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1. Introduction 

It has been widely investigated that regular physical activity has a beneficial effect on 

cardiovascular health (1-3). It has been shown, that life expectancy is moderately 

increased in physically active individuals (1, 3-5). Moreover, regular exercise reduces 

body weight and blood pressure, improves the plasma lipid profile and increases insulin 

sensitivity (1, 3). Many aspects of the effects of exercise have already been investigated. 

However, the morphological, functional and molecular cardiac adaptation to exercise is 

still not completely understood.  

Furthermore, the functional effects of training reduction or detraining is not well 

characterized. Therefore, our aim was to characterize the effects of long-term physical 

exercise, including improved cardiac compliance, with a focus on the giant titin protein, 

and the functional role of detraining in the heart.  

 

 

1.1.  Athlete’s heart in human and rodent studies 

Long-term exercise induces complex cardiac remodeling, involving morphological 

and functional adaptation of the heart, referred to as athlete’s heart (6-8). Athlete’s heart 

is considered to be a physiological adaptation to exercise (7, 9-11). It is characterized by 

left ventricular (LV) hypertrophy, increased LV mass, wall thickness and enlarged 

cavities (6, 7). Previous studies showed that 1 hour exercise/day is sufficient to induce 

cardiac hpertyrophy (3, 8). Moreover, long-term exercise improves the contractility, 

relaxation and mechanoenergetic status of the heart (6-8, 12). However, professional 

athletes may achieve extreme levels of exercise and although it is accepted that training-

induced LV hypertophy is a benign condition, there is emerging concern that it may be 

harmful in some cases (3, 13, 14).  

Therefore, the evaluation of athlete’s heart has undoubtedly become important for 

multiple reasons. It is crucial to explore the different molecular pathways of physiological 

and pathological cardiac hypertrophy to allow possible therapuetic targets for the diseased 

heart. Furthermore, high-quality morphological and functional measurements are 

fundamental to distinguish athlete’s heart from pathological conditions and therefore 

possibly prevent sudden cardiac death (SCD) cases. In addition, studies of the athlete’s 

heart contribute to our knowledge of physical performance in professional athletes. 
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Fortunately, to date, many researchers focus on the examination of ahtlete’s heart in 

human studies and animal models. 

 

1.1.1. Morphological changes in exercise-induced cardiac hypertrophy 

Morganroth et al. were the first to describe morphological differences of the heart 

based on the type of exercise (15). It has been addressed that two main types of athlete’s 

heart appear: endurance-trained and strength-trained heart (15-17) (Figure 1.). 

Cardiomyocytes are involved in the remodeling process induced by regular training (11, 

16). Endurance sports (i.e. swimming, cycling, middle- and long-distance running) 

increase cardiac output and volume load on the ventricles, inducing a mild dilation of the 

ventricles (7, 18). Additionally, blood pressure is increased as well, resulting increased 

left ventricular wall thickness (7, 19). Therefore, in the myofibrils new sarcomeres are 

added in-series and the volume overload induces eccentric hypertrophy (16). On the other 

hand, strength training (i.e. weight lifting) elevates systolic and diastolic blood pressure, 

thus increases the afterload of the heart (20). The high intraventricular pressure results in 

increased myocardial wall stress, leading to concentric hypertrophy, in which sarcomeres 

are added in-parallel (16). 

 

 
 

Figure 1. Schematic figure of physiological and pathological cardiac remodeling. 

Chronic exercise induces reversible physiological cardiac adaptation, termed athlete’s 

heart. Up to 47% of the cases, athlete’s heart morphology may fall into the ‘grey zone’ 

and overlaps with the characteristics of pathological conditions (21, 22). Therefore, it is 

truly important to distinguish the two phenotypes. 

Normal heart

Stimulus

Athlete’s heart

EnduranceStrength

Pathological remodeling

Hypertrophy Dilation

‘Grey zone’
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The gold-standard of the evaluation of athlete’s heart dimensions is 

echocardiography. Over the past 40 years, numerous cross-sectional echocardiography 

studies have defined the cardiac morphology associated with long-term exercise (6, 7, 23, 

24). The enlargement of the LV end-disatolic diameter (LVEDD) and the increased wall 

thickness appears in a wide range among athletes (6, 7). The main determining factors 

besides the type of sport are age, sex, race and body size (23). Endurance sports are the 

most likely to increase LV dimensions. Moreover, LVEDD could reach a maximum of 

73 mm in professional cyclists (25). Animal studies of the athlete’s heart also reported 

altered LV dimensions after long-term exercise (12, 26). Ethnic variations can also affect 

the chamber morphology in professional sportsman. Greater LV wall thickness (>12 mm) 

is present in Black athletes compared to White athletes (27). Even more, Black athletes 

can achieve ≥15 mm wall thickness with normal systolic and diastolic function. However, 

it is important to comprehensively evaluate these cases to differentiate athlete’s heart 

from hypertrophic cardiomyopathy (HCM) (23, 27). Interestingly, gender differences 

were also seen in exercise-induced cardiac hypertrophy. Female athletes have lower 

LVEDD and wall thickness parameters than males. Although smaller cardiac dimensions 

were found in female rats, the propotional increment of the wall thickness was greater in 

females compared to males in the animal studies of athlete’s heart (28-30). Most probably, 

the gender differences arise from the distinct molecular and hormonal pathways and 

further genetic factors (28, 31). Left atrial (LA) remodeling is also present in athlete’s 

heart that is mainly related to LV enlaregement (7). The increased LA cavity is a benign 

phenomenon, however it is rarely associated with atrial fibrillation (7). Furthermore, the 

response of the right ventricle (RV) and right atrium (RA) is similar to that of the LV. 

The RV and RA dimensions are increased significantly, mainly in endurance-trained 

athletes (23, 32). 

Besides echocardiography, cardiac magnetic resonance imaging (CMR) has become 

an essential imaging modality in the diagnostics of athlete’s heart (21, 33-35). Moreover, 

cardiac computed tomography (CCT) may also be an additional method in the 

investigation of athlete’s heart (35). Csecs et al. have reported sex differences in their 

evaluation of athletes with CMR (21). Males had larger ventricular volume and LV mass 

compared to females after long-term exercise (21). Moreover, male athletes demonstrated 
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higher LV and RV hypertrophy and concentric hypertrophy and LV cardiac remodeling 

was more common among professional male athletes (21). Importantly, a subset of these 

highly trained male athletes can fall into the ‟grey zone” and further assessment is 

required to distinguish exercise-induced LV hypertrophy from HCM (22) (Figure 1.). 

