated Emax and EC50 ± S.E.M. values are presented in Table 5. and 6. 
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Figure 22. Agonist activity of 14-O-MeMSU (A, C) compared to morphine (B, D) in 

vehicle and STZ treated rat whole brain membrane homogenates in [35S]GTPS binding 

assay 9 and 12 weeks after STZ treatment. Figure represents the specific binding of 

[35S]GTPS in the presence of increasing concentrations (0.1 nM-10 µM) of the 

indicated ligands. Points represent means  S.E.M. for at least three experiments 

performed in triplicate. “Basal” on the x-axis indicates the basal activity of the 

monitored G-protein, which is measured in the absence of the compounds and also 

represents the total specific binding of [35S]GTPS. The level of basal activity was 

defined as 100% (indicated by dotted line).  

The calculated Emax and EC50 ± S.E.M. values are presented in Table 5. and 6. 
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Table 5. Maximum G-protein efficacy (Emax  S.E.M.) and potency (EC50  S.E.M.) of 

14-O-MeM6SU, compared to morphine in vehicle and STZ treated rat brain and spinal 

cord performed in [35S]GTPS binding assay. Samples were taken 9 weeks after 

treatment. Values were calculated according to Figure 21 and 22. 

Brain 

Morphine 14-O-MeM6SU 

Control Diabetes Control Diabetes 

Emax  S.E.M. (%) 128.8  2.65 

(n=7) 

133.5  4.85 

(n=6) 

145.7  2.4### 

(n=6) 

140.7  2.1 

(n=6) 

EC50  S.E.M. (nM) N.D.1 N.D.1 29.51 ± 11.44 

(n=6) 

33.19 ± 19.09 

(n=6) 

Spinal cord  

Emax  S.E.M. (%) 124.4  2.09 

(n=7) 

115.4  2.97* 

(n=7) 

141.4  2### 

(n=6) 

137.3  2.47+++ 

(n=5) 

EC50  S.E.M. (nM) N.D.1 N.D.1 35.08 ± 11.75 

(n=6) 

43.35 ± 19.94 

(n=5) 

 

*: significant difference in STZ treated samples compared to control. (*: p<0.05) 

#: significant difference between morphine and 14-O-MeM6SU within control brain or 

spinal cord samples. (###: p<0.001) 

+: significant difference between morphine and 14-O-MeM6SU within diabetic brain or 

spinal cord samples. (+++: p<0.001) 

1: not determined, since the EC50 values could not be interpreted 

Unpaired t test, two-tailed P value. 

  

DOI:10.14753/SE.2019.2219



60 

 

 

 

 

 

Table 6. Maximum G-protein efficacy (Emax  S.E.M.) and potency (EC50  S.E.M.) of 

14-O-MeM6SU, compared to morphine in vehicle and STZ treated rat brain and spinal 

cord performed in [35S]GTPS binding assay. Samples were taken 12 weeks after 

treatment. Values were calculated according to Figure 21 and 22. 

Brain 

Morphine 14-O-MeM6SU 

Control Diabetes Control Diabetes 

Emax  S.E.M. (%) 135.2  2.65 

(n=4) 

135.6  3.08 

(n=4) 

148.5  3.59# 

(n=4) 

146.1  3.22 

(n=5) 

EC50  S.E.M. (nM) 520  222.26 

(n=4) 

785.24  321.72 

(n=4) 

34.99  17.74 

(n=4) 

27.86  13.87 

(n=5) 

Spinal cord     

Emax  S.E.M. (%) 126.5  2.12 

(n=4) 

118.3  1.41** 

(n=6) 

135.5  1.88# 

(n=6) 

133.8  2.4+++ 

(n=5) 

EC50  S.E.M. (nM) N.D.1 N.D.1 14.96 ± 5.66 

(n=6) 

43.45 ± 21.17 

(n=5) 

*: indicates the significant difference in STZ treated samples compared to control. (**: P<0.01) 

#: indicates the significant difference between morphine and 14-O-MeM6SU within control 

brain or spinal cord samples (#: P < 0.05) 

+: indicates the significant difference between morphine and 14-O-MeM6SU within diabetic 

brain or spinal cord samples. (+++: P < 0.001) 

1: not determined, since the EC50 values could not be interpreted 

Unpaired t test, two-tailed P value. 

 

  

DOI:10.14753/SE.2019.2219



61 

 

5. Discussion 

 

5.1. Inflammatory pain alleviation with high efficacy opioid of limited CNS  

       penetration 

The present work could clearly demonstrate for the first time that 14-O-MeM6SU, a novel 

compound of high efficacy and limited CNS penetration, produced strong antinociception 

in different models of inflammatory pain. Also, in certain doses produced antinociception 

that stemmed from the activation of peripheral opioid receptors. We can proclaim this, 

since the antagonist effect of NAL-M on the antinociception of test compounds clearly 

reveals that. Three different inflammatory pain models support the outcome of the 

mentioned character: mouse acetic acid induced writhing test, rat formalin test and CFA-

evoked hyperalgesia.  

