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ABBREVIATIONS 

ACS acute coronary syndrome 

AI artificial intelligence 

AUC area under the curve 

CAD coronary artery disease 

CI confidence interval 

CNR contrast-to-noise ratio 

CT computed tomography 

CTA computed tomography angiography 

CVD cardiovascular diseases 

D dimension 

DL deep learning 

FBP filtered back projection 

FFR fractional flow reserve 

GLCM gray-level co-occurrence matrix 

GLRLM gray level run length matrix 

GTSDM gray-tone spatial dependencies matrix 

HU Hounsfield unit 

HIR hybrid iterative reconstruction 

ICA invasive coronary angiography 

ICC intra-class correlation coefficient 

IQR interquartile range 

IVUS intravascular ultrasound 

LDL low-density lipoproteins 

MACE major adverse cardiovascular events 

MIR model-based iterative reconstruction 

ML machine learning 

NCP non-calcified plaque 

NRS napkin-ring sign 

OCT optical coherence tomography 

PET positron emission tomography 

RIA radiomics image analysis 

DOI:10.14753/SE.2020.2382



 

  

5 

ROC receiver operating characteristics 

ROI region of interest 

SD standard deviation 

SIS segment involvement score 

SISi segment involvement score index 

SNR signal-to-noise ratio 

SSS segment stenosis score 

SSSi segment involvement score index 

TCFA thin-cap fibroatheroma 
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1. INTRODUCTION 

Despite advancements in the diagnosis and therapy of cardiovascular diseases (CVD), it 

still remains the leading cause of morbidity and mortality worldwide (1, 2). Numerous 

anthropometric and lab-based risk models have been established to predict CVD (3-6). 

Multiethnic evaluation of these models showed systematic overestimation of CVD risk 

by up to 115%, indicating the need for more precise risk estimation (7, 8). Coronary artery 

disease (CAD), the leading pathology behind CVD is a progressive disease of the intimal 

layer of the coronaries, which can cause acute and/or chronic luminal obstruction (9).  

Computed tomography (CT) based technologies have evolved considerably in recent 

years (10). Coronary CT angiography (CTA) has emerged as a useful and highly reliable 

imaging modality for the examination of the coronaries and is considered as a non-

invasive alternative to invasive coronary angiography (ICA) (11). With its excellent 

sensitivity and negative predictive value, coronary CTA is a robust diagnostic test to rule 

out severe coronary stenosis and it is widely used as a “gate-keeper” for ICA (12-15). 

Even though, numerous studies have validated the diagnostic performance of CTA for 

the detection of obstructive coronary artery disease, as compared to ICA as reference 

standard, only a few studies have compared these two modalities regarding semi-

quantitative plaque burden measurements (16, 17). 

Modern CT scanners allow not only the visualization of the coronary lumen as ICA, but 

also the vessel wall granting non-invasive analysis of atherosclerosis itself (18). With 

around half of plaque ruptures occurring at lesion sites with smaller than 50% diameter 

stenosis, plaque morphology assessment seems equally as important as stenosis 

assessment (19-21). Four distinct plaque characteristics have been linked to major 

adverse cardiovascular events (MACE) using coronary CTA (18). Out of these four 

characteristics positive remodeling, low-attenuation and spotty calcification are 

quantitative high-risk plaque features. While the napkin-ring sign (NRS) is a qualitative 

marker, defined as a plaque cross-section with a central area of low CT attenuation 

apparently in contact with the lumen, which is surrounded by a ring-shaped higher 

attenuation plaque tissue (22). Due to its qualitative nature, identification of the NRS is 

affected by clinical experience and inter-reader variability (23). Therefore, more 

objective methods of compositional assessment are warranted. 
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Radiology images are multi-dimensional (D) datasets, where each voxel value represents 

a specific measurement based on some physical characteristic (24). Radiomics is the 

process of obtaining quantitative parameters from these spatial datasets, in order to create 

‘big data’ datasets, where each lesion is characterized by hundreds of different parameters 

(25). These features aim to quantify morphological characteristics difficult or impossible 

to comprehend by visual assessment (26). Radiomics has proven to be a valuable tool in 

oncology (27). Several studies have shown radiomics to improve the diagnostic accuracy 

(28, 29), staging and grading of cancer (30), response assessment to treatment (31-33) 

and also to predict clinical outcomes (34, 35). However, application of radiomics in 

cardiovascular imaging is lacking. 

The vast information present in radiological images not only allows to objectively identify 

pathologies as opposed to current irreproducible visual classification schemes, but also to 

expand the capabilities of an imaging technique. Implementing radiomics with machine 

learning (ML) and artificial intelligence (AI) may allow to increase the abilities of 

coronary CTA imaging to allow better identification of vulnerable plaques by localizing 

plaques with metabolic activity, or by identifying the exact histological category of a 

given lesion using simple CT images. 

The current thesis aims to assess the potentials of advanced image analysis of 

atherosclerosis using coronary CTA images. 
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1.1. Imaging atherosclerosis using CTA in clinical practice 

Atherosclerosis is initiated by deposition of low-density lipoproteins (LDL) in the intima. 

With oxidation of the lipids, an inflammatory response is triggered, which is characterized 

by macrophages engulfing oxidized LDL particles, thus becoming foam cells (36). Poorly 

understood genetic and environmental factors propagate inflammation, resulting in 

further deposition of lipids, deterioration of the extracellular matrix and cell death (37). 

These processes lead to distinct plaque morphologies, which have been identified on 

histological samples (38). 

After the first description of CTA in 1992 (39, 40), further technological advances, such 

as: more powerful X-ray tubes, faster gantry rotation times, multiple parallel detector 

rings and decreased slice thickness (41, 42) were introduced which allowed the 

visualization of the coronary arteries (43). With its excellent sensitivity and negative 

predictive value (12, 14), coronary CTA is a robust diagnostic test to rule out severe 

coronary stenosis and it is widely used as a “gate-keeper” for ICA (13, 15). Coronary 

CTA is currently the first imaging choice for stable chest pain patients in the United 

Kingdom and is a class 1 recommendation for initial testing of CAD based-on the 

European Society of Cardiology (44). 

Nevertheless, modern CT scanners allow not only the visualization of the coronary lumen 

as ICA, but also the vessel wall, granting non-invasive analysis of atherosclerosis. This 

unique property of coronary CTA holds many advantages for patient risk stratification 

that other non-invasive tests do not. With submillimeter resolution coronary CTA allows 

non-invasive morphological assessment of coronary atherosclerosis. 

Coronary CTA is interpreted based-on the guidelines of the Society of Cardiovascular 

Computed Tomography (45). Coronary plaques can be classified as being non-calcified, 

partially calcified or calcified based on the amount of calcium in the lesion. Furthermore, 

non-calcified plaque composition can be classified as homogeneous, heterogeneous and 

the showing the napkin-ring sign, which as one of the four high-risk plaque features that 

have been linked to MACE. Also the degree of stenosis caused by the plaque can be 

graded as minimal (<25% stenosis), mild (25% to 49% stenosis), moderate (50% to 69% 

stenosis), severe (70% to 99% stenosis) or occluded (46).  
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1.2. Assessment of plaque composition using coronary CTA 

1.2.1. Degree of calcification 

Coronary plaques can be classified as being non-calcified, partially calcified or calcified 

based on the amount of calcium in the lesion (figure 1). 

 

 

Figure 1. Representative images of plaque characteristics identifiable using coronary 

CTA (46). 

Coronary plaques can be classified as non-calcified, partially calcified and calcified 

based-on the degree of calcification present in the plaque. Curved multiplanar images are 

shown with a corresponding cross-section at the site of the solid line. 

 

Large multicenter cohorts such as the COronary CT Angiography EvaluatioN For 

Clinical Outcomes: An InteRnational Multicenter registry (CONFIRM) (47), investigated 

the prognostic value of plaque composition on all-cause mortality. Based on 17,793 

suspected CAD patients’ 2-year survival data, the number of segments with partially 

calcified or calcified plaque had a significant effect on mortality (hazard ratios: non-

calcified: 1.00, p = 0.90; partially calcified: 1.06, p ≤ 0.0001; calcified: 1.08, p ≤ 0.0001). 

After adjusting for clinical factors, none of the plaque components improved the 

diagnostic accuracy of the model (non-calcified: p = 0.99; partially calcified: p = 0.60; 

calcified: p = 0.10) (48). Hadamitzky et al. found similar results when investigating the 

prognostic effect of plaque composition on 5-year mortality rate based on suspected CAD 

patients. After adjusting of clinical risk based on the Morise score (49), only the number 

of segments with calcified plaques improved significantly the diagnostic accuracy of the 

model (non-calcified: p = 0.083; partially calcified: p = 0.053, calcified: p =0.041) (50). 

Dedic et al. found similar results in a different patient population. When investigating the 

effects of different plaque components of non-culprit lesions on future MACE in acute 

coronary syndrome (ACS) patients, they found none of the plaque types to have a 

significant impact on future MACE rates (hazard ratios: non-calcified: 1.09, p = 0.11; 
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partially calcified: 1.11, p = 0.35; calcified: 1.11, p = 0.15) (51). Interestingly Nance et 

al. found very different results when analyzing 458 patients’ data, who presented to the 

emergency room with acute chest pain but based on ECG and serum creatinine had 

inconclusive results and thus underwent coronary CTA. All patients had low to 

intermediate risk for CAD. After a follow-up of 13 months, they split the patients into 

three groups: only non-calcified plaques; exclusively calcified plaques; any partially 

calcified plaque or both non-calcified and calcified plaques. After adjustment for clinical 

characteristics and calcium-score they found the following hazard ratios: 57.64 for non-

calcified, 55.76 for partially calcified and 26.45 for patients with solely calcified plaques 

(52). The difference compared to other studies might be due to the different 

methodological approach used. While previously mentioned papers examined the effect 

of plaque composition on a segment based level incrementally, giving the hazard ratio of 

an increase in the number of segments with a given plaque type, Nance et al. reported the 

results on a patient based level dichotomized, giving the hazard ratio of having a specific 

type of plaque as compared to patients without any plaques. 

Overall, the effect of plaque composition on mortality still remains controversial. It seems 

simply classifying plaques based on the amount of calcium present holds little 

information regarding clinical outcome. These findings suggest, that identification of 

more complex morphologies is needed for better prediction of adverse outcomes. 

1.2.2. Plaque attenuation pattern 

Histopathologic examinations demonstrated that thin-cap fibroatheromas (TCFA) exhibit 

similar plaque morphologies as ruptured plaques (38, 53). TCFAs are composed of a 

lipid-rich necrotic core surrounded by a thin fibrotic cap. Coronary CTA is capable of 

distinguishing between lipid-rich and fibrotic tissue based on different CT attenuation 

values, however the reliable classification of non-calcified plaques into these two 

categories remains challenging. 

A more qualitative approach is not to look at the absolute HU values, but rather to classify 

non-calcified plaques as homogeneous or heterogeneous in attenuation patterns (figure 

2). Heterogeneous plaques are characterized by at least two regions with different 

attenuations values, while homogeneous plaques do not have regions visually 

differentiable. Based on cross sectional images, heterogeneous plaques can be divided 
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into ones with NRS and ones without (22). NRS plaques are characterized by a low 

attenuation central area, which is apparently in touch with the lumen, encompassed by a 

higher attenuation ring-like peripheral area (18).  

 

 

Figure 2. Representative images of plaque attenuation patterns (46). 

Non-calcified plaque regions may be classified as homogeneous, heterogeneous and the 

napkin-ring sign, which is one of the four high-risk plaque features. Curved multiplanar 

images are shown with a corresponding cross-section at the site of the solid line. 

 

The napkin-ring sign has been identified as a specific imaging biomarker of vulnerable 

plaques. So called high-risk plaque features aim to identify plaque prone to rupture. 

Overall, four high risk plaque features have been identified to date: the napkin-ring sign, 

low attenuation, spotty calcification and positive remodeling.  
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1.3. Assessment of high-risk plaque features using coronary CTA 

High-risk plaque features have been identified in the literature to indicate morphologies 

which might be prone of plaque rupture (figure 2-3). These are the NRS, low attenuation, 

spotty calcification and positive remodeling. 

 

 

Figure 3. Representative images of high-risk plaque features (46). 

Next to the napkin-ring sign plaque (figure 2), three further plaque imaging markers have 

been linked to major adverse cardiac events. Curved multiplanar images are shown with 

a corresponding cross-section at the site of the solid line. 

HU: Hounsfield unit 

 

1.3.1. Napkin-ring sign 

Maurovich-Horvat et al. showed based on ex-vivo examinations that NRS plaques have 

excellent specificity and low sensitivity (98.9%; 24.4%, respectively) to identify plaques 

with a large necrotic core, which is a key feature of rupture prone TCFA’s (54). 

Histological evaluation of NRS plaques showed that NRS plaques had greater area of 

lipid-rich necrotic core (median 1.1 vs. 0.5 mm2, p = 0.05), larger non-core plaque area 

(median 10.2 vs. 6.4 mm2, p < 0.01) and larger vessel area (median 17.1 vs. 13.0 mm2, p 

< 0.01) as compared to non-NRS plaques (55). Interestingly, these results are in line with 

Virmani et al. who investigated the morphology of ruptured plaques (38). Furthermore, 

results of the Rule Out Myocardial Infarction/Ischemia Using Computer-Assisted 

Tomography – II trial strengthen the concept of NRS plaques being precursors of ruptured 

plaques. Based on the results of 472 patients suspected of ACS they found NRS plaques 

to be an independent predictor of ACS (odds ratio: 8.9; 95% confidence interval (CI): 1.8 

- 43.3; p = 0.006) independent of stenosis severity (23). Kashiwagi et al. found similar 

results, when analyzing the results of ACS patients and stable angina patients. They found 

NRS plaques to be more frequent at culprit and also at non-culprit sites in ACS patients 
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as compared to stable angina patients (culprit: 49.0% vs. 11.2%, p < 0.01, respectively; 

non-culprit: 12.7% vs. 2.8%, p < 0.01, respectively) (56). Otsuka et al. conducted the first 

prospective clinical trial to assess the predictive values of NRS plaques for future ACS 

events (57). They showed that NRS plaques were significant independent predictors of 

later ACS events (hazard ratio: 5.55, CI: 2.10–14.70, p < 0.001). Similarly, Feuchtner et 

al. showed NRS to have the highest hazard ratio (7.0, CI: 2.0 - 13.6) over other high risk 

features when investigating 1469 patients with a mean follow-up of 7.8 years (58). 

Overall it seems the napkin-ring sign has additive information beyond simple plaque 

composition information. However, with many factors effecting assessment of 

attenuation patterns, we only have limited censored information regarding the prognostic 

effect of these entities. 

1.3.2. Low attenuation 

Several studies have investigated the use of region of interest (ROI) to define the plaque 

components using coronary CTA as compared to intravascular ultrasound (IVUS) as the 

gold standard of in vivo plaque characterization (59-62). These validation studies were 

able to find significant differences in mean Hounsfield unit (HU) values for the different 

plaque components, however there is a considerable overlap between these categories 

(121 ± 34 HU vs. 58 ± 43 HU, p < 0.001) (60). Several studies were inspired by these 

results and found lower mean and minimal attenuation values of plaques in ACS patients 

as compared to plaques of stable angina patients (63-65). However, there was still a 

significant overlap in attenuation values between the two groups. Nevertheless, 

Motoyama et al. showed that with the use of a strict cut-off value (<30 HU), ACS patients 

have significantly more low attenuation plaques as compared to stable angina patients 

(79% vs. 9%, p < 0.001), suggesting low attenuation to be a useful marker for identifying 

vulnerable patients (66). Marwan et al. proposed a more quantifiable approach using 

quantitative histogram analysis. For all cross-sections for each plaque, a histogram was 

created from the CT attenuation numbers, and the percentage of pixels with a density ≤30 

HU was calculated. They found similarly overlapping HU values for lipid-rich versus 

fibrous plaques. However, using a cut-off value of 5.5% for pixels with ≤30 HU, they 

were able to differentiate between predominantly lipid-rich plaques versus predominantly 

fibrous plaques (sensitivity: 95%; specificity: 80%; area under the curve: 0.9) using IVUS 
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as reference standard (67). Despite these encouraging results, there is still a major concern 

because of the overlapping HU values of different plaque components. Furthermore, 

several studies have shown slice thickness (68), imaging protocols (69), tube voltage 

settings (70), intra coronary contrast attenuation values (71), reconstruction algorithms, 

filters and noise (68, 72) all to influence CT attenuation values. 

Overall, it seems discrimination of non-calcified plaques based on HU value thresholds 

into lipid-rich and fibrous categories has additional prognostic value, but the different 

modifying effects of image acquisition and reconstruction limit the robust use of 

attenuation values for patient risk prediction. 

1.3.3. Spotty calcification 

Histological examinations identified calcified nodules in patients with coronary 

thrombosis (73). Several histological studies have shown the frequency of such findings 

to be around 2-7% in sudden death cases (74-76). Intra-plaque micro calcifications are 

thought to destabilize plaques and promote plaque rupture (77, 78). Unfortunately, spatial 

resolution of current CT scanners is under the threshold needed for identifying 

microcalcification. Nevertheless, coronary CTA has excellent sensitivity to identify 

calcium, thus spotty calcification defined as a <3 mm calcified plaque component with a 

>130 HU density surrounded by non-calcified plaque tissue has been proposed as a CTA 

(figure 3) marker of histological microcalcifications (66, 79). Van Velzen et al. suggested 

to further classify such lesions as small (<1 mm), intermediate (1–3 mm), and large (>3 

mm) (80). They found small spotty calcifications to be more frequently present with 

TCFA’s identified by IVUS as compared to large spotty calcifications (31% vs 9%; p < 

0.05). These results support the hypothesis, that small calcified nodules are indicators of 

high-risk plaques, and that CTA is at the limits of identifying real calcified nodules, which 

have been identified using histological studies. Even so, several studies have shown 

culprit lesions of ACS patients to have spotty calcifications as compared to stabile angina 

patients or non-culprit lesions (81, 63, 66, 64). However, there are only few prospective 

studies evaluating the prognostic effect of spotty calcifications, thus the relationship 

between intra-plaque calcification and MACE remains uncertain (82). 

