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Abstract Learning with label noise is an important issue in clasdifica since it is not
always possible to obtain reliable data labels. In this pageexplore and evaluate a new
approach to learning with label noise in intrinsically hidimensional data, based on using
neighbor occurrence models for hubness-awanearest neighbor classification. Hubness
is an important aspect of the curse of dimensionality thathaegative effect on many types
of similarity-based learning methods. As we will show, tineeggence of hubs as centers of
influence in high-dimensional data affects the learning@ss in presence of label noise.
We evaluate the potential impact of hub-centered noise byidg a hubness-proportional
random label noise model that is shown to induce a signifigdngher kNN misclassifi-
cation rate than the uniform random label noise. Real-wexiaimples are discussed where
hubness-correlated noise arises either naturally or assegaence of an adversarial attack.
Our experimental evaluation reveals that hubness-basay fiinearest neighbor classifi-
cation and Naive Hubness-Bayesiamearest neighbor classification might be suitable for
learning under label noise in intrinsically high-dimenmsbdata, as they exhibit robustness
to high levels of random label noise and hubness-propaticandom label noise. The re-
sults demonstrate promising performance across seveeatidenains.
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1 Introduction

Designing effective and robust supervised learning allgors for classification in presence
of label noise is an important practical issue, as obtaingtigble data labels is often expen-
sive or simply infeasible due to data size in large-scaléesys [18].

Classification noise can be random, feature-dependentversatial. Label flip proba-
bilities can be either uniform and symmetric or depend oti@éar classes and class pairs.
The simplerandom classification noisé€RCN) model was first introduced in [2]. It is a
model of how non-adversarial noise might affect the datsef®a training sel’ = (X,Y)
of labeled examples and a valyes (0,1/2), D,, v denotes the distribution corresponding
to T corrupted with random classification noise at raté\ draw from D,, 1 is equivalent
to a uniformly random draw fronfl” where the label; of the selectedz,y) is randomly
flipped with probabilityr.

The issue of unreliable and noisy labels can be approachedoinvays: by trying to
identify and correct/eliminate suspect data points or lbpiporating noise into the learning
model. Neither approach is trivial, as it is not always easglistinguish mislabeled exam-
ples from the exceptions to general rules, atypical datatpdiVhen an instance lies far from
its class interior and in proximity of instances from diffat classes, it can sometimes be
mistaken for a mislabeled point [43]. Yet, atypical poirdsetimes hold valuable discrimi-
native information, as they might help in defining propessslaoundaries for classification.
Additionally, many filtering approaches assume all of theada available at the filtering
stage and not prohibitively large [66].

Instead of filtering or explicit noise source modeling, ialso possible to design learn-
ing techniques that exhibit implicit robustness to higresadf label noise. In this paper,
we will demonstrate that the recently proposed hubnessesvaearest neighbor classifi-
cation methods [38][53][52][49] can be used for robust siisation of intrinsically high-
dimensional data under the assumption of label noise. Dhigstness is a consequence of
the fact that, unlike in mo$NN approaches, neighbor instances do not vote by their &bel
classification time. Instead, their vote is determined lgjrthast occurrences on the training
data.

Hubness [39] is a ubiquitous property of intrinsically hidimensional data. With in-
creasing dimensionality, the degree distribution of NN graph becomes increasingly
skewed and hubs emerge as central and influential pointsgthermdata. Th&NN graph it-
self assumes a scale-free-like topology. This has multipfssequences for similarity-based
learning methods anknearest neighbor methods in particular. Additionallghianges how
random labeling noise affects the learning process. Emdrab point labels can induce se-
vere mislabeling while errors in orphan points or regulantshave little influence on the
classification accuracy ilNN methods.

In this paper, we introduce the concepthafbness-proportional random label noiae
an adversarial noise model where the most influential pamtke data are most likely to
be corrupted. The probability of a label flip is set to be prtipoal to the neighbor oc-
currence frequency of the data point. Hubness-propottiamalom label noise models how
a potentially successful malicious attempt can comprorfisemost relevant and influen-
tial neighbor points in order to disruptNN-based retrieval, recommendation or prediction
systems.

To our knowledge, this paper is the first detailed study deditto examining the influ-
ence of hubness dtNN classification with uncertain data labels.

The paper is organized as follows: Section 2 summarizestaged work and the exist-
ing approaches for dealing with label noise. Consequeridegtmess in intrinsically high-
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dimensional data are discussed in Section 3. Neighbor mawe models for hubness-aware
kNN classification of high-dimensional data are describedeitail in Section 4, followed
by examples that demonstrate their potential for learnimdgu label noise. Section 5 intro-
duces the concept of hubness-proportional random labsérasid gives practical examples
of the susceptibility okNN methods to label noise under high data hubness. The dath us
in the experiments is described in Section 6, followed byeeixpental results and sum-
maries in Section 7. In Section 8, the main contributionshefpaper are summarized and
several directions for future work are proposed.

2 Related work

Label noise often occurs in large scale problems wherellagés crowdsourced to a large
number of non-experts instead of having the domain exparefdly label each data in-
stance, for instance via Amazon’s Mechanical Turk. In suases, it has been shown to
be beneficial to obtain multiple labels for each data poina @arefully selected subsets
of data points [24][42]. Evaluating the labeling accuradyirmlividual experts and non-
experts can also be used in order to improve label qualityrefepring certain labelers over
others [15][60]. Modeling the concept evolution over tingethe user’s perception of the
concepts that are being tagged by employing structureditaidgas been shown to improve
consistency and yield considerable improvements [30].eliktsle labels can also result
from automated information retrieval and tagging.

Data filtering for removing the mislabeled data points pt@model learning for clas-
sification is often used in practice. A simple approach istg on classification ensembles
and to filter out those instances that are misclassified bgtisemble on the training data
by taking a majority vote [9][58][65][47]. It is possible ttetect data sub-samples that lead
to high classification errors via cross-validation and tpriove classification performance
by relying on multiple data representations and discritmigasubspaces [57]. Examples
that lie in neighborhoods where a proportion of the domimatilass is significantly lower
than average are also suspect and their elimination camitlimproving kNN classifica-
tion accuracy [31]. Boolean rules inferred from the measarets can be used for detecting
noisy data points [28]. Neural networks have been used foecting the mislabeled ex-
amples in [63], by iteratively updating class affiliatioropabilities based on the difference
from the trained neural network output. Unlabeled exampéasalso be taken into account
in filtering in a semi-supervised type of approach, raisimg overall noise detection ac-
curacy [22]. It is possible to formulate the noise removaktas an optimization problem,
which might sometimes be preferable in comparison with tieemble based filtering ap-
proaches [56].

Mutual information is a popular feature selection critarend a robust estimation of
mutual information via a probabilistic noise model was ablémprove feature selection
performance under label noise [17]. This was achieved bydaptave hyper-sphere radius
selection in nearest-neighbor entropy estimators. Gefégiture extraction strategies have
been successfully employed to improve classification awyuin noisy medical data [35].

Presence of label noise in class-imbalanced learning taskbe highly detrimental and
it was shown to affect the learning process differently deliy on whether mislabeling
occurs in the minority or the majority class [23]. This is ion@ant as most noise removal
strategies treat these two cases equally.
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Non-uniform label noise sometimes arises due to systeraatics in data acquisition
or the experimental design that produces the data in quef8&][21]. The type of noise
should be determined prior to deciding on the optimal noa®dling strategy.

As individual labels are unreliable, it is possible to usdtiminstance learning in order
to aggregate instances and assign labels to groups of destémstead. This has been shown
to be a promising approach [25].

While boosting methods may be popular in practice [11][@6]] recent research sug-
gests that many types of boosting methods that can be ietetpas convex potential boost-
ers are highly susceptible to random classification noi2¢. [Branching program based
boosters that do not fall into this framework can still agbiggood learning accuracy on
noisy data.

Designing classifiers that are able to implicitly handlesyand mislabeled data points
is another approach and one such classifier is the adajpthesarest neighbor classifier
(AKNN) [59] that re-scales the distances of training poitdsthe query, based on their
proximity to the closest point of a different class. As lahielmislabeled points often do not
match the labels among their neighbors, this approachgdisile most mislabeled points as
it adaptively increases their distance to the query. This@ach will be our baseline for the
experiments in Section 7. Deep learning algorithms can bended to handle label noise
by additional network layers for noise modeling [45]. Ratkesrnels can be learned from
the data in order to improve the effectiveness of kerneétasethods under label noise [7]
and robust SVM methods have also been considered [44][6].

The existing noise-handling strategies fail to take datankgs into account and do not
attribute special attention to potential errors in the hoings, which might be an issue
when learning from high-dimensional data. This problem vwiasitified in [10], where it
was noted that a surprising number of classification errotsrie series:NN classification
can be attributed to hub points.

3 Hubness in Intrinsically High-dimensional Data

Hubnesds a consequence of high intrinsic data dimensionalityteel&o the degree distri-
bution of thekNN graph [39]. Hub points arise as centers of influence, ag doeur very
frequently as nearest neighbors. In fact, the entire neigbbcurrence frequency distribu-
tion becomes skewed and most points becami&hubsor orphans i.e. they occur rarely

or never as neighbors to other points. Hubs often exhibittandental influence by induc-
ing many label mismatches kNN sets and they can become semantic singularities in the
data. Thesbad hubsan arise for many reasons and they are not necessarilyeeusmata
points. However, there is an increased chance for theirggnee in presence of label noise.

Hubness has first been reported in music retrieval systejfg,[dvhere it is still an
important and largely unresolved issue [16], despite sawent advances [41][19]. Hub
songs were occurring exceedingly often in topesult sets, even in cases when there was
no apparent semantic connection to the queries.

LetT = {(=1,v1), (z1,%1) - .. (zn,yn)} be atraining set of labeled data points drawn
i.i.d. from a joint distributionp(z,y) = p(z) - p(y|z) over X x Y, whereX is the feature
space and” the finite label spaceY’| = C.

Denote byDy(z;) = {(zs1,vi1), (Ti2, vi2) - - - (Tig, yir )} the k-neighborhood ofr;.
Any =z € Dy(z;) is a neighbor ofr; andz; is a reverse neighbor of any € Dy (z;).

An occurrence of an element in somg,(z;) is referred to ag-occurrence. The number
of k-occurrences of a point is denoted byN.(z) and will sometimes be referred to as
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the hubnesof 2. A k-occurrence is consideragbod if the neighbor label matches the
label in the point of interest, i.e;; € Dy(x;) is a good occurrence af;; if y;; = v;.
Similarly, label mismatches defifgad occurrence®f neighbor points. Total occurrence
counts consist of a sum of good and bad occurrencedyés;) = GNy(x;) + BNg(x;),
whereGN, andB N, represent good and bad hubness, respectively. It is pedeibbnsider
class-conditional occurrence sums as well and we will debgtVy, .(2;) the number of
k-occurrences af; in neighborhoods of examples that belong to class

In high dimensional data, the distribution df, (x) becomes highly asymmetric, in a
sense that it is skewed to the righkewnegsof the neighbork-occurrence frequency dis-
tribution is defined as follows:

ma(Ng(x)) _  1NSX (Ni(@:) —k)®

SN () = =
() m3 2 (Ny(z)) (/NN (Ni(zi) — k)2)3/2

@)

High positive skewness of the neighbroccurrence frequency in intrinsically high-
dimensional data indicates that the distribution tail isger on the right, as illustrated in
Figure 1. In many dimensions, ttheoccurrence frequency distribution approaches a power
law.
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Fig. 1 The change in the distribution shape of 10-occurrenéég) in i.i.d. Gaussian data with increasing

dimensionality when using the Euclidean distance. Thelgregs obtained by averaging over 50 randomly
generated data sets. Hub-points exist also Wiy > 60, so the graph displays only a restriction of the
actual data occurrence distribution.