In mouse writhing test the antinociceptive effect of 14-O-MeM6SU was investigated in 

comparison with M6SU. M6SU similarly to 14-O-MeM6SU is a zwitterionic compound 

with limited CNS penetration, although its efficacy is lower than the novel compound’s 

[22, 70]. The acetic acid-evoked writhing assay is one of the most well-established and 

widely used experimental models of visceral pain to assess the pain relieving actions of 

either NSAIDs or opioids [71, 72]. Of note, the effects of 14-O-MeM6SU and M6SU 

have never been analyzed before in this model. After systemic (s.c.) or central (i.c.v.) 

administration 14-O-MeM6SU showed more potent antinociceptive action than M6SU in 

accordance with data previously published by our group [70]. 14-O-MeM6SU proved to 

be 23 times more potent than M6SU after systemic administration and only 5 times higher 

than M6SU after central dosing. However, the s.c./i.c.v. ratio was higher for M6SU than 

for 14-O-MeM6SU (Table 2.). Regarding the antinociceptive effect, the results are in 

agreement with data reported previously by our group in thermal pain model [70]. In 

previous studies lower s.c./i.c.v. ratio for morphine (4215) and larger for M6G (58400) 

that is similar to that of 14-O-MeM6SU was shown [44, 98]. The systemic/central ratio 

of the novel compound is high in comparison with other opioids like morphine or fentanyl 

[43, 70]. Under the present experimental conditions, 14-O-MeM6SU has shown limited 

CNS penetration, similarly to M6SU (high s.c./i.c.v. ratio indicates limited CNS 

penetration). Brown and his coworkers reported on the weak antinociceptive action of 

M6SU and related it to its limited CNS penetration [99]. Indeed, 14-O-MeM6SU is more 
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advantageous than M6SU since it has higher efficacy and affinity reflecting its stronger 

antinociceptive action as previously described [70] and showed in the present thesis in 

different animal models of pain diseases. 

Applying systemic opioid antagonists of limited CNS penetration is a widely used method 

to investigate the peripheral antinociceptive component of opioids [100–102]. 14-O-

MeM6SU (136 nmol/kg) or M6SU (3043 nmol/kg) showed peripheral antinociceptive 

effects after s.c. administration, since the co-administered quaternary opioid antagonist, 

NAL-M significantly reversed the effects of the test compounds (Fig. 3.). NAL-M in the 

applied dose does not penetrate the blood brain barrier after s.c. administration [101, 103].  

In the rat formalin test the effects of 14-O-MeM6SU were analyzed in comparison with 

morphine. This model mimics the conditions of not just acute inflammatory pain but also 

somatic pain caused by the irritating effect of the locally applied formalin solution. The 

pain reactions in this model are classified into two phases, namely phase I and II. In the 

first phase the pain reactions are mostly mediated by the direct irritating effect of noxious 

agent, while in phase II inflammatory mediators (e.g. histamine, bradykinin) are released 

[73, 80]. Indeed, NSAIDs show antinociceptive action in the second phase, whereas 

opioids are able to alleviate the pain in both phases [80].  

14-O-MeM6SU or morphine in the present study produced similar and dose dependent 

antinociceptive properties in both phases following systemic (s.c.) or local (i.pl.) 

administration. Co-administered NAL-M completely abolished the systemic (s.c.) 

antinociceptive effect of a certain dose of 14-O-MeM6SU (506 nmol/kg) (Fig 6.), 

indicating the contribution of the peripheral opioid system. On the other hand, the effect 

of morphine (15538 nmol/kg) was partially affected by NAL-M co-administration 

indicating both peripheral and central components in the antinociceptive action of 

morphine. We could conclude that, 14-O-MeM6SU but not morphine showed peripheral 

antinociceptive action at certain doses. A similar antinociceptive tendency was shown 

previously utilizing the same method - though the dose of morphine was smaller (5278 

nmol/kg) [43]. The effect of morphine is also in accordance with previous work reported 

by Riba et al., where morphine showed similar, dual-site antinociceptive effect (both 

central and peripheral) in mouse tail-flick test (acute thermal antinociception) [100]. 

These data indicate the importance of CNS-actions in the antinociceptive effect of 

morphine, supporting previous studies [46, 96]. On the other side, NAL-M failed to affect 
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the antinociception of 14-O-MeM6SU when tested in higher doses. On the basis of this, 

14-O-MeM6SU but not morphine seems to have peripheral antinociception at certain 

systemic doses.  