A promising technique for the identification of micro calcifications beyond the resolution 

limits of CTA is positron emission tomography (PET) imaging (83). Dweck et al. used 
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NaF18 to mark microcalcifications not visible on CTA. NaF18has been used previously 

for decades to image new bone formation, primarily in cancer metastases, and recently 

has been used to image active calcification in coronary plaques. In their study based on 

119 volunteers, they showed higher uptake values in patients with prior cardiovascular 

events, angina and higher Framingham risk scores, as compared to control subjects (p = 

0.016; p = 0.023; p = 0.011, respectively). 

Altogether, it seems spotty calcifications have additional additive values for identifying 

vulnerable plaques. However current resolution of CT scanners prohibits the imaging of 

microcalcifications that are seen as one of the common features of ruptured plaques. 

Nevertheless, spotty calcification detectable using CTA seems to correlate well with 

adverse cardiac events, and NaF18-PET is also a promising new technique to visualize 

micro calcifications. However prospective studies are needed to evaluate the predictive 

value of these markers. 

1.3.4. Positive remodeling 

Atherosclerotic plaques initially tend to grow outwards leaving luminal integrity 

unchanged (84). Thus, while many coronary plaques accumulate lipids and become 

TCFAs, they might not cause any clinical symptoms. This phenomenon is referred to as 

positive remodeling (figure 3). Varnava et al. examined 88 sudden cardiac death cases 

and showed that plaques with positive remodeling have larger lipid cores and more 

macrophages, both which are considered vulnerability markers (85). Using coronary 

CTA, the remodeling index is calculated as the vessel cross-sectional area at the level of 

the maximal stenosis divided by the average of the proximal and distal reference sites’ 

cross-sectional areas (86). Coronary CTA has a tendency to overestimate remodeling 

index, thus Gauss et al. proposed a cut-off value of ≥ 1.1, meaning a 10 % increase in the 

vessel cross sectional area at the site of the maximal stenosis compared to the average of 

the reference cross sectional areas (87). This resulted in an increased sensitivity and a 

moderate drop in specificity as compared to a lower cut-off value of ≥ 1.05 

(sensitivity:78% vs. 45%; specificity: 78% vs. 100%) using IVUS as reference standard. 

Motoyama et al. showed positively remodeled plaques to be more frequent in ACS 

patients as compared to stable angina patients (87% vs. 12%, p < 0.0001, respectively) 

(66). Positive remodeling had the best sensitivity and specificity (87%; 88%, 
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respectively) as compared to low-attenuation and spotty calcification to identify ACS 

patients (88). 

Overall it seems that positive remodeling is an important plaque feature for the 

identification of vulnerable plaques. Being less conditional to image noise as plaque 

attenuation, and having a more quantitative definition as the NRS, positive remodeling 

might become a more robust marker for vulnerable plaques. However, more prospective 

studies are needed to assess the effect of positive remodeling on later outcomes. 
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1.4. Assessment of stenosis degree using coronary CTA 

Based on guidelines published by the Society of Cardiovascular Computed Tomography 

(SCCT), luminal diameter stenosis can be graded as: minimal (<25% stenosis), mild (25% 

to 49% stenosis), moderate (50% to 69% stenosis), severe (70% to 99% stenosis) or 

occluded (figure 4). . In case of left main stenosis, diameter stenoses above 50% are also 

considered severe. 

 

 

Figure 4. Representative images of grades of stenoses caused by coronary plaques on 

coronary CTA (46). 

Coronary stenosis can be graded as minimal (<25% stenosis), mild (25% to 49% 

stenosis), moderate (50% to 69% stenosis), severe (70% to 99% stenosis) or occluded. In 

case of left main stenosis, diameter stenoses above 50% are also considered severe. 

Curved multiplanar images are shown with a corresponding cross-section at the site of 

the solid line 

 

As coronary plaques grow, blood flow is eventually disrupted causing ischemia distal to 

the lesion. Originally coronary CTA was considered as a non-invasive alternative to ICA; 

thus many studies have looked into the predictive value of luminal stenosis seen on CTA. 

All studies focus on obstructive lesions, since most patients referred to coronary CTA 

have minimal and mild plaques, thus the predictive value of such stenosis is poor. Two 
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cut-off values: ≥50% and ≥70% diameter stenosis is frequently used to determine 

obstructive lesions. Min et al. investigated the prognostic effect of obstructive lesion on 

a patient-based level and found both ≥50% and ≥70% lesions to be significant predictors 

of later outcomes (hazard ratio: 2.89; 4.31, respectively) (89). Several other studies have 

also found obstructive lesions to be significant predictors of later outcome, but 

considerably different hazard ratios have been reported (90-92, 50, 93, 94). Interestingly, 

there is a discrepancy in the results when correcting the models for clinical risk factors. 

The significant hazard ratios reported by Min et al. became non-significant when 

including cardiac risk factors in the model, but when looking at a segment-based level 

not a patient based level, the presence of obstructive stenosis remained significant, but 

with a smaller hazard ratio (1.05; CI: 1.02–1.09) (89). However, Nakazato et al. and 

Andreini et al. did not find similar tendencies when correcting for clinical factors, as 

obstructive CAD remained a significant predictor (90, 93). Increasing further the 

discrepancy in the results, a 5-year follow-up study published by Hadamitzky et al. 

reported that while non-obstructive CAD was a significant predictor of hard endpoints 

(Hazard ratio: 3.33; CI: 1.40-7.91), one and two vessel obstructive disease was not 

(Hazard ratio: 1.46; CI:0.50-2.43; 3.85; CI: 0.96-15.04) (50). 

One explanation for the disparity in the results might be that luminal stenosis on CTA is 

a poor indicator of hemodynamically significant lesions (95), which has been shown to 

be a good predictor of adverse events (96-98). Using computational fluid dynamics it is 

possible to simulate blood flow in the coronaries and estimate the hemodynamic 

characteristics of a lesion with good diagnostic accuracy (99, 100). The Prospective 

LongitudinAl Trial of FFRct: Outcome and Resource Impacts (PLATFORM) further 

demonstrated, that the use of CT derived fractional flow reserve (FFRCT) values 

significantly lowered the rate of ICA and used less resources at lower costs (101-103). 

However, current FFRCT simulations are expensive and time consuming, as the 

simulations are performed off-site. Recently on-site FFRCT techniques have been 

introduced, which are able to calculate FFRCT in couple of seconds to minutes (104-108). 

Overall, it seems the effect of significant stenosis on patient outcomes is controversial, 

which is mainly caused by the poor correlation between stenosis seen on CTA and 

hemodynamic information.   
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1.5. Radiomics: the potential to objectively analyze radiological 

images 

Medical imaging has developed exponentially in the past decades (109). While new 

techniques are frequently introduced for each imaging modality, our interpretation of 

medical images is still based mainly on qualitative image characteristics in the daily 

clinical routine. State-of-the-art scanners can achieve submillimeter spatial and 

millisecond temporal resolution, significantly increasing the amount of information 

gained from radiological examinations. Qualitative evaluation of medical images discards 

vast amounts of information, which may hold new perspectives for the identification and 

classification of diesases (110). For most cases, this kind of image interpretation might 

be sufficient for clinical judgement, but in the era of precision medicine, when we seek 

to refine our taxonomy of diseases, and cure illnesses based on subtle differences in the 

genome (111), a lot more is expected from radiology– the medical profession of imaging 

pathologies. 

Radiological images are in fact extensive 2 or 3D datasets, where the values present in 

the pixels (or volumetric pixels called voxels) are used to create the picture. Each and 

every voxel is a measurement itself, based on some physical characteristics of the 

underlying anatomical structure, such as the degree of electromagnetic radiation 

absorption which is used by CT. These values can be assessed by visual inspection, which 

is done in daily clinical routine, or they can be analyzed using advanced image analysis. 

Radiomics is the process of extracting several different features from a given ROI to 

create large datasets where each abnormality is characterized by hundreds of parameters 

(24). Some of these parameters are commonly known and used by radiologist, such as the 

mean attenuation value or the longest diameter of a lesion, while others that quantify the 

heterogeneity or shape of an abnormality are less apparent. From these values novel 

analytical methods are used to identify connections between the parameters and the 

clinical or outcome data. Datamining is the process of finding new meaningful patterns 

and relationships between numerous variables. From these results, novel imaging 

biomarkers can be identified which could increase the diagnostic accuracy of radiological 

examinations and expand our knowledge of the underlying pathological processes (figure 

5). 
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Figure 5. Pipeline of radiomics-based patient analysis (24). 

After image acquisition, new novel radiomics-based image characteristics are extracted 

to quantify different lesion properties. The hundreds of variables are joined together to 

create ‘big data’ databases. Datamining is used to find new meaningful connections 

between the parameters and the clinical outcome data. Based on the results, new imaging 

biomarkers can be identified which have the potential to increase the diagnostic accuracy 

of radiological examinations. 

 

Coronary lesions are complex pathologies made up of several different histological 

components. These different tissues all absorb radiation to a different extent; thus, they 

are depicted as having different attenuation values on CT. Basically, each voxel is a 

separate measurement of how much radiation is absorbed in a given volume, thus CT can 

be used to evaluate the underlying anatomical structure in vivo. Therefore, it is rational to 

assume that distinct morphologies of different coronary lesions appear differently on CT. 

As a result, numerous qualitative imaging markers have been identified on coronary CTA 

angiography (18, 22). These characteristics have been shown to be indicators of future 

MACE (58, 57), but they are prone to inter- and intra-observer variations due to their 

qualitative nature (112). Therefore, it would be desirable to have quantitative image 

parameters instead of qualitative markers to express different lesion characteristics. 

Radiomics is the specialty of mathematically describing different lesion characteristics 

such as heterogeneity, shape, etc. 

Radiomic techniques can be grouped into 4 major categories: 1) Intensity-based metrics, 

2) Texture-based analysis, 3) Shape-based measures and 4) Transform-based metrics. 
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1.5.1. Intensity-based metrics 

Intensity-based metrics are often referred to as first-order statistics, which means that 

statistics are calculated from the values themselves, not considering any additional 

information which might be gained from analyzing the relationship of the voxels to each 

other. These statistics can be calculated by selecting a ROI and extracting the voxel values 

from it. The values then can be analyzed with the tools of histogram analysis. These 

statistics can be grouped into three major categories, which quantify different aspects of 

the distribution: 1) average and spread, 2) shape and 3) diversity. 

Most of these statistics are well-known to medical professionals and in some cases are 

used for describing the characteristics of a coronary lesion. Mean: the value that 

resembles our values the best, since its distance from all other values is minimal. Median: 

the value that divides the distribution into two equal halves. Minimum and maximum: 

which are the two extremes of the values. Percentiles: which divide the distribution into 

a given percent of the data. Interquartile range: which are two specific values which 

enclose the middle 50% of the data points. These statistics all have to do with average 

and the spread of the data, they do not convey any information regarding the shape or the 

diversity of the values themselves. Several different distributions may exist that have the 

same mean and spread but have very different shapes. Therefore, these statistics are not 

enough to describe the properties of coronary lesions, since distinct plaque morphologies 

can have very similar values (figure 6). 

The shape of a distribution is commonly described by moments. Moments are a family 

of mathematical formulas that capture different aspects of the distribution. They are 

defined as the average of the values (xi) minus a given value (c) raised to a given power 

(q). If c=the mean (µ) and q=2, then we get the variance, which tells us how spread-out 

our data is from the mean. If we take the square root of the variance, we receive the 

standard deviation (SD). In cases of normally distributed data, the SD informs us where 

approximately 68% of the data is located around the mean. If c=µ and q=3 and we divided 

our moment by SD3, then we get skewness, which quantifies how asymmetric our 

distribution is around the mean. Negative skew indicates that a large portion of the data 

is to the right of the mean, while positive skew means just the opposite. If c=µ and q=4 

and we normalize by SD4 we receive kurtosis, which enumerates how close our data 

points are to the mean. Small values indicate that there are few outliers in the data, and 
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most values are in one SD distance of the mean, while higher values indicate that a larger 

proportion of values situated further away from the mean the one SD. In cases of normally 

distributed data the kurtosis is 3, therefore it is reasonable to compare our kurtosis values 

to this value to analyze how our values differ as compared to the normal distribution. 

 

 

Figure 6. Pipeline for calculating first-order statistics on two representative examples of 

coronary lesions (24). 

First the coronary arteries need to be segmented. Then histograms need to be created 

showing the relative frequency of given Hounsfield-unit values. From these different 

statistics can be calculated. The image also justifies the use of several different parameters 

to reflect a lesion, since the average attenuation values and the standard deviations are the 

same, while only higher moments can differentiate between these two plaques. 

SD: standard deviation 

 

Previous statistics gave information regarding the average, the spread and the shape of 

our distribution, but these give no information regarding the dissimilarity of the voxel 

values. Concepts from information theory can be used to quantify the heterogeneity of 

our values. Energy quantifies the overall magnitude of the intensities and is calculated by 

squaring the values and then summing them. Uniformity measures the similarity of the 

DOI:10.14753/SE.2020.2382



 

  

23 

values and is calculated by squaring the relative frequency of the given attenuation values 

and then summing them. If we only have one type of value then its relative frequency is 

1, and therefore uniformity is 1, while if we have several different values, then their 

probabilities are all smaller than 1 and thus their squared sum will also be smaller than 1. 

Entropy is a concept proposed by Shannon in 1948, which measures the information 

content of our data (113). Events with higher probabilities (p) carry less information since 

we could have guessed the outcome, while unlikely events carry more information since 

their occurrence is infrequent thus highlight specific instances. Entropy quantifies 

uncertainty by weighing the information content of an event with its probability. The 

entropy of a system is equal to adding up these values and multiplying it by minus 1. The 

higher the value the more heterogeneous is our data. The amount of entropy is commonly 

measured in bits. 

1.5.2. Texture-based metrics 

Previously mentioned parameters discarded all spatial information and only use the 

absolute values of the voxels themselves, even though we know that the spatial relation 

of different plaque components has a major effect on plaque vulnerability (38). Plaque 

composition is expressed by the spatial relationship of the voxels on CTA. This 

relationship is hard to conceptualize using mathematical formulas. A solution emerged in 

the 70s, when scientists were presented with the problem of identifying different terrain 

types from satellite imagery. The field of texture analysis has been evolving ever since. 

Texture is the broad concept of describing patterns on images. Patterns are systematic 

repetitions of some physical characteristic, such as intensity, shape or color. Texture 

analysis tries to quantify these concepts with the use of mathematical formulas, which are 

based on the spatial relationship of the voxels. 

In 1973 Haralick et al. proposed the idea of gray-tone spatial dependencies matrix 

(GTSDM) commonly known as gray-level co-occurrence matrix (GLCM) for the texture 

analysis of 2D images. GLCMs are second-order statistics, which means that statistics 

are calculated from the relationship of 2 pixels’ values, not the values themselves. The 

goal of these matrices is to quantify how many times similar value voxels are located next 

to each other in a given direction and distance, and to derive statistics from this 

information. 
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First the coronary arteries need to be segmented to determine the inner and the outer 

vessel wall boundaries to locate the coronary lesions. Then the HU values of the voxels 

need to be discretized into a given number of groups, since exactly the same value voxels 

occur only very rarely in an image. Our GLCM will have exactly the same number of 

columns as rows, which equals the number of HU groups we discretized our image to. 

Next a direction and a distance need to be determined to examine texture. Direction is 

usually given by an angle. By convention voxels to the east of a reference voxel are at 0˚, 

ones to the north-east are at 45˚, ones to the north are at 90˚ and ones to the north-west 

are at 135˚. One only needs to calculate the statistics in these four directions, since the 

remaining four directions are exact counterparts of these. For example, if our angle equals 

0˚ and the distance equals 1, then the raw GLCM is created by calculating the number of 

times a value j occurs to the right of value i. This number is then put into the ith row and 

jth column of the raw GLCM. If we were to calculate the GLCM in the opposite direction 

(at 180˚), then we would get very similar results, just that the rows and the columns would 

be interchanged as compared to the original GLCM (at 0˚), since asking how many times 

do we find a voxel value j to the right of voxel value i is the same thing as asking how 

many times will we find a voxel value i to the left of voxel value j. Therefore, for 

convenience we add the transpose matrix (rows and columns interchanged) to our original 

raw GLCM matrix to receive a symmetrical GLCM matrix (a value in the ith row and jth 

column equals the value in jth row and ith column). Since the absolute numbers are not too 

informative, we normalize the matrix by dividing all the values in the matrix by the sum 

of all values in the GLCM to receive relative frequencies instead of absolute numbers. 

Pipeline for calculating GLCMs can be found in figure 7. 

These matrices contain lot of information on their own. The values on the main diagonal 

represent the probabilities of finding same value voxels. The further away we move from 

the main diagonal the bigger the difference between the intensity values. One extreme 

would be to have only elements on the main diagonal, which would mean that only similar 

value voxels are present in that given direction and distance. Another extreme would be 

when all elements of the GLCM would have the same value. In this case the intensity 

values occur at random in our image. 
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Figure 7. Pipeline for calculating gray-level co-occurrence matrices (24). 

First the coronary arteries need to be segmented. Then the voxels need to be extracted 

from the images. Next the images need to be discretized into n different value groups. 

Then a given direction and distance is determined to calculate the GLCM (distance 1, 

angle 0˚). Raw GLCMs are created by calculating the number of times a value j occurs to 

the right of value i. This value is then inserted into the ith row and jth column of the raw 

GLCM. To achieve symmetry, the transpose is added to the raw GLCM. Next, the matrix 

is normalized by substituting each value by its frequency, this results in the normalized 

GLCM. Afterward, different statistics can be calculated from the GLCMs. To get 

rotationally invariant results, statistics are calculated in all four directions and then 

averaged. 

GLCM: gray level co-occurrence matrix 

 

Haralick et al. proposed 14 different statistics that can be determined from the GLCMs, 

but many more exist. All derived metric weight the entries of the matrix by some value 

depending on what property one wants to emphasize. Angular second 

moment/uniformity/energy squares the elements of the GLCM and then sums them up. 