 

1.1.2. Functional adaptation to exercise 

In addition to the morphological and structural characterization of athlete’s heart, it is 

certainly important to evaluate the functional consequences of exercise-induced cardiac 

hypertrophy.  

LV function is primarily investigated by echocardiography. Ejection fraction (EF) and 

fractional shortening (FS) are the baseline systolic parameters to determine LV function. 

It has been described in echocardiographic and even with CMR studies that LV systolic 

function of highly-trained athletes is preserved or even slightly reduced EF and FS can 

be present at rest (36-40). On the contrary, in our previous study we showed increased EF 

and FS in a rat model after intense swimming exercise (12). Nevertheless, these 

parameters are highly dependent on HR, preload and afterload. Moreover, rats have 

higher HR values compared to humans that could explain the differences in these 

parameters. Although EF is the clinically most relevant value to estimate LV function, it 

does not describe the function precisely becuase of the aforementioned loading conditions 

(41). However, the recently developed speckle tracking echocardiography (STE) 

technique is able to characterize myocardial deformation, hence LV function, by the 

assessment of strain (longitudinal, radial, circumferential strain) and strain rate imaging 

(41, 42). Athletes demonstrate normal, higher or even slightly reduced global longitudinal 

strain (GLS) (43). This disparity is a possible consequence of the variety in LV geometry 

induced by different training types. No major differences were reported in global 

circumferential strain (GCS) and global radial strain (GRS) between athletes and controls 

(43). On the contrary, Kovács et al. demonstrated significantly improved GLS and GCS 

in exercised rats compared to that of controls (44). Nonetheless, GLS is also influenced 

by HR and loading conditions. Therefore, myocardial work (MW) might be able to assess 

LV function more precisely than GLS in a noninvasive manner, independently from 

loading conditions (45). A recent study of Tokodi et al. reported significantly improved 
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global myocardial work index (GMWI) in exercised rats and highly trained athletes (45). 

Furthermore, GMWI reflected the supernormal LV function of athlete’s heart at rest (45). 

Interestingly, it has been revealed that LV diastolic function is often supernormal in 

athletes. (2, 25, 37, 46, 47). Moreover, myocardial stiffness is reduced in athlete’s heart 

(48, 49). Therefore, exercise-induced LV hypertrophy is associated with improved 

diastolic function and hence cardiac compliance (48, 49). The ratio of early (E) and 

late/atrial (A) LV filling by using tissue Doppler echocardiography is normal or slightly 

enhanced in athletes, also confirming improved diastolic function in highly trained 

athletes (42). Increased LV untwisting rate was revealed in exercised hearts that could 

also enhance early diastolic suction (37, 50). Moreover, Lakatos et al. reported that 

pronounced LA dilation and lower resting functional parameters are associated with 

improved exercise performance (51). Although there are conflicting data about the RV 

remodeling to exercise, it has been identified that the RV diastolic function is enhanced 

in endurance-trained athletes (32).  

Nevertheless, the aforementioned noninvasive imaging approaches are highly 

dependent on loading conditions. Therefore, in the past decade research groups utilized 

sensitive miniature pressure-volume (P-V) catheters in small animal models to evaluate 

in vivo cardiac function independently of loading conditions (12, 28, 52, 53). The slope 

of end-systolic pressure-volume relationship (ESPVR), preload recruitable stroke work 

(PRSW) and the maximal slope of the systolic pressure increment and end-diastolic 

volume relationship (dP/dtmax-EDV) are sensitive indices that describe the ventricular 

contractility of the heart in vivo (52, 54). In a previous study of our research group, P-V 

analysis has revealed improved contractility, haemodynamic conditions and enhanced 

active relaxation in exercised rats (12). Moreover, research on experimental animals 

contributed to our knowledge of the mechanoenergetic status of the heart after long-term 

exercise. The myocardial energetics parameters pressure-volume area (PVA), ventriculo-

arterial coupling (VAC), stroke work (SW) and efficacy were also ameliorated in trained 

animals (12, 28) after 12 weeks of swim training.  

The cellular mechanism underlying the functional improvement of exercise-induced 

LV hypertrophy has been under extensive discussion. Functional studies on mouse and 

rat cardiac trabecular muscles and cardiomyocytes have revealed increased Ca2+ 

sensitivity, improved rate of force production and loaded shortening velocities in trained 

DOI:10.14753/SE.2022.2759



 

 

13 

animals (55-59). Training-induced Ca2+ sensitivity only occurs at higher sarcomere 

lengths. This potentially explains why exercise increases left ventricular function at 

higher EDV (55, 56). Further studies revealed increased activity of the sodium/calcium 

(Na+/Ca2+) exchanger (60) and the Ca2+ ATPase of the sarcolemma and the 

sarcoplasmatic reticulum (61, 62). Moreover, exercise also affects the stiffness of the 

cardiac muscle. Slater et al. reported reduced passive stiffness in LV wall strips of mice 

after 3 weeks of voluntary wheel running (63). 

 

1.1.3. Electrical changes of the heart after long-term exercise 

Long-term exercise also induces electrical changes of the heart detected on 

electrocardiogram (ECG) (64). The ECG alterations are dependent from race, age, sex 

and the type and intensity of exercise (64). Athletes frequently have increased vagal tone 

associated with sinus bradycardia and atrioventricular (AV) conduction block. Sinus 

bradycardia (lowest accepted normal heart rate is 30 beats per minute (BPM)), Mobitz I 

AV block, junctional rhythm and incomplete right bundle branch block are considered 

normal in athletes (64-66). Further ECG alterations have been determined in ’The 

International Recommendations for the Interpretation of the ECG in the Athlete’, 

including signs of early repolarisation and voltage criteria for LV hypertrophy (64). In 

cases of abnormal ECG patterns, further prompt and extensive evaluations must be taken 

(64, 66, 67).  

 

1.1.4. Molecular alterations involved in exercise-induced LV hypertrophy  

Exercise-induced cardiac hypertrophy is triggered by various hypertrophic stimuli at 

the cardiomyocyte level (68). There are two main initiating trigger pathways to induce 

physiological LV hypertrophy: biochemical signals and strech-sensitive mechanisms (68, 

69). 