Furthermore, in certain locally administered antinociceptive doses 14-O-MeM6SU but 

not morphine failed to produce antinociceptive action, when was injected into the 

contralateral paw (Fig. 7.). This might indicate that this dose is too small to achieve 

antinociceptive effect on the ipsilateral (formalin treated) paw after contralateral 

administration. As this dose has antinociceptive action when administered to the 

ipsilateral paw (Fig. 5.), then we can conclude that the site of hitting the pain is in the 

periphery for 14-O-MeM6SU in the dose of 50.6 nmol/rat.  

In order to further model the clinical conditions of inflammatory pain we’ve set out to 

apply CFA model in addition to the above mentioned tests. In this pain model (CFA-

induced inflammatory pain) the effects of 14-O-MeM6SU were compared to that of 

M6SU. In this study 14-O-MeM6SU and M6SU produced dose dependent 

antinociceptive action after systemic administration (Fig. 8.). The peripheral component 

of measured antinociception was analyzed in the presence of systemically co-

administered NAL-M and also after local injections of the quaternary antagonist. The co-

administered NAL-M blocks the antinociceptive action of certain doses of test 

compounds, indicating that they produce peripheral antinociception in a certain dose 

range. To localize the peripheral site of antinociceptive action of test compounds, i.pl. 

NAL-M was applied. The locally injected NAL-M also abolished the analgesic effects of 

s.c. 14-O-MeM6SU or M6SU (Fig. 10.). These results suggest that, the site where the test 

compounds produce their antinociception is at the inflamed paws. 

Our data are in agreement with previous studies using this experimental model of pain 

and the same route of administration with other opioid compounds [104]. However, in 

the present work, test compounds could also elicit central antinociception at higher doses. 

The differences in the antinociceptive effects of 14-O-MeM6SU and M6SU between 

inflamed and non-inflamed paws gradually declined but at a lower dose range a clear 

peripheral action was demonstrated in the inflamed paws (Fig. 10.). Also, similarly to the 

formalin test the antinociceptive effect of higher systemic doses of the test compounds 

was not reversed by NAL-M (Fig 11.). These results show that careful dose titration of 

the MOR agonists, 14-O-MeM6SU and M6SU during their systemic administration can 
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reveal a distinct dose range in which antinociceptive effects are exerted exclusively by 

the activation of peripheral MOR at the inflammation site. At these doses PPT on the 

contralateral side were not significantly elevated, while significant elevation in the 

inflamed paws was observed (Fig. 9.). It is well established, that during inflammation the 

number of opioid receptors is elevated [13, 17]. This might offer an explanation why 14-

O-MeM6SU and M6SU produced antinociception in inflamed paws compared to non-

inflamed paws in Randall-Selitto test. The increase in the number of accessible opioid 

receptors results in enhanced peripheral opioid antinociceptive efficacy in inflammatory 

pain as it was already reported by others [105–107].  

Similarly to formalin test – the model of acute somatic- and inflammatory pain – 14-O-

MeM6SU showed significant peripheral antinociceptive action, even after systemic 

administration. These results further support the hypothesis that inflammatory pain can 

be alleviated satisfactorily through the activation of peripheral opioid receptors [44, 96, 

108]. Therefore 14-O-MeM6SU - and similar compounds from the aspect of 

physicochemical properties - might offer analgesia of high clinical value, even after 

systemic administration especially in the cases of severe acute inflammatory conditions. 

In contrast to locally injected opioids systemic administration might offer a possibility to 

avoid the risk of infections and physical damages [17].  

  

 5.2. Neuropathic pain alleviation with high efficacy opioid of limited CNS  

        penetration 

Another huge clinical challenge facing physicians is the treatment of neuropathic pain, 

particularly diabetic neuropathy [69]. In our work, we also investigated the 

antinociceptive effect of 14-O-MeM6SU in comparison with morphine in the model of 

diabetic polyneuropathic pain: the STZ induced diabetes in rats [78]. Biochemical and 

histochemical assessments of the consequences of disease on MOR number at the spinal 

and supraspinal levels were also performed. Indeed, our idea to treat painful diabetic 

neuropathy was based on the efficacy of opioids. Our group have previously reported on 

the high efficacy of the novel compound 14-O-MeM6SU and low efficacy of morphine 

in different in vitro assays [70]. Opioid analgesic effectiveness in the management of 

neuropathic pain so far is a matter of controversy in both clinical practice and opioid 

research. Nevertheless, opioids and a related compound, tramadol are considered by some 
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guidelines as second line agents in the management of painful diabetic neuropathy [109]. 