Formally, we will say thahubs are pointsz;, € D such thatVy (xy,) > k + 2 - oy, (a)-
In other words, their occurrence frequency exceeds the rtigaoy more than twice the
standard deviation. We will denote the set of all hub%'iby H}. .

Most data in practical applications is intrinsically highmensional an@-nearest neigh-
bor hubs have been shown to arise in text, audio, imagesdd®porative filtering data [34]
and time series [37].

1 The wordhubnesss otherwise used to denote the neighbor occurrence disibskewness when used
in context of a data set or subset. When used in context ofiéesivintz, it denotes the degree to which that
point is a hub, which is measured by the point occurrencetcddp(z).

2 Skewness of a probability distribution is its 3rd standzedimoment and is frequently used in statistical
analysis.
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4 Neighbor Occurrence Models

Section 4.1 describes the basic ideas behind the neighloorreace models in hubness-
aware classifiers and Section 4.2 gives examples of how thefuseighbor occurrence
models might improve classification performance underllabise.

4.1 Learning from Past Occurrences

In order to alleviate the negative influence of bad hubs indata and allow for robust
k-nearest neighbor classification under the assumption lofidgs, several hubness-aware
kNN methods have recently been proposed: hubness-weightddhw-5£NN) [38], hubness-
fuzzy kNN (h-FNN) [53], hubness-informatiobNN (HIKNN) [49], Naive Hubness-Bayesian
kNN (NHBNN) [52] and Augmented Naive Hubness-BayesisN (ANHBNN) [51]. All
hubness-aware approaches are based on learning from pastences by means of build-
ing a neighbor occurrence model from the observations onr#tieing data. These class-
conditional neighbor occurrence probabilities are usepréalict consequences of certain
neighbor occurrences in future tests and to infer the cléiistgon probabilities of future
guery points.

The weighting approach in hwiNN is simple, yet quite effective in many cases. It is
based on diminishing the effect of bad hubs on classificaBtandardized bad hubness

defined byhg(z;) = W is used to determine vote weights, whergy, and
opn, denote mean bad hubness and its standard deviation 2k &cthen assigned a voting
weight ofw; = e~"2(#:) While this weighting reduces the contribution of bad hubthe
vote, there is still some unexploited information in thetpasighbor occurrences that can
be used for better class prediction.

Class-conditional occurrence profiles can be used to datersoft votes in a fuzzy

k-nearest neighbor framework and this was a basis for hubfoezg kNN (h-FNN).

k (M — ||~ (2/(m=1))
’U,C(JL') — Zz:kl uCT(”x ml” ) , (2)
iz ([l — | =2/ (m=10))
Let z be a newly observed data instance for which we wish to perfdassification.
The degree of membership ofin each classg is then defined as in Equation 2.

®)

A2 e, ly=y; Ve.e(®) if N, (z;) < 6.

Py = clo;) = oS Ny (2) > 0,
Uej —
At @ ex,v)ly=y; Nk (2)’

The 6 parameter in Equation 3 represents the anti-hub cut-offt@eid can even be set
to 0 by default. Distance weighting is optional and a defpatameter value o, = 2 has
been previously shown to perform well and is used in our erpatts. The parameter value
can be further optimized via cross-validation. This simgggroach performs surprisingly
well in many cases and will be the focus of our experimentaigarisons in Section 7.

Fuzzy votes of neighbor points in h-FNN are derived fromrtipeistk-occurrence pro-
files. Their own labels are not directly taken into accouthie Tuzzy vote derived from the
reverse-nearest neighbor set is in fact an estimate ofubectass density distribution in the
neighbor point. Since most neighbors are hubs and hubs on@werage in mang-nearest
neighbor sets, these estimates can be quite robust to rdatehilips and noise. h-FNN has
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been shown to perform substantially better than basic fizzgarest neighbor method [27]
on high-dimensional data.

An extension of h-FNN in the form of HIKNN was later proposbg,including the orig-
inal label information and giving preference to rarely atimg neighbor points. Neighbor
occurrence self-information is definedias, = log m, wherep(z;; € Dy (z)) =

w is the probability of the point occurring as a neighbor. Redeand absolute surprise
I, —ming . Iy . . .

factorsa(x;t) = pat—mi i 1 and(zi) = 2k can be derived from the neighbor

;€D Iu;

occurrence self-information and are used for weightingyimieor votes and weighting the

contributions of the label information and occurrence pedfiformation in the final fuzzy

votes. The distance weighting facihr (x;;) is optional and we have used the same weight-

ing scheme as in h-FNN in our experiments.

P (yi = clzie € Dy(x;)) = %SZ;) = Pr,c(Tit)
o) a4 i) (L= al@i)  Pre(@in), v =c 4
pilyn = clrie) {(1 — (i) - Pr,c(Tit), Yit 7 ¢ @
k
ue(z;) Zﬁ(l'it) “dw (i) - pr(ys = clxyy) ®)

t=1

Equations 4 and 5 represent the HIKNN voting framework, Basepreviously defined
guantities. This form of assigning voting weights incolgtes a bias towards more 'local’
neighbor points, since hubs tend to be located closer tderlaenters in high-dimensional
data. However, the increased specificity bias of the HIKNaréng approach makes it
somewhat more prone to noise and mislabeling.

Naive Hubness-Bayesiannearest neighbor (NHBNN) [52] represents another approac
to learning from past occurrences, which is based on a Naayed&an estimate of the
class affiliation probabilities. Denote the data sizeMy= |T'| and the size of classby
ne = |[{z; : y; = ¢}|. The NHBNN rule is then given as follows, with a smoothing
parameter.

k k N ) 1
Pl = D (@) ocpli = o) [T e € Detoly =) = 5 [T R
(6)

Naive Bayes rule is based on an independence assumptioedietive attributes and
this assumption is severely compromised in NHBNN. Nevéesgse Naive Bayes is known
to often be able to deliver good results in presence of sthamctional correlations between
the attributes [40] and NHBNN has been shown to perform wetlass imbalanced classi-
fication tasks on high-dimensional data [50].

An important property of all hubness-awa&N classification methods is that it is pos-
sible to use them in boosting. Neighbor occurrence modeisbeatrained with instance
weights. This is why in Section 7 we have avoided consideliogsting approaches as
competitive baselines, as hubness-aware classificatitioaie can actually be used in con-
junction with those noise-tolerant boosting strategiedefailed examination of this idea is
beyond the scope of this paper and will be addressed in futark.
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4.2 Handling of Mislabeled Points in Hubness-aware Clasgifin

Most k-nearest neighbor methods have a high sensitivity biassgsétain all the examples
and do not generalize by building explicit models. Learrfign past occurrences in form
of building neighbor occurrence models increases the génation capabilities 0kNN
classification, especially in case of h-FNN and NHBNN.

Consider a simple 2-dimensional example shown in Figuré & point is mislabeled,
h-FNN can learn that its past occurrences are inconsistéhtits label and would prefer
the occurrence information to the label information wherkimg a classification decision.
While this approach seems conceptually well suited for haganislabeled data points, it
is not only the mislabeled points that become bad hubs antieehdetrimental influence
on kNN classification. Bad hubs are not uncommon in intrinsychlgh-dimensional data
and this is why it might be a good idea to take the past occoer@rformation into account.
Past occurrence evidence is derived from the label distoibwf a potentially large number
of reverse nearest neighbors in case of strong hub poinitjsalso more robust to label
noise.

% .

E] Class: 0

Ais nearest
A— B: Class: 1
neighbor of B A ass

Fig. 2 An illustrative example of 1-NN classification in presendeénzorrect data labels. Considéf, as
the query point. Its nearest neighb&F,, = NN(X,) seems to be mislabeled. The 1-NN rule would assign
X, to class 1 instead of class 0, due to the label of its nearégiilmar. This error might further propagate
if X4 is retrieved in future classification queries. In this parér case, it is possible to sidestep the issue
by using a larger neighborhood, though this is not alwaysié&in more complex data. However, we will
demonstrate that it is possible to reach the correct clea8dn decision even fdr = 1, by applying hubness-
aware classification. Namely,,, = NN(X1) and X,,, = NN(X32) andY; = Y2 = 0. Counting the
occurrences givedV1(X.,) = 2, N1,0(Xm) = 2 and N1,1(X,m) = 0. Consider the hubness-fuzzy
k-nearest neighbor method, without the optional distancightiag. This givesug(Xm) = 2?2‘& and

ul(Xm) = ﬁ Assume\ = 1 here, for simplicity. This yieldso (X,) = 0.75 andu (X, ) = 0.25.
As X, is the only point to vote sincé = 1, these are also the final h-FNN class affiliation probability
estimates forX,. Therefore,p(Y; = 0) = 0.75 andp(Y; = 1) = 0.25. These estimates lead to a
correct X, classification, despite its mislabeled nearest neighlmils® derivations hold for NHBNN or
HIKNN. This example illustrates the motivation behind lgag from past occurrences and hubness-aware
classification. Due to the fact that hubs often turn out to égimiental to classification [37] and that bad
hubness is not uncommon in intrinsically high-dimensiodata, it is not uncommon for a point to have
bad hubs among it&-nearest neighbors. However, it is not always that easy timexuseful information
from past hub occurrences, especially in highly non-homoge high-entropy occurrence profiles, where
the occurrence profile itself cannot clearly indicate hoe tote should be placed. Different strategies for
combining all this information for inferring the class aétion in the point of interest yield different hubness-
aware approaches.
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As most neighbok-occurrences in high-dimensional data are in fact hub oeoges,
flipping a single label is much less likely to cause misclxstion in hubness-aware classi-
fiers. In fact, randomly flipping a label of a hub point mighdiurce severe misclassification
in the basid:NN method and many standattliN methods. However, a noisy hub label does
not exhibit a greater influence on hubness-aware classgificaith h-FNN or NHBNN than
any other noisy label. This is due to the fact that the labesiat used directly in voting for
classification.