The fewer the number of different values present in the matrix the higher the value of 

uniformity. Contrast is calculated by multiplying each value of the GLCM by the 

difference in the attenuation values squared for that given row and column (i – j)2, and 
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then adding up all the numbers. We receive bigger weights where there is a large 

difference between the intensity values of the neighboring voxels, and we receive a 

weight of 0 for elements on the main diagonal, for cases where the two voxel intensities 

are equal. Therefore, contrast quantifies the degree of different HU value voxels present 

in a given direction and distance. Homogeneity/inverse difference moment uses the 

reciprocal value of the previous weights. This way elements closer to the main diagonal 

receive higher weights, while values farther away receive smaller values. Since the 

denominator cannot be 0, thus we add 1 to all weights. Since texture is an intrinsic 

property of the picture, we should not get different results if we simply rotate our image 

by 90˚. Therefore, to achieve rotationally invariant results, statistics are calculated on the 

four GLCMs and then averaged. 

While second-order statistics looked at the relationship of two voxels, higher-order 

statistics assess the relationship of three or more voxels. The easiest concept proposed by 

Galloway is the gray level run length matrix (GLRLM), which assess how many voxels 

are next to each other with the same value (114). The rows of the matrix represent the 

attenuation values, the columns the run lengths. Pipeline for calculating GLRLMs can be 

found in figure 8. 

Galloway proposed 5 different statistics to emphasize different properties of these 

matrices. Short runs emphasis divides all values by their squared run length and adds 

them up. Therefore, the number of short run lengths will be divided by a small value, 

while the number of long run lengths will be divided by a large value, thus short run 

lengths will be emphasized. Long runs emphasis does just the opposite by instead of 

dividing the values, it multiplies the entries with the squared run length and then adds 

them up. Gray level nonuniformity squares the number of run lengths for each discretized 

HU group and then sums them up. If the run lengths are equally probable in all cases of 

intensities, then it takes up its minimum. These statistics can also be calculated in all four 

directions to receive rotationally invariant results we average them. 
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Figure 8. Pipeline for calculating gray level run length matrices (24). 

First the coronary arteries need to be segmented. Next the voxels need to be extracted 

from the images. Then the images need to be discretized into n different value groups. 

Next a given direction (angle 0˚) is determined. GLRLMs are created by calculating the 

number of times a i value voxels occur next to each other in the given direction. The ith 

row and jth column of the GLRLM represents how many times it occurs in the image, that 

i value voxels are next to each other j times. To get rotationally invariant results, the 

statistics calculated in different directions are averaged. 

GLRLM: gray level run length matrix 

 

GLCMs and GLRLMs have inspired many to create their own matrices based on some 

other rule. These are, but not limited to: gray level gap length matrix (115), gray level 

size zone matrix (116), neighborhood gray-tone difference matrix (117) or the multiple 

gray level size zone matrix (118). 

Laws suggested a different method to emphasize different features of an image (119). 

This is done through convolution, which is the multiplication of our voxel values by its 

neighbors weighted values which results in a new image. Depending on the weights, we 

can filter out different properties, while emphasizing others. The weights are stored in the 

kernel matrix. Laws proposed 5 different 1D kernels which emphasize some 

characteristic, such as ripples or edges. These 1D kernels can be used to create 2 and 3D 

kernels which can alter radiological images. We can calculate any statistics, for example 

energy, on these new images to summarize them. 
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1.5.3. Shape-based metrics 

Atherosclerotic plaques are complex 3D structures situated along the coronary arteries. 

The spatial distribution and localization of different plaque components can also have an 

effect on plaque vulnerability. 

1D metrics are based on measuring the distance between 2 points. These parameters are 

commonly used in clinical practice to describe the magnitude of an abnormality. On 

coronary CTA the diameter stenosis is used to assess the severity of a lesion, or the length 

to quantify the extent of a plaque. Diameters measured in different directions can be used 

to derive new statistics that can resemble some new property, for example the ratio of the 

longest and the shortest diameter resembles the roundness of a lesion. 

2D metrics are calculated on cross-sectional planes and are used to calculate different 

parameters that are based on areas. These parameters are most often used to approximate 

some 3D property of the abnormality. The 1D metric diameter and the 2D metric area are 

all considered approximations of the 3D metric volume. For example, cross-sectional 

plaque burden is used to approximate full vessel volume-based plaque burden in coronary 

CTA. 

3D metrics try to enumerate different aspects of shape. The geometrical properties of 

shapes have been thoroughly examined in the field of rigid body mechanics. All objects 

have so-called principle axes or eigenvectors. These mutually perpendicular axes cross 

each other at the center of mass. Force applied to these axes act independently, meaning 

that if we push or rotate the object along on of these principle axes, our object will not 

move or rotate in any other direction. These eigenvectors also have eigenvalues which 

can be seen as weights which are proportional to the amount of mass or in our case HU 

intensity located in that given principle axis. These eigenvectors can be used to quantify 

different shape-based metrics, for example: roundness, which is the difference between 

the largest eigenvalues of the smallest enclosing and the largest enclosed ellipse. 

Minkowski functionals originate from integral geometry (120). They can be used to 

calculate the Euler characteristic or genus which is a parameter resembling the 

connectivity of the data points. It is estimated by calculating the number of voxel groups 

with information minus the enclosed regions where there is no signal (121). By taking a 

different threshold of our image, we can calculate separate parameters for each image. 
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These values can be used to describe the connectedness of different intensity values in 

the image. 

Fractal geometry quantifies self-symmetry by examining repeating patterns at different 

scales. Objects showing no fractal dimension scale their characteristics exponentially 

depending on the dimension. For example, if we enlarge a line by 2, its length will 

increase to 21, since it is a 1D object. If we scale one side of a square by 2, then the area 

of the square will increase by 22 since it is a 2D object. A cube’s volume would increase 

to 23 if we were to grow one of its sides by 2. However, fractals act differently. Fractal 

dimensions do not have to be integers as topological dimensions. In example, the fractal 

dimension of a line can be anywhere between 1 and 2. This means, if we magnify our 

line, we see more details that we were not able to see at larger scales. Therefore, if we 

enlarge a line whose fractal dimension is not equal to its topological dimension, then its 

length would be more than twice as long. Actually, the length is undefined, since the more 

we magnify our object the more details we see, therefore this would affect the overall 

length of the line. 

Fractal dimensions measure self-symmetry of objects and quantify how the detail of the 

object changes as we change our scale (122). Rényi dimensions can be used to calculate 

fractal dimensions generally. The box-counting dimension or Minkowski–Bouligand 

dimension is the easiest concept. We calculate how many voxels are occupied by the 

object. We repeat this at increasing scales. Then we plot the number of voxels containing 

the object versus the reciprocal of the scale on a log-log plot. The slope of the line will 

be equal to the box-counting dimension (123, 124). 

1.5.4. Transform-based metrics 

Images are a vast number of signals arranged in the spatial domain. The images can also 

be transformed into a different domain, such as the frequency domain, without losing any 

information. This is basically a different representation of the same information. In the 

frequency domain the rate at which image intensity values change is used to describe the 

image instead of assigning intensity values to spatial coordinates. 

Fourier transform takes a signal and decomposes it to sinusoidal waves which represent 

the frequencies present in the signal. Applying the Fourier transform on an image 

transforms it from the spatial domain to the frequency domain. Gabor transform first 
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filters the image by applying a Gaussian-filter before the Fourier transform is performed. 

In the frequency domain the images can be filtered from specific components, such as 

noise, or individual characteristics such as edges can be emphasized or cancelled out. 

Using the inverse Fourier transform, we can receive back our modified image in the 

spatial domain where we can extract different statistics from the filtered image. 

Wavelet transform are similar to Fourier transforms in that they also convert the image 

into the frequency domain, but not all spatial information is lost (125). We can weigh 

how much frequency and how much spatial information we wish to keep, but we can only 

increase our spatial information by sacrificing frequency precision, and vice versa. A 

family of transformed images can be received from different parameter settings, which 

can be further analyzed using different statistics. 
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1.6. Artificial intelligence: the hope to synthetize it all 

The increased amount of information can then be analyzed using novel data analytic 

techniques such as ML and deep learning (DL), which utilize the power of big data to 

build predictive models, which seek to mimic human intelligence, artificially. These 

techniques may decrease inter-reader variations, increase the amount of quantitative 

information and improve the diagnostic and prognostic accuracy, while reducing 

subjectivity and biases (126). 

The amount of available medical information is increasing at exponential speeds (127). 

Currently the difficulty is not how to get medical big data, but how to organize, analyze 

and clinically utilize the data collected in biobanks and repositories. Conventional 

statistical methods utilize probability theory to create mathematical formulas which 

describe the relationship between variables. This approach is usually acceptable for 

population-based analysis, but in the era of precision medicine and big data, new methods 

are needed which can model complex non-linear relationships and infer results specific 

to each case rather than being generally true to the population. 

Humans are skilled at identifying unique patterns and inferring complex connections 

between data. However, this natural intelligence is not based on mathematical equations, 

but on observations and experience. AI tries to create models which think and act 

humanly and rationally (128). To achieve this, first inputs are needed from the 

environment. Then this information and the previous observations need to be stored and 

analyzed, which can be performed using ML. ML is an analytic method a sub-division of 

AI, which uses computer algorithms with the ability to learn from data, without being 

explicitly programmed (129). These algorithms are similar to the human learning process, 

in the sense that more data they are trained on, the better they perform. In the medical 

field the main goal of ML techniques is to harvest the potential of big data to discover 

new relationships in the data that conventional statistical methods might not be able to. 

While conventional statistical approaches can provide a clear mathematical formula 

regarding the relationship of the variables, not all methods of ML are capable of 

describing the connection between parameters through mathematical equations. Instead 

they build their predictive models based-on patterns in the data experienced through 

training, and make prediction by comparing a new instance to previous similar 
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occurrences (130). Nevertheless, ML has the potential to revolutionize medical through 

providing more accurate predictions of outcomes (figure 9). 

 

 

Figure 9. Flow diagram showing the possible implementations of artificial intelligence 

to medical data and showing the similarities and differences between radiomics, machine 

learning and deep learning (126). 

Artificial intelligence tries to mimic natural intelligence through automating processes 

that are needed for an intelligent system to perceive, interpret and respond to its 

surroundings. The medical field can utilize the benefits of machine learning to help 

interpret the large amounts of data currently available in medicine. In case of radiological 

images, radiomics can be used to extract vast amounts of information, which can be inputs 

to machine learning. On the other hand, deep learning automatically identifies imaging 

markers in the neural network while training, rather than defining them beforehand. 
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2. OBJECTIVES 

2.1. Defining the effect of using coronary CTA to assess coronary 

plaque burden as opposed to ICA 

Even though ICA is considered as the gold-standard of coronary atherosclerosis 

imagaing, the unique ability of coronary CTA to image atherosclerosis itself may provide 

the opportunity to identify CAD earlier. Therefore, our objective was to compare 

coronary CTA and ICA regarding semi-quantitative plaque burden assessment and to 

assess the effect of imaging modality on cardiovascular risk classification. 

2.2. Defining the potential of using radiomics to identify napkin-ring 

sign plaques on coronary CTA 

High-risk plaque morphologies such as the NRS have proven to have additive value in 

identifying patients vulnerable to MACE. However, the reproducibility of such metrics 

is poor. As there was no implementation of radiomics to cardiovascular imaging, we 

sought to assess whether calculation of radiomic features is feasible on coronary lesions. 

Furthermore, we aimed to evaluate whether radiomic parameters can differentiate 

between plaques with or without NRS. 

2.3. Defining the potential of radiomics to identify invasive and 

radionuclide imaging markers of vulnerable plaques on coronary 

CTA 

Invasive imaging modalities due to their better spatial resolution have a better accuracy 

to identify rupture prone plaques. Furthermore, radionuclide imaging is capable of 

identifying plaques with inflammation and micro-calcifications which are hallmarks of 

plaque vulnerability. We wished to assess whether coronary CTA radiomics could 

outperform current standards to identify invasive and radionuclide imaging markers of 

high-risk plaques described by intravascular ultrasound (IVUS), optical coherence 

tomography (OCT) and NaF18-Positron Emission Tomography (NaF18-PET). 
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2.4. Defining the potential effect of image reconstruction algorithms 

on reproducibility of volumetric and radiomic signatures of coronary 

lesions on coronary CTA 

Recent advancements in image reconstruction have led to the wide-spread utilization of 

novel iterative reconstruction techniques. As volumetric and radiomics features are 

calculated from the voxel values themselves, it is important to know how these may 

change the calculated metric values. Therefore, our primary aim was to assess whether 

filtered back projection (FBP), hybrid (HIR) or model-based (MIR) iterative 

reconstruction have any significant effect on volumetric and radiomic parameters of 

coronary plaques. Furthermore, we sought to evaluate the impact of the type of binning 

and the number of bins used for discretization on radiomic parameter values. 

2.5. Defining the potential of using radiomic markers as inputs to 

machine learning models to identify advanced atherosclerotic lesions 

as assessed by histology 

The plaque attenuation pattern scheme outperforms conventional plaque classification to 

identify advanced atherosclerotic lesions. Recently, quantitative histogram analysis and 

the area or volume of low attenuation plaque have been proposed as markers of high-risk 

lesions. Furthermore, radiomics represents a process of extracting thousands of imaging 

markers from radiological images describing the heterogeneity and spatial complexity of 

lesions. These quantitative features can be used as the input to ML. Therefore, our 

objective was to compare the diagnostic performance of radiomics-based ML with visual 

and histogram-based plaque assessment to identify advanced coronary lesions using 

histology as reference standard. 
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3. METHODS 

3.1. Study design and statistics for defining the effect of using coronary 

CTA to assess coronary plaque burden as opposed to ICA 

The Genetic Loci and the Burden of Atherosclerotic Lesions study enrolled patients who 

were referred to coronary CTA due to suspected CAD (NCT01738828). Detailed 

description of the patient population, including the inclusion and exclusion criteria, has 

been published (131). This ancillary study was designed as a nested single-center 

observational cohort study in patients who were referred to ICA due to obstructive CAD 

detected by CTA. The study was approved by the Institutional Ethical Review Board, and 

all participants provided written informed consent (131). 

Out of the 868 patients enrolled by our institution, we selected individuals who underwent 

both coronary CTA and ICA within 120 days. In total, 71 patients (mean age 61.6±9.0 

years, 36.6% female) were included in our analysis. In 58 patients, ICA followed CTA 

based on clinical findings, while in 13 cases ICA was carried out before CTA. These 

patients were either referred to CTA after revascularization due to atypical chest pain (7 

patients) or were referred to left atrial angiography before radiofrequency ablation (6 

patients). An average of 40.2 days passed between the two examinations. 

All images were randomly and independently analyzed. Semi-quantitative plaque burden 

quantification of ICA images was performed by an interventional cardiologist. A 

minimum of 5 projections of the left and right coronary systems were acquired in each 

patient. All coronary segments were analyzed blinded to CTA results, using a minimum 

of 2 projections. Coronary CTA images were analyzed by a cardiologist. 

A total of 1016 segments were assessed based on the 18-segment SCCT classification 

with both modalities (132). We excluded 16 segments due to presence of coronary stents 

leading to overall 1000 analyzed segments. All segments were scored for the presence or 

absence of plaque (0: Absent; 1: Present) and the degree of stenosis (0: None; 1: Minimal 

(<25%); 2: Mild (25%-49%); 3: Moderate (50%-69%); 4: Severe (70%-99%) or 5: 

Occlusion (100%)). In case multiple lesions were present in a segment, the observers 

recorded the highest degree of stenosis for that segment. In each patient, segment 

involvement score (SIS) was used to quantify the number of segments with any plaque, 
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whereas segment stenosis score (SSS) was calculated by summing the stenosis scores of 

each segment. Indexed values were calculated by dividing the SIS and SSS scores by the 

number of segments: segment involvement score index (SISi) = SIS / number of 

segments; segment stenosis score index (SSSi) = SSS / number of segments. 

Based on Bittencourt et al. the extent of CAD was classified as non-extensive (SIS ≤ 4) 

or extensive (SIS > 4) and obstructive (at least one segment with ≥50% stenosis) or non-

obstructive (no segment with ≥50% stenosis).(133) Patients were classified as extensive 

obstructive, nonextensive obstructive, extensive nonbostructive or nonextensive 

nonobstructive based on ICA and also CTA results. 

All continuous variables are expressed as mean ± SD, while categorical variables are 

expressed as frequencies and percentages. Presence of plaque was compared using the 

chi-square test between modalities. Sensitivity, specificity, positive predictive value and 

negative predictive value were calculated to assess the diagnostic accuracy of CTA as 

compared to ICA as reference standard. SIS, SSS and SISi, SSSi were compared using 

the paired t-test between modalities. Reclassification rate was calculated by dividing the 

number of people who shifted groups based on the two modalities by the total study 

population. All statistical calculations were performed using SPSS software (SPSS 

version 23; IBM Corp., Armonk, NY). A p-value of 0.05 or less was considered 

significant. 
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3.2. Study design and statistics for defining the potential of using 

radiomics to identify napkin-ring sign plaques on coronary CTA 

From 2674 consecutive coronary CTA examinations due to stable chest pain we 

retrospectively identified 39 patients who had NRS plaques. Two expert readers 

reevaluated the scans with NRS plaques. To minimize potential variations due to inter-

reader variability the presence of NRS was assessed using consensus read. Readers 

excluded 7 patients due to insufficient image quality and 2 patients due to the lack of the 

NRS, therefore 30 coronary plaques of 30 patients (NRS group; mean age: 63.07 years 

[interquartile range (IQR): 56.54; 68.36]; 20% female) were included in our analysis. As 

a control group, we retrospectively matched 30 plaques of 30 patients (non-NRS group; 

mean age: 63.96 years [IQR: 54.73; 72.13]; 33% female) from our clinical database with 

excellent image quality. To maximize similarity between the NRS and the non-NRS 

plaques and minimize parameters potentially influencing radiomic features, we matched 

the non-NRS group based on degree of calcification and stenosis, plaque localization, 

tube voltage and image reconstruction. 

All plaques were graded for luminal stenosis and degree of calcification. Furthermore, 

plaques were classified as having low attenuation if the plaque cross-section contained 

any voxel with <30 HU and having spotty calcification if a <3 mm calcified plaque 

component was visible. 