The first task in the present study was to follow the changes in blood glucose level, water 

and food intake, body weight and development of allodynia for a 12 weeks period 

following STZ-treatment. As a consequence of β-cell destruction by STZ, diabetic 

animals developed hyperglycemia, gained significantly less weight than the non-diabetic 

ones, consumed significantly more water and food. These results are in agreement with 

our previous work [68]. The significantly developed allodynia appeared 3 weeks 

following STZ treatment and peaked at the 9th-12th weeks in the present study (Fig. 12.). 

These symptoms are indicative for development of DNP and are in accordance with 

previous studies [78]. However, only a few studies can be found in the literature regarding 

the analgesic effect of opioids at advanced diabetes (9-12 weeks after STZ treatment). 

The developed allodynia was effectively alleviated by high systemic doses of both 14-O-

MeM6SU and morphine. This analgesic action is consistent with other studies reported 

on the effects of different opioids on DNP [110, 111]. However, a study reported on the 

ineffectiveness of morphine in doses up to 10 mg/kg (approx. 31 µmol/kg) seven weeks 

following STZ treatment [112]. 

The results of in vivo and in vitro studies in the present work give new information about 

diabetic neuropathy in two aspects. The first aspect is based on the calculated ED30 values 

which indicate that morphine was 7 times less effective in diabetic animals than non-

diabetic ones, whereas 14-O-MeM6SU showed no difference in the analgesic action in 

diabetic or non-diabetic ones (Fig 13., ED30diabetic/ED30non-diabetic). This indicates a 

significant reduction in the antinociceptive effect of morphine, which is in accordance 

with previous studies [64, 113], however, the novel compound remained highly effective 

under neuropathic conditions. This is also strengthened by the observation that 14-O-

MeM6SU (253 nmol/kg) but not morphine produced significant antiallodynic action only 

in DNP and no impact on PPT of weight match rats (Fig. 14.). In addition, under the 

present experimental circumstances, systemic NAL-M failed to affect the antiallodynic 

effect of systemic14-O-MeM6SU or morphine (Fig. 15.). Consequently, if we accept that 

NAL-M does not penetrate the blood brain barrier in the applied doses [43, 101], then, 

MOR in CNS might mediate the measured antinociceptive effect of higher systemic doses 

of test compounds that abolished allodynia in diabetic animals.  
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The second aspect is based on our in vitro results which depict that at the level of spinal 

cord, 14-O-MeM6SU but not morphine caused remarkable agonist effect in G-protein 

coupling in spinal tissues prepared from rats with DNP (Fig. 21. and Table 5., 6.). In our 

previous work in rats with advanced diabetic neuropathy and mechanical hyperalgesia 

(Randall-Selitto test), we demonstrated a decrease in fentanyl-mediated spinal 

antinociception in mechanical hyperalgesia associated with reduction of sensory neuron 

MOR number and G-protein coupling [68]. In addition, many studies reported on the 

lowered opioid analgesic efficacy in animal neuropathic models [113, 114]. In the present 

work we also detected a decrease in MOR density both in the DRG and the dorsal horn 

of the spinal cord of rats with DNP (Fig. 19.). 14-O-MeM6SU has higher intrinsic efficacy 

than morphine or fentanyl meaning that even if there is a decrease in MOR reserve it 

might activate MORs and produce measurable analgesia [96]. Our data from G-protein 

activation experiments reveal that 14-O-MeM6SU in comparison with morphine in spinal 

cord homogenates produced significantly higher efficacy, which was assessed from the 

maximal activation of functional opioid receptors from control and diabetic rats. In the 

spinal cord, morphine displayed very weak G-protein activation compared to that of 14-

O-MeM6SU. On the other hand, neither morphine nor 14-O-MeM6SU showed any 

difference in efficacy at the supraspinal level of diabetic rats compared to control. 

Interestingly, 14-O-MeM6SU, but not morphine showed similar efficacy at the spinal 

level in control and diabetic rats. This latter tendency seen in case of 14-O-MeM6SU 

might be an advantage, since spinal cord is a crucial point in pain transmission [81]. 

Taken together, large reduction in antinociception of morphine but not of 14-O-MeM6SU 

in diabetic rats compared to control rats was observed. Large alterations on the 

antiallodynic effect of morphine but not 14-O-MeM6SU were shown in diabetic 

neuropathic rats. Diabetes results in reduced MOR G-protein coupling by morphine but 

not 14-O-MeM6SU at the level of spinal cord, key traffic point in the pain transmission. 

These data further support that the spinal cord is essential target in the treatment of DNP. 