The initiating signals of triiodthryonine (T3), vascular endothelial growth factor B 

(VEGFB), insluin and insulin-like growth factor 1 (IGF-1) are the main molecules 

participating in the induction of physiological cardiac hypertrophy. The most crucial and 

recognized signaling pathway is the IGF-1 activated PI3K (phosphoinositide-3-kinase) - 

Akt cascade (68-73). IGF-1 binds to the IGF-1 receptor (IGF-1R), a transmembrane 

tyrosine kinase receptor, that subsequently activates the PI3K-Akt signaling cascade (68, 
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69). The cardioprotective p110α subunit of PI3K is the key regulator of physiological 

hypertrophy (69, 71). Moreover, Akt also has a critical role in physiological LV growth, 

as Akt-defitient mice have impaired cardiac response to exercise (72, 74). Moreover, 

insulin binds to the tyrosine kinase insulin receptor (IR) followed by the phosphorylation 

of insulin receptor substrate 1 (IRS1) and IRS2 which also activates the PI3K-Akt 

pathway. The insulin mediated signaling pathway plays an essential role in postnatal 

physiological cardiac growth. Heart specific deletion of IRs have resulted smaller hearts 

and reduced cardiomyocyte number in mice (68). The additional activation of VEGF 

receptors (VEGFR) and thyroid hormone receptors (TR) also regulate gene activation, 

protein synthesis and metabolic pathways that are involved in the mechanism of 

physiological LV hypertrophy (68).  

Mechanosensors also play a fundamental role in the induction of exercise-induced LV 

hypertrophy (68). Special mechonsening proteins convert mechanical forces into 

biochemical signals that initiate cardiac growth. Myocardial stretch activates transient 

receptor potential canonical channels (TRPC) leading to Ca2+ influx and the activation of 

prohypertrophic signaling pathways (68). Integrins mediate mechanotransduction by 

sensing changes in the extracellular matrix (ECM) (68). The sarcomeric Z-disk, 

anchoring actin filament, encompasses multiple mechanosensing structural proteins as 

muscle LIM protein (MLP), telethonin, obscurin and titin that also regulate myocardial 

hypertrophy (68, 75). Furthermore, titin not only plays a role in hypertrophic signaling 

pathways but also cotributes to myocardial mechanics (76). 

 

1.2. Titin, the regulator of cardiac compliance 

1.2.1. The structure and function of striated muscles 

Striated muscle is comprised of two types of tissue: skeletal and cardiac muscle (77, 

78). Striated muscle contracts and generates force to support locomotion, posture and 

breathing with skeletal muscle and to provide blood circulation with cardiac muscle (77, 

79). Striated muscle is composed of myofibers, that are consisted of myofibrils (79, 80). 

The myofibrils contain repeating sections of sarcomeres (81, 82) (Fig. 2.). The sarcomere 

is the functional unit of the muscle cell, that is composed of long myofilament proteins 

(82, 83). The two main myofilament types are the thick (mainly formed by myosin) and 

thin filaments (primarily actin) (77, 83). Furthermore, titin is the third most abundant 
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myofilament of the contractile unit (84-87). During contraction, myosin heads bind to 

actin and by the hydrolysis of adenosine triphosphate (ATP), myosin initiates a power 

stroke and slides the actin filament inwards, thereby shortening the sarcomere and 

generating active muscle force (88, 89). At higher sarcomere lengths, striated muscle 

develops passive tension, that is added to the total force (77, 90). Passive tension in 

cardiac muscle is predominantly determined by titin (91). Titin-based passive tension also 

contributes to length-dependent force production, as known as the Frank-Starling law in 

cardiac muscle (53, 92).  

The sarcomere displays a striated pattern, first described by Van Leeuwenhoek (93, 

94). The sarcomere length is determined by the neighbouring Z-disks. The physiological 

slack length (resting sarcomere length) is 1.7-2.2 µm in the cardiac muscle (95). The Z-

disk anchors actin and appears as a dark line on electron micrographs. The I-band 

(isotropic) surrounds the Z-disk and contains actin. It is followed by the A-band 

(anisotropic), containing both actin and myosin. The I- and A-bands are named after their 

properties under polarized light microscope. The H-zone is localized at the end of the A-

band that involves myosin. The M-band is the middle of the sarcomere and appears within 

the H-zone. Several proteins of the cytoskeleton apparatus are embedded in the M-band 

(77, 82).  

 

1.2.2. The elastic myofilament, titin 

The main regulator of cardiac compliance is the giant elastic protein, titin (49, 91). 

Titin spans half of the sarcomere, therefore it is extended from the Z-disk to the M-line 

(84, 85) (Figure 2.). It is encoded by the TTN gene and contains 363 coding exons (96). 

It is composed of immunoglobulin (Ig) and fibronectin type III (FnIII) domains and 

unique sequences (85, 97). Titin is expressed in cardiac and skeletal muscle (85, 96). Its 

main role is to provide passive stiffness to striated muscle (91, 98, 99). Moreover, it also 

modulates active contractile force (53, 100, 101).  

The NH2-terminus of titin, embedded in the Z-disk, acts as a mechanosensor (75). 

Titin’s I-band region serves as a molecular spring and determines elasticity in 

cardiomyocytes (91). It comprises tandem Ig domains and unique sequences as the N2B-

unique sequence (N2B-us) and the PEVK region enriched in proline (P), glutamic acid 

(E), valine (V) and lysine (K) aminoacids (85, 96). It has been suggested that these 
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segments also function as mechanosensor complexes as they interact with numerous 

signaling proteins (102, 103). The A-band region of titin contains the I/A zone, the D-

zone and the C-zone and is functionally inextensible (85, 97, 104). The C-zone segment 

plays a part in the regulation of the actomyosin interaction and thick filament regulation 

(104). Titin’s COOH-terminus is anchored in the M-line (85, 96). The M-band segment 

of titin contains the serine-threonine protein kinase (TK) domain and has a pivotal role in 

multiple signaling pathways (102, 103, 105).  

 
Figure 2. Schematic representation of the sarcomere structure and adult cardiac titin 

isoforms. 

 

1.2.3. Titin isoforms 

Titin’s spring region undergoes extensive alternative mRNA splicing regulated by the 

RNA-Binding Motif 20 (RBM20), resulting in distinct titin isoforms (106). The isoforms 

differ in the length of the tandem Ig and PEVK segments (96, 106).  