Formally, assume we are observing a pdiat., ym) whose label has been randomly
flipped. InkNN, this noisy information propagates 1, (z,,) k-nearest neighbor sets, all
kNN sets where,;, occurs as a neighbor. In h-FNN, the only influence thatas on future
classification is via the occurrence models of the neighbbts,,, pointsz; € Dy (zm). In
many intrinsically high-dimensional data sets, a larggprtion of points are orphans that
never occur as neighbors. Due to that fact, the expectatidf, or) for those points that do
occur in neighbor sets increases &V, (zm)|3z : zm € Di(z)) > k = |Di(zm)| if
orphans are present in the data. It follows that non-orpheshabreled points are expected
to propagate the noisy information in more caseB8NIN than h-FNN, assuming high data
dimensionality. However, orphans play no roleéNN, but they are being taken into account
when building the neighbor occurrence models in h-FNN amdhan points can also have
noisy labels. The expected number of cases where a randoisligbmled point would ex-
hibit its influence is therefore the same, if we take both arpghand the occurring neighbor
points into account.

However, while the expected number of error propagatioesasght be the same, the
expected effect is not. Class probability density estiomatjuality depends on the num-
ber of sample neighbor or reverse neighbor points. In géntva standard errorof a

probability estimatep is /212 wheren is the number of observations it is derived
from. A single noisy labeled data point or a constant numlberocsy labeled data points
would have a more pronounced effect on those estimates fhatesived from a smaller
number of sample points, trivially. I&RNN, the class probability estimates are derived
from exactlyk neighbors. In neighbor occurrence models, it was alreadytioreed that
E(Ny(z)|3z; : « € Dg(x;)) > k in high-dimensional data in presence of orphan points.
Therefore, a single mislabeling has a higher expectedtefieé&NN voting than on one
fuzzy h-FNN vote. As h-FNN estimates the class affiliatioolgabilities fromk such fuzzy
votes, a much larger number of points is used in deriving ted &stimate.

5 Hubness-proportional random label noise

In adversarial classification tasks like intrusion detattr spam filtering, malicious adver-
saries may manipulate data labels in order to affect thesifieastion outcome. As hubs are
the centers of influence NN classification, we postulate that most damage could poten
tially be done tokNN-based learning systems by targeting hub points speltyfivih label
noise.

Uniform random label noise is, therefore, insufficient togerly estimate the pes-
simistic scenarios of potentially successful malicioub kabel flips that might be targeted
in kNN-based systems. It is also insufficient for estimating woest-case robustness of
such systems and can be used primarily for evaluating thrageesystem behaviour in pres-
ence of label noise. In order to be able to better test thatsatysof KNN-based systems
to adversarial hub-targeted attacks or non-adversargéesyatic hub-centered errors, it is
preferable to use a non-uniform hub-preferential noiseehod
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Def. Let hubness-proportional random label noisé with the noise ratey be the ran-
dom label noise that results from the following stochastarpss:

Step 1: Randomly select a seof distinct data points frorfi” of size|S| = n- NV, according
to the discrete probability distribution that defines thausion probability ofr; € T to
S in a single draw agsejec{;) = i),

Step 2: Randomly flip the label of eaml;le S so thatpyip (y; — ¢) = %1 for ¢ # y;.

Since orphan points havg (z;) = 0, some smoothing might be necessary in practice
in order to ensure positive selection/flip probabilitiesdt data points. If thé-neighbor set

of each point is extended to include the point itself, thenissue is avoided andeiec(z;) =
Ni(zi)+1
(I§+T1)-N :

Enforcing the mislabeling rate by fixing the number of indiiceislabeled points is
required since it is impossible to simply defipg, (v;) = n - 2= for independent label
flips, due to the fact that it is possible to ha@fé(“—‘ > % WhICh would then result in
prip (yi) > 1.

Hypothesis: In intrinsically high-dimensional data, hubness-projooral random label
noise affectstNN classification more severely than uniform random labésex@and rep-
resents a challenging noise model that can be used to ewdheatimit-case robustness of
kNN methods.

Nevertheless, it should be noted that the hubness-propaitrandom label noise is not
the worst case scenario in itself. The worst case would benesider having all of the top
n - N most frequent neighbor points mislabeled, since this woudatimize the number of
compromisedk-neighbor occurrences. Since such a worst case scenantikely in the
non-adversarial case and also difficult to achieve in thesdwial case unless complete
information about all the data and all the system componierasailable, we prefer to rely
on the proposed stochastic hubness-proportional randbeh teise model for evaluating
the kNN-based system robustness instead.

Itis possible to extend the proposed stochastic model bglitoning the label flips on
the values of the original labels and considering the ppimictlass-conditional gradients
of misclassification in the data. The misclassification gnai$ can be deduced from the
classification confusion matrices. The adversary could flip the label of the target in-
stance to the value that is most likely to cause misclassiitén the class that is estimated
as most common in the target instance’s occurrence profitéleVguch advanced strate-
gies are conceivable, they would require the class-camditioccurrence estimates that are
non-trivial to obtain, so the following evaluation focuses the simpler yet challenging
hubness-proportional random label noise model instead.

In Section 5.2 we will discuss possible adversarial apgreador inducing hubness-
correlated label noise in real-world data and show that tifenéss-proportional random
label noise model can be helpful in evaluating the robustoéthe systems to such attacks.

The impact of hub-centered label flips on machine learninfpp®ance can be quite
substantial, depending on the underlying data dimenstgraaid hubness. Section 5.1 gives
a practical example of how things can go wrong even if no mbaa ta few labels of the
highly influential examples get compromised.

3 Hubness-proportional label noise will also be referredstd/a(x)-proportional label noise interchange-
ably throughout the paper.
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5.1 Susceptibility okNN to Hub-centered Noise: An Illustrative Example

In many types of networks, the presence of hubs can increbastness to random noise [64].
However, this comes at a price. At the same time, the presdiiaebs makes scale-free net-
works significantly more vulnerable to hub-centered inaacies. Small changes and low
noise levels can sometimes substantially harm systemmeaface. The example outlined

in Figure 3 illustrates this problem [48].
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Fig. 3 The emergence of top 5 major hubs on the iNet3Err dataset @G&d and bad 5-occurrence fre-
quencies are denoted l6yNs and B N5, respectively. Under the particular choice of feature espntation
(SIFT [33] bag of visual words) and metric (Manhattan), gdisature vectors that resulted as errors in the
feature extraction pipeline ended up becoming the majos lukthe data, as the size of the visual word vo-
cabulary was increased. Their influence was highly detrieleas most of their occurrences induced label
mismatches.

Figure 3 shows the emergence of 5 major hubs on the iNet3@ntiped SIFT [33] rep-
resentation and their detrimental influence. The data spamds to a 3-class subset from the
public ImageNet repository [14lh€tp://www.image-net.org/). The experiments were
run to determine the optimal bag of visual words vocabuldzg §48] and an increase in
dimensionality resulted in a sudden and severe drop in blgeognition performance. As
a result, the basig-NN classifier performed worse than zero-rule for the 10b@ethsional
case, as shown in Table 1. Subsequent analysis has detdrtimneause of this pathological
behavior to lie in the emergence of several extremely bagasere hub images.

Table 1 Classification accuracy diNN and four hubness-awadeNN algorithms (hwkNN, NHBNN, h-
FNN, HIKNN) on iNer3Err image data. Statistically signifitamprovements are denoted by

Data set 5-NN hw-kNN NHBNN h-FNN HIKNN
ImNet3Err 21.2+ 2.1 27.1+ 11.3 59.54+ 3.20 59.54+ 3.20 59.6 + 3.2 0

In this particular case, the image hubs were erroneoushgsepted by zero-vectors as
a result of an I/O error in the feature extraction pipelinee Manhattan distance from a
zero vector to any given quantized image representatioairentonstant, regardless of the
codebook size. The number of local image features that arg lspiantized is constant,
so theL; norm of the quantized vector does not change. At the same tiaalistances
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between pairs of images increase on average with incredsimgnsionality, as the weights
are spread over a larger number of buckets. This causes riveeetors to become major
hubs in the data.

The particular error was easily corrected by re-runningfé@ure extraction compo-
nent for the images in question and updating the extractiole clt can also be argued that
carefully designed data processing systems ought to perfam-time consistency checks to
ensure valid data representation. However, this exampbelgl shows the potential danger
that lies hidden in the hubness of the data. Only 5 detrinhéwtaimages had rendered the
kNN-based object recognition component effectively usetesa 2731 image dataset.

Even properly processed data sources might contain ndigitiég amounts of external
systematic and non-uniform label noise [36][21]. If suchseowere to align itself in the
data space with the central cluster regions that exhibithigbest overall hubness in the
data [54], hub-centered noise could still arise.

Highly detrimental hub points can also naturally arise e¢bnters of borderline regions
between different classes and need not be noisy instanossriig a valid and correct
data representation is not enough to prevent such patlealogases from ever occurring in
practice. Additional data filters and instance selectiomponents might be necessary for
robust data pre-processing. Robust systems need to beodidedle not only the average
levels of noise and data corruption but also the more exteases of hub-centered noise.

5.2 Simulating the Adversarial Hub-targeted Label Flips

Hub-centered label noise has a high pay-off in adversas@iarios, where malicious intru-
sions might be difficult or costly and the adversaries migbklfor ways of maximizing the
disruption to the target systems with minimal interventidthe adversaries were to be able
to predict the relevance of the known examples on unseenttiatawould be able to target
hub points specifically.

If given access to a sample of the data drawn from the samenvlasidistribution
as the unseen data, it would be possible to evaluate theefottourrence frequencies of
potential target examples, especially as estimating thetexequencies is less important
than estimating whether a given point is a potential hubetaog not. As hubs occur very
frequently ink-nearest neighbor sets, even a small sample would suffickefecting most
hub targets in a very straightforward way, assuming somevlgage of the underlying
metrics and data representations.

If the exact data representation or the distance measureirwn, it is still possible
to trivially determine target hubs if given access to thaeysitself, by running a series of
gueries on the system and keeping track of the returned itenie top4 result sets and
their properties.

Even if the exact similarity measure is unknown and conbtanterying the system is
not feasible, there are some known properties of hubnessahae exploited for approxi-
mately detecting high-hubness targets. For instanceaikisown property of hubs that they
tend to lie close to local cluster centers [54]. Clusteriag,¢herefore, also be used for esti-
mating point centrality and the centrality can be used fmegting point hubness, the same
way that point hubness can be used for effective clusteffilmgb-dimensional data.

In certain cases, indirect hubness-correlated attacksaasible based on some known
properties of certain data types and metrics. Documentaete is preserved across lan-
guages, so it possible to approximate document hubnesseh giccess to data transla-
tions [55]. In textual data in particular, document lengdm cometimes be correlated with
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hubness and shorter (or longer) documents might have artepfier becoming hubs, under
different circumstances [37].

We will illustrate this point by simulating an adversarigtagk on the labels of the
SMS message spam data [12,13, 1] from the UCI repositarypg : //archive.ics.uci.
edu/ml/datasets/SMS+Spam+Collection). A 4-gram representation was extracted and the
cosine similarity was used after applying TF-IDF, whichterglard in many text processing
applications. N-grams were preferable to simple bag of wbete, due to a high frequency
of misspelled words and alternate spellings. The data oen&b74 messages including
4827 regular and 747 spam messages. This collection of slemtages exhibits substantial
hubness, which can be seen in Figure 4.