In this pain traffic point MORs are found in the presynaptic central terminals of primary 

afferent neurons, which are a target for spinally administered opioids and other drugs 

prescribed for NP, like gabapentinoids [115]. These analgesic agents block the voltage 

gated calcium channels, and consequently the release of transmitters that further process 

the pain toward the brain. Since opioid receptors are localized in the presynaptic 
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membrane of primary afferent fibers, their activation will results in the inhibition of 

transmitter release and consequently peripheral signal propagation toward the brain. 

Voltage gated calcium channels (VGCCs) have been reported to be over expressed in the 

dorsal horn of diabetic animals [116]. In addition, in spinal cord slice preparations MOR 

activation on central terminals of Aδ- and C-fibers by opioid agonists results in the 

blockage of VGCCs, which in turn inhibits transmitter release and consequently 

nociceptive traffic toward the brain [117]. Therefore, we can hypothesize that 14-O-

MeM6SU might block the pain effectively at this point. 

 

5.3. The side effect profile of the novel compound, 14-O-MeM6SU 

Opioid agonists beside their pain alleviation, cause several central and peripheral 

undesired effects. Therefore, it is important to pay attention to and investigate these 

effects. Opioid induced constipation is a very common side effect in opioid-treated 

patients, which can be a limiting factor in the chronic therapy of pain disorders [76]. 14-

O-MeM6SU, M6SU and morphine inhibited the gastrointestinal transit in a dose 

dependent manner. Based on our study there is no significant difference in this inhibitory 

action between the novel and reference compounds in analgesic doses. However, 14-O-

MeM6SU and M6SU also induced significant peripheral antinociception at the same dose 

range, clearly indicating that they are superior to an other peripherally acting opioid, 

loperamide, which failed to produce antinociception in doses producing constipation in 

mice [118]. It is worth noting that in the present work we could show that opioid analgesic 

action is mediated at sites within the CNS as well as the periphery. A possible solution to 

overcome the constipation causing effect of opioids is the co-administration of the non-

selective opioid antagonist naloxone [119, 120]. Due to the low bioavailability of 

naloxone, caused by quick first-pass elimination, the antagonistic effect is implemented 

at the intestinal level [121], meaning this effect would not interfere with the observed 

peripheral analgesia of the novel compound.  

An other clinically significant side effect caused by opioids is respiratory depression 

[46]. Although with proper dose titration opioids rarely show clinically relevant 

respiratory depressive effects, it is known that opioids penetrating into the CNS can cause 

respiratory depression, especially at higher doses and in “opioid naïve” patients. 

Therefore, we aimed to assess the tested compounds for their respiratory effects in opioid-
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naïve rats. 14-O-MeM6SU and M6SU were tested at doses producing NAL-M reversible 

antinociceptive effect under inflammatory pain conditions. Test compounds showed no 

significant alterations in respiratory parameters compared to the control group, indicating 

that the drugs did not cause respiratory depression in the tested dose range, under the 

given circumstances. This dose of 14-O-MeM6SU (253 nmol/kg) also showed 

antinociception in the model of diabetic neuropathy. Based on the fact that these doses of 

14-O-MeM6SU and M6SU elevated thiobutabarbital induced sleeping time (see below 

and section 4.4.3.) we cannot exclude CNS penetration of test compounds. Still, proper 

titration of systemic doses of high efficacy opioid compounds with limited access to the 

brain might offer peripheral analgesia of clinical importance without unwanted CNS 

effects, like respiratory depression. 

CNS depressing drugs have been reported to have longer action by co-administration of 

opioids [122, 123]. Therefore, we utilized this approach to assess the penetration of 

systemically administered 14-O-MeM6SU or M6SU compared to morphine in one hand 

and also assess the sedative effects of test compounds on the other hand. For this aim, 

we studied the central actions of anesthetics (i.v. thiobutabarbital and inhaled isoflurane) 

in the presence of test opioids. In this test, NAL-M reversible antinociceptive doses of 

14-O-MeM6SU or M6SU failed to potentiate the sleeping time induced by 

thiobutabarbital (Fig. 16.). However, at higher doses both compounds lengthened the 

sleeping time. We also tested the impact of certain analgesic doses of morphine or 14-O-

MeM6SU on the sleeping time evoked by inhaled isoflurane. 14-O-MeM6SU in contrast 

to morphine in some analgesic doses failed to prolong the sleeping time of isoflurane (Fig. 