Image segmentation and data extraction was performed using a dedicated software tool 

for automated plaque assessment (QAngioCT Research Edition; Medis medical imaging 

systems bv, Leiden, The Netherlands). After automated segmentation of the coronary tree 

the proximal and distal end of each plaque were set manually. Automatic lumen and 

vessel contours were manually edited by an expert if needed (134). From the segmented 

datasets 8 conventional quantitative metrics (lesion length, area stenosis, mean plaque 

burden, lesion volume, remodeling index, mean plaque attenuation, minimal and maximal 

plaque attenuation) were calculated by the software. The voxels containing the plaque 

tissue were exported as a DICOM dataset using a dedicated software tool (QAngioCT 3D 

workbench, Medis medical imaging systems bv, Leiden, The Netherlands). Smoothing or 

interpolation of the original HU values was not performed. Representative examples of 
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volume rendered and cross-sectional images of NRS and non-NRS plaques are shown in 

figure 10. 

 

 

Figure 10. Representative images of plaques with or without the napkin ring sign (135). 

Volume rendered and cross-sectional images of plaques with napkin-ring sign in the top 

row (A, C, E) and their corresponding matched plaques in the lower row (B, D, E). Green 

dashed lines indicate the location of cross-sectional planes. Colors indicate different CT 

attenuation values. 

NCP: non-calcified plaque; NRS: napkin-ring sign 

 

We developed an open source software package in the R programing environment 

(Radiomics Image Analysis (RIA)) which is capable of calculating hundreds of different 

radiomic parameters on 2D and 3D datasets (136). We calculated 4440 radiomic features 

for each coronary plaque using the RIA software tool. Detailed description on how 

radiomic features were calculated can be found in published literature (135). 

Binary variables are presented as frequencies and percentages, while ordinal and 

continuous variables are presented as medians and IQR due to possible violations of the 

normality assumption. For robust statistical estimates, parameters between the NRS and 

the non-NRS group were compared using the permutation test of symmetry for matched 

samples using conditional Monte Carlo simulations with 10,000 replicas (137). For 

diagnostic performance estimates, we conducted receiver operating characteristics (ROC) 
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analysis and calculated area under the curve (AUC) with bootstrapped CI values using 

10,000 samples with replacement and calculated sensitivity, specificity, positive and 

negative predictive value by maximizing the Youden index (138). To assess potential 

clusters among radiomic parameters, we conducted linear regression analysis between all 

pairs of the calculated 4440 radiomic metrics. The 1-R2 value between each radiomic 

feature was used as a distance measure for hierarchical clustering. The average silhouette 

method was used to evaluate the optimal number of different clusters in our dataset (139). 

Furthermore, to validate our results we conducted a stratified 5-fold cross-validation 

using 10,000 repeats of the three best radiomic and conventional quantitative parameters. 

The model was trained on a training set and was evaluated on a separate test set at each 

fold using ROC analysis. The derived curves were averaged and plotted to assess the 

discriminatory power of the parameters. The number of additional cases classified 

correctly was calculated as compared to lesion volume. The McNemar test was used to 

compare classification accuracy of the given parameters as compared to lesion volume 

(140). Due to the large number of comparisons, we used the Bonferroni correction to 

account for the family wise error rate. Bonferroni correction assumes that the examined 

parameters are independent of each other, thus the question is not how many parameters 

are being tested, but how many independent statistical comparisons will be made. 

Therefore, based on methods used in genome-wide association studies we calculated the 

number of informative parameters accounting for 99.5% of the variance using principal 

component analysis (141, 142). Overall, 42 principal components identified, therefore p 

values smaller than 0.0012 (0.05/42) were considered significant. All calculations were 

done in the R environment (143). 
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3.3. Study design and statistics for defining the potential of radiomics 

to identify invasive and radionuclide imaging markers of vulnerable 

plaques on coronary CTA 

The current study is a post-hoc retrospective analysis of patients who have also undergone 

coronary CTA due to suspected coronary artery disease between March and October of 

2015 within 90 days prior to invasive angiography. In total, 27 patients with at least one 

moderate (40-70%) stenosis on the proximal or mid-portion of any major coronary artery 

were included in our study. All patients underwent NaF18-PET and invasive coronary 

angiography. During the invasive procedure, both IVUS and OCT was performed. Two 

patients were excluded due to inadequate image quality of imaging procedures. Overall, 

44 plaques of 25 patients using all four imaging modalities were investigated. The study 

protocol was approved by the institutional review board and was in accordance with the 

Declaration of Helsinki. All patients provided written informed consent before enrolment. 

Coronary CTA images were obtained in accordance with the Society of Cardiovascular 

Computed Tomography Guidelines, with a 64-detector row scanner platform (Somatom 

Definition; Siemens Medical Solutions, Forchheim, Germany) (45). The following 

conventional morphologic adverse plaque characteristics were reported by a core lab 

(Severance Cardiovascular Hospital, Seoul, Republic of Korea) blinded to all other 

results: low attenuation plaque (density ≤30 HU), positive remodelling (remodelling 

index ≥1.1), spotty calcification (density >130 HU and diameter <3 mm), and NRS (ring-

like attenuation pattern with peripheral high attenuation tissue surrounding a central lower 

attenuation area) (46, 54). Lesions with at least two of the four morphologic adverse 

plaque characteristics were regarded as two-feature positive high-risk plaque on coronary 

CTA (144). 

Each coronary plaque was segmented blinded to other imaging modality results using a 

semi-automated software tool (QAngioCT Research Edition; Medis medical imaging 

systems bv, Leiden, The Netherlands) at a designated core laboratory (Semmelweis 

University, Budapest, Hungary). Lumen and vessel contours were manually adjusted if 

necessary. Using the segmented datasets, voxels containing plaque were exported as a 

DICOM image (QAngioCT 3D workbench, Medis medical imaging systems bv, Leiden, 

The Netherlands). Based on the Hounsfield units (HU) values, the volume of low 
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attenuation non-calcified plaque (<30 HU), non-calcified plaque (30-130 HU) and 

calcified plaque volume (>130 HU) was calculated (145, 146). 

Four different classes of radiomic features were used in our analysis. First-order statistics, 

GLCM parameters, GLRLM metrics (147, 148). For these calculations, similar value 

voxels need to be grouped together. This is done through discretization of HU values to 

a given number of bins. In our analysis, we discretized the lesions into 2, 8, 32 equally 

sized (range of values were equally wide) bins creating 3 replicas of the image. All GLCM 

and GLRLM metrics were calculated using all three types of binning. Geometry-based 

statistics were calculated on the original image, as well as each discretized component. 

Radiomic features were analysed at a core facility (Semmelweis University, Budapest, 

Hungary). Overall 935 different radiomic parameters were calculated using the RIA 

software package in the R environment (136, 143). Of these parameters 44 were first-

order statistics; 342 were statistics calculated from GLCM; 33 were statistics extracted 

from GLRLM, while 516 were geometry-based statistical parameters (135). The median 

time to calculate all 935 parameters for each plaque was: 7.3 [range: 3.8-12.6] minutes. 

All patients underwent NaF18-PET before invasive angiography. Electrocardiography-

gated NaF18-PET images were obtained using a dedicated PET/CT scanner (Biograph 40 

TruePoint; Siemens Healthcare, Germany) 60 minutes after the injection of 3 MBq/kg of 

NaF18. Images were reconstructed in 4 frames and fused with the non-enhanced CT 

images. Diastolic phases (frames of 50% to 75% and 75% to 100% of the R–R intervals) 

were evaluated blinded to all other results at a core facility (Seoul National University 

Hospital – Nuclear Medicine, Seoul, Republic of Korea). Maximum standard uptake 

value was measured and corrected for blood pool activity measured in the inferior vena 

cava to provide tissue-to-background ratio measurements. The highest tissue-to-

background ratio value measured on two diastolic-phase images was adopted for the final 

analysis. Plaques with NaF18 uptakes higher than 25% were considered as NaF18-positiv 

lesions (149, 144). 

Selective invasive coronary angiography was performed utilizing standard techniques. 

IVUS images were acquired according to the American College of Cardiology Clinical 

Expert Consensus Document on Standards for Acquisition, Measurement and Reporting 

of Intravascular Ultrasound Studies (150, 151). The presence of echo attenuation 

(hypoechoic plaque with deep ultrasound attenuation) was analysed blindly at a core lab 
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(Seoul National University Hospital – CV Research Institute, Seoul, Republic of Korea). 

All OCT data was assessed blindly at a core laboratory for the presence of TCFA (144). 

Continuous variables are presented as medians and interquartile ranges, while categorical 

variables are reported as frequencies and percentages. Calculating diagnostic accuracy on 

the whole dataset, would be overly optimistic and ungeneralizable to other datasets. 

Therefore, we conducted a stratified 5-fold cross-validation with 1,000 repeats, which 

decreases the bias of overfitting and provides a robust estimate of the expected 

performance in real-life (152). A ROC curve was calculated for each repeat resulting in 

overall 1000 ROC curves. These ROC curves were averaged to model the diagnostic 

performance on the whole population. AUC was calculated as an overall measure of 

diagnostic accuracy. To compare the diagnostic accuracy of conventional and radiomic 

coronary CTA features, we calculated the two-sided Wilcoxon signed-rank test to 

compare the distribution of AUC values resulting from the repeated cross-validations. We 

calculated CI as the 2.5 and 97.5 percentile of the AUC distribution resulting from the 

repeated cross-validations. All statistical calculations were done in the python 

environment using the Scikit-learn package (153). 
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3.4. Study design and statistics for defining the potential effect of 

image reconstruction algorithms on reproducibility of volumetric 

and radiomic signatures of coronary lesions on coronary CTA 

Between August 1st and October 31st 2017, we retrospectively identified 20 non-calcified, 

20 partially calcified and 20 calcified coronary atherosclerotic plaques of 60 patients (age 

60.49.8; female: n=16) showing at least 25% stenosis on excellent image quality 

coronary CTA scans. All images were acquired using a 256-slice scanner (Brilliance iCT 

256, Philips Healthcare) with prospective ECG-triggered acquisition mode. Images were 

acquired in cranio-caudal direction during a single breath-hold in inspiration. Four-phasic 

injection protocol with 90-100 ml of Iomeprol contrast agent was used (Iomeron 400, 

Bracco Ltd) for the coronary CTA examinations (154). Examinations were performed 

using 128×0.625 mm detector collimation, 270 ms gantry rotation time, 120 kV, mAs 

250-300 depending on patient’s body mass index and chest size. All images were 

reconstructed to a 512×512 matrix using an XCB kernel with a slice thickness of 0.8 mm 

and 0.4 mm spacing between slices. All images were reconstructed using FBP, HIR 

(iDOSE4 level 5, Philips Healthcare) and MIR (IMR level 2, Philips Healthcare). 

For image quality assessment, we measured the signal-to-noise ratio (SNR), which was 

defined as the mean coronary luminal CT attenuation in HU adjacent to the lesion divided 

by the standard deviation of the CT number in the aorta measured in a region of interest 

at least 2 cm2 at the level of the left main. Contrast-to-noise ratio (CNR) was defined as 

the mean luminal HU minus the perivascular HU at the site of the plaque divided by the 

standard deviation of the aortic HU. All measurements were performed on a clinical 

workstation (IntelliSpace portal, Philips Healthcare). 

An expert reader manually segmented the coronary plaques on HIR image using a 

dedicated software tool (QAngioCT Research Edition; Medis medical imaging systems 

bv) (155). HIR images were chosen as they are available for each vendor and are most 

frequently used for plaque analysis. Voxels containing plaque tissue were extracted as a 

DICOM image with dimensions identical to the original image using a dedicated software 

(QAngioCT 3D workbench, Medis medical imaging systems bv). This DICOM image 

was used as a mask to select the same voxels from all three reconstructions. Using the 

same segmentation ensured that only the change in voxel values attributable to different 
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image reconstructions affected the results. For volumetric plaque analysis, voxels were 

grouped into calcified plaque volume (>130 HU), high attenuation (90–129 HU), 

intermediate attenuation (30–89 HU) and low attenuation (<30 HU) non-calcified plaque 

volumes (156). 

Overall, 44 first-order metrics describing the distribution of HU values, 114 GLCM 

parameters enumerating the frequency at which similar HU values co-occur next to each 

other, and 11 GLRLM features quantifying the prevalence of many similar voxel values 

in a line next to each other, were calculated based-on a prior publication (135). Before 

calculation of GLCM and GLRLM statistics, images need to be preprocessed. To 

calculate parameters describing the spatial heterogeneity of a lesion, HU values need to 

be first discretized into given ranges (bins), since minimal differences in HU value have 

little effect on heterogeneity and therefore can be considered similar values. Therefore, 

replicate images were created by discretizing the voxel HU values either to equally sized 

bins where the discrete bins span equal ranges (i.e. 10-20; 20-30; 30-40; etc.) or to equally 

probable bins, where equal proportion of data are present in each bin (i.e. 10%; 10%; 

10%; etc.). Radiomic parameters were calculated on all three reconstructions. GLCM and 

GLRLM parameters were calculated using with 2, 4, 8, 16, 32, 64, 128 and 256 number 

of bins both for equally sized and equally probable binning.  This resulted in 2*8 

variations for each reconstruction of each plaque. Therefore, for first-order statistics 3*60 

(number of reconstruction*number of plaques) =180 values, for GLCM and GLRLM 

3*60*2*8 (number of reconstructions*number of plaques*number of different types of 

discretization*number of different bins) = 2880 different values were available for each 

radiomics parameter. 

Categorical variables are presented as frequencies and percentages, while continuous 

variables are shown as averages and SD. Intra-class correlation coefficient (ICC) was 

calculated to assess the reproducibility of the radiomic parameters with regards to 

different reconstructions. ICC values greater than 0.80 were considered good, values 

above 0.90 were considered to have excellent reproducibility. To assess which parameters 

have an independent influence on radiomic values, we conducted linear regression 

analysis. Models included plaque composition (non-calcified, partially calcified, 

calcified) and reconstruction algorithms where HIR was considered as reference. In 

addition, for GLCM and GLRLM parameters the type of binning and the number of bins 
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were also added to the model. Beta () and p values are reported for each independent 

variable. ∆R2 was calculated for each independent variable by subtracting the R2 value 

calculated when considering all variables except the given variable from the regression 

model which considered all variables. ∆R2 was calculated as an effect size measure, to 

show the proportion of variance attributable to a given parameter. In case of radiomic 

parameters, due to the large number of outcome parameters, results are summarized on 

Manhattan plots, where the given statistical results (ICC or ∆R2) are plotted on the y axis 

while the radiomic parameters are lined up on the x axis in consecutive order and color 

coded based-on which family of radiomic metrics they belong to (157). All statistical 

calculations were done in the R environment. A p value of p<0.05 was considered 

statistically significant. 
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3.5. Study design and statistics for defining the potential of using 

radiomic markers as inputs to machine learning models to identify 

advanced atherosclerotic lesions as assessed by histology 

The donor hearts were provided by the International Institute for the Advancement of 

Medicine (Jessup, Pennsylvania). Inclusion criteria consisted of: men between 40 and 70 

years with a history of myocardial infarction or coronary artery disease proven by 

diagnostic tests (54, 158). Donors with coronary artery bypass grafts were excluded. The 

maximum allowed warm and cold ischemia time was 6 and 15 hours respectively. Overall 

7 isolated donor hearts (mean age of the donors: 52.3±5.3, 7 men) were investigated. The 

cause of death was stroke (n=6) and suicide (n=1).  

The heart preparation was described previously (54, 158). The fresh hearts were imaged 

without formalin fixation using a 64-detector row CT scanner (High-Definition, GE 

Discovery, CT 750HD, GE Healthcare, Milwaukee). For coronary CTA a 3% mixture of 

iodinated contrast material (iopamidol; Isovue 370, Bracco Diagnostics, Milan, Italy) 

with methylcellulose (Methocel, DOW Chemical Company, Midland, Michigan) was 

used. All datasets were acquired using sequential acquisition mode, 64 × 0.625 mm 

collimation; 0.35-s rotation time; tube voltage: 120 kV; tube current time product: 500 

mAs. The images were reconstructed with a slice thickness of 0.6 mm and an increment 

of 0.4 mm using an adaptive iterative reconstruction technique (ASIR, GE Healthcare, 

Milwaukee, Wisconsin). Coronary CTA images were analyzed on an offline workstation 

(Leonardo, Siemens Healthcare, Erlangen, Germany). After CT imaging, the coronary 

arteries were excised with surrounding tissue and the side branches were ligated. The 

preparation and the coronary CTA imaging was done within 4 hours after receiving the 

heart to avoid potential post-mortem changes of the tissue. 

Histologic preparation and analysis were performed at a pathology institute that 

specializes in cardiovascular histopathology by a certified pathologist with over 20-years 

of experience (CVPath Institute, Gaithersburg, MD). Paraffin sections were obtained in 

1.5-mm and 2-mm increments (382 and 185 cuts, respectively) of the coronary arteries. 

Coronary artery segments with no visible atherosclerotic disease were sectioned every 5 

mm (44 cuts). The thickness of a single histological section was 6 μm. All sections were 

stained with Movat pentachrome (159). Each cross-section was classified according the 
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modified American Heart Association scheme into the following categories: adaptive 

intima thickening, pathological intimal thickening, fibrous plaque, early fibroatheroma, 

late fibroatheroma and the thin cap fibroatheroma (160, 161). Among these, adaptive and 

pathological intimal thickening and fibrous plaque were considered early atherosclerotic 

lesions, while early and late fibroatheroma and thin cap fibroatheroma were categorized 

as advanced lesions.  

The method of co-registration of histological slides with coronary CTA images was 

described previously (54). An experienced reader performed the qualitative reading of all 

(training and validation dataset) coronary CTA cross-sections and classified them based 

on the traditional and the plaque attenuation pattern scheme as described in detail 

previously (54). All readings were done blinded to the histological results and were 

performed with a fixed window setting (700 Hounsfield units (HU) width, 200 HU level).  

All coronary CTA cross-sections were manually segmented using a dedicated open-

source software (3D Slicer v4.8.1., Boston, Massachusetts, open-source) based on the 

direct plaque tracing method (162, 163). Plaque segmentations were used as a mask image 

to select the voxels which contained plaque. Images were exported in NRRD files and 

imported into RIA (v1.4.1, Budapest, Hungary, open-source) software package in the R 

environment (136). For histogram-based assessment, the area of low attenuation (<30 

HU) and the average HU values were calculated from the segmented coronary CTA 

images. 