10 30

SNk

(a) Skewness (b) Bad hubness percentage

Fig. 4 Skewness and bad hubness in the SMS spam dataset, over aofar@ghborhood sizes. The data
was represented via 4-grams and the similarity was caémlilas cosine similarity after applying TF-IDF. In
all cases, the data exhibits substantial hubness. Thefidaten task is not too difficult in absence of noise,
given the low rate of label mismatchesihN sets.

Letx; = {fij,j € {1...vsize}} be the feature representation of messageThe fj
corresponds to the occurrence frequency of ftite n-gram in the message. As the SMS
messages are short, mggtequal zero and the representation is sparse. The TF-IDFhiveig
for the j-th n-gram in message; is defined asv?(z;) = f7 - log %&m We will also
assign a weight to the entire message by summing all theiMl/T]%-IIIJDF weights for the
terms that occur in that message, as folloW;y:(z;) = Zj:fg>0 wige ().

In the SMS spam message dataset, hub messages seem to Havethaverage total
weight, as shown in Figure 5.

We have simulated an adversarial label noise attack th&iexghis fact. Instead of cal-
culating or estimating target message hubness, the atéielsed on targeting the messages
of lowest weight. We have examined both the stochastic amdi¢berministic scenario. In
the deterministic scenario, the adversary is able to flipahels ofp - N messages of lowest
weight in the collection. In the more realistic, probahitiscase, the adversary is able to
compromise the label of; with a probabilitypsip (y;) that is proportional to the inverse of
the total message TF-IDF weightii, (i) W In the absence of the exact TF-IDF
weights, the weights can be approximated from a sample or @ther textual sources.

The experiments were run as repeated random subsampliegchiteration, the data
was randomly split so that0% was taken as training ar8% as test data. Different noise
models were applied to the training data in separate expetsnTest data was used to query
the training data and themost similar messages were selected for each test data poent
average bad hubness rate was calculate in each case. Theaguofthe experiments is
given in Figure 6, for different noise rates.
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Fig. 5 The average message weight as a sum of the TFIDF weights @§ altgrams for hubs, regular
messages and anti-hubs, over a range of neighborhood Kizbsnessages have the lowest average length
for small neighborhood sizes.

B random
&~ Nk(x)
~ 1/Wtfidf
= min 1/Wtfidf

n=0.05 n=0.10 n=0.15 n=0.20

Fig. 6 The induced bad hubness percentages in the SMS spam datdsetdifferent noise models and
different noise rates. The random inverse TF-IDF weighs@anodel induces almost as much bad hubness
in the data as the hubness-proportional random label nbisedeterministic case where the N shortest
messages are selected and mislabeled induces a much héghlenttness rate then any other examined noise
model, as many hub messages get mislabeled.

The experiments have shown that the inverse message weiglet model produces a
very similar bad hubness rate to the hubness-proporti@raam label noise. The deter-
ministic alternative, where a number of messages of lowegjht is selected, produces an
even more severe bad hubness in the data and causes sigmifisalassification.

These experiments clearly demonstrate that it is possl#&loit some known proper-
ties of hubs in standard feature representations to appedgirandom hubness-proportional
label noise. Strictly speaking, the outcome is not an imdireibness-proportional noise
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model, as much as hub-targeted and hubness-correlatedmodel. The distinction, though,
is not that important from the practical viewpoint. Sincenight be possible to carry out
malicious attacks targeting hub examples in particulapness-proportional random label
noise can be used to model the consequences of a succesafld and to evaluate the
robustness of the system.

6 Data

The experiments were performed on several data domain$éremark consists of quan-
tized image representations, high-dimensional Gaussistures, UCI datasetsas well as
UCR time series datasétdmages and Gaussian data exhibited substantial hubnéags, w
the selected UCI and UCR datasets exhibited low-to-mediubméss on average.

Image data used in the experiments consists of severahhilghess subsets of the Ima-
geNet repositofythat were previously used in hubness studies [53][48]. We kaamined
guantized 400-dimensional SIFT feature and 100-dimeas$idaar wavelet representations.

The Gaussian mixture data was also used in previous expasif&]. It was generated
with a specific intent to pose difficulties farnearest neighbor classification. Let and
o be thed-dimensional mean and standard deviation vectors of a Fgglegrical Gaussian
classc € 1..C on a synthetic Gaussian mixture data set. The covariancecesf the
generated classes were set to be diagonal for simpli@tythie attributes were independent
and thei-th entry ino. signifies the independent dispersion of that synthetiaufeat~or
the initial class, the mean vector was set to zeroes and éimelatd deviation vector was
generated randomly. Each subsequent ctasss then randomly 'paired’ with one prior
Gaussian class, denoted &yso that some overlap between the two was assured. For each
dimensiore € 1..d independently;.. was then set tp. ~ ue =+ 3- oz with equal probability,
whereg = 0.75. Dispersion was updated by the following rute:= ~v-oz+ (y— ) - Z - o¢,
wherey = 1.5 and Z is a uniform random variable defined ¢ 1]. The assigned class
sizes were randomly taken from a range between 20 and 10@010 enerated synthetic
datasets were set to be 100-dimensional and to contain f20atif classes.

A set of 15 representative UCI datasets was selected foriexpets, as follows: Ar-
rhythmia, Ozone, Ecoli, Gisette, Glass, Haberman, lonexspMfeat-factors, Mfeat-fourier,
Mfeat-karhunen, Iris, Segment, Sonar, Vehicle and Ova¥dnile some of this data is high-
dimensional, the selected datasets do not exhibit sevémgelss, unlike the selected image
data.

Similarly, we have selected a set of 15 representative U@IR Series datasets, as fol-
lows: CricketX [29], CricketY, CricketZ, FacesUCR, Medicaages, MALLAT, Motes,
OliveOil, SonyAIBORobotSurface, SonyAIBORobotSurfdec8wedishLeaf, Symbols, Syn-
theticControl, Trace, TwoPatternsNN classification is often used in the time series do-
main, especially when used in conjunction with the dynaimetwarping distance [62][61].
This approach is among the most popular ones and compeiititethe state-of-the-art.
Therefore, it is important to evaluate the robustnessNifl methods to label noise on time
series data.

4 https://archive.ics.uci.edu/ml/datasets.html
5 www.cs.ucr.edu/ eamonn/tingeriesdata/
6 http://www.image-net.org/
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7 Experiments

All experiments were run as 10-times 10-fold cross-valaatCorrected re-sampled t-test
was used for statistical significance comparisons [8].

Most experiments were performed in 3 main experimentalpsetearning and classifi-
cation with correct data labels; learning and classificatioder uniform random label noise
raten = 0.3 and learning and classification under hubness-propoitramaom label noise
raten = 0.3. The influence of varying the noise levels is discussed irettperiments in
Section 7.2.

We have compared the performancekbiN, neighbor-weightedNN (NWKNN) [46]
and adaptivéNN (AKNN) [59] with the performance of hubness-aware clfisation meth-
ods, in particular hweNN, HIKNN, NHBNN and h-FNN. The neighbor-weightgeNN is
an extension of the basidNN method that incorporates class-conditional vote wénght
for class-imbalanced data. The third baseline, AKNN, isrtizst competitive baseline ap-
proach, due to its noise-robust distance re-scaling glyates explained in Section 2.

Manhattan distance was used for comparing image reprégestaEuclidean on UCI
data and Gaussian mixtures and dynamic time warping (DTWumseries. Neighborhood
size of k = 5 was used in most experiments, while Section 7.3 discusseisfibence of
varying neighborhood size.

The summary of the experiments on ImageNet datasets is miviable 2, the summary
of experiments on high-dimensional Gaussian mixtures Wiera, the summary of exper-
iments on UCI datasets in Table 4 and the summary of expetgr@ntime series UCR
data in Table 5. The experiments demonstrate a substaifiiabdce in robustness between
kNN and the tested hubness-aware approaches. For exangph/diage accuracy éNN
on ImageNet data drops froif9.8% to 70.5% and43.8% when the correct labels are in-
fluenced withy = 0.3 random label noise angl= 0.3 hubness proportional random label
noise, respectively. In the same circumstances, the avetagsification accuracy of h-FNN
changes fron81.4% to 79.6% and then t6r9.2%. The absolute accuracy drop 8% in
kNN corresponds to a drop of me2e2% in h-FNN.

Among the hubness-aware classification methods, h-FNNeebithe best results over-
all for then = 0.3 random label noise level arid= 5, uniform or hubness-proportional. Itis
followed by NHBNN, AKNN and HIKNN, depending on the data damand the setup. The
worst among the tested hubness-aware approaches was theskubeightedNN, which
is not surprising, as it performs voting by label, unlike titeer compared hubness-aware
methods that base their votes on the neighbor occurrencelsod

Uniform label noise affects the perceived class distrduin the data and it shifts it
towards the uniform class distribution. This differencéween the perceived class distri-
bution on the training data and the actual class distribubio the test data implies that the
class-conditional vote weighting in NWKNN will be negatiyaffected by the label noise.
This is why the experiments indicate that NWKNN actuallyfpens worse than the basic
kNN in presence of label noise. AKNN performs best among tiselizes.

The improvements offered by h-FNN oveNN are more pronounced in high-hubness
data than in the examined low-to-medium hubness data. Nwless, h-FNN seems to
achieve promising results in those cases as well.

The improvement rate may vary when using different neighbod sizes, as discussed
in Section 7.3.
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7.1 Robustness to Hubness-proportional Label Noise

Hubness-proportional random label noise increases lalsehatch percentages kanearest
neighbor sets more than the uniform random label noise, @srsm Figure 7. The differ-
ence is more pronounced in high-hubness data, which aldaieghy there is a bigger
difference between the performance:dfN and the performance of hubness-aware methods
in those cases.
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Fig. 7 The percentage of label mismatches in 5-NN sets as labet imistroduced in the data. The non-
noisy case is denoted by= 0, the uniform random label noise case with 8% noise level by; = 0.3 and
the Ny (z)-proportional random label noise case with the same nois¢dsn = 0.3("Ng(x)). The Nk (z)-
proportional random label noise increases bad neighbarmauce percentages more than the uniform label
noise. The change is more pronounced in high-hubness datartiow-to-medium hubness data.

The average accuracy @NN, AKNN, HIKNN, NHBNN and h-FNN for each data
domain and each experimental setup separately is showrgire=B. AKNN exhibits a
somewhat lower robustness than h-FNN and NHBNN to uniforndoan noise, though it
is still comparable. However, under hubness-proporticaatiom label noise the difference
becomes apparent.

These results indicate that our initial hypothesis wassabiand that hubness-proportional
random label noise poses significant challenge%fiX classification. Furthermore, by us-
ing the neighbor occurrence models for hubness-awidié classification and the hubness-
based fuzzyk-nearest neighbor approach in particular, it is possiblpetdorm well even
under high noise rates. The overall classification perfogaacould be further improved by
performing data filtering prior to classification, thouglistis a separate topic and beyond
the scope of this study.