17.). Morphine in the dose of 7769 nmol/kg (the smallest effective dose in both phases) 

prolonged isoflurane induced sleeping time, whereas 14-O-MeM6SU did not alter the 

sleeping time in the dose of 506 nmol/kg under the present circumstances. In the case of 

thiobutabarbital, 14-O-MeM6SU in dose of 253 nmol/kg or higher did prolong 

thiobutabarbital-induced sleeping time. Indeed, presently our explanation for this issue is 

based on pharmacokinetic properties since the two anesthetic agents have different routes 

of administration and different sleeping induction properties [70, 73, 124]. However, 

these differences need to be elaborated in the future but the substantial result regarding 

the analgesia of 14-O-MeM6SU in the present work remains clear because the systemic 

dose of 506 nmol/kg was antagonized by the peripherally acting opioid antagonist, NAL-
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M in rat formalin test. Thus, 506 nmol/kg and lower doses showed peripheral analgesia, 

regardless their impact on sleeping time evoked by anesthetics. 

Based on our results, we could show that inflammatory pain in contrast to neuropathic 

pain can be alleviated by targeting peripheral opioid receptors following acute drug 

administration. Also, it is well known that chronic and repeated opioid administration 

results in analgesic tolerance development [125]. Tolerance is indicated by a significant 

loss in the analgesic effect of administered opioid drugs, causing the need for dose 

elevation during treatment. Opioid tolerance became a major clinical problem generating 

continuous effort to find major analgesics with less tolerance developing potency [125–

127].  To investigate this issue, the tolerance profile of 14-O-MeM6SU and morphine 

was assessed applying the mouse tail-flick test after 3 days twice daily administration of 

test compounds. Mouse tail-flick test is a widely used and accepted method to study the 

antinociceptive properties of opioid compounds [80]. The antinociception of 14-O-

MeM6SU was assessed previously with rat tail-flick test. Based on previous and present 

results the ED50 values of 14-O-MeM6SU and morphine are relatively close in rat- and 

mouse tail-flick assay: 6.8 µmol/kg vs. 8 µmol/kg for morphine and 0.18 µmol/kg vs. 

0.47 µmol/kg for 14-O-MeM6SU, in rat- and mouse tail-flick tests, respectively [70]. For 

inducing tolerance such high doses were chosen, that surely penetrate into the CNS in 

mice and also rats in order to be able to interpret the results. In mouse tail-flick assay 14-

O-MeM6SU was 17 times more potent in analgesic action than morphine (Table 4.). 

Treatment with morphine resulted in a decreased magnitude of morphine analgesia by 

3.41-fold indicating the development of analgesic tolerance. These results are in 

agreement with other studies demonstrating the development of tolerance upon chronic 

morphine treatment [89]. 14-O-MeM6SU showed promising analgesia either in morphine 

or 14-O-MeM6SU pretreated mice compared to morphine. The analgesic tolerance 

developed for morphine is higher than that developed for 14-O-MeM6SU, indicating an 

another advantage of clinical significance for 14-O-MeM6SU. A possible explanation is 

based on the high efficacy of the novel compound. Considering that 14-O-MeM6SU has 

higher intrinsic efficacy than morphine [70] and in the tolerant mice the opioid receptor 

reserve is decreased [127], 14-O-MeM6SU under these circumstances still activates 

sufficient number of opioid receptors. Based on these results in neuropathic conditions 

(e.g. diabetic neuropathy), when repetitive administration of opioids might be indicated, 
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14-O-MeM6SU and similar compounds can be effective even after chronic 

administration. It is a future plan to further investigate the tolerance profile of the novel 

compound in different animal models of different pain diseases (e.g. STZ induced 

diabetic neuropathy in rats). 

Summarizing, in terms of sedative- and tolerance inducing effects 14-O-MeM6SU 

showed a more favorable profile, whereas in the case of gastrointestinal and respiratory 

effects no significant differences were shown in comparison with reference compounds.  
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6. Conclusions 

 

1. The novel compound, 14-O-MeM6SU proved to have higher potency and 

efficacy in acute and subchronic inflammatory pain models and also in the model of 

advanced diabetic neuropathy. 

2. Advanced diabetic neuropathy results in a significant reduction in the 

antiallodynic effects of partial agonists like morphine in contrast to 14-O-MeM6SU, the 

opioid agonist with high efficacy.  

3. The role of peripheral opioid receptors in antinociception differs in 

inflammatory and neuropathic conditions.  

In animal inflammatory pain models, in distinct dose ranges systemically applied 14-

O-MeM6SU and M6SU but not morphine elicit significant peripheral antinociceptive 

effect that was proved as follows: 

- In the mouse visceral pain model (mouse writhing test) indicated by high 

systemic/central (s.c./i.c.v.) ratio and  antagonist action of the peripherally acting 

opioid antagonist NAL-M.  

- In rat formalin test indicated by the effects of locally applied 14-O-MeM6SU but 

not morphine, and also the antagonist effect of NAL-M on systemic 14-O-

MeM6SU.  

- In rat CFA model (model of subchronic inflammatory pain), indicated by the 

significant peripheral antinociceptive effect in inflamed rat paws compared to 

non-inflamed paws. The antinociception was localized to inflamed paws as 

proven by systemically or locally administered NAL-M.  