The adult cardiac titin contains two main titin isoforms: the longer, more compliant 

N2BA (∼3.3 MDa) and the shorter and stiffer N2B (∼3 MDa) titin (85, 96, 99) (Figure 

2.). These isoforms are co-expressed with an expression ratio (N2BA:N2B) of ∼0.5 in 

normal human hearts (107). However, the ratio varies in different species (108) and 

disease states (107, 109, 110).  

Besides full-length titins, shorter titin isoforms are also present. Novex-3 (∼700 kDa) 

contains a polyadenylation stop codon signal resulting in a truncated titin that acts as an 

alternative C-terminus (96, 111). It has been recently discovered that TTN also contains 

an alternative start signal that expresses Cronos titin (∼2 MDa) (112). Cronos lacks the 

Z-disk M-line Z-diskThin filament Thick filament

Titin

NH2

Proximal Ig N2B PEVK Distal Ig

Distal IgN2BProximal Ig PEVKN2A
Middle 

tandem Ig

NH2 N2B (∼3 MDa)

N2BA (∼3.3 MDa)
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Z-disk and most of the I-band segments but contains the A- and M-band region (112). 

Nevertheless, the exact function of Novex-3 and Cronos titin is yet to be identified. 

Titin is also a substrate of calpain cleavage that severs titin’s connection to the Z-disk 

(113). Titin is cleaved in the I-band region into a ∼2 MDa fragment, known as the T2 

proteolytic degradation product, and into a ∼1.2 MDa fragment (114). The latter is 

unstable and is quickly degraded into smaller fragments (113). T2 is similar to Cronos 

titin and contains the A-band and M-line segments of titin and part of the I-band region 

(114).  

 

1.2.4. Modulation of passive stiffness in cardiomyocytes induced by exercise 

Titin is the main regulator of myocardial stiffness (49, 91). Alterations in titin-based 

passive stiffness affect the wall tension of the ventricles and thus affect the diastolic filling 

(49). Subsequently, the systolic function of the heart is modified via the Frank-Starling 

mechanism (49, 53, 100). Moreover, reduced passive stiffness is associated with 

increased exercise tolerance (49). In addition, exercise itself could induce short- and long-

term alterations in titin-based passive stiffness. Passive stiffness, hence elasticity and 

compliance can be modified via post-translational modifications on the spring elements 

of titin or via alterations in the expression of titin isoforms (49, 115). 

Phosphorylation is the most extensively evaluated post-translational modification of 

titin (115). Titin has multiple phosphorylation sites, of which a few outstanding 

phosphosites have been characterized in details (63, 115-118). The altered 

phosphorylation of titin has been analyzed in the N2B-us and PEVK region, as these 

segments are mechanically active elements of the I-band (63, 116-119). There is a 

consensus that titin-based passive stiffness is reduced by N2B-us phosphorylation (114, 

118-122), whereas phosphorylation of the PEVK element increases stiffness (63, 116). 

There are five main kinases that can phosphorylate the spring region of titin: protein 

kinase A (PKA), protein kinase Cα (PKCα), cyclic guanosine monophosphate (cGMP) 

dependent protein kinase G (PKG), extracellular signal-regulated kinase 1/2 (ERK1/2), 

and Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) (115, 123). Ser4010, 

targeted by PKA and ERK1/2 and Ser4099, targeted by PKG are localized in the N2B-us 

(117, 118, 124). In the PEVK region Ser11878 and Ser12022, targeted by PKCα and 

CaMKIIδ are the most investigated phosphosites (116, 119). Previous studies focused on 
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post-translational phosphorylation modifications after 15 min treadmill running or 3-6 

weeks voluntary wheel running in rodent models (63, 117, 125).  

Recent studies focused on oxidation as another possible post-translational mechanism 

to modify titin-based stiffness including disulfide bonding in the N2B-us and Ig domains 

and S-glutathionylation of the Ig domains (115, 126, 127). Nevertheless, currently there 

is no data on titin oxidation after exercise. 

Post-translational modifications represent short-term mechanisms to modify titin-

based stiffness (115). However, titin isoform switching provides an important long-term 

mechanism to alter passive stiffness (49, 115).  

Increased expression of the more compliant N2BA titin isoform, thus elevated 

N2BA/N2B ratio reduces passive stiffness that corresponds to a more compliant heart 

(99, 110). Although titin isoform switch occurs during the perinatal period (99, 128, 129) 

or in pathological states (109, 110), limited data is available on titin isoform alterations 

after long-term exercise. An exercise-induced titin isoform change has been shown in a 

titin Ig knock-out (KO) mouse model (130). A recent study by Chung et al. revealed 

increased N2BA expression in trained rats (131). However, it should be stressed that 

previous research groups utilized voluntary wheel running that could induce different 

adaptations compared to controlled high-intensity training protocols (i.e. swimming, 

treadmill running) (63, 117, 130, 131). Moreover, no previous investigations have been 

conducted to evalute the impact of titin alterations on the cardiac sarcomere structure and 

mechanics after long-term high intensity exercise. 

 

1.2.5. Atomic force microscopy (AFM) imaging 

Atomic force microscopy is a powerful imaging modality that allows the visualization 

and manipulation of native biological samples at (sub)nanometer resolution (132-134). 

An AFM can operate in static (contact) or dynamic (resonant, non-contact/‟tapping”) 

modes (132, 133) (Figure 3.). In the resonant AFM, the sample is scanned with a sharp 

tip attached to the end of a flexible cantilever (133, 135). During scanning, the tip 

becomes close to the sample resulting the oscillation of the cantilever. The oscillation of 

the cantilever is detected through the deflection of a laser beam that is reflected from the 

cantilever (133, 135) (Figure 3.). 
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Figure 3. Schematic image of the AFM components. The dynamic mode is a powerful 

method to scan soft biological samples. The image is adapted from the work of Rousso 

and Deshpande (136).  

 

The fast force mapping (FFM or jumping mode) of the AFM allows force 

spectroscopy and transverse elasticity measurements (133, 137, 138). In FFM the 

cantilever is driven sinusoidally and each pixel corresponds to a force curve (137). The 

Young’s modulus, describing the elasticity against compressive forces, is obtained by 

different fitting models on the force curves (139). Therefore, AFM is an appropiate 

platform for the high-resolution evaluation of single molecules or cells, even 

myofilaments or myofibrils (134, 140, 141). 