Segmented image voxel values were then discretized into 16, 32 and 64 equally sized 

(bins having identical HU ranges) and also equally probable bins (bins having the same 

amount of voxels) using the RIA software resulting in six additional images (136) (136, 

164). Overall 44 first-order statistics (describing the HU distribution of the lesion) were 

calculated on the original voxel values. 114 gray level co-occurrence matrix (describing 

how often voxels with similar value co-occur next to each other) and 11 gray level run 

length matrix parameters (describing how many similar values voxel are next to each 

other) on the discretized images resulting in 6*114=684 and 6*11=66 parameters. Among 

geometry-based parameters (describing the spatial characteristics of the lesions such 

smoothness or self-symmetry): surface, surface ratio of a specific discretized value to 

total surface and fractal box counting, information and correlation dimensions were 

calculated on the original image and each value of the discretized image resulting in 
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5+(2*16*5)+(2*32*5)+(2*64*5)=1125 parameters. Altogether 1919 parameters were 

calculated for each cross-section. Detailed description of each radiomic parameter has 

been published previously (135, 24). 

For unbiased estimates of diagnostic accuracy, our dataset was randomly split into a 

training-set and a validation-set (75%, n=333; 25%, n=112, respectively). Eight 

independent ML models were trained on the training-set. To select the best model and the 

best hyperparameters for each model, we conducted 5-fold cross-validation on the 

training-set. This technique randomly selects 80% of the dataset on which the models are 

trained and then evaluates them on the remaining 20% (tuning-set). This is repeated five 

times until each cross-section was part of the tuning-set once. Diagnostic performance 

was assessed using ROC curves’ AUC value. The average of the 5 AUC values during 

cross-validation was used to describe the discriminatory power of that specific model 

using given hyperparameter values. This process was repeated 1000 times for each type 

of ML model by assigning random values to the hyperparameter values using randomized 

grid search (165, 153). 

Model building consisted of the following steps: 1: exclusion of parameters with 0 

variance. 2: robust scaling of parameters using the median and interquartile range. 3: 

selecting parameters which were under a random significance level (hyperparameter) 

using the false positive rate test or the family-wise error rate test. 4: conducting principal 

component analysis describing a randomly assigned (hyperparameter) portion of the 

variance. 5: fitting the given ML model with randomly assigned hyperparameters. The 

following types of ML models were fitted: logistic regression, K-nearest neighbors, 

random forest, least angle regression, naïve Bayes, Gaussian process classifier, decision 

trees, deep neural networks (153). The ML model that provided the best results on the 

training-set was then applied to the validation-set. In case of the plaque attenuation pattern 

scheme and histogram-based measurements, a logistic regression model was fitted to the 

training-set which was then applied to the validation-set to evaluate discriminatory 

power. All model building was done in the python environment (v3.6.2, Beaverton, 

Oregon, open-source) using the Scikit-learn package (v0.19.1, open-source) (153). Code 

used for analysis can be accessed at: https://github.com/martonkolossvary/radiomics_ex-

vivo_src  
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Continuous variables are presented as average and standard deviation, while categorical 

variables are reported as frequencies and percentages. Categorical variables were 

compared using the chi-square test. Diagnostic accuracy of visual assessment, histogram-

based methods and radiomics-ML were evaluated on the validation-set using ROC 

curves. 95% CI of the AUC values were calculated and the ROC curves were compared 

using the DeLong method (166).  

All statistical calculations were done in the python (v3.6.2, Beaverton, Oregon, open-

source) and R (v3.4.2, Vienna, Austria, open-source) environments. A two-sided p value 

<0.05 was considered statistically significant.  
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4. RESULTS 

4.1. Comparison of quantity of coronary atherosclerotic plaques 

detected by coronary CTA versus ICA 

Detailed demographics can be found in table 1. Coronary CTA detected coronary artery 

plaque in 49% (487/1000) of the segments, whereas ICA showed coronary plaques in 

24% (235/1000) of all segments (p<0.001). Of the 235 positive segments with ICA, 

corresponding segments on CTA was also positive in 94%. CTA detected atherosclerotic 

plaque in 35% (266/765) of coronary segments where ICA was negative. 36% (95/266) 

of these plaques were non-calcified, 38% (102/266) were mixed and 26% (69/266) were 

calcified plaques on CTA. When considering the severity of coronary stenosis only seen 

by CTA, 79% of plaques caused minimal or mild luminal stenosis (211/266). Conversely, 

ICA detected plaque only in 3% (14/513) of segments where CTA was negative. 

 

Table 1. Demographic information regarding patients who underwent coronary CTA and 

ICA (167). 

Variable n = 71 

Age (years) 61.6 ± 9.0 

Female 26 (37 %) 

Body Mass Index (kg/m2) 27.9 ± 4.3 

Hypertension 51 (72 %) 

Diabetes Mellitus 13 (18 %) 

HDL (mmol/l) 1.34 ± 0.4 

LDL (mmol/l) 3.0± 1.3 

Triglyceride (mmol/l) 1.7 ± 0.8 

Cholesterol (mmol/l) 4.8 ± 1.6 

Time between coronary CT angiography and 

invasive coronary angiography (days) 
40.2 ± 32.1 
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Regarding segment scores, CTA showed more than two times as many segments with 

plaque compared to ICA, and also the overall degree of stenosis caused by the plaques 

was almost twice. Summary of segment score analysis is shown in table 2. 

 

Table 2. Comparison of semiquantitative scores between coronary CT angiography and 

invasive coronary angiography (167). Segment involvement score (SIS) and index (SISi), 

segment stenosis score (SSS) and index (SSSi) all significantly differed between CTA and 

ICA images. 

 CTA ICA p 

SIS 6.9 ± 3.0 3.3 ± 2.0 <0.001 

SISi 0.5 ± 0.2 0.2 ± 0.1 <0.001 

SSS 16.4 ± 8.8 9.4 ± 6.8 <0.001 

SSSi 1.2 ± 0.6 0.7 ± 0.5 <0.001 

 

Analysis of diagnostic accuracy revealed high sensitivity with moderate specificity (96% 

CI: 87-100%; 53 % CI: 28-77%, respectively) with high positive and negative predictive 

value (87%, CI: 75-94%; 82 %, CI: 48-100%, respectively). 

Out of 71 patients, based on CTA results 72% (51/71) was classified as extensive 

obstructive, 3% (2/71) as extensive non-obstructive, 13% (9/71) as non-extensive 

obstructive and 13% (9/71) as non-extensive non-obstructive. Using ICA based 

measurements, 27% (19/71) of the patients was extensive obstructive, 1% (1/71) was 

extensive non-obstructive, 49% (35/71) was non-extensive obstructive and 23% (16/71) 

was non-extensive non-obstructive. Overall 52% (37/71) of the patients moved to a higher 

risk category, while 1% (1/71) moved to a lower category using CTA based 

measurements as compared to ICA based measurements. Graphical representation of the 

risk groups and exact number of patients moving from one group to another can be found 

in figure 11. 
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Figure 11. Risk classification of patients based on coronary computed tomography 

angiography and invasive coronary angiography (167). 

Overall, 52% of patients moved to a higher risk category. The number of patients 

switching to higher risk groups are represented by arrows. Only 1% of patients moved to 

a lower risk category using CTA-based measurements as compared to ICA-based 

measurements (not shown in Figure). 

CTA: CT angiography; ICA: invasive coronary angiography 
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4.2. Identification of napkin-ring sign plaques using radiomics 

There was no significant difference between the NRS and non-NRS groups regarding 

patient characteristics and scan parameters (table 3). Furthermore, we did not observe any 

significant difference in qualitative plaque characteristics and image quality parameters 

(table 4) implying successful matching of the two groups. Median number of voxels 

contributing to the NRS coronary plaques (1928 [IQR: 1413;2560]) did not show 

statistical difference as compared to the number of voxels in the non-NRS group (1286 

[IQR: 1001;1768]), p=0.0041. Among conventional quantitative imaging parameters, 

there was no significant difference between NRS and non-NRS plaques (table 4). 

Furthermore, none of the conventional parameters had an AUC value above 0.8 (table 5). 

 

Table 3. Patient characteristics and scan parameters (135). 

 NRS group 

(n=30) 

non-NRS group 

(n=30) 
p 

 

Demographics      

Age (years) 63.07 [56.54; 68.36] 63.96 [54.73; 72.13] 0.86 

Male gender, n (%) 24 (80%) 20 (67%) 0.16 

BMI (kg/m2) 28.06 [25.06; 29.91] 26.93 [23.91; 29.32] 0.34 

Cardiovascular risk factors      

Hypertension n (%) 19 (63%) 18 (60%) 0.78 

Diabetes mellitus n (%) 25 (83%) 26 (87%) 0.65 

Dyslipidemia n (%) 16 (53%) 18 (60%) 0.62 

Current smoker n (%) 20 (67%) 21 (70%) 0.80 

Scan parameters      

Total dose length product 

(mGy x cm) 
362.00 [356.00; 367.00] 358.20 [253.20; 367.00] 0.42 

Pixel spacing (mm) 0.41 [0.39; 0.43] 0.43 [0.39; 0.45] 0.30 
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Table 4. Plaque and image quality characteristics (135). 

 Napkin-ring sign group 

(n=30) 

Non-napkin ring sign group 

(n=30) 

p 

  

Plaque composition     1.00 

Non-calcified, n (%) 19 (63%) 19 (63%)  

Partially calcified, n (%) 11 (37%) 11 (37%)  

Calcified, n (%) 0 (0%) 0 (0%)  

Luminal stenosis     1.00 

Minimal (1-24%) 11 (37%) 11 (37%)  

Mild (25-49%) 11 (37%) 11 (37%)  

Moderate (50-69%) 6 (20%) 6 (20%)  

Severe (70-99%) 2 (7%) 2 (7%)  

Stenosis localization     1.00 

Left main 2 (7%) 2 (7%)  

Left anterior descending 20 (66%) 20 (66%)  

Left circumflex 2 (7%) 2 (7%)  

Right coronary 6 (20%) 6 (20%)  

Image quality      

Contrast-to-noise ratio 21.94 [18.61; 28.80] 23.42 [18.64; 26.57] 0.70 

Signal-to-noise ratio 18.69 [15.84; 24.13] 20.52 [16.33; 22.53] 0.59 

High-risk plaque 

features 
     

Napkin-ring sign, n (%) 30 (100%) 0 (0%) <0.0001 

Low attenuation, n (%) 26 (87%) 19 (63%) 0.06 

Spotty calcification, n (%) 10 (33%) 9 (30%) 0.99 

Conventional 

quantitative metrics 
     

Lesion length (mm) 13.62 [10.42; 17.02] 13.48 [10.99; 17.71] 0.70 

Lesion volume (mm3) 134.88 
[105.68; 

190.76] 
88.88 [70.02; 143.98] 0.02 

Mean plaque burden 0.59 [0.52; 0.66] 0.51 [0.44; 0.59] 0.003 
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Lumen area stenosis 0.41 [0.15; 0.53] 0.28 [0.19; 0.49] 0.38 

Vessel wall remodeling 

index 
1.03 [0.92; 1.46] 1.09 [0.97; 1.20] 0.55 

Mean plaque attenuation 

(HU) 
114.67 

[85.54; 

148.99] 
156.75 [138.46; 208.37] 0.002 

Minimal plaque 

attenuation (HU) 
-83.00 

[-101.75; -

58.00] 
-60.00 [-84.75; -47.00] 0.10 

Maximal plaque 

attenuation (HU) 
523.00 

[451.00; 

794.50] 
634.50 [454.00; 898.00] 0.63 
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Table 5. Diagnostic performance of conventional quantitative parameters and novel 

radiomic parameters to identify plaques with the napkin-ring sign (135). 

 Area under 

the curve 
CI Sensitivity Specificity PPV NPV 

 

Conventional 

quantitative 

metrics 

      

Mean plaque 

attenuation 
0.770 [0.643; 0.880] 0.533 0.933 0.889 0.667 

Mean plaque 

burden 
0.702 [0.563; 0.826] 0.700 0.667 0.677 0.690 

Lesion volume 0.683 [0.543; 0.817] 0.700 0.700 0.700 0.700 

Minimal 

plaque 

attenuation 

0.647 [0.498; 0.788] 0.700 0.700 0.700 0.700 

Maximal 

plaque 

attenuation 

0.553 [0.408; 0.696] 0.700 0.500 0.583 0.625 

Remodeling 

index 
0.547 [0.398; 0.700] 0.633 0.633 0.633 0.633 

Lumen area 

stenosis 
0.539 [0.389; 0.687] 0.567 0.667 0.630 0.606 

Lesion length 0.508 [0.359; 0.654] 0.933 0.133 0.519 0.667 

First-order 

statistics 
      

30th decile 0.827 [0.716; 0.921] 0.833 0.733 0.758 0.815 

First quartile 0.826 [0.712; 0.922] 0.767 0.800 0.793 0.774 

Harmonic 

mean 
0.823 [0.708; 0.922] 0.767 0.800 0.793 0.774 

Trimean 0.812 [0.696; 0.910] 0.867 0.667 0.722 0.833 

Geometric 

mean 
0.803 [0.684; 0.902] 0.633 0.900 0.864 0.711 

Gray level co-

occurrence 
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matrix 

parameters 

Interquartile 

range 
0.867 [0.769; 0.948] 0.700 0.900 0.875 0.750 

Lower notch 0.866 [0.763; 0.948] 0.967 0.633 0.725 0.950 

Gauss right 

focus 
0.859 [0.759; 0.940] 0.767 0.867 0.852 0.788 

Median 

absolute 

deviation from 

the mean 

0.856 [0.744; 0.946] 0.867 0.767 0.788 0.852 

Sum energy 0.848 [0.740; 0.937] 0.967 0.633 0.725 0.950 

Gray level 

run length 

matrix 

features 

      

Short run low 

gray level 

emphasis 

0.918 [0.822; 0.996] 1.000 0.867 0.882 1.000 

Long run low 

gray level 

emphasis 

0.894 [0.799; 0.970] 1.000 0.733 0.789 1.000 

Long run 

emphasis 
0.888 [0.791; 0.962] 0.933 0.767 0.800 0.920 

Run 

percentage 
0.871 [0.771; 0.951] 1.000 0.667 0.750 1.000 

Short run 

emphasis 
0.853 [0.747; 0.942] 1.000 0.633 0.732 1.000 

Geometry 

based 

parameters 

      

Surface ratio 

of component 

2 to total 

surface 

0.890 [0.801; 0.960] 0.833 0.833 0.833 0.833 
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Surface ratio 

of component 

7 to total 

surface 

0.888 [0.796; 0.958] 0.933 0.733 0.778 0.917 

Surface ratio 

of component 

22 to total 

surface 

0.883 [0.787; 0.959] 0.767 0.900 0.885 0.794 

Surface ratio 

of component 

14 to total 

surface 

0.882 [0.790; 0.954] 0.833 0.833 0.833 0.833 

Surface ratio 

of component 

3 to total 

surface 

0.864 [0.767; 0.943] 0.867 0.767 0.788 0.852 
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Overall, 4440 radiomic parameters were calculated for each atherosclerotic lesion. Out of 

all calculated radiomic parameters, 20.6% (916/4440) showed a significant difference 

between plaques with or without NRS (all p<0.0012). Of the 44 calculated first-order 

statistics 25.0% (11/44) was significant. Out of the 3585 calculated GLCM statistics 

20.7% (742/3585) showed a significant difference between the two groups. Among the 

55 GLRLM parameters 54.5% (30/55) were significant, while 17.6% (133/756) of the 

calculated 756 geometry-based parameters had a p<0.0012. A Manhattan plot of the p 

values of the calculated radiomic parameters is shown in figure 12. Detailed statistics of 

the assessed radiomic parameters have been published (135). 

 

 

Figure 12. Manhattan plot of all 4440 calculated p values. (135). 

The Manhattan plot shows all 4440 calculated p values comparing napkin-ring sign 

(NRS) vs. non-NRS plaques and their distribution among the different classes of radiomic 

parameters. Radiomic features are lined up on the x axis, while the -log2(p) values are 

plotted on the y axis. The red horizontal line indicates the Bonferroni corrected p value 

of 0.0012. Radiomic parameters above the red line were considered statistically 

significant. 

 

Among all 4440 radiomic parameters 9.9% (440/4440) had an AUC value greater than 

0.80. Out of the 44 calculated first-order statistics 18.2% (8/44) had an AUC value larger 

than 0.80. Of the 3585 calculated GLCM parameters 9.7% (348/3585) of the AUC values 

was above 0.80. Among the 55 GLRLM parameters 54.5% (30/55) had an AUC value 

above 0.80, while out of the calculated 756 geometry-based parameters 7.1% (54/756) 
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had an AUC value above 0.80. Of all radiomic parameters short run low gray level 

emphasis, long run low gray level emphasis, surface ratio of component 2 to total surface, 

long run emphasis and surface ratio of component 7 to total surface had the five highest 

AUC values (0.918; 0.894; 0.890; 0.888 and 0.888, respectively). Detailed diagnostic 

accuracy statistics of conventional quantitative features and of the five best radiomic 

features for each group are shown in table 5, while detailed diagnostic accuracy results 

of radiomic parameters have been published previously (135). 

Results of the linear regression analysis conducted between all pairs of the calculated 

4440 radiomic metrics are summarized using a heatmap (figure 13). Hierarchical 

clustering showed several different clusters where parameters are highly correlated with 

each other (represented by the red areas in figure 13), but only have minimal relationship 

with other radiomic features (represented by the black areas in figure 13). Cluster analysis 

revealed that the optimal number of clusters among radiomic features in our dataset is 44. 

5-fold cross-validation using 10,000 repeats was used to simulate the discriminatory 

power of the three best radiomic and conventional parameter. Average ROC curves of 

the cross-validated results are shown in figure 14. Radiomic parameters had higher AUC 

values as compared to conventional quantitative features and identified lesions showing 

the NRS significantly better as compared to conventional metrics. Detailed results are 

shown in table 6. 
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Figure 13. Heatmap and clustering dendrogram of all 4440 calculated radiomic 

parameters. (135). 

Heatmap of the covariance matrix of all 4440 radiomic features. Each parameter was 

compared to all other parameters using linear regression analysis. Features were clustered 

based on R2 values of the corresponding regression models and plotted along both axes. 