The systemic administration could offer a future tool to avoid the risk of infections and 

physical damages following local injection of opioids. 

In neuropathic conditions the role of CNS seems to be essential.  

4. To further analyze the CNS effects of test compounds in diabetic neuropathic 

conditions G protein activity assay was performed in spinal and supraspinal tissues. 

Significant attenuation of G-protein activation by morphine but not 14-O-MeM6SU at 

the level of spinal cord, key traffic point in the pain transmission was observed. Also, 
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reduction of MOR number and binding in the DRG and dorsal horn of diabetic animals 

was shown. 

Developing novel opioids with high efficacy in the management of advanced painful 

diabetes is an unmet medical need. The reduction of spinal opioid receptors concomitant 

with reduced analgesic effect of morphine in the treatment of diabetic neuropathy may be 

circumvent by using high efficacy opioids, such as 14-O-MeM6SU, which provide 

superior analgesic effect over morphine. 

5. In terms of side effects 14-O-MeM6SU showed a more favorable profile 

compared to reference compounds regarding sedative (anesthesia potentiating) and 

tolerance inducing effects. 

In different pain conditions different opioids and different treatment protocols are 

necessary to be applied since the efficacy of different opioids is not just physicochemical 

property- but also pain type dependent.  

Our results indicate that 14-O-MeM6SU and similar compounds might be of high clinical 

value.  
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7. Summary 

 

Growing data support the peripheral opioid antinociceptive effect - particularly in 

inflammatory pain models -, which is a possible way to avoid central opioid side effects 

(e.g. respiratory depression, dependence). Here, we examined the antinociceptive effects 

of the recently synthesized 14-O-methylmorphine-6-O-sulfate (14-O-MeM6SU) 

compared to morphine-6-O-sulfate (M6SU) after subcutaneous (s.c.) and 

intracerebroventricular (i.c.v.) administration in a mouse model of visceral pain evoked 

by acetic acid. In addition, we examined the effects of 14-O-MeM6SU in comparison 

with morphine in another acute inflammatory pain model (rat formalin test) after systemic 

and local administration. Rat model of subchronic inflammatory pain, induced by the 

injection of Complete Freund’s Adjuvant was also applied. Our results indicate that 14-

O-MeM6SU and M6SU are able to alleviate pain in inflammatory conditions via 

activating peripheral opioid receptors. 

The analgesic action of opioids in diabetic neuropathic pain (DNP) is impaired due to the 

reduction of µ-opioid receptor (MOR) reserve. Therefore, high efficacy opioids having 

spare receptors may be promising analgesics. Herein, we examined the degree of the 

antinociception impairment and antiallodynic action of a novel high efficacy opioid 

agonist, 14-O-MeM6SU compared to morphine in rats with streptozocin-evoked DNP 

following s.c. administration. Significant reduction in the antinociceptive effect of 

morphine, but not 14-O-MeM6SU was shown. Co-administered naloxone methiodide 

(NAL-M), a peripherally acting opioid receptor antagonist failed to affect the 

antiallodynic effect of 14-O-MeM6SU or morphine, indicating the contribution of central 

opioid receptors. Significant reduction in spinal MOR binding sites and loss in MOR 

immunoreactivity of nerve terminals in the spinal cord and dorsal root ganglia in diabetic 

rats were observed. Significant reduction in G-protein activation for morphine, but not 

for 14-O-MeM6SU at spinal level was also observed. Taken together, the reduction of 

spinal opioid receptors concomitant with reduced analgesic effect of morphine in the 

treatment of diabetic neuropathy may be circumvent by using high efficacy opioids, such 

as 14-O-MeM6SU, which provide superior analgesic effect over morphine. In terms of 

side effects, 14-O-MeM6SU shows a promising tolerance profile, and is devoid of 

respiratory depressive and sedative effects in a lower antinociceptive dose range. 
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8. Összefoglalás 

 

Egyre több irodalmi adat támasztja alá a periférián található opioid receptorokon 

keresztül megvalósuló fájdalomcsillapító hatást, amely a központi idegrendszeri (KIR) 

mellékhatások tekintetében lehet igen előnyös (pl.: légzésdepresszió, dependencia). E 

célból vizsgáltuk a nemrégiben szintetizált 14-O-metilmorfin-6-O-szulfát (14-O-

MeM6SU) és a morfin-6-O-szulfát (M6SU) antinociceptív hatását akut viszcerális 

fájdalom modellen (egér ecetsav indukálta writhing teszt) szisztémás, valamint centrális 

adagolás után. Emellett vizsgáltuk a 14-O-MeM6SU-ot a morfinnal összevetésben akut 

gyulladásos patkány modellen is (formalin teszt) szisztémás és lokális adagolás mellett. 