 

1.3. Effects of detraining 

1.3.1. Regression of training-induced morphological and functional cardiac 

adaptation  

Athlete’s heart is considered as a reversible physiological condition. However, the 

regression of the morphological and functional cardiac features are still under review (7, 

142). Training termination or detraining may regress exercise-induced cardiac 

adaptations towards a more normal structure (10, 143-146). Significant reduction in LV 

cavity dimensions and wall thickness in former professional athletes was seen after long-
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term detraining (7, 10, 147-149). Swoboda et al. reported reduction in LV mass after 1 

month of complete deconditioning (11). Based on CMR measurements, they 

demonstrated decreased intracellular myocardial compartment (primarily 

cardiomyocytes) with no alterations in the extracellular compartment (11). 

A few evaluations on experimental animals revealed regression of training-induced 

cardiac morphological changes after deconditioning (13, 62, 150). Experiments on 

isolated cardiomyocytes and intact papillary muscles from rats suggested functional 

reversibility after the cessation of training (13, 62, 150). Benito et al. revealed collagen 

deposition in the RV of trained rats accompanied by diastolic dyfunction (13). However, 

the impaired cardiac remodeling parameters reversed to control levels after 8 weeks of 

detraining (13). Additionally, load-dependent echocardiographic measurements provided 

data on the possible reversibility of functional parameters of the exercise-induced cardiac 

adaptation in top-level athletes (10). Furthermore, although no systolic dysfunction or 

wall motion abnormality was detected in either athlete after deconditioning, LV chamber 

dilation was still observed in a few cases (10, 151). However, the functional effects of 

detraining in the intact heart needs to be further evaluated. Therefore, additional 

investigations are required to determine whether the residual LV hypertrophy has long-

term clinical implications.  

 

1.3.2. Role of detraining in the ’grey zone’ 

The cessation of exercise is also a commonly used, helpful test to distinguish athlete’s 

heart from pathological conditions (10, 11, 152). Modestly increased LV wall thickness 

(13-15 mm) has been observed in ~ 2% of the adult male professional athletes that falls 

into the so called ’grey zone’ (7). The grey zone defines the overlap between the 

morphology of athlete’s heart (e.g. extreme hypertrophy, enlarged LV cavity, ECG 

alterations) and the features of pathological conditions, as hypertrophic cardiomyopathy 

(HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (AC) (7, 

153, 154). However, Czimbalmos et al. reported that even 47% of their study population 

reached the cut off point of the grey zone (22). Interestingly, only 4% of the female 

athletes fell in the grey zone, demonstrating gender differences in the morphology of 

athlete’s heart (22). A typical of 1-3 months long period is required to evaluate the 

regression of LV hypertrophy in these cases (11, 142, 148). Nevertheless, the compliance 
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with deconditioning is often poor among athletes (11). Therefore, it is important to 

acquire high-resolution imaging modalities (i.e. CMR) (11, 22, 35, 155) and consider 

additional genetic testing for differential diagnosis before training reduction is applied (7, 

23). 	

 

1.3.3. Sudden cardiac death (SCD) 

There is increasing concern that high-intensity exercise is possibly associated with 

malignant ventricular arrhythmias or sudden cardiac death (SCD) (3, 4, 7, 156). 

Therefore, training-induced LV hypertrophy could be potentially harmful in some 

individuals. The most common causes of SCD in young athletes (age <35 years) are 

congenital or inherited diseases, predominantly HCM (3, 157). Interestingly, an Italian 

registry demonstrated AC as the most common cause of sudden cardiac arrests (3, 158). 

Nevertheless, normal heart structure was found in 3% of the SCD cases (157).  

Overall, exercise-induced cardiac hypertrophy should be investigated by physicians 

with experience in sports medicine. Furthermore, careful evaluation of the effects of long-

term training and deconditioning on the heart’s morphology and function is obligatory in 

human athletes and experimental animal models. 

 

1.4. Animal models of exercise-induced left ventricular hypertrophy and 

detraining 

In humans, physiological cardiac hypertrophy is investigated by non-invasive 

methods (i.e. echocardiography, CMR, CT) (6, 35) with the exception of a few invasive 

P-V measurements, mainly in heart failure patients (54). In order to evaluate the 

functional and molecular biology of training-induced LV hypertrophy, it is fundamental 

to rely on experimental animal models. Numerous types of training protocols have been 

established in different laboratory animals to investigate athlete’s heart (159). 

 

1.4.1. Small animal models (mouse, rat) 

Rodent animal models are suitable for a wide range of experiments (159). They have 

a short gestation period with high numbers of offsprings. Moreover, they reach young 

adult age within 2-3 months (160). Genetic engineering is also more available in small 

animal models (161). 
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Voluntary wheel running 

Voluntary wheel running is an easy method to examine LV hypertrophy (29, 63, 117). 

However, it has a limiting factor, since it relies on the animal’s effort level (162). 

Nevertheless, previous studies reported 10-15 km/day voluntary running for 2-4 weeks 

that was able to induce robust LV hypertrophy in rats (162). It is important to note that 

the motivation declined after 4 weeks (159, 162). Overall, voluntary wheel running is an 

accepted training protocol for the evaluation of exercise-induced LV hypertrophy. 

 

Treadmill 

Treadmill running allows many training protocols with different session duration, speed 

and inclination (163, 164). In general, the exercise protocol lasts from weeks to months. 

Furthermore, treadmill running also provides the possibility of interval training 

investigations (159).  

 

Swim training 

Swimming is another possible training method to evaluate physiological LV hypertrophy 

(12, 159, 165). The animals are placed in water tanks, separately. Usually 1-6 h/day for 

1-24 months training periods are applied. The exercise load could be modulated by 

attaching tail weight or floating devices to the animals. The water temperature may also 

influence the development of LV hypertrophy. 30-36 °C was considered to equally induce 

cardiac hypertrophy in young and aged animals (159). 

 

1.4.2. Large animal models 

Larger animal models may represent the human heart more accurately than small 

rodents (160). However, they are more costly and require more management. Even more, 

the gestation period is longer and genetic models are limited (159). Nevertheless, previous 

studies successfully used swine, dog and rabbit treadmill training models to investigate 

LV hypertrophy induced by exercise (159, 166, 167).  
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2. Objectives 

Athlete’s heart, the functional and morphological cardiac adaptation to long-term 

exercise, has become the point of interest of sports cardiology in the past decades. 

Although many aspects of athlete’s heart have been evaluated, no data are available on 

the modifications of sarcomere morphology and mechanics due to titin alterations after 

long-term exercise. Moreover, we have limited knowledge of the effect of detraining on 

left ventricular (LV) function.  

 

The purpose and aims of the present study were: 

1) Evaluation of titin’s role in the improved cardiac compliance of exercise-induced left 

ventricular hypertrophy  

i) Induction of athlete’s heart by a 12-week-long swim training protocol in a rat 

model. Assessment of LV hypertrophy by echocardiography and tissue 

weights. 

ii) Examine total titin content, titin isoform expression and post-translational 

phosphorylation of titin of the left ventricle by using molecular biological 

methods. 

iii) Determine whether any training-induced titin modification has an impact on 

the sarcomere structure and elasticity of single myofibrils isolated from the 

left ventricle by atomic force microscopy. 

 

2) Investigate the effects of detraining on left ventricular performance 

i) Evaluate the morphological reversibility of exercise-induced LV hypertrophy 

by echocardiography, tissue weights and histology after an 8-week-long 

detraining period. 

ii) Provide detailed characterization of in vivo LV haemodynamic alterations 

(contractility, relaxation, stiffness, cardiac energetics) after the cessation of 

exercise by LV pressure-volume (P-V) analysis. 
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3. Results 

3.1.  Exercise-induced cardiac hypertrophy 

All of the animal experimental procedures were approved by the Ethical Committee 

of Hungary for Animal Experimentation (License number: PEI/001/2374-4/2015) in 

accordance with the ’Principles of Laboratory Animal Care’ defined by the National 

Society for Medical Research and the Guide for the Care and Use of Laboratory Animals, 

provided by the Institute of Laboratory Animal Resources and published by the National 

Institutes of Health (publication no. 85-23, revised 1996) and the European Union 

Directive 2010/63/EU. 

Cardiac hypertrophy was observed by echocardiography in the exercised (DEx) group 

after 12 weeks of swimming compared to control (DCo) rats. (Figure. 4A). Left 

ventricular wall dimensions (anterior and posterior wall thickness) were significantly 

increased in trained rats. Moreover, LV mass and LV mass index increased significantly 

after the 12-week-long swimming period. Furthermore, the heart weight, heart weight-to-

body weight ratio (HW/BW) and HW to tibia length (HW/TL) ratio increased 

significantly in exercised (Ex) rats in comparison to the control (Co) group (Table 1.). 

There was a trend of reduced BW in the Ex group, but it did not reach the significant 

level. These results indicate the development of cardiac hypertrophy and thus athlete’s 

heart. Echocardiographic measurements showed improvement of the systolic function of 

the exercised hearts; ejection fraction (EF) and fractional shortening (FS) improved 

significantly after training (Figure 4A).  

 

Table 1. Body and heart weight data. 

The exercised group has significantly increased heart weight data. The body weight did 

not reduce significantly in the exercised rats. Data are expressed as mean ± SEM. BW: 

body weight, TL: tibia length, HW: heart weight, HW/BW: heart weight to body weight 

ratio, HW/TL: heart weight to tibia length ratio. *p< 0.05 
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Figure 4. Markers of LV hypertrophy. A, M-mode echocardiography recordings of the 

LV from representative DCo and DEx rats at weeks 12 and 20 from. LV anterior and 

posterior wall thickness, LV mass and LV mass index values increased significantly after 

training (12 wk). Traditional LV systolic parameters (FS and EF) improved significantly 

after the completion of the training protocol. These parameters regressed completely after 

Co
(n=6)

Ex
(n=6) p-value

BW (g) 483 ± 24 417 ± 18 0.06

TL (cm) 4.33 ± 0.05 4.18 ± 0.06 0.09

HW (g) 1.23 ± 0.05 1.45 ± 0.08* 0.04

HW/BW (g/kg) 2.55 ± 0.08 3.47 ± 0.09* <0.01

HW/TL (g/cm) 0.28 ± 0.01 0.34 ± 0.01* <0.01
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8 weeks of detraining. B, Postmortem measured heart weight and heart weight to-body 

weight (HW/BW) ratios were equal in the detrained rats. C, Representative images of the 

LV myocardium after H&E staining. Cardiomyocyte diameters showed no difference 

between DEx and DCo groups. Magnification 400x; scale bar, 40 µm. D, Picrosirius red 

staining showed physiological LV collagen content (red staining) in both groups. 

Collagen fractional area did not differ in DEx and DCo rats. Magnification 200x; scale 

bar, 40 µm. n=8/group, *p< 0.05 DEx vs DCo at week 12; #p < 0.05 DCo at week 20 vs 

DCo at week 12; †p < 0.05 DEx at week 20 vs DEx at week 12.  

This is a non-final version of an article published in final form in Oláh A, Kellermayer 

D, Mátyás C, Németh BT, Lux Á, Szabó L, Török M, Ruppert M, Meltzer A, Sayour AA, 

Benke K, Hartyánszky I, Merkely B, Radovits T. Complete Reversion of Cardiac 

Functional Adaptation Induced by Exercise Training. Med Sci Sports Exerc. 2017 

Mar;49(3):420-429 (168). 

(https://journals.lww.com/acsm-

msse/Fulltext/2017/03000/Complete_Reversion_of_Cardiac_Functional.5.aspx) 

 

3.2. Alterations in titin content and phosphorylation in athlete’s heart 

3.2.1. Titin isoform analysis in exercise-induced LV hypertrophy 

We measured titin isoform ratios to assess the effect of long-term exercise on titin 

content (Figure 5A-B). N2BA/N2B increased significantly in the Ex group (Figure 5C), 

indicating a shift towards the more compliant titin isoform. The relative expression of 

total titin (TT) to myosin hevay chain (MHC) (Figure 5D) and the proteolytic degradation 

product T2 to TT (Figure 5E) showed no differences in the Co and Ex groups.  