R2 values below 0.5 are black, while greater values are shown in red with increasing 

intensity. The 1-R2 values was used as a distance measure between parameters and used 

for hierarchical clustering. The resulting clustering dendrogram can be seen on the right 

of the image. Cluster analysis indicated that the optimal number of clusters is 44 based 

on our radiomics dataset. 
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Figure 14. Stratified five-fold cross-validated receiver operating characteristic curves of 

the best radiomic and conventional quantitative parameters. (135). 

Stratified five-fold cross-validated receiver operating characteristic curves using 10,000 

repeats. Radiomic parameters (blue) have higher discriminatory power to identify plaques 

with napkin-ring sign as compared to conventional quantitative metrics (green). Detailed 

performance measures can be found in table 6. 
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Table 6. Area under the curve values of stratified five-fold cross-validated receiver operating characteristic curves of the best radiomic and 

conventional quantitative parameters to identify plaques with napkin-ring sign. 

 Area under 

the curve 

Additional cases classified correctly 

as compared to lesion volume 
p 

 

Short run low gray level emphasis 0. 889 30.6% <0.0001 

Long run low gray level emphasis 0. 866 23.3% <0.0001 

Surface ratio of high attenuation voxels to total 

surface 

0. 848 16.7% <0.0001 

Mean plaque attenuation 0. 754 5.1% 0.0002 

Mean plaque burden 0. 709 4.6% 0.0009 

Lesion volume 0. 668 - - 
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4.3. Identification of invasive and radionuclide imaging markers of 

vulnerable plaques using radiomic analysis of coronary CTA 

Overall, 44 plaques were analysed (table 7); 30/44 (68.2%) plaques showed attenuation 

on IVUS, 7/44 (15.9%) showed TCFA on OCT and in 11/44 (25.0%) cases 25% NaF18 

uptake was present. All plaques which were TCFA by OCT also showed attenuation on 

IVUS. Out of the 30 attenuated plaques 8/30 (26.7%) showed radionuclide uptake on 

NaF18-PET, however none of the TCFA plaques showed 25% NaF18 uptake. 

 

Table 7. Patient and lesion characteristics. 

Patients  

Age (year) 62 [IQR: 59-69] 

Male (n, %) 23 (92) 

Body mass index (kg/m2) 25 [IQR: 22-27] 

Cardiovascular risk factors  

  Hypertension (n, %) 12 (48.0) 

  Diabetes mellitus (n, %) 8 (32.0) 

  Hypercholesterolemia (n, %) 18 (72.0) 

  Current smoker (n, %) 6 (24.0) 

Lesion Characteristics  

Lesion locations  

  Left main to left anterior descending (n, %) 34 (77.3) 

  Left circumflex (n, %) 3 (6.8) 

  Right coronary artery (n, %) 7 (15.9) 

Quantitative coronary angiography  

  Reference vessel diameter (mm) 3.3 [IQR: 2.9-3.6] 

  Minimal lumen diameter (mm) 1.7 [IQR: 1.4-2.3] 

  Diameter stenosis (%) 45 [IQR: 33-52] 

  Lesion length (mm) 11.2 [IQR: 7.9-14.5] 
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Among radiomic metrics, 35/935 (3.7%) had AUC values between 0.70 and 0.79 and 

311/935 (33.3%) had values between 0.60-0.69 to identify IVUS-attenuated plaque. 

Among radiomic metrics fractal box counting dimension of high attenuation (component 

30 when discretizing to 32 equally sized bins) voxels showed the best diagnostic accuracy 

to identify attenuated plaques on IVUS (AUC: 0.72; CI: 0.65-0.78), whereas among the 

conventional CT metrics, non-calcified plaque volume showed the best discriminatory 

value (AUC: 0.59; CI: 0.57-0.62), p<0.001 (figure 15). 

 

Figure 15. Diagnostic evaluation of radiomics and conventional CT parameters to 

identify attenuated plaques on IVUS (168). 

Panel a: shows average ROC curves of the best radiomic (pink): fractal box counting 

dimension of high attenuation voxels (component 30 when discretizing to 32 equally 

sized bins); and the best conventional (blue) parameter: non-calcified plaque volume, 

which were calculated by averaging the ROC curves after 1000 repeats of the 5-fold cross 

validation process. Panel b: distribution of the AUC values calculated during the 5-fold 

cross validation process repeated 1000 times. Dashed lines indicate the means of the AUC 

distributions. Results are based on the analysis of 44 plaques of 25 patients. Panel c: 

Manhattan-plot of radiomic features’ AUC values. Radiomic parameters are situated in 

consecutive order on the x axis, while their corresponding AUC values to identify 

attenuated plaques on IVUS are shown on the y axis. 

AUC: area under the curve; IVUS: intravascular ultrasound; GLCM: grey level co-

occurrence matrix; GLRLM: grey level run length matrix; ROC: receiver operating 

characteristics 
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Overall, 1/935 (0.1%) of all radiomic parameters had AUC values between 0.80-0.89, 

44/935 (4.7%) between 0.70-0.79 and 219/935 (23.4%) had values between 0.60 and 0.69 

to identify OCT-TCFA. Fractal box counting dimension of high attenuation (component 

8 when discretizing to 8 equally sized bins) voxels had the best diagnostic accuracy to 

identify OCT-TCFA (AUC: 0.80; CI: 0.72-0.88), while the presence of low attenuation 

plaque showed the best discriminatory power among conventional metrics (AUC: 0.66; 

CI: 0.58-0.73), p<0.001 (figure 16). 

 

 

Figure 16. Diagnostic evaluation of radiomics and conventional CT parameters to 

identify OCT-TCFA (168). 

Panel a: shows average ROC curves of the best radiomic (pink): fractal box counting 

dimension of high attenuation voxels (component 8 when discretizing to 8 equally sized 

bins); and the best conventional (blue) parameter: presence of low attenuation, which 

were calculated by averaging the ROC curves after 1000 repeats of the 5-fold cross 

validation process. Panel b: distribution of the AUC values calculated during the 5-fold 

cross validation process repeated 1000 times. Dashed lines indicate the means of the AUC 

distributions. Results are based on the analysis of 44 plaques of 25 patients. Panel c: 

Manhattan-plot of radiomic features’ AUC values. Radiomic parameters are situated in 

consecutive order on the x axis, while their corresponding AUC values to identify OCT-

TCFA are shown on the y axis. 

AUC: area under the curve; GLCM: grey level co-occurrence matrix; GLRLM: grey level 

run length matrix; OCT: optical coherence tomography; ROC: receiver operating 

characteristics; TCFA: thin-cap fibroatheroma 

 

  

DOI:10.14753/SE.2020.2382



 

 

    

67 

Overall, 30/935 (3.2%) of the radiomic parameters had AUC values between 0.80 and 

0.89, 331/935 (35.4%) had values between 0.70-0.79 and 232/935 (24.8%) had values 

between 0.60-0.69 to identify NaF18-positivitiy. Out of the radiomic parameters the 

surface of high attenuation (component 8 when discretizing to 8 equally sized bins) voxels 

had the best diagnostic accuracy (AUC: 0.87; CI: 0.82-0.91), while the presence of two 

high risk features on CTA had the best discriminatory power (AUC: 0.65; CI: 0.64-0.66) 

among conventional parameters to identify marked radionuclide uptake using NaF18-

PET, p<0.001 (figure17). 

 

 

Figure 17. Diagnostic evaluation of radiomics and conventional CT parameters to 

identify radionuclide activity on NaF18-PET.(168). 

Panel a: shows ROC curves of the best radiomic (pink): surface of high attenuation voxels 

(component 8 when discretizing to 8 equally sized bins); and the best conventional (blue) 

parameter: presence of two high risk features, which were calculated by averaging the 

ROC curves after 1000 repeats of the 5-fold cross validation process. Panel b: distribution 

of the AUC values calculated during the 5-fold cross validation process repeated 1000 

times. Dashed lines indicate the means of the AUC distributions. Results are based on the 

analysis of 44 plaques of 25 patients. Panel c: Manhattan-plot of radiomic features’ AUC 

values. Radiomic parameters are situated in consecutive order on the x axis, while their 

corresponding AUC values to identify radionuclide activity on NaF18-PET are shown on 

the y axis. 

AUC: area under the curve; GLCM: grey level co-occurrence matrix; GLRLM: grey level 

run length matrix; NaF18-PET: Sodium-fluoride positron emission tomography; ROC: 

receiver operating characteristics 
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Representative volume rendered CT images of coronary plaques showing attenuation on 

IVUS, TCFA on OCT and positivity on NaF18-PET can be found in figure 18. 

 

 

Figure 18. Representative curved multiplanar and volume rendered CT images of three 

coronary plaques corresponding to specific invasive and radionuclide imaging markers 

of plaque vulnerability(168). 

Panel a: shows a coronary lesion which scored the lowest on fractal box counting 

dimension of high attenuation voxels (component 30 when discretizing to 32 equally 

sized bins) which was indicative of attenuated plaque on IVUS (AUC: 0.72 [0.65-0.78]). 

Panel b: depicts a coronary plaque which scored the lowest on fractal box counting 

dimension of high attenuation voxels (component 8 when discretizing to 8 equally sized 

bins) which was suggestive of OCT-TCFA (AUC: 0.80 [0.72-0.88]). Panel c: shows a 

coronary lesion which had a high surface of high attenuation voxels (component 8 when 

discretizing to 8 equally sized bins) which was the best parameter to identify NaF18-PET 

positivity (AUC: 0.87 [0.82-0.91]). 

AUC: area under the curve; IVUS: intravascular ultrasound; NaF18-PET: NaF18-Positron 

Emission Tomography; OCT-TCFA: optical coherence tomography identified thin-cap 

fibroatheroma; 

†: component 30 when discretizing to 32 equally sized bins; ‡: component 8 when 

discretizing to 8 equally sized bins 
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4.4. Effect of image reconstruction algorithms on volumetric and 

radiomics features derived from coronary CTA 

Aorta SD, CNR and SNR had low ICC values between image reconstructions (0.46, 0.60, 

0.63; respectively), while lumen and pericoronary fat mean HU had excellent and good 

reproducibility (0.99, 0.83; respectively). Image reconstruction had a significant effect on 

aorta SD, CNR and SNR values with large ∆R2, while lumen or pericoronary fat mean 

HU values were unaffected by the different algorithms. Detailed results of image quality 

reproducibility can be found in table 8. 

 

Table 8. Reproducibility of image quality parameters. ICC and linear regression models 

were calculated to assess the degree to which reconstruction algorithms might affect 

image quality parameters. ∆R2 represents R2 change if image reconstruction is added to 

the model considering plaque composition. R2 total represents R2 values for models 

considering both plaque composition and image reconstruction. FBP: filter back 

projection; ICC: intraclass correlation coefficient; MIR: Model-based iterative 

reconstruction (164). 

Parameter ICC FBP  FBP p MIR  MIR p ∆R2 R2 total 

Aorta SD 0.46 19.04 <0.0001 -11.98 <0.0001 0.63 0.63 

Lumen mean 

Hounsfield unit 
0.99 -0.19 0.99 -4.20 0.81 0.00 0.02 

Pericoronary fat 

mean Hounsfield 

unit 

0.83 -1.85 0.74 6.40 0.25 0.01 0.04 

Contrast to noise 

ratio 
0.60 -7.32 <0.0001 12.85 <0.0001 0.62 0.63 

Signal to noise 

ratio 
0.63 -6.26 <0.0001 11.21 <0.0001 0.60 0.60 

 

All volumetric plaque parameters showed excellent reproducibility (ICC>0.97; all). None 

were affected by the type of image reconstruction. Detailed results of plaque volume 

reproducibility can be found in table 9. 
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Table 9. Reproducibility of plaque volumes. ICC and linear regression models were 

calculated to assess the degree to which reconstruction algorithms might affect plaque 

volumes. ∆R2 represents R2 change if image reconstruction is added to the model 

considering plaque composition. R2 total represents R2 values for models considering 

both plaque composition and image reconstruction. ICC: intraclass correlation 

coefficient; MIR: Model-based iterative reconstruction (164). 

Parameter ICC FBP  FBP p MIR  MIR p ∆R2 R2 total 

Low attenuation non-

calcified plaque 
0.98 -0.31 0.90 -2.43 0.31 0.01 0.28 

Intermediate attenuation 

non-calcified plaque 
0.98 -1.37 0.68 1.24 0.70 0.00 0.24 

High attenuation non-

calcified plaque 
0.98 0.05 0.97 0.32 0.84 0.00 0.24 

Calcified plaque 1.00 1.63 0.87 0.86 0.93 0.00 0.26 

 

Regarding radiomic parameters, all had excellent reproducibility (ICC > 0.90) except for: 

first-order parameters: mode, harmonic mean and minimum (ICC: 0.45, 0.76; 0.84, 

respectively), and GLCM parameters: inverse difference sum and sum variance (ICC: 

0.01, 0.04; respectively). Manhattan plot of ICC values can be found in figure 19. 
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Figure 19. Manhattan plot of ICC values of radiomic parameters (164). 

Radiomic parameters are lined up on the x axis, while their corresponding ICC value is 

plotted on the y axis. 

GLCM: grey level co-occurrence matrix; GLRLM: grey level run length matrix; ICC: 

intraclass correlation coefficient 

 

Linear regression analysis showed that the type of binning i.e equal sized or equally 

probable binning, was a significant predictor of radiomic values for 90% (103/114) of all 

GLCM parameters. Among GLCM parameters ∆R2 values attributable to the type of 

binning were smaller than 0.25 in 87% (99/114) of the radiomic parameters. 3% (3/114) 

had ∆R2 changes between 0.25 and 0.49, and 2% (2/114) had changes between 0.50 and 

0.75. Even though all GLRLM parameters were significantly affected by binning type 

(p<0.05, all), the ∆R2 attributable to adding binning type to the regression model only 

minimally changed the R2 values (∆R2 <0.04 for all). Results are summarized in figure 

20. 
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Figure 20. Manhattan plot of ∆R2 values when the type of binning was added to the 

regression model (164). 

Radiomic parameters are lined up on the x axis, while the corresponding ∆R2 values are 

plotted on the y axis. 

GLCM: grey level co-occurrence matrix; GLRLM: grey level run length matrix 

 

 

The number of bins to which HU values were discretized before the calculation of 

radiomic parameters, significantly affected the values for all GLCM and GLRLM 

parameters. Among GLCM, 61% (70/114) of the parameters had a ∆R2 <0.25 if the 

number of bins was added to the model. 16% (18/114) produced ∆R2 between 0.25 and 

0.49, 17% (19/114) between 0.50-0.74 and 6% (7/114) of all parameters had R2 change 

values greater than 0.75. Regarding GLRLM parameters, 4 parameters’ ∆R2 was less than 

0.25 when the number of bins was added to the regression model. 4 statistics produced 

R2 changes between 0.25 and 0.49, while in case of 3 parameters the ∆R2 was more than 

0.75. Results are summarized in figure 21. 
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Figure 21. Manhattan plot of ∆R2 changes when the number of bins used for 

discretization was added to the regression model (164). 

Radiomic parameters are lined up on the x axis, while the corresponding ∆R2 values are 

plotted on the y axis. GLCM: grey level co-occurrence matrix; GLRLM: grey level run 

length matrix 
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4.5. Identification of advanced atherosclerotic images using 

radiomics-based machine learning validated using histology 

The demographic characteristics of donor patients (mean age 525.3 years, 7/7 [100%] 

male gender), are summarized in table 10. 

Overall, 611 histological sections from 21 coronary arteries of 7 donor hearts were 

investigated. Average studied vessel length was 67 mm (range 25 to 110 mm). Of the 611 

sections, 71/611 (11.6%) were identified as adaptive intimal thickening, 222/611 (36.3%) 

as pathological intimal thickening, 179/611 (29.3%) as fibrous plaque, 59/611 (9.7%) as 

early fibroatheroma, 60/611 (9.8%) as late fibroatheroma, and 20/611 (3.3%) contained 

TCFA. Out of all cross-sections 477/611 (78.1%) contained plaque that was detectable 

on CTA. Of these, non-calcified plaque was present in 254/477 (53.2%), partially 

calcified in 191/477 (40.0%), and calcified plaque in 32/477 (6.8%) cross-sections. Since 

plaque attenuation pattern-based classification is based on non-calcified plaque 

components, all analyses were performed by excluding cross-sections containing purely 

calcified lesions. Therefore, overall 445 cross-sections were analyzed.  

The dataset was randomly split into a training-set (75%, 333/445) and a validation-set 

(25%, 112/445). There was no difference between the training-set and validation-set 

regarding the distribution of early or advanced atherosclerotic lesion categories, and 

plaque types based either on traditional CTA classification scheme or plaque attenuation 

classification scheme (early atherosclerotic lesions: p=0.90; advanced atherosclerotic 

lesions p=0.71; traditional plaque classification p=0.26; plaque attenuation pattern 

p=0.41). Detailed distribution of histological and CTA categories of analyzed plaques can 

be found in table 11.
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Table 10. Patient characteristics. BMI: body mass index; HLP: hyperlipidemia; HTN: hypertension; MI: myocardial infarction (169). 

Case  
Variables 

Age Gender BMI Previous MI Stent HTN HLP Diabetes Tobacco Drug use Cause of Death Race/Ethnicity 

1 53 Male 21.6 No No No No No Yes No ICH/Stroke Caucasian 

2 53 Male 29.2 No No Yes No Yes Yes No Gunshot Caucasian 

3 53 Male 24.0 No No Yes Yes Yes No No ICH/Stroke African American 

4 44 Male 32.4 No No Yes Yes No Yes Yes ICH/Stroke African American 

5 54 Male 25.4 No No Yes Yes No Yes Yes ICH/Stroke Caucasian 

6 61 Male 26.3 Yes Yes Yes No No Yes No ICH/Stroke Caucasian 

7 48 Male 28.2 Yes Yes Yes No No Yes No ICH/Stroke Caucasian 
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Table 11. Distribution of histological, traditional and plaque attenuation-based CTA 

categories of analyzed cross-sections (169). 