Patkány szubkrónikus gyulladásos modellen (CFA modell) szintén végeztünk 

kísérleteket. Eredményeink alapján a 14-O-MeM6SU és a M6SU képes a gyulladásos 

fájdalom csillapítására perifériás támadásponton keresztül. 

Diabeteses neuropátia során a különböző opioidok hatása csökken a µ-opioid receptorok 

(MOR) számának következményeként. Ezért olyan nagy hatékonyságú opioidok, melyek 

képesek spare receptorokat aktiválni ígéretes analgetikumok lehetnek. Vizsgáltuk a nagy 

hatékonyságú 14-O-MeM6SU és a morfin hatékonyságának csökkenését streptozocin 

indukálta diabeteses neuropátia modellen, patkányokon, szisztémás adagolás mellett. A 

morfinnal ellentétben az új analóg nem mutatott hatáscsökkenést diabeteses állatokon. 

Együtt adott naloxon-metiljodid (periférián ható opioid antagonista) nem befolyásolta a 

hatást, mely a KIR szerepére utal. A diabetes állatok gerincvelő mintáin MOR kötőhelyek 

csökkenését mutattuk ki, valamint az immunhisztokémiai vizsgálatok MOR csökkenést 

igazoltak gerincvelői, valamint hátsó gyökér ganglion (DRG) mintákon. Ezzel 

összefüggésben csökkent G-protein aktivációt mutattunk ki morfin esetén diabetes állatok 

gerincvelő mintáin, azonban a 14-O-MeM6SU nem mutatott ilyen hatáscsökkenést. 

Következésképpen: a morfin diabeteses neuropátia során, a MOR csökkenés 

következtében kialakuló hatásvesztése kiküszöbölhető lehet olyan nagy hatékonyságú 

molekulák alkalmazásával, mint a 14-O-MeM6SU. 

Az új vegyület ígéretes mellékhatásprofillal is rendelkezik. A 14-O-MeM6SU a 

morfinnál kedvezőbb toleranciaprofilt mutatott. Alacsony antinociceptív 

dózistartományban a légzést nem befolyásolta, valamint szedatív hatást nem okozott.  
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12. Köszönetnyílvánítás 

 

Elsőként köszönettel tartozom témavezetőmnek, Al-Khrasani Mahmoudnak. 

Köszönöm TDK-s korom óta tartó türelmes, folyamatos útmutatását, támogatását, 

segítségét.  

Köszönöm Király Kornélnak, Zádori Zoltánnak és Riba Pálnak, hogy szinte társ-

témavezetőként mindig számíthattam segítségükre, tanácsaikra. 

Köszönöm Timár Júliának, hogy gondos munkájával segítette a dolgozat véglegesítését. 

Köszönöm Prof. Ferdinandy Péter intézetvezetőnek, hogy munkámat figyelemmel 

kísérte és támogatta. 

Köszönöm Prof. Fürst Zsuzsanna és Prof. Gyires Klára támogatását. 

Köszönöm a kísérletes munkát Dr. Lackó Erzsébetnek (Randall-Selitto teszt); Prof. 

Benyhe Sándornak, Zádor Ferencnek és munkatársaiknak (MTA, Szeged; G-protein 

aktivitási vizsgálatok); Prof. Michael Schäfernek és munkatársainak (Charité Egyetem, 

Berlin; immunhisztokémiai és receptorkötési vizsgálatok). Köszönöm Dr. Hosztafi 

Sándornak és munkatársainak az új vegyület szintézisét. 

Köszönöm TDK hallgatóink, Varga Bence, Karádi Dávid, Varga Erzsébet, 

Stollmayer Róbert és Amir Mohammadzadeh sok segítségét. 

Köszönettel tartozom a Farmakológiai és Farmakoterápiás Intézet szinte összes 

munkatársának, különös tekintettel a Transzlációs Neurofarmakológiai Kutatócsoport 

munkatársaira. Köszönöm Pol-Maruzs Veronika kísérletek során nyújtott segítségét, 

Ph.D hallgatótársaimnak a jó hangulatú közös munkát.  

Köszönöm Kalmár Zsuzsanna és a Doktori Iskola Hivatala többi munkatársának 

segítségét. 

Végül, de nem utolsó sorban hálával tartozom családom soha el nem múló támogatásáért. 

Köszönöm barátaim lelkesítő ösztönzését. 

Köszönöm a Semmelweis Egyetem Doktori Iskola (EFOP-3.6.3.-VEKOP-16-2017-

00009) és a Richter Gedeon Centenáriumi Alapítvány anyagi támogatását. 
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