7.2 Influence of Varying Noise Levels

As most experiments were performed for the noise rate 0.3, a series of comparisons
was run on multiple datasets for multiple increasing no&sels. A comparison 0NN,
AKNN, HIKNN and h-FNN in terms of classification accuracy @ndiniform random label



18 Nenad TomaSev, Krisztian Buza

©
o

m kNN
g 70 21 AKNN
3 60 = HIKNN
<
50 £ NHBN!
40 & h-FNN
n=03 n = 0.3 (~ Nk(x))
(a) ImageNet data
m kNN
> 70
g L 1 AKNN
g 50 = = HIKNN
< =
= I NHBN!
30 = & h-FNN
n = 0.3 (~ Nk(x))
80 — m kNN
g 70 =
g = =1 AKNN
g 60 = = HIKNN
< =
50 = £INHBN!
40 = & h-FNN
n = 0.3 (~ Nk(x))
(c) UCI data
95
90 m kNN
>
g ss =1 AKNN
§ 80 = = HIKNN
<
75 I NHBN!
70 & h-FNN

n=0 n=0.3 n = 0.3 (~ Nk(x))
(d) UCR data

Fig. 8 Average classification accuracy 8NN, AKNN, HIKNN, NHBNN and h-FNN on different data
domains. Comparisons are given for correct labglss 0.3 random label noise level, as well 8, (x)-
proportionaly = 0.3 label noise. h-FNN exhibits the overall best robustnesalielinoise among the com-
pared approaches. As for the baseliMéN, a steep decline in accuracy can be observed, especialbse of
adversarialVy (x)-proportional label noise, where it performs much worsa tivaen noise is randomly dis-
tributed throughout the label space. No significant difieeein performance of h-FNN can be seen between
the two compared types of noise.

noise is shown in Figure 9, for iNet3ImbsSift-iNet6ImbSifiage datasets. The accuracy of



Hubness-aware kNN Classification of High-dimensional Dataresence of Label Noise 19

h-FNN appears to have the slowest deterioration rate wihaet to label noise and the
biggest improvements can be seen for the highest noise rates
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Fig. 9 Classification accuracy &fNN, AKNN, HIKNN and h-FNN over a range of increasing noiseesabf
uniform random label noise. In each case, the accuracy diK-&xhibits the slowest decline and it proves
to be robust to high noise levels.

Similarly, a comparison between the accuracykbfN, AKNN, HIKNN and h-FNN
under increasing hubness-proportional random label risisbown in Figure 10. h-FNN
achieves a high robustness in this case and is apparentlgaticeably affected by the
change in the label noise distribution, unlike the otherhods that show a steeper perfor-
mance decline.
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Fig. 10 Classification accuracy d¢NN, AKNN, HIKNN and h-FNN over a range of increasinyy (x)-
proportional noise rates. In each case, the accuracy ofM-$@éms to be least affected by the introduction
of label noise.
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These experiments show that the improvements that havedimemved are consistent
over various noise rates and noise models. Hubness-bazeyl iftnearest neighbor clas-
sification achieves the best results among the comparedagpes regardless of the noise
rate or the noise distribution, though the improvementsyasst significant for higher noise
levels, which is a beneficial property.

7.3 Influence of Varying Neighborhood Size

Choosing an optimal neighborhood size is a non-trivial fwbin mosttNN methods. A
value ofk = 5 was used in most experiments presented here, which is a cordefault
choice. Larger values df might sometimes be preferable in presence of noise. In doder
evaluate the influence of neighborhood size on classifica@sults, we have compared the
classification accuracy aiNN, AKNN, HIKNN and h-FNN for a fixed random label noise
rate ofn = 0.3 over a range of increasing neighborhood sizes, as showmyimd-1L.1.
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Fig. 11 Classification accuracy &NN, AKNN, HIKNN and h-FNN for a uniform random label noise eatf

n = 0.3 over a range of increasing neighborhood sizes. Using largighborhoods increases the robustness
of the compared classification methods to mislabeling. Tés bverall results are achieved by h-FNN and
HIKNN.

According to Figure 11, an increase in neighborhood sizedrgskNN classification
performance on these particular datasets, as it reduce¥ltience of noise. Not all remain-
ing algorithms improve with increasing neighborhood seeh-FNN and AKNN reach a
plateau somewhere betwekn= 5 andk = 10. HIKNN continues to improve and outper-
forms h-FNN for large neighborhood sizes, while h-FNN ramadominant when smaller
neighborhoods are used.
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While the performance improvements ow®N vary, the highest accuracy achieved by
the hubness-aware classifiers remains higher than thestigbeuracy achieved by ti&N
baseline, over the examined range of neighborhood sizes.

Figure 12 shows the same comparisons for hubness-propairtiandom label noise.
Unlike in the uniform casekNN performs much worse throughout the tested range and
even fork = 20 and requires even larger neighborhoods to compensated@atine noise
rate.
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Fig. 12 Classification accuracy déNN, AKNN, HIKNN and h-FNN for a hubness-proportional random
label noise rate ofy = 0.3 over a range of increasing neighborhood sizes. Using larggthborhoods
increases the robustness of the compared classificatidmodeeto mislabeling. The best overall results are
achieved by h-FNN and HIKNN.

Using large neighborhoods is not always possible, espedmtlass imbalanced data
with rare categories and small dispersed class clustemsgUsger neighborhoods in such
cases would breach the locality assumption and might comigeothe precision on smaller
classes, thereby reducing the overall system effectigedss is why achieving good per-
formance for smaller neighborhood sizes is a highly dekrptoperty.

7.4 Hubness-proportional Random Label Noise and Otherslgp€lassifiers

In addition to the experiments presented earlier, sevémabard norktNN classifiers were
compared under the given noise models, in order to see whigtlidnubness-proportional
random label noise affects any of them in a different way ttenuniform random label
noise.

We have compared J48 decision trees, multi-layer peraggivih.P) and SVM in 10-
times 10-fold cross-validation on all previously examimiadasets under all examined noise
models for the noise rate gf = 0.3. We have used MLP in the following modes: MLP(5)
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with 5 hidden nodes, MLP(20) with 20 hidden nodes and MLPHR®ith two hidden
layers of 20 and 5 hidden nodes, respectively. SVM was eteduaoth with the polyno-
mial kernel and the RBF kernel. The hyperparameters wemerméated based on a local
search on subsets of the training data. WEKA implementatioare used for the experi-
ments http://www.cs.waikato.ac.nz/ml/weka/). The experiment summaries are given
in Table 6.

In most data domains, there were no substantial differebetgeen algorithm perfor-
mance under uniform random label noise and the hubnessxpiapal random label noise
for these algorithms. The J48 implementation of decisieadrseems to be highly suscepti-
ble to label noise in both noise models, unlike SVM.

The robustness of SVMs to hubness-proportional randon helige can be attributed to
the fact that their classification performance relies nyostl the quality of support vectors
and hubs in general are not always good support vectorsrinsitally high-dimensional
data. The hubness ratio that is defined as the ratio betweehegm bad occurrence frequen-
cies (GRE ) was shown to be more relevant in past experiments on SVMspefcentage
of points with the hubness ratio close to 1 among the supgatbys was shown to increase
with increasing data dimensionality [20]. These exampkeslbser to the separating hyper-
plane than other examples, on average.
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g E h-FNN
< 0 4
ImageNet Gaussian
mixtures
(a) Uniform label noise
g 25
2 20
2
€15 [148
a A 7
8.0 18 7 MLP(20)
§ & SVM(poly)
€ 5 |
§ B h-FNN
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Fig. 13 Absolute classification accuracy loss under the testecenmoizdels, given for J48, MLP, SVM and
h-FNN. The hubness-aware h-FNN classifier exhibits a higiverall robustness to label noise under the
tested noise models for the noise rate;cf 0.3.
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The performance of hubness-aware classifiers seems to hgetitve when compared
with the remaining norkNN baselines. They clearly outperform the baselines on sienies
data wherg:NN is known to perform well. They seem only to be outperforrhgdsVM on
the tested Gaussian mixtures which were specifically desigo be challenging fokNN
classification, as discussed in the original paper [50].

The average absolute classification accuracy loss undse fioi different approaches
is shown in Figure 13. The hubness-aware h-FNN classifigniigx a higher robustness
to both uniform and hubness-proportional random labelenéis the tested noise level,
compared to J48, MLP and SVM.

8 Conclusions and Future Work

High data dimensionality poses significant challenges:foearest neighbor classification.
We have examined the influence of hubness as an aspect ofrdeeafudimensionality [5]
on the problem okNN classification with label noise. The emergence of hubsided a
change in the distribution of influence that affects the sp8bility of k-nearest neighbor
methods to mislabeled training examples. Mislabeled hubtpaan potentially induce se-
vere misclassification.

In order to evaluate the risk posed by unreliable hub laledshave defined hubness-
proportional random label noise, where the label flip prdigby is modulated by the ratio
of the neighbor occurrence frequency and the neighborhiaged Bhe proposed noise model
increases the probability of hub points being mislabeleal. €periments reveal that the
proposed noise model increases the average percentageebfrissmatches irk-nearest
neighbor sets and has a much greater impact on classifi@rpenfice than the uniform
random label noise.

It was shown that the hubness-correlated label noise ca@ either naturally from sys-
tematic errors in the data or in adversarial scenarios.

Hubness-proportional random label noise model can be usesh adversarial model
that approximates a partially successful label flip attéek targets hub examples as most
relevant points in &NN-based system. We have demonstrated how certain prepeti
hubs can be used under certain standard representatiomsedrncs to indirectly guess the
hubness of data points in order to select hub targets forabetihg. Our simulations on
SMS message spam data indicate that the message totalsiéf-tBd- weights can be used
to pinpoint hubs in the data, as their weight is significataWer than that of the regular and
orphan messages. We have defined an inverse weight-papadrstochastic label noise
model and were able to approximate the negative effects lofidss-proportional random
label noise. Alternative adversarial hub-targeted séesavere also discussed.

We have proposed to use the neighbor occurrence modelstioebs-awaréNN clas-
sification of intrinsically high-dimensional data undebéh noise. Several recently pro-
posed hubness-aware classifiers were compared to sékabaselines in several dif-
ferent experimental setups: on correct data labels, omumifabel noise and on hubness-
proportional label noise. Hubness-based fukayearest neighbor classification (h-FNN)
was determined to be most robust among the compared huaness-approaches across
different experimental setups on multiple data domaingluoting quantized image repre-
sentations, high-dimensional Gaussian mixtures, UCI @atbUCR time series data.

The comparisons with SVM, J48 decision trees and the maye+l perceptron (MLP)
show that, while these noktNN classification models are not in general susceptible to
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hubness-proportional random label noise, hubness-avassifiers are overall competitive
under both examined noise models.

Hubness-based fuzzynearest neighbor classification is implicitly robust tarld@ng
with label noise, due to the nature of the voting procedurktae way the hubness-based
fuzzy votes are inferred. In future work we wish to explorentining the advantages of
h-FNN and HIKNN with other explicit noise handling strategj including but not limited
to noise detection and removal. Strategies that propetbr filubs and ensure their label
consistency should be seriously considered. Additionaléwish to explore the options for
combining noise-resilient boosting methods with hubreesare classification.
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Table 2 Experiments on ImageNet quantized image data. Classificaticcuracy is given fokNN,

27

NWKNN, AKNN, hw-kNN, HIKNN, NHBNN and h-FNN, fork = 5. The symbolse/o denote statisti-
cally significant worse/better performange € 0.05) compared tdcNN. The best result in each line is in

bold.

(a) Correct labels, no noise

Data set

kNN NWKNN

AKNN

hw- ENN

HIKNN

NHBKNN h-FNN

iNet3ImbSift 88.04+ 1.7 84.3+ 1.9e 89.6+ 1.70
iNet4ImbSift 70.34+ 1.5 69.4+ 1.5
iNet5ImbSift 67.34+ 1.8 63.9+ 1.8
iNet6ImbSift 67.9+ 1.7 65.5+ 1.7 e
iNet7ImbsSift 63.9+ 2.1 63.3+ 2.0

iNet3Sift
iNet4Sift
iNet5Sift
iNet6Sift
iNet7Sift
iNet3Haar
iNet4Haar
iNetSHaar
iNet6Haar
iNet7Haar

84.5+ 1.4 833+ 15
67.5+ 1.2 67.0£ 1.1
62.4+ 1.4 61.8+ 1.3
65.5+ 1.3 64.8+ 1.3
60.4+ 1.1 60.5+ 1.1
99.9+0.199.8+ 0.1
99.9+ 0.0 99.9£ 0.0
99.9+ 0.0 99.9£ 0.0
99.8+ 0.199.9+ 0.0
99.8+ 0.099.9+ 0.0

714+ 15
704+ 160
69.7+ 1.5
67.8+ 2.00
85.2+ 1.4
67.9+ 1.2
65.3+ 1.30
66.4+ 1.2
62.0£ 1.00
99.64+ 0.2
99.94+ 0.0
99.94+ 0.0
99.6+ 0.1
99.8+ 0.0

89.2+ 1.6
714+ 15
70.1+ 1.60
70.1£ 1.60
67.7+ 190
85.6+ 1.50
68.84+ 1.20
65.7+ 1.20
67.2+ 1.40
62.84+ 0.90
99.9+ 0.1
99.9+ 0.0
99.9+ 0.0
99.8+ 0.1
99.8+ 0.0

89.4+ 15
720+ 140
70.6+ 1.60
71.2+ 1.60
68.0+ 2.10
85.7+ 140
69.7+ 1.10
66.7+ 1.20
68.1+ 1.40
63.4+ 1.00
99.94+ 0.1
99.9+ 0.0
99.9+ 0.0
99.8+ 0.1
99.94+ 0.0

86.3+ 1.7 88.8+ 1.6
69.4+ 15 72.0+ 1.50
63.6+ 1.6 69.8+ 1.50
67.2+ 1.7 70.7£ 1.60
65.44+ 2.0 67.9+2.00
85.1+ 15 850+ 14
69.1+ 1.20 69.3+ 1.20
65.0+ 1.20 67.4+ 1.10
66.94+ 1.20 67.5+ 1.30
63.04+ 0.90 63.3+ 0.90
99.84+ 0.1 99.9+ 0.1
99.94+ 0.0 99.9+ 0.0
99.9+ 0.0 99.9+ 0.0
99.8+£ 0.0 99.8+0.1
99.8+ 0.0 99.9+ 0.0

AVG

79.8 78.9

81.0

81.2

81.6

80.0 81.4

(b) Noise rateq = 0.3

Data set

kNN NWKNN

AKNN

hw- &£NN

HIKNN

NHBKNN h-FNN

iNet3ImbSift 74.84 2.6 69.3+ 2.6 e
iNet4ImbSift 59.44- 1.7 56.6+ 1.9
iNet5ImbSift 56.7+ 1.6 53.0+ 1.6 e
iNet6ImbSift 59.0+ 1.9 55.84+ 2.0e
iNet7ImbSift 56.84 1.9 53.8+ 2.0 e

iNet3Sift
iNet4Sift
iNet5Sift
iNet6Sift
iNet7Sift
iNet3Haar
iNet4Haar
iNetSHaar
iNet6Haar
iNet7Haar

72.7+ 1.8 69.8+ 1.8
57.8+ 1.4 56.6+ 1.5e
52.6+ 1.3 51.2+ 1.3 e
56.8+ 1.3 544+ 12
53.6+ 1.1 53.3+ 1.0

88.2+- 1.2 85.8+ 1.4
90.44+ 0.8 89.5+ 0.9

92.3+ 0.7 91.2+ 0.7
93.6- 0.7 91.3+ 0.8
93.6- 0.5 92.7+ 0.5

85.0+ 1.90
64.0+ 140
645+ 1.60
65.7+ 1.60
61.2+ 190
78.1+ 140
60.0+ 1.10
573+ 1.30
59.0+ 1.40
52.0+0.9e
94.3+ 1.00
95.84 0.60
96.2+ 0.90
98.1+ 0.40
943+ 0.60

8l.1+ 2.10
60.3+ 1.7

59.0+ 1.50
61.2+ 1.80
59.94+ 2.00
754+ 150
58.9+ 1.6

556.2+ 1.20
58.6+ 1.40
53.3+ 0.9

93.2+ 1.10
94.84+ 0.70
95.0+ 0.50
95.84+ 0.50
95.84+ 0.40

84.1+ 2.00
65.84+ 1.80
64.5+ 1.60
65.0+ 1.90
63.0+ 2.00
78.8+ 1.60
63.3+ 1.50
59.1+ 1.10
61.8+ 1.30
58.2+ 1.00
96.0+ 0.70
97.9+ 040
98.3+ 0.30
98.0+ 0.30
98.5+ 0.20

76.3+23 875+ 170
66.5+ 1.70 69.0+ 1.80
60.74+ 1.80 67.8+ 1.60
62.54+ 1.80 67.5+ 1.80
60.5+ 1.90 65.7+ 2.00
80.3+ 1.60 824+ 1.40
66.6+ 1.40 66.6+ 1.40
62.0+ 1.10 63.9+ 1.20
62.84+ 1.40 64.6+ 1.40
60.44+ 0.90 60.6+ 1.00
98.31+ 0.60 99.0+ 0.40
99.64+ 0.10 99.5+ 0.10
99.74+ 0.10 99.6+ 0.10
99.24+ 0.20 99.4+ 0.20
99.74+ 0.00 99.6+ 0.00

AVG

70.5 68.3

75.0

73.2

76.8

77.0 79.6

(c) Ng(z)-proportional noise ratg = 0.3

Data set

kNN NWKNN

AKNN

hw- kNN

HIKNN

NHBKNN h-FNN

iNet3ImbSift 45.1+ 2.3 35.34+ 2.3e 81.9+ 1.80
iNet4ImbSift 30.6+ 1.4 28.04+ 1.3e 62.1+ 1.80 46.04+ 1.60
iNet5ImbSift 26.9+ 1.6 23.84+ 1.6 63.8+ 1.80 42.3+ 1.80
iNet6ImbSift 36.94 1.7 32.2+ 1.6e 64.8+ 1.70
iNet7ImbSift 33.14+ 2.0 28.6+ 1.9e 60.0+ 2.50 47.9+ 2.30

iNet3Sift
iNet4Sift
iNet5Sift
iNet6Sift
iNet7Sift
iNet3Haar
iNet4Haar
iNetSHaar
iNet6Haar
iNet7Haar

33.5+£ 21298+ 21e

752+ 190

69.44+ 240

51.2+ 1.80

55.7+ 2.10

7524+ 2.20
56.2+ 1.60
526+ 1.70
58.5+ 1.60
55.2+ 2.20
62.1+ 2.10

2794 1.3 27.2+ 1.2 56.3+ 1.40 43.6+ 1.40 49.7+ 1.50
29.4+ 1.2 27.6+ 1.2 542+ 1.30 40.3+ 1.20 45.7+ 1.30
31.6+ 1.3 28.8+ 1.3 55.1+ 1.40 45.2+ 150

26.4+ 0.9 26.0£ 0.9
61.8+ 2.1 58.5+ 2.0e
63.14+ 1.3 63.5+ 1.3
66.0+ 1.2 65.3+ 1.3
73.2-1.270.0+ 1.1e
71.0+ 0.9 70.8+ 0.8

51.84+ 1.10
90.5+ 1.30
92.6+ 1.20
94.1+ 0.90
96.4+ 0.50
93.24+ 0.70

38.6+ 1.10
87.7+ 1.60
88.0+ 1.00
89.2+ 0.90
91.5+ 0.70
90.3+ 0.50

51.5+ 1.60
469+ 1.20
93.3+ 1.10
96.1+ 0.60
97.2+ 0.40
97.4+ 040
97.8+ 0.30

69.24+ 2.50 86.2+ 1.80
64.34+ 1.70 68.8+ 1.80
56.94+ 1.70 67.3+ 1.60
61.3+ 1.70 67.8+ 1.70
58.1+ 2.00 65.2+ 2.20
76.74+ 190 80.5+ 1.70
65.34+ 1.30 65.8+ 1.30
60.7+ 1.00 63.0+ 1.20
61.5+ 1.40 64.2+ 1.50
59.5+ 1.00 60.3+ 1.00
98.44+ 0.50 99.5+ 0.20
99.74+ 0.10 99.7+ 0.10
99.6+ 0.10 99.7+ 0.10
99.44+ 0.20 99.6+ 0.10
99.84+ 0.00 99.84+ 0.00

AVG

43.8 41.0

72.8

61.8

69.0

75.4 79.2
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Table 3 Experiments on high-dimensional 10-class Gaussian n@gtuClassification accuracy is given for
kNN, NWKNN, AKNN, hw-kNN, HIKNN, NHBNN and h-FNN, fork = 5. The symbolse/o denote
statistically significant worse/better performanpe<{ 0.05) compared tdNN. The best result in each line
is in bold.

(a) Correct labels, no noise

Dataset EkNN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN

GM1 48.8+3.049.54+3.2 79.24 2.80 64.94 2.80 63.14+ 3.00 73.34+ 2.40 69.94+ 2.70
GM2 54.3+ 2.9 55.74+ 2.90 8244 2.20 73.84 2.80 69.34+ 2.80 78.24+ 2.40 76.54+ 2.50
GM3 68.5+ 2.6 65.7+ 2.6 87.04+ 1.50 82.24+ 1.70 81.34+ 1.90 84.84+ 1.70 84.44+ 1.80
GM4 572+ 22585+ 2.0 83.44+2.0069.94+ 230 68.7+2.40 77.3+2.10 75.0+ 2.30
GM5 63.7+ 2.6 62.6+ 2.6 83.24+1.90 77.74+2.00 77.0+ 2.20 8254+ 2.10 81.9+ 2.10
GM6 65.1+ 2.7 63.4+ 2.8 80.04+ 2.40 78.74+ 2.10 76.84+ 2.30 81.84+ 2.30 80.0+ 2.50
GM7  69.9+ 2.1 68.1+ 2.2 90.74+ 1.60 82.34+ 1.90 81.34+ 1.90 85.74+ 1.40 84.7+ 1.80
GM8 723+2471.1+£25 8494190 79.64+ 2.10 79.74+ 2.20 83.64+ 2.00 83.14+ 2.00
GM9 623+ 2561.7£25 84.0+1.80 73.0+ 230 72.84+2.30 81.84+2.10 78.8+ 2.20
GM10 63.3+ 3.0 64.1+£ 2.8 80.04+ 2.50 75.3+ 2.50 73.3+2.40 81.3+2.00 79.0+ 2.30

AVG 62.6 62.0 83.5 75.7 74.3 81.0 79.3

(b) Noise rateqy = 0.3

Dataset kNN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN

GM1 46.2+ 3.1 445+ 3.2 71.34+ 240 53.843.00 58.24+ 3.10 66.44+ 2.50 66.1+ 3.10
GM2 515+ 25511+ 24 75242305894 2.30 64.04+2.20 71.74+2.10 73.44+ 2.00
GM3 60.9+ 2.4 58.0+ 2.4 81.14+ 2.00 67.44+ 2.30 73.44+ 230 81.54+1.80 82.0+ 1.70
GM4  50.7+ 2.7 50.7£ 2.7 71.74+ 230 57.94+ 2.60 62.84+ 2.70 69.7+ 2.20 71.1+ 2.20
GM5 56.1+ 2.1 53.44+ 2.3e 73.14+ 1.90 63.04+ 2.30 69.24+ 2.00 76.34+ 2.00 77.44+ 2.00
GM6 58.6+ 2.9 56.7+ 3.0 75.34+ 2.70 66.44+ 2.60 71.34+ 2.80 75.24+ 2.50 76.7+ 2.60
GM7 62.1+ 2.8 59.1+ 2.7 82.34+ 2.10 68.84+ 2.50 7494 2.30 81.64+ 2.00 82.84+ 2.10
GM8 62.1+ 2.4 59.84+ 2.6 79.54+ 2.10 65.74+ 2.60 73.4+ 2.10 7894+ 1.80 79.94+ 2.00
GM9 56.4+ 2.3 56.1+£ 2.4 76.54+ 230 62.14+2.30 67.7+ 2.40 76.3+ 2.30 76.0+ 2.20
GM10 55.4+ 2.7 54.84 2.8 72.74+ 250 61.3+2.70 65.94 2.60 73.94 2.40 75.04+ 2.40

AVG  56.0 54.4 75.9 62.5 68.1 75.1 76.0

(c) Ng(x)-proportional noise ratg = 0.3

Dataset kNN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN

GM1 28.3+ 3.1 2454+ 2.7 63.74+ 3.10 42.34+ 2.90 4854+ 2.80 64.34+ 2.90 62.24+ 3.20
GM2 29.3+ 2.7 25.84+ 2.6 68.84+ 2.20 46.7+ 2.60 53.94+ 2.80 70.24+ 2.60 69.7+ 2.60
GM3 341+ 2531.8+2.7e 76.94+ 220 5454+ 290 64.94+ 2.40 79.74+ 2.00 80.3+ 2.00
GM4 322+ 2.4 30.3+ 2.4 62.34+ 2.80 49.74+ 2.40 57.94+ 2.50 69.24+ 2.00 71.74+ 2.20
GM5 31.0+ 2.2 28.2+ 2.2e 70.94 2.20 51.14+ 2.30 62.44+ 2.20 75.14+ 2.00 76.7+ 2.10
GM6 38.9+ 2.6 37.0+ 2.6 68.24+ 2.70 55.54+ 2.80 64.54+ 2.50 73.3+ 2.20 748+ 2.10
GM7 375+ 24347+ 25 77.74+1.90 58.6+ 2.70 68.54+ 2.50 81.54+ 2.00 81.6+ 2.00
GM8 39.0+ 2.8 36.1+ 2.7 7444+ 2.40 57.74+ 2.60 67.1+ 250 78.8+ 2.10 77.3+ 1.90
GM9 33.0+ 2431724 70.44 240 5054+ 2.60 59.94 2.70 74.84+ 2.30 76.0+ 2.20
GM10 35.3+ 2.9 32.84+ 2.9e 67.74+ 2.70 52.34+ 2.90 60.04+ 2.70 73.94 2.40 76.6+ 2.60

AVG 33.8 31.3 70.1 51.9 60.8 74.1 74.7
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Table 4 Experiments on UCI data. Classification accuracy is givenkféN, NWKNN, AKNN, hw-£NN,
HIKNN, NHBNN and h-FNN, fork = 5. The symbolse/o denote statistically significant worse/better
performancey < 0.05) compared tg&NN. The best result in each line is in bold.

(a) Correct labels, no noise

Data set kNN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN

arrhythmia 60.4- 4.8 58.6+ 5.2 57.9+ 4.4e 60.3+ 4.7 61.2+49 547+45e62.1+51
ozone 93.3:0991.0+ 1.1 93609 935+0.9 93.7+0.9 887+ 13e 93.7£0.9
ecoli 86.7+ 3.7 85.4+ 3.9 853+ 4.0 86.4+39 86.6t38 859+41 87.3%37
gisette 96.2+ 0.5 96.2+ 0.5 97.4+ 0.40 97.1+ 0.40 96.8+ 0.40 96.8+ 0.50 96.7+ 0.5
glass 68.0+- 6.9 68.1+£ 6.9 66.1+74 67.6+6.8 687+6.8 652+75 66.9+6.9

haberman 712644 676+ 53 722+ 51 715+ 45 71.1+49 69.9+56 71.8+5.0
ionosphere 84.3 4.2 852+ 4.1 947+ 290 88.44+ 3.60 87.84+ 3.90 92.2+ 3.50 89.8+ 3.70
mfeat-factors 95.3t 1.095.6+ 1.00 92.94+ 1.3e 94.7+ 1.1 95.6+ 1.00 9484+ 1.1 9524+ 1.0
mfeat-fourier 84.0+ 1.583.8+ 1.4 80.2+1.9e 83.8+ 1.7 838+ 1.7 835+15 838+15
mfeat-karhunen 97.6- 0.7 97.6+ 0.7 96.7+ 0.7 97.4+ 0.7 97.7+0.7 9754+ 0.7 97.64+0.7

Iris 96.5+ 2.8 96.5+£ 2.7 95.843.2 96.8+£2.7 96.9+27 97.1+£26 97.3+27
segment 94.6£ 1.096.5+ 0.70 93.7+ 1.1 948+ 1.0 96.2+ 0.80 95.24+ 0.9 954+ 0.90
sonar 80.94 6.3 82.4+ 6.0 81.0£6.3 79.7£65 827+6.0 80.1£6.6 80.9f£6.2
vehicle 65.54+ 3.6 65.8+ 3.7 62.7+ 3.3 65.0+ 3.6 649+ 3.6 61.8+ 3.6e 63.4+ 3.3e
ovarian 92.7+£ 3.9 93.0+ 3.7 89.1+ 4.4 927+ 3.7 934+ 35 934+30 93.3+36
AVG 84.5 84.2 84.0 84.7 85.1 83.8 85.0

(b) Noise rate; = 0.3

Data set kNN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN
arrhythmia 54.2+- 5.4 45.6+ 5.5 43.8+ 4.8 52.0+£ 5.2 58.4+ 5.60 429+ 5.7 59.1£ 5.70
ozone 771+ 1.6 729+ 1.7 8534+ 1.40 81.0+ 1.80 81.54+ 1.80 66.54+ 2.1e 86.3+ 1.40
ecoli 7494+ 5.3 67.3+£ 6.0e 77.7£ 55 78.8+ 550 81.7+ 450 780+£54 841+440
gisette 79.8+ 1.1 79.8+ 1.1 89.7£ 0.80 849+ 0.90 85.3+ 0.90 92.2+ 0.70 91.5+ 0.70
glass 61.4- 6.6 57.4+ 6.4 50.2+ 9.1 584+ 6.9 62.1+6.7 584+74 60.7£7.3

haberman 6554+ 6.561.44+ 6.7 55.6+ 6.8 65.1+ 6.8 64.2+ 7.4 60.7+ 6.6 64.64 7.2

ionosphere 75.% 5.8 72.3+ 5.7 76.4+ 5.4 80.3+ 5.30 79.64+ 4.90 85.3+ 4.50 854+ 4.30
mfeat-factors 89.3t 1.4 88.5+ 1.4 885+ 1.6 90.2+ 1.2 93.24+ 1.0093.74+1.10 9434+ 1.00
mfeat-fourier 77.8+ 1.8 76.9+ 1.8 76.2+ 2.3e 77.54+ 1.8 81.3+ 1.60 82.74+1.70 83.0+ 1.70
mfeat-karhunen 91.5- 1.3 90.94+ 1.4 92.94+ 1.00 92.84+ 1.30 95.44+ 0.90 96.64+ 0.90 96.64+ 0.80

Iris 80.6+ 8.7 77.6+ 8.9 89.1+ 570 814+ 7.6 822+79 89.3+7.00836+74
segment 87.4- 1.6 78.1+- 19 86.4+ 1.5 89.0+ 1.6086.8+ 1.6 91.3+ 140 915+ 1.30
sonar 64.3+ 7.8 66.2+ 7.8 57.3t 7.5 66.2+ 6.6 66.9+ 6.10 63.1+ 7.3 657 7.2
vehicle 56.24 3.9 55.3+ 3.8 57.7£ 3.3 58.7£ 3.30 59.8+ 3.40 59.3+ 3.70 60.5+ 3.60
ovarian 80.6+ 5.7 80.4+ 5.6 76.0+ 5.8 80.6+ 54 822+53 83.5+500822+55
AVG 74.4 71.4 73.5 75.8 77.4 76.2 79.3

(c) Ng(x)-proportional noise ratg = 0.3

Data set kNN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN

arrhythmia 43.3+ 5.7 36.2+ 5.2 452+ 5.3 46.2+ 5.2 56.4+ 530 39.2+51 60.2+5.10
ozone 64.9+- 1.9 60.7+ 2.0 83.3+ 1.40 79.0+£ 1.80 78.0+£ 1.90 645+ 2.1 85.0f 150
ecoli 73.1+ 5.3 62.3+ 6.1e 79.4+ 5.00 78.7£ 5.00 80.6+ 4.70 77.4+ 490 83.9+ 450
gisette 49.6+ 1.4 49.64+ 1.4 789+ 1.20 76.44+ 1.10 71.6+ 1.30 90.7+ 0.80 90.94+ 0.80
glass 59.94- 7.8 56.8+ 7.6 553t 7.4e 640+ 7.4 655+ 7.3061.8+8.0 66.3£7.30

haberman 57.2 5.1 54.54+ 550 64.9+ 5.30 60.7+ 5.00 59.3+ 55 57.7£59 61.7+5.20
ionosphere 453 5.8 443+ 5.7 57.7£6.00 63.9+ 5.00 69.4+ 5.20 79.8+ 4.20 78.7£ 3.90
mfeat-factors 82.8£ 1.9 80.7+ 2.0 89.8+ 1.60 88.8+ 1.60 92.7+ 1.30 93.74+ 1.10 94.0+ 1.20
mfeat-fourier 71.74 1.8 70.8+ 1.7 77.1+1.70 785+ 1.60 81.7+ 1.50 82.94+ 1.40 83.44+ 1.30
mfeat-karhunen 85.2 1.8 84.84+ 1.9 92.6+ 1.30 92.74+ 1.30 96.44+ 0.80 96.94+ 0.70 97.34+ 0.60

Iris 79.6+ 7.8 71.84+ 8.7 87.8+ 7.20 91.1+ 5.30 89.7+ 5.50 96.0+ 3.60 94.44+ 4.20
segment 85. 74 1.7 76.7+ 1.9 85.0+ 1.5 90.4+ 1.40 885+ 1.30 92.94+ 1.10 923+ 1.20
sonar 64.0+ 7.8 65.1+ 7.7 65.2+ 6.7 657+t 6.7 66.1+£6.8 69.1+6.70 66.6+ 6.8

vehicle 55.3+ 3.7 54.6+ 3.6 57.54+ 3.4 59.7+ 3.40 61.3+ 3.40 59.14+ 3.70 61.0+£ 3.50
ovarian 61.7+ 6.5 62.84+ 6.7 74.4+6.30 76.1+5.90 77.0£ 6.00 79.6+ 5.40 81.7+5.00

AVG 65.3 62.1 72.9 74.1 75.6 76.1 79.8
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Table 5 Experiments on UCR time series data. Classification acgusagiven forkNN, NWKNN, AKNN,
hw-kNN, HIKNN, NHBNN and h-FNN, fork = 5. The symbolse/o denote statistically significant
worse/better performance  0.05) compared tdNN. The best result in each line is in bold.

(a) Correct labels, no noise

Data set ENN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN
CricketX 79.3 £ 28819 +£28076.0+ 3.1 799+ 24 824 +260793 + 29 809 £ 290
CricketY 799 + 28823 £25073.4+ 28793+ 2.7 825 £+250800 + 2.7 819 &+ 24o
Cricketz 80.9 + 3.283.0 £27076.7+ 31807+ 3.1 835 £270796 + 32 816 + 28
FacesUCR 97.3+ 0.798.2 +0.60 97.0+ 0.7 97.2+ 0.7 982 050975 + 0.6 98.0 &+ 0.60
Medicallmages 79.9+ 25814 + 230 77.94+ 28803+ 23 819 +230749 + 27808 + 23
MALLAT 98.6 + 04989 +£040986+ 04 987+ 05 989 +040986 + 04 988 + 04
Motes 941+ 13949 £1309404+ 15 945+ 1.2 953 +120946 £ 1.2 950 + 1.30
OliveQil 824 +10.889.4 + 880 80.34+13.0 848+ 111 874 +94 839 +11.8 8334115
SonyAIBO 973 + 13973 +13 987+ 1.00979+ 12 977 +13 978 £ 1.3 981 + 120
SonyAIBOIl 964 + 13970 +12096.7+ 13 968+ 1.2 972 +110969 £ 1.1 972 + 1l1lo
SwedishLeaf  84.04+ 2.0 84.6 2.0 84.6+ 2.0 849+ 22 856 +£210855 4+ 200852 + 2.00
Symbols 97.7+ 09983 £0.90 9754+ 1.0 98.0+ 09 982 +1.0097.9 +£ 09 980 + 1.0
SyntheticControl 99.24+ 0.7 99.2 £ 0.7 975+ 1l.4e 9954+ 0.6099.2 +£0.7 994 + 06 99.4 + 0.7
Trace 99.5+ 1.0100.04+ 0.00 99.5+ 1.0 98.9+ 4.6 100.04+ 0.00 995 £ 1.0 999 + 0.30
TwoPatterns  100.04+ 0.0 100.0+ 0.0 99.9+ 0.0 99.9+ 0.0 100.0£0.0 100.0+ 0.0 100.0+ 0.0
AVG 91.1 92.4 89.9 91.4 92.5 91.0 91.9
(b) Noise rate; = 0.3

Data set ENN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN
CricketX 74.0+ 3.7 67.7+ 3.8 66.1+ 3.8 73.04+ 3.7 76.1+ 3.40 7584+ 3.3 781+ 3.00
CricketY 721+ 3.2 69.2+ 3.3e63.1+ 3.9e 71.04+ 3.1 755+ 3.20 7584+ 3.20 78.0+ 3.20
CricketZ 744+ 3.6 70.1+ 3.5 629+ 3.8e 73.8+ 35 77.1+ 3.00 76.2+ 3.8 784+ 3.20
FacesUCR 93.%+ 1.089.8+ 15 924+ 1.2 944+ 11 958+ 0.80 964+ 0.80 97.2+ 0.70
Medicallmages 72.6c 2.4 59.6+ 3.0e 73.54+ 28 729+ 22 731+ 25 641+ 3.1e 769+ 220
MALLAT 928 +£ 1.183.7+ 159534+ 110946+ 1109154+ 1.2e 97.9+ 0.60 97.4+ 0.70
Motes 79.2+ 25749+ 2.8 838+ 2308414 240824+ 260 87.14+ 230857+ 230
OliveOQil 72.84+ 13.7 74.44+ 12.4 76.1+ 12.2 74.0+ 13.6 73.7£ 15.7 78.8+ 13.90 79.6+ 13.80
SonyAIBO 77.1+ 3.8 76.9+ 3.8 88.3%f 290 86.5+ 3.00883+ 3.0093.0+f 240924+ 270
SonyAIBOIl  79.84 2.9 78.0+ 3.2 852+ 270 850+ 2.7086.0+ 2.60 885+ 240 89.2+ 2.1o
SwedishLeaf ~ 79.4c 2.7 77.0+ 2.8e 755+ 2.9e 80.0+ 2.6 825+ 2.60 83.5+ 250 83.3+ 260
Symbols 93.6t 1.7 848+ 2.4e90.7+ 19e 9504+ 140937+ 1.4 97.44 090 966+ 1l.lo
SyntheticControl 92.2= 2.5 92.24+ 2.6 919+ 24 9254+ 28 968+ 1.7099.0+ 0.90 984+ 1.1lo
Trace 89.0+ 5.8 86.5+ 5.9e 93.2+ 4.0094.1+ 4.40 93.0+ 4.20 976+ 2.80 953+ 3.60
TwoPatterns ~ 91.2= 0.8 90.6+ 0.9e 95.74+ 0.50 9544+ 0.50 97.5+ 0.40 99.5+ 0.20 99.3+ 0.20
AVG 82.3 78.4 82.3 84.4 85.5 87.4 88.4

(c) Nk (x)-proportional noise ratg = 0.3
Data set ENN NWKNN AKNN hw- kNN HIKNN NHBKNN h-FNN
CricketX 68.4+ 3.7 63.3+ 3.8e 63.0+ 4.0e 7254+ 3.30 77.8+ 3.40 76.44+ 3.20 785+ 3.00
CricketY 68.1+ 4.0 62.3+ 4.2¢ 63.2+ 3.8e 724+ 3.50 75.3+ 3.40 76.3+ 3.50 79.0+ 3.4o0
CricketZ 69.1+ 4.1 63.4+ 4.4e 620+ 4.2e 727+ 4.20 76.0+ 3.90 747+ 3.90 76.7+ 390
FacesUCR 87.0c 1.6 82.5+ 1.8 90.74+ 1.4093.1+ 1.1096.04+ 0.80 96.7+ 0.80 97.5+ 0.60
Medicallmages 70.9% 2.5 58.9+ 3.0e 71.64+ 3.0 735+ 2.70 73.44 2.80 63.3+ 3.3e 76.8+ 2.80
MALLAT 85.7 £ 1.6 75.8+ 2.2e 96.04+ 0.90 93.9+ 0.90 91.84+ 1.20 97.8+ 0.60 97.7+ 0.60
Motes 66.8+ 2.6 65.5+ 2.6 80.5+ 2.5080.0f 2.3078.7+ 220833+ 2.1083.0+ 200
OliveOQil 63.44+ 15.7 65.14+- 15.1 69.3+ 14.4 77.24+ 12.60 80.6+ 10.90 81.0+ 11.70 79.54+ 11.00
SonyAIBO 61.84+ 4.161.4+ 4.0 850+ 3.2081.6+ 3.50 825+ 3.4089.3+ 250895+ 270
SonyAIBOIl  66.7+ 3.4 659+ 3.2 83.7+ 270832+ 290 85.04+ 2.6089.6+ 260 91.1+ 230
SwedishLeaf 72.2- 3.0 69.8+ 2.8e 755+ 2.80 77.1+ 3.00 823+ 2.60 83.2+ 2.3084.0+ 240
Symbols 81.6t 3.1 72.3+ 3.1 91.84+ 1.60 923+ 1.80 923+ 1.80 96.8+ 1.20 965+ 1.30
SyntheticControl 74.2= 4.0 73.7+ 4.1 90.4+ 2.60 9144+ 230 975+ 1.3099.2+ 0.70 99.2+ 0.70
Trace 82.0+& 59809+ 6.1 89.2+ 4.80 959+ 3.30 946+ 3.90 97.6+ 2.40 97.0+ 280
TwoPatterns  75.% 1.3 74.44+ 1.3 93.84+ 0.70 9294+ 0.70 97.24+ 0.40 99.7+ 0.10 99.6+ 0.1lo
AVG 72.9 69.0 80.4 83.3 85.4 87.0 88.4
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Table 6 Experiments on non-kNN classifiers: decision trees, newelorks and support vector machines.
Classification accuracy is given for J48, MLP and SVM with fi@dynomial and RBF kernel. The three
included result columns for the multi-layer perceptrorrespond to its operating modes using 5 hidden nodes
(MLP(5)), 20 hidden nodes (MLP(20)) and two layers of 20 arfddslen nodes, respectively (MLP(20,5)).
In most data domains, there were no significant differened&den the algorithm performance under the
uniform random label noise model and the hubness-propaitiandom label noise model.

Domain Noise Model J48 MLP MLP MLP SVM SVM
(5) (20) (20, 5) (poly) (RBF)
ImageNet no noise 73.3 73.1 70.9 67.1 85.0 84.8

random 57.8 65.7 59.9 64.1 80.3 79.9
hubness-pr. 57.5 68.2 64.7 65.8 80.0 80.0
Gaussian mixtures no noise 47.1 84.0 95.1 91.1 96.4 96.5
random 36.2 69.4 75.6 71.2 922 92.6
hubness-pr. 36.5 69.0 74.7 70.4 91.7 919
UClI no noise 82.7 82.1 835 814 871 781
random 66.8 74.9 742 722 788 70.0
hubness-pr. 66.0 75.0 74.0 724 78.8 69.1
UCR no noise 77.0 77.3 83.8 79.7 851 817
random 57.2 67.1 68.9 64.7 75.1 75.0
hubness-pr. 56.1 67.3 68.4 65.5 754 74.6