Classification categories 

All cross-

sections 

N=445 

Training-

set 

N=333 

Validation-set 

N=112 p 

Histological categories     

Early atherosclerotic lesions n (%) 311 (69.9) 230 (69.1) 81 (72.3) 0.90 

Adaptive intimal thickening n (%) 12 (2.7) 9 (2.7) 3 (2.7)  

Pathological intimal thickening n (%) 194 (43.6) 145 (43.5) 49 (43.7)  

Fibrous plaque n (%) 105 (23.6) 76 (22.8) 29 (25.9)  

Advanced atherosclerotic lesions n (%) 134 (30.1) 103 (30.9) 31 (27.7) 0.71 

Early fibroatheroma n (%) 58 (13.0) 45 (13.5) 13 (11.6)  

Late fibroatheroma n (%) 58 (13.0) 43 (13.0) 15 (13.4)  

Thin-cap fibroatheroma n (%) 18 (4.1) 15 (4.5) 3 (2.7)  

CT angiography categories      

Traditional scheme    0.26 

Non-calcified plaque n (%) 254 (57.1) 185 (55.6) 69 (61.6)  

Partially calcified plaque n (%) 191 (42.9) 148 (44.4) 43 (38.4)  

Plaque attenuation scheme    0.41 

Homogeneous n (%) 207 (46.5) 152 (45.6) 55 (49.1)  

Heterogeneous n (%) 200 (44.9) 155 (46.5) 45 (40.2)  

Napkin-ring sign n (%) 38 (8.6) 26 (7.9) 12 (10.7)  

 

Non-calcified and partially calcified plaques showed similar frequencies between early 

and advanced atherosclerotic lesions in case of all cross-sections (p=0.08). On the other 

hand, the distribution of CTA cross-sections showing homogeneous, heterogeneous and 

napkin-ring sign attenuation patterns differed between early and advanced atherosclerotic 

lesions (p<0.001). Detailed results can be found in table 12. 
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Table 12. Frequency of traditional and plaque attenuation-based CTA categories for 

early and advanced atherosclerotic lesions for all cross-sections (169). 

CTangiography classification 

categories 

Early 

atherosclerotic 

lesions 

N=331 

Advanced 

atherosclerotic 

lesions 

N=134 

P value 

Traditional scheme    

Non-calcified plaque n (%) 186 (56.2) 68 (50.7) 
0.08 

Partially calcified plaque n (%) 125 (43.8) 66 (49.3) 

Plaque attenuation scheme    

Homogeneous n (%) 166 (53.4) 41 (30.6) 

<0.001 Heterogeneous n (%) 140 (45.0) 60 (44.8) 

Napkin-ring sign n (%) 5 (1.6) 33 (24.6) 

 

Among radiomics-based ML models, the least angles regression model provided the best 

discriminatory power on the training-set. Diagnostic accuracies of the radiomics-based 

ML models on the training-set can be found in table 13. The following hyperparameters 

for the processing pipeline produced the best results on the training-set using the least 

angles regression model. First, we excluded all zero variance parameters and scaled the 

parameters based on median and interquartile ranges. Next the best predictors based on 

the training-set were selected using significance levels alpha of 0.05 and 0.0007 for the 

family-wise error rate and false positive rate test, respectively. Then we conducted 

principal component analysis to construct derived parameters explaining the 95% of the 

variation in the data. Afterwards, 13 parameters were selected to be inputs to the least 

angle regression model. This fitted model was then applied to the validation-set to 

evaluate the unbiased discriminatory power of the model.  
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Table 13. Discriminatory power of radiomics-based ML models on the training-set to 

identify advanced atherosclerotic lesions (169). 

Radiomics-based machine learning 

models 

Area Under the Curve 

Least angles regression 0.673 

Logistic regression 0.669 

Random Forests 0.666 

Naïve Bayes 0.645 

Gaussian processes classifier 0.640 

K-nearest neighbors 0.635 

Deep neural network 0.631 

Decision trees 0.500 

 

The radiomics-based ML model achieved good diagnostic accuracy (AUC=0.73, CI: 

0.63-0.84) on the validation-set. The plaque attenuation pattern scheme achieved 

moderate diagnostic accuracy, AUC=0.65, CI: 0.56-0.73, while histogram-based 

measurements: area of low attenuation (<30 HU) and the average HU values of the plaque 

cross-sections produced poor diagnostic accuracy (AUC=0.55, CI: 0.42-0.68, AUC=0.53, 

CI: 0.42-0.65; respectively) on the validation-set. The radiomics-based ML model 

outperformed expert visual assessment (AUC=0.73 vs. 0.65; p=0.04) and also histogram-

based measurements, such as area of low attenuation (<30 HU) (AUC=0.73 vs. 0.55, 

p=0.01) and the average HU values of the plaque cross-sections (AUC=0.73 vs. 0.53, 

p=0.004). ROC curves of the corresponding models evaluated on the validation-set are 

shown in figure 22. 
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Figure 22. Receiver operating characteristics curves of radiomics-based machine 

learning model, plaque attenuation pattern, area of low attenuation and average HU 

value to identify advanced atherosclerotic lesions (169). 

Area under the ROC curve showed the best discriminatory power for radiomics-based 

machine learning method (AUC=0.73, CI: 0.63-0.84) to identify advanced atherosclerotic 

lesions. Visual assessment using plaque attenuation pattern was worse (AUC=0.65, CI: 

0.56-0.73; p = 0.04), while histogram-based methods: area of low attenuation and average 

HU value showed poor diagnostic accuracy and were lower as compared to the radiomics-

based machine learning model (AUC=0.55, CI: 0.42-0.68; AUC=0.53, CI: 0.42-0.65; 

p=0.01 and p=0.004). 

AUC: area under the curve; HU: Hounsfield unit 
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5. DISCUSSION 

5.1. Coronary CTA for the characterization of plaque burden 

Butler et al. reported even larger differences when analyzing the results of 37 patients 

who underwent both imaging modalities (16). In their patient population, even larger 

differences were observed between modalities (CTA: 67%; ICA: 24%), which resulted in 

higher percentage of segments only seen stenotic on CTA (57%). To assess the clinical 

significance of discrepancy in the number of stenotic segments seen by CTA and ICA, 

we classified patients as proposed by Bittencourt et al (133). In 78% of reclassified 

individuals, reclassification was solely caused by CTA classifying the patients as 

extensive as compared to ICA, which classified them as non-extensive, while in 22% it 

was caused by CTA overrating the degree of obstruction. One patient who changed to 

lower risk category was due to the fact that CTA underestimated the degree of stenosis. 

Bittencourt et al. calculated hazard ratios associated with the patient categories: extensive 

obstructive: 3.9, extensive non-obstructive: 3.1, non-extensive obstructive: 3.0, whereas 

non-extensive non-obstructive did not show any association with any increase in rate of 

cardiovascular death or myocardial infarction. Using hazard ratio values of the risk 

groups, average hazard ratio of ICA-based measurements was lower than CTA-based 

calculations (2.7 vs. 3.3, respectively). 

Current identification of patients prone to MACE is based on anthropometric and blood 

test information. In recent years with the development of imaging modalities, significant 

efforts have been channeled into finding morphological features unique to vulnerable 

plaques. This paradigm shift from risk factors to lesion-based phenotypic risk assessment 

showed promising results, but longitudinal studies question the predictive value of a 

single high-risk plaque at a given time point (57). Kubo et al. demonstrated using 

intravascular ultrasound-virtual histology that 75% of vulnerable plaques lost high-risk 

characteristics by thickening of the fibrous cap, or by transforming to fibrotic plaques 

(170). Only 25% showed vulnerable characteristics after 12-month follow-up. It seems 

identification of vulnerable patients is more than identifying high-risk plaques.  

ICA is accepted as the reference standard of stenosis quantification in daily clinical 

practice. While the coronary lumen is depicted with high temporal and spatial resolution, 

the coronary wall is imperceptible with ICA, therefore the identification plaques that 
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cause minimal and mild stenosis is challenging. On the other hand, coronary CTA is 

capable of visualizing not only the lumen but also the coronary wall and atherosclerotic 

plaques. It has a high diagnostic accuracy to identify obstructive lesions, however it has 

a tendency to overestimate stenosis severity (14). Due to the high CT attenuation values 

of calcium, coronary CTA shows a superior sensitivity to identify calcified plaques. The 

identification of non-calcified plaque is more challenging, and it requires excellent image 

quality.  

The COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational 

Multicenter registry demonstrated the importance of the presence of mild and minor 

plaques, as the hazard ratio increases by 1.22 for each segment with any plaque (48). 

Thus, differences in the number of diseased segments observed by different imaging 

techniques can have a major impact on risk assessment. Hence, ICA and coronary CTA 

are not interchangeable. ICA is superb at detecting obstructive coronary disease but is 

inferior to CTA in plaque detection. Therefore, ICA might underestimate patient risk due 

to the insufficient recognition of non-obstructive plaques. 

Generalization of our results has limitations. Our study population was fairly small, 

though larger than recent publications. Obstructive and extensive CAD was 

overrepresented in our study compared to the general population, which might 

overestimate the number of reclassified patients. 
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5.2. Potential of radiomics to identify napkin-ring sign plaques 

Radiomics utilizes voxel values and their relationship to each other to quantify image 

characteristics. Based on our results it seems not only do radiomic features outperform 

conventional quantitative imaging markers, but parameters incorporating the spatial 

distribution of voxels (GLCM, GLRLM and geometry-based parameters) have a better 

predictive value than first-order statistics, which describe the statistical distribution of the 

intensity values. Among GCLM parameters the interquartile range, the lower notch, the 

median absolute deviation from the mean of the GLCM probability distribution, Gauss 

right focus and sum energy had the five highest AUC values. NRS plaques have many 

low value voxels next to each other in a group surrounded by higher density voxels. This 

heterogeneous morphology results in an unbalanced GLCM and therefore higher 

interquartile rank values, which also means smaller lower notch values and bigger 

deviations from the mean. Gauss right focus and sum energy both give higher weights to 

elements in the lower right of the GLCM, which represents the probability of high-density 

voxels occurring next to each other. Since NRS plaques do not have many high value 

voxels next to each other, they received smaller values, while non-NRS plaques have 

higher values, which resulted in excellent diagnostic accuracy. 

Among GLRLM statistics, long and short run low gray level emphasis, long and short 

run emphasis and run percentage had the best predictive value. Run percentage and long 

run emphasis gives high values to lesions, where there are many similar value voxels in 

one direction, while long run low gray level emphasis adds a weight to the previous 

parameter by giving higher weights when these voxel runs contain low HU values. NRS 

plaques’ low-density core has many low CT number voxels next to each other in one 

direction, therefore NRS plaques have higher values as compared to non-NRS plaques, 

which results in excellent diagnostic accuracy. In case of short run emphasis and short 

run low gray level emphasis the contrary is true, which results in NRS plaques receiving 

low values, while non-NRS plaque have higher values also leading to high AUC values.  

Among geometry-based parameters, the first five with the best diagnostic accuracy all 

represent the surface ratio of a specific subcomponent to the whole surface of the plaque. 

In all cases the ratio of high-density subcomponents (for example: subcomponent 2 when 

the plaque was divided into two components) to the whole surface had excellent 

diagnostic accuracy. Since each subcomponent is composed of equal number of voxels 
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due to the equally probable binning, the difference in surfaces is a result of how the high 

intensity voxels are situated to each other. In case of NRS plaques extraction of low 

attenuation voxels leaves a hollow cylindrical shape of high CT number voxels which has 

a relatively large surface. Non-NRS plaques on the other hand do not have such voxel 

complexes, therefore the surface of the high attenuation voxels is smaller and therefore 

the ratio compared to the whole surface is also smaller. 

This kind of transition from qualitative to quantitative image assessment was initiated by 

oncoradiology. As studies showed that morphological descriptors correlate with later 

outcomes, reporting guidelines such as the Breast Imaging Reporting and Data System 

(BI-RADS) started implementing qualitative morphological characteristics into clinical 

practice (171, 172). However, despite all the efforts of standardization, the variability of 

image assessment based on human interpretation is still substantial (173). Radiomics, the 

process of extracting thousands of different morphological descriptors from medical 

images, has been shown to reach the diagnostic accuracy of clinical experts in identifying 

malignant lesions (28). Furthermore, radiomics can not only classify abnormalities to 

proper clinical categories, but can also discriminate between responders and non-

responders to clinical therapy and can predict long-term outcomes (31, 34). However, 

there are major concerns on the generalizability of radiomics. Several studies have shown, 

that imaging parameters, reconstruction settings, segmentation algorithms, etc. all effect 

the radiomic signature of lesions (174-177). Furthermore, it has been shown that the 

variability caused by these changeable parameters is in the range or even greater than the 

variability of radiomic features of tumor lesions (178). Very little is known about 

cardiovascular radiomics. Several studies will be needed to replicate these results in the 

cardiovascular domain. The potential of radiomics is extensive, however the problem of 

standardized imaging protocols and radiomic analysis need to be solved to achieve robust 

and generalizable results.  

Despite our encouraging results, our study has some limitations which should be 

acknowledged. All of our examinations were done using the same scanner and 

reconstruction settings. It is yet unknown how these settings might affect radiomic 

parameters and therefore influence the applicability of radiomics in daily clinical care. 

Furthermore, our results are based on a case-control study design. The true prevalence of 

the NRS is considerably smaller as compared to non-NRS plaques in a real population. 

DOI:10.14753/SE.2020.2382



   

 

      

84 

Therefore, our observed positive predictive values might be higher, while our negative 

predictive values might be smaller than expected in a real-world setting. Moreover, our 

limited sample sizes might not allow the accurate assessment of the diagnostic accuracy 

of the different parameters. However, we performed Monte Carlo simulations and cross-

validated our results to achieve robust estimates. 
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5.3. Possibility to identify radionuclide and invasive imaging markers 

using non-invasive coronary CTA 

It seems that by utilizing radiomics, the amount of information accessible in CT images 

can be greatly increased. Radiological examinations are evaluated mostly by visual 

inspection in current clinical care. As opposed to this practice, in the current project we 

treated radiological images as 3-dimensional datasets and extracted hundreds of 

quantitative parameters from coronary plaques. This strategy resulted in significantly 

better discriminatory power to identify invasive and radionuclide markers of plaque 

vulnerability. Radiomics utilizes texture and geometrical analysis to derive novel imaging 

biomarkers. By measuring how many times a given value voxel pairs occur next to each 

other, or how many times similar values occur next to each other in a given direction, 

probability matrices can be calculated which resemble the spatial distribution of the voxel 

values. The analysis of these matrices leads to new imaging biomarkers, such as 

heterogeneity, contrast or spatial fragmentation. Based on our results it seems that these 

parameters have a better discriminative capability to identify invasive and radionuclide 

markers of plaque vulnerability than visual inspection and conventional quantitative 

assessment. 

Coronary CTA for many years was regarded as a rule-out test for obstructive coronary 

artery disease due to its excellent negative predictive value (179, 180). However, its 

unique ability to noninvasively image atherosclerotic lesions holds great potential to 

identify high-risk plaques. With the newest guidelines promoting coronary CTA as the 

first-line test in the management of patients with stable chest pain, the number of 

examinations will further increase. Therefore, the next challenge will be to correctly 

identify high-risk lesions to improve patient risk assessment. Invasive and radionuclide 

imaging techniques can identify high-risk lesions; however, their invasive nature and 

their costs preclude the use of these techniques in daily routine. While CT might not have 

sufficient spatial resolution, its capability to acquire isotropic 3-dimensional data non-

invasively creates a unique opportunity to analyse complex spatial image patterns using 

radiomics. 

Invasive imaging modalities with sub-millimetre spatial resolution allow the 

morphological assessment of coronary plaques. Specific IVUS and OCT imaging markers 
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have been linked to histology and patient outcomes. Our results are in line with previous 

findings that conventional assessment of coronary CTA only allows identification of 

invasive imaging markers of plaque vulnerability with moderate accuracy (158). 

However, in the current study we showed that radiomic features significantly 

outperformed conventional metrics, therefore potentially allowing the non-invasive 

identification of invasive imaging markers plaque vulnerability. 

For both IVUS-attenuated plaque and OCT-TCFA fractal box counting dimension of high 

attenuation voxels had the highest AUC values. Attenuated plaques based on IVUS are 

resembled by a hypoechoic plaque area with low ultrasound attenuation indicating the 

presence of lipids. TCFA-s identified using OCT have a similar spatial pattern, however 

the superior spatial resolution of OCT allows the assessment of fibrous-cap thickness, 

therefore allowing the identification of TCFA. While the spatial resolution of state-of-

the-art coronary CTA-s preclude the identification of the fibrous-cap, the large lipid pools 

of these lesions have low CT attenuation. As the low attenuation voxels of the lipid pools 

are situated in the central portion of the plaque, next to each other, the remaining higher 

attenuation voxels (relative to other voxel values in the plaque, but not necessarily 

representing calcification) are limited in number and occupy limited space. On the other 

hand, plaques that do not exhibit large lipid pools have more high attenuation voxels, 

which can occupy any position inside the plaque in a complex spatial pattern, which can 

be described using fractal dimensions. Fractal dimensions quantify the spatial complexity 

of structures. Fractal dimensions are calculated by magnifying the image and assessing 

how many voxels the given abnormality occupies in relation to the degree of zoom (24). 

In case of plaques with large lipid pool, the high attenuation voxels are relatively few in 

number and have limited space to occupy. Therefore, these plaques have low value of 

fractal box counting dimension of high attenuation voxels. On the other hand, stable 

plaques, which do not restrict the spatial distribution of high attenuation voxels have 

higher values for this radiomic parameter. These characteristics might explain that the 

fractal box counting dimension of high attenuation voxels resulted a good discriminatory 

power to identify invasive markers of plaque vulnerability.  

Even though coronary CTA is an anatomical imaging modality, it seems that radiomics 

can identify plaques with inflammation and micro-calcifications identified using NaF18-

PET (AUC=0.87), both of which are currently regarded as undetectable using coronary 
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CTA. Visual assessment might not be sufficient to distinguish these features. However, 

it was recently demonstrated that by using simple quantitative metrics it is indeed possible 

to quantify vascular inflammation using CT, which previously was thought impossible 

(181). Importantly microscopic calcium formations are too small to be identified using 

conventional CTA techniques. However, it seems that radiomics can identify unique 

spatial patterns specific for sodium-fluoride uptake. Among the calculated radiomics 

parameters the surface of high attenuation voxels (relative to other voxel values in the 

plaque, but not necessarily voxel values above the calcification threshold) had the highest 

AUC value to identify increased radionuclide uptake. Even though the spatial resolution 

of CTA images precludes the identification of microcalcifications, voxels containing 

microcalcifications may have higher HU values. Furthermore, these high CT number 

voxels have large surfaces, since they are not grouped in one cluster as opposed to 

calcified plaques, which also contain high attenuation voxels but overall have smaller 

surfaces since the voxels are next to each other. These characteristics may have resulted 

in the excellent diagnostic accuracy of surface of high attenuation voxels to identify 

increased radionuclide uptake. As there are no plaques showing both invasive and 

radionuclide imaging markers of plaque vulnerability, the capability of coronary CTA 

radiomics to identify NaF18-positiv is independent of its ability to identify morphologic 

vulnerability. 