 

 

Co      Ex
N2BA
N2B
T2

MHC

A

Co          Ex

B D E

*
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Figure 5. Titin isoform analysis. A, Example gel electrophoresis image of a Co and Ex 

LV sample. B, Linear contrast adjustment has also been applied to the original image for 

better visualization. C, The N2BA/N2B ratio increased significantly in exercised rats, 

indicating increased expression of the more compliant isoform. D, Total titin (TT) to 

Myosin Heavy Chain (MHC) ratio and E, the titin degradation product T2 over TT did 

not differ between the two groups. n=6/group, *p<0.05 

 

3.2.2. Titin site-specific phosphorylation is modified after long-term 

exercise 

We investigated total titin phosphorylation and site-specific phosphorylation in titin’s 

PEVK region (PS11878, PS12022). Total titin phosphorylation did not differ between the 

two groups (Figure 6A). However, we detected hypophosphorylation of the PS11878 site 

(Figure 6B) and unaltered PS12022 phosphorylation (Figure 6C), indicating an exercise-

specific phosphorylation effect. 

 

 
 

Figure 6. Long-term exercise alters titin’s phosporylation. A, Total titin 

phosphorylation did not show any differences between control and exercised rats. B, 

Exercise resulted hypophosphorylation of titin’s S11878 (S26) site (linear contrast 

adjustment was applied to the original PS11878 image for better visualization), C, but 

had no effect on the phosphorylation level of S12022 (S170). n=6/group, *p<0.05. 
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3.3.  Sarcomere structure and elasticity of exercised cardiac myofibrils 

Atomic force microscopy measurements revealed slight differences in the sarcomeric 

structural dimensions of single permeabilized exercised cardiac myofibrils compared to 

controls (Figure 7A) (n = 63 Co vs. n = 52 Ex sarcomeres). We observed well 

recognizable sarcomeric structure. However, we noticed greater flexibility and more 

curved structrue of the exercised myofibrils. Sarcomeric structure distances were 

measured on the contour profile of each myofibril. The sarcomere length (SL) was 

determined as the distance between the peaks of two neighboring Z-disks. The I-band 

length was measured as the length between the two deepest points surrounding the Z-

disk. The distance between the two deepest points surrounding the M-band determined 

the A-band length (Figure 7B). We measured each sarcomere along 3 paraxial contour 

profiles to account for skew. Significantly shorter SL was measured in the Ex myofibrils 

(Co = 1.81 ± 0.01 µm vs. Ex = 1.73 ± 0.02 µm, p <0.01) (Figure 7C). Nevertheless, the 

SL was in the physiological slack length range (1.7–2.2 µm) in the Co and Ex groups. No 

alterations were seen in the I-band length/SL and the A-band length/SL in the two groups 

(Figure 7D). We did not find differences in the I-band/Z-disk height and the I-band/M-

band height between the Co and Ex myofibrils (Figure 7E). The Z-disk/M-band height 

decreased significantly in the exercised myofibrils (Figure 7F). Overall, the Ex myofibrils 

displayed an irregular contour and surface profile while control myofibrils retained a 

more regular sarcomeric structure. 

 
 

Figure 7. Sarcomeric and topographical structure of control and exercised 

myofibrils. A, Representative AFM images of a Co and Ex myofibril demonstrating the 

sarcomere structure. The Ex myofibril has more flexible and bended sarcomeres. B, 

BA
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Representative topographical surface profile of a control and exercise sample. C, We 

found significantly shorter sarcomere lengths (SL) in the exercised group. D, No 

differences were revealed in the I-band length/SL and A-band length/SL between the two 

groups. E, The I-band height/Z-disk height and A-band height/Z-disk height was 

unaltered in the Co and Ex rats. F, The Z-disk height/M-band height was decreased in the 

Ex group. n=63 Co sarcomeres (4 hearts) vs. n=52 Ex sarcomeres (3 hearts) , *p<0.05. 

 

In order to evaluate the lateral stiffness of Co and Ex sarcomeres, fast force mapping 

(FFM) was performed (Figure 8A). In FFM mode each pixel represents a force curve. We 

obtained the Young’s modulus with the Johnson–Kendall–Roberts (JKR) fitting model 

of the force curves. The Young’s modulus was significantly decreased in the Ex 

myofibrils (Co = 3.56 ± 1.17 MPa vs. Ex = 1.35 ± 1.51 MPa, p < 0.01), indicating 

improved sarcomeric compliance (Figure 8B). Conceivably, this causes the irregularity 

of the contour and surface profile of the exercised myofibrils. 

 

 

Figure 8. Fast force mapping of sarcomeres with AFM. A, Representative height 

image and stiffness map of a control and exercised sarcomere at a trigger force of 500 

pN. B, The Young’s modulus was significantly decreased in the Ex group vs. Co. Young’s 

modulus was calculated by using the Johnson-Kendall-Roberts (JKR) fitting model. Note 

that the Ex sarcomere showed more perturbation. Scale bar 1µm.  

 

3.4. Effects of detraining on cardiac morphology 

The LV anterior and posterior wall thickness, LV mass and LV mass index of the DEx 

group showed complete regression after 8 weeks of detraining (Figure 4A). The EF and 
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FS also equalized in the control and exercised groups after deconditioning (Figure 4A). 

Furthermore, the heart weight and heart weight-to body weight ratio did not differ 

between the groups after the cessation of the training (Figure 4B). Even more, 

cardiomyocyte diameters were equal in the DCo and DEx rats (Figure 4C). LV collagen, 

determined with picrosirius red staining, was unaltered in the two groups after the 

detraining period (Figure 4D). Overall, these parameters reflect complete reversion of 

exercise-induced LV morphology to baseline level after 8 weeks of detraining. 

 

3.5. Cardiac function after deconditioning 

3.5.1. Baseline haemodynamic parameters 

Left ventricular pressure-volume analysis revealed similar LV pressure and dP/dt data 

in the DCo and DEx groups (Figure 9.). The P-V loops completely overlap in the two 

groups, further indicating similar haemodynamic conditions of the DEx and DCo rats. 

Consequently, no differences were found in the baseline haemodynamic parameters (HR, 

MAP, LVESP, LVEDP, LVEDV, LVESV, SV, TPR) in the DEx and DCo animals after 

the detraining period (Table 2). 
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Table 2. Haemodynamic parameters of DCo and DEx rats  

Values are mean ± SEM. HR: heart rate; MAP: mean arterial pressure; LVESP: left 

ventricular end-systolic pressure; LVEDP: left ventricular end-diastolic pressure; 

LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic 

volume; SV: stroke volume; CO: cardiac output, CI: cardiac index; EF: ejection fraction; 

TPR: total peripheral resistance; dP/dtmax and dP/dtmin: maximal slope of the systolic 

pressure increment and the diastolic pressure decrement, respectively; τ: time constant of 

LV pressure decay; ESPVR: end-systolic pressure-volume relationship; EDPVR: end-

diastolic pressure-volume relationship; PRSW: prelaod recruitable stroke work; dP/dtmax-

EDV: slope of dP/dtmax -end-diastolic volume relationship; SW: stroke work; Eff: 

mechanical efficiency, Ea: arterial elastance; VAC: ventriculo-arterial coupling. 

This is a non-final version of an article published in final form in Oláh et al. (168).  

 

 
 

DCo (n=8) DEx (n=8) p

HR (BPM) 247 ± 8 249 ± 11 0.888

MAP (mmHg) 82.4 ± 2.5 795. ± 2.4 0.419

LVESP (mmHg) 102.7 ± 2.5 101.0 ± 4.2 0.723

LVEDP (mmHg) 6.6 ± 0.9 7.6 ± 1.0 0.452

LVEDV (µl) 253.0 ± 12.7 250.4 ± 13.2 0.890

LVESV (µl) 109.1 ± 4.4 105.7 ± 5.8 0.642

SV (µl) 143.9 ± 9.6 144.8 ± 9.0 0.949

CO (mL/min) 35.6 ± 2.6 35.9 ± 2.2 0.916

CI ((ml/min)/100g) 6.4 ± 0.4 6.7 ± 0.4 0.573

EF (%) 56.6 ± 1.4 57.7 ± 1.3 0.563

TPR (mmHg/(ml/min) 2.37 ± 0.12 2.25 ± 0.09 0.400

dP/dtmax (mmHg/s) 7084 ± 255 6903 ± 340 0.677

dP/dtmin (mmHg/s) -7528 ±216 -7323 ± 262 0.564

τ, Glantz (ms) 11.3 ± 0.4 11.5 ± 0.3 0.760

ESPVR (mmHg/µl) 1.66 ± 0.12 1.60 ± 0.06 0.655

EDPVR (mmHg/µl) 0.029 ± 0.004 0.029 ± 0.004 0.914

PRSW (mmHg) 70.9 ± 2.4 69.5 ± 2.7 0.709

dP/dtmax – EDV ((mmHg/s)/µl) 34.0 ± 1.9 34.2 ± 1.8 0.949

SW (mmHg/ml) 12.6 ± 0.9 12.3 ± 0.6 0.831

PVA (mmHg/ml) 19.5 ± 1.9 19.8 ± 1.1 0.856

Eff (%) 69.4 ± 1.8 68.7 ± 1.2 0.742

Ea (mmHg/µl) 0.70 ± 0.03 0.71 ± 0.09 0.796

VAC 0.45 ± 0.04 0.45 ± 0.03 0.907
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Figure 9. Steady-state P–V relations. Upper panel: recordings of LV pressure (LVP) 

and dP/dt signals from one representative DCo and DEx rat. Mid panel: representative 

steady-state P–V loops obtained from one DCo and DEx rat. The P–V loops of the two 

groups almost overlap each other, indicating similar pressure and volume values after 

detraining. Lower panel: no differences were revealed in the classic parameters of systolic 

(EF; dP/dtmax, maximal slope of the systolic pressure increment) and diastolic (dP/dtmin, 

maximal slope of the diastolic pressure decrement; Tau (τ): time constant of LV pressure 

decay) function. This is a non-final version of an article published in final form in Oláh 

et al. (168). 
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3.5.2. Cardiac contractility 

The systolic parameters obtained via P-V analysis did not differ in the DEx rats 

compared to the DCo group after deconditioning. EF, CO, CI, dP/dtmax showed complete 

regression after the 8-week-long detraining period (Table 2, Figure 9.). We also acquired 

load-independent specific contractility indices by the occlusion of the inferior vena cava 

during P-V recordings (Figure 10.). The ESPVR, PRSW and dP/dtmax -EDV parameters 

were equal after detraining.  

 

 

 
 

Figure 10. Load-independent parameters derived from left ventricular P–V analysis 

at different preloads during transient occlusion of the vena cava inferior. Upper 

panel: LV P–V loops recorded at different preloads. Slope of ESPVR (index of LV 

contractility) and slope of EDPVR (index of LV stiffness) in one representative animal 
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from DCo and DEx groups. These parameters were unaltered in the DEx rats compared 

to that of DCo animals after 8 weeks of detraining. Mid and lower panel: PRSW (the 

slope of the relationship between SW and end-diastolic volume) and maximal slope of 

the systolic pressure increment (dP/dtmax)–end-diastolic volume relationship (dP/dtmax-

EDV) from one representative rat from the DCo and DEx groups, respectively. These 

load-independent contractility indices showed no differences after the detraining period, 

reflecting similar inotropic state in detrained animals. This is a non-final version of an 

article published in final form in Oláh et al. (168). 

 

3.5.3. Diastolic parameters 

We evaluated the diastolic function of the heart after detraining. The active relaxation 

parameters, dP/dtmin and 𝜏 were unaltered in the DCo and DEx animals (Table 2, Figure 

9). LVEDP and EDPVR, that describe the passive stiffness of the heart, also showed no 

differences in the DEx group compared to DCo rats (Table 2, Figure 10.).  

	

3.5.4. Mechanoenergetic status of the heart 

The mechanoenergetic condition of the heart was comparable in the detrained rats 

(Figure 11.). No differences were found in the stroke work (SW), pressure-volume area 

(PVA) and mechanical efficiency in the two groups. Furthermore, the ventriculo-arterial 

coupling (VAC), determined by arterial elastance and and ESPVR was equal in the DCo 

and DEx animals. All together, the functional (systolic, diastolic) performance and 

mechanoenergetic status of the athlete’s heart is completely reversible after the cessation 

of training. 
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Figure 11. Cardiac mechanoenergetics. Similar values of LV SW and PVA in the 

detrained groups led to unaltered mechanical efficiency between the two groups after 

deconditioning. Unaltered Ea and LV contractility (ESPVR) resulted in similar 

ventriculo-arterial coupling (VAC) in the DEx and DCo rats. This is a non-final version 

of an article published in final form in Oláh et al (168). 