A limitation of our study is the relatively small sample size, which might lead to overly 

optimistic diagnostic results. However, considering that four different imaging techniques 

were utilized in all patients, we believe that our patient cohort is unique, and the sample 

size is reasonable. To compensate for the limited sample size, we calculated all diagnostic 

scores using a 5-fold cross validation with 1000 repeats. This technique explicitly 

simulates the population’s AUC value of each parameter and provides a robust estimate 

of diagnostic accuracy. Furthermore, our results are based on a single centre study setting 

where the results were analysed in a core-lab. Therefore, the application of our results to 

general populations is limited as studies have shown that image acquisition, 

reconstruction and analysis may have a significant effect on the reproducibility of 

radiomic features (174, 182, 164, 183). However, further investigations are necessary for 

radiomics to be applicable to clinical care. Larger sample size prospective studies are 

needed, where the number of patients would allow to build multi-parametric machine 
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learning models, which could robustly identify imaging markers of plaque vulnerability. 

Furthermore, multi-centre longitudinal studies are warranted to assess the prognostic 

value of radiomic image markers.  
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5.4. Robustness of volumetric and radiomic features to image 

reconstruction algorithms 

Applicability of a new diagnostic technique not only depends on its potential to identify 

pathologies, but also on its robustness to different clinical and technical settings. In recent 

years iterative reconstruction algorithms became standard in clinical care as they allow 

significant reduction of radiation dose without significant compromise in image quality 

(184). While the quality of radiological images has improved through the reduction of 

noise, concerns have been raised as to whether the novel reconstruction techniques have 

any effect on quantitative image analysis. Calcium-score, one of the earliest quantitative 

CT metrics has been shown to significantly change with new iterative reconstruction 

techniques, which also has impact on patients’ cardiovascular risk assessment (185-187). 

However interestingly, quantitative plaque volumes seem to be less affected (188, 189). 

Differences can be more attributable to the accuracy of automatic segmentation 

algorithms rather than the voxel values themselves (146). Our research methodology of 

using one segmentation on all three image reconstructions ensures that only the effect of 

the reconstruction algorithms is investigated regardless of the image segmentation. Our 

results confirm that volumetric plaque analysis has excellent reproducibility with respect 

to the different image reconstructions. However, there is little information as to whether 

radiomic parameters are affected by image reconstruction. 

As radiomics has proven to help grade malignancies, classify lesions into histological 

categories and predict patient outcomes, more and more attention is drawn to the 

reproducibility of such findings (190-193). Altazi and colleges has shown, that positron 

emission tomography (PET) based radiomic features using different reconstructions show 

variation regarding reproducibility (174). Among 79 investigated features only inverse 

difference and inverse difference momentum showed ICC values >0.90. Similarly, Shiri 

et al. investigated the effect of different PET reconstruction settings (177). Among 100 

different radiomic parameters, only 47 had very small variation. Interestingly, in our 

dataset only 3% of parameters had values below 0.90. Based on our results, CT based 

radiomic parameters seem to be more robust to different reconstructions as compared to 

PET. Our findings imply that new iterative reconstruction techniques can be used 

interchangeably, as they have minimal effect on calculated metrics. Therefore, new 
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knowledge gained from radiomic studies can be applied across different reconstruction 

algorithms. Furthermore, previous images can also be used to increase radiological 

registries, as inferences gained from previous images reconstructed using FBP will result 

in similar results as if they would have been reconstructed using novel HIR or MIR 

techniques. 

Even though radiomic statistics seem to be robust to reconstruction algorithms, the type 

of voxel binning and the number of bins used for discretization have a significant effect 

on the statistical values. Similar results have been reported when assessing the impact of 

different number of gray level discretizations on PET images (174, 183). Only two 

GLCM and GLRLM parameters were found to be highly reproducible. In our dataset all 

parameters were significantly affected by the number of bins. Furthermore, in 41% 

(51/125) of the examined parameters, more than 25% of the radiomic metrics’ variation 

could be attributed to changes in the number of bins used for calculation of the 

parameters. In addition, we found that 90% of GLCM parameters and 100% of GLRLM 

parameters were also affected by the way the binning was performed. However, only in 

case of 5 parameters could the type of binning explain more than 25% of the parameters’ 

variation. Our results emphasize the need for standardization of radiomic analysis, as 

differences in calculation of the metrics can cause significant changes in the radiomic 

statistics. Furthermore, precise reporting of all parameter setting used for radiomic 

calculations is needed to achieve reproducible results. However, these findings do not 

mean, that radiomic statistics are unreliable due to the significant influence of parameter 

settings used for calculations. Rather they highlight the fact that each radiomic statistic 

can be calculated in many different ways which can lead to very different results, which 

urges standardization of radiomics.  

Our study has some limitations. There were only a limited number of plaques analyzed 

(n=60) and only excellent image quality scans were selected retrospectively, which might 

cause a selection bias and decrease the generalizability of our results. The reconstruction 

algorithms used are specific to the vendor, therefore using other manufacture’s algorithms 

might lead to different results. Furthermore, both HIR and MIR have different levels of 

possible iterations. We limited our analysis to mid-range levels in both cases (iDOSE4 

level 4; IMR level 2), as they are most commonly used in everyday practice. However, 

using different iteration levels would might lead to different results.  
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5.5. Potential of radiomics-based machine learning to classify 

coronary lesions to corresponding histology categories 

Large necrotic cores of advanced atherosclerotic lesions carry an inherently higher risk 

of plaque rupture, therefore the identification of these lesions is of utmost importance 

(38). Coronary CTA would be an ideal imaging modality to identify these advanced 

lesions, due to its non-invasive nature and wide-spread availability. Previously, it has 

been shown that the plaque attenuation pattern-based scheme outperforms conventional 

classification to identify advanced atherosclerotic lesions (AUC: 0.76 vs. 0.68; p=0.001) 

(54). However, the previous investigation assessed the diagnostic accuracy on the whole 

dataset, therefore, those results were overly optimistic and preclude the generalization of 

the results to other populations. In addition, the reproducibility of qualitative imaging 

markers is poor even among experienced readers, therefore the generalizability of results 

based on visual assessment is limited (112). More objective methods with less reliance 

on reader experience are warranted. 

To overcome the limitations of visual assessment and to provide a more objective method 

to characterize atherosclerotic plaques, quantitative histogram-based methods based on 

HU measurements have been proposed (79, 194, 195). Previous results show a good 

correlation between quantified low-attenuation plaque volume or area and the presence 

of large lipid cores (67, 196, 195). However, it is not only the presence of lipid rich plaque 

components that defines advanced atherosclerotic lesions but also the spatial distribution 

of various tissue components (54). In addition, these methods are limited by the fact that 

different tissue components may have overlapping HU values (67).  

Radiomics has been shown to identify napkin-ring sign plaques with excellent diagnostic 

accuracy (135). Furthermore, ML has proven to be a valuable tool in medical data analysis 

(197, 198), identifying insights from big data databases using alternative statistical 

techniques. Instead of using probability theory as conventional statistical methods, these 

procedures are based on methods originating from how we learn and perceive our 

surroundings (199). It seems that ML is helpful in medical image analysis too as our 

results indicate that applying ML to radiomic features from coronary CTA images 

outperforms current methods. While our AUC values may appear to some as limited, 

would like to emphasize that based on recent data demonstrating that local plaque 
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composition has low positive predictive value to identify locations of future plaque 

rupture leading to myocardial infarction (200), our radiomics marker may be used as an 

additional tool to refine risk stratification and to tailor medical therapy. For this purpose, 

our AUC values appear to acceptable and useful. 

Our study has limitations. Our results are based on coronary CTA images acquired from 

a motion-free ideal environment, therefore the translation of our results to in vivo 

environments might be limited. Furthermore, despite the relatively large number of cross-

sections, our analysis is based on only seven hearts. Furthermore, the training-set and 

validation-set consisted of cross-sections from the same individuals, which might have 

biased our results. However, we choose to randomly select our validation dataset on a per 

cross-section basis, rather than at an individual level, since selecting only one or two cases 

hearts for validation might not well represent the general population. Furthermore, to 

overcome overfitting of our models, we evaluated diagnostic performance on a separate 

validation-set. Moreover, the overall number of advanced atherosclerotic lesions and 

especially TDFAs was small in our dataset, but this is representative of general 

populations. In addition, we did not analyze purely calcified plaques since the partial 

volume effect of the calcium prohibits analysis of soft tissue components and therefore 

our results are not generalizable to all plaque types. Furthermore, our radiomics results 

are based on images from one scanner, reconstruction and filter setting, therefore 

generalizability of the results beyond these setting is unknown. Finally, manual 

segmentation was a prerequisite for the generation of regions of interests which served as 

the input for histogram and radiomics models. 
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6. CONCLUSIONS 

Based on our study, ICA sees only half as many segments with plaque and underestimates 

plaque sizes compared with CTA in patients with moderate, mild and minimal plaques. 

These differences might have a significance in patient risk stratification and patient 

management. 

We demonstrated that coronary plaques consist of sufficient number of voxels to conduct 

radiomic analysis, and a substantial portion of radiomic parameters showed a significant 

difference between plaques with or without NRS, while conventional parameters did not 

show any difference. Furthermore, several radiomic parameters had a higher diagnostic 

accuracy in identifying NRS plaques than conventional quantitative measures. Cluster 

analysis revealed that many of these parameters are correlated with each other, however 

there are several distinct clusters, which imply the presence of various features that hold 

unique information regarding plaque morphology. Cross-validation simulations indicate, 

that our results are robust when assessing the discriminatory value of radiomic 

parameters, implying the generalizability of our results. Radiomics is a promising new 

tool to identify qualitative plaque features such as the NRS. As the number of CT 

examinations increases, we are in dire need of new techniques which increase the 

accuracy of our examinations without increasing the workload of imaging specialists. Our 

findings indicate that radiomics can quantitatively describe qualitative plaque 

morphologies and therefore has the potential to decrease intra- and inter-observer 

variability by objectifying plaque assessment. In addition, we observed several different 

clusters of information present in our dataset, implying that radiomics might be able to 

identify new image markers that are currently unknown. These new radiomic 

characteristics might provide a more accurate plaque risk-stratification than the currently 

used high-risk plaque features. Radiomics could easily be implemented into currently 

used standard clinical workstations and become a computer-aided diagnostic tool, which 

seamlessly integrates into the clinical workflow and could increase the reproducibility 

and the accuracy of diagnostic image interpretation in the future. 

We demonstrated that radiomics can increase the diagnostic accuracy of coronary CTA 

to identify specific invasive and radionuclide imaging markers of plaque vulnerability. 

Coronary CTA radiomics showed a good diagnostic accuracy to identify IVUS-

DOI:10.14753/SE.2020.2382



   

 

      

94 

attenuated plaques and excellent diagnostic accuracy to identify OCT-TCFA and NaF18-

positivity. Furthermore, radiomics outperformed conventional CT metrics to identify 

these invasive and radionuclide imaging markers. Our results suggest that radiomics may 

be able to identify invasive and radionuclide imaging markers of plaque vulnerability 

with good to excellent diagnostic accuracy. It seems that there is minimal overlap between 

anatomical vulnerability features of invasive imaging modalities and NaF18-positivity, 

which is also reflected by our findings that different radiomic parameters were predictive 

for these features. Advanced texture analysis of CT images holds magnitudes more 

information than currently perceivable by clinical visual assessment. These CT radiomic 

information may allow to identify invasive and radionuclide imaging markers from 

conventional CT images. Identification of these vulnerability markers by a single, widely 

available non-invasive technique may provide an opportunity to identify vulnerable 

plaques and vulnerable patients in broad populations without invasive procedures or 

costly radionuclide tests. Further studies are warranted to assess the true potential of 

radiomics to aid precision phenotyping of coronary disease. 

Our results show that both volumetric and radiomic parameters have excellent 

reproducibility with regards to different image reconstructions indicating that quantitative 

plaque analysis can be confidently performed on any kind of image reconstruction. 

However, the type of binning and the number of bins used significantly affects radiomic 

parameters, therefore reporting the type of binning and number of bins used for radiomic 

analysis is needed. Furthermore, this emphasizes the need for standardization of radiomic 

analyses to achieve reproducible results and for radiomics to translate into everyday 

clinical practice. All volumetric and the majority of radiomic parameters are unchanged 

using different image reconstruction algorithms. However, radiomic features are 

significantly affected by how the discretization of HU values was done before calculation 

and therefore, precise reporting of used methods is needed. Our results emphasize the 

need of standardization of radiomic analysis to achieve robust reproducible results which 

can be implemented into everyday clinical practice. 

From seven ex vivo hearts we trained a radiomics-based machine learning on a separate 

training-set of coronary CTA images to identify advanced atherosclerotic lesions. 

Evaluating our results on a separate validation-set our results indicate radiomics-based 

machine learning can better differentiate between early vs. advanced atherosclerotic 
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lesions as compared to the plaque attenuation pattern scheme in CTA cross-sections, 

histogram-based measurements: area of low attenuation and average  Hounsfield unit 

values of the plaque cross-sections. Our results show that radiomics-based machine 

learning was able to outperform expert visual assessment and histogram-based methods 

to identify advanced atherosclerotic lesions. Despite the limited spatial resolution of 

coronary CT angiography, implementing machine learning to radiomic features can 

improve the diagnostic accuracy of coronary CTA to identify high-risk atherosclerotic 

lesions and therefore could help risk stratification of patients. 
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7. SUMMARY  

Coronary CTA has emerged as the first line of choice for the evaluation of CAD in stable 

patients. Based-on our results it seems, coronary CTA is superior to ICA to describe the 

overall amount of CAD in these patients, and therefore may provide a more accurate 

method for risk stratification. Furthermore, coronary CTA provides imaging of not only 

the luminal stenosis, but the atherosclerotic disease itself. This provides a unique 

opportunity to apply advanced image analysis such as radiomics to precision phenotype 

CAD. 

Radiomic analysis of coronary plaques showed that we can identify NRS plaques with 

good diagnostic accuracy, showing that imaging markers currently only identifiable 

visually by radiologists may be identified objectively using mathematical formulas. We 

have also showed that radiomic analysis has the potential not only to identify imaging 

markers of CT, but also to identify metabolic activity currently only detectable using PET 

imaging. Furthermore, our results indicate that radiomics may have the potential to 

overcome the spatial resolution limitations of CT, as it may be able to identify invasive 

imaging markers currently only identifiable using IVUS and OCT. Also, using radiomic 

parameters as inputs to machine learning models we were able to classify coronary CTA 

cross-sections as being advanced lesions based-on histology. This may allow the exact 

pathological classification of diseases rather than indirect classifications with differing 

accuracies currently used in radiology. As with all emerging technologies, reproducibility 

and robustness are always a question. Our results indicate, that different image 

reconstruction techniques have little effect on radiomic parameters values indicating that 

radiomics may be robust to different scanner settings. 

New image analytic techniques such as radiomics, will reshape the field of cardiac 

imaging. This has the potential to increase our understanding of CAD and provide more 

precise diagnostics and prognostication. However, these techniques are still in their 

infancy. Nevertheless, as fast as AI is transforming our everyday lives, these changes may 

come sooner than later. 
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8. ÖSSZEFOGLALÁS 

A koronária CT az elmúlt években a stabil mellkasi fájdalommal rendelkező betegek első 

választandó vizsgálatává nőte ki magát. Eredményeink alapján a koronária CT 

pontosabban képes a koszorúérbetegség kiterjedtségének megítélésére, mint az invazív 

angiográfia, így pontosabb rizikóstratifikációt tehet lehetővé. Továbbá a koronária CT 

nem csak a szűkületek leképzésére alkalmas, hanem képes magát az ateroszklerózist is 

megjeleníteni. Ezen egyedi tulajdonsága teszi a koronária CT-t alkalmassá a koszorúér-

betegség precíziós fenotipizálásra például radiomika segítségével. 

Koszorúér plakkok radiomikai elemzésével, objektív módon sikerült úgynevezett 

„napkin-ring” jellel rendelkező plakkokat jó diagnosztikus pontossággal azonosítani, 

amelyre jelenleg csak radiológusok képesek vizuális kiértékeléssel. Továbbá 

eredményeinkkel megmutattuk, hogy sima CT felvételek radiomikai elemzésével akár 

metabolikus aktivitást is tudunk azonosítani, amelyre jelenleg csak a pozitron emissziós 

tomográfia képes. Eredményeink arra is rámutattak, hogy a CT képek radiomikai 

elemzésével akár invazív képalkotó modalitások eredményeit is reprodukálni tudjuk CT 

felvételek segítségével. Továbbá gépi tanulásos módszereket alkalmazva a radiomikai 

paramétereken lehetővé válhat, hogy a pontos hisztológiai kategóriáját megmondjuk az 

adott ateroszklerotikus elváltozásnak. Ezeken felül, különböző képi rekonstrukciókkal 

készült felvételek elemzéséből rámutattunk, hogy a radiomikai paraméterek esetén 

kismértékű változás észlelhető csak a paraméterek értékeiben különböző rekonstrukciók 

közt, így ezen paraméterek robosztusak lehetnek különböző képi beállításoknak. 

Újszerű képi elemzési technikák, mint a radiomika nagymértékben átalakíthatják a 

kardiovaszkuláris képalkotást. Segítségével jobban megérthetjük a koronária betegség 

patológiáját és lehetőséget teremthet pontosabb diagnózisoknak és rizikóstratifikációnak. 

Ezen technikák még gyermekcipőben járnak. Azonban amilyen gyorsan a mesterséges 

intelligencia alakítja életünket, előfordulhat, hogy ezen változások hamarabb fognak 

bekövetkezni, mint számítanánk rá. 
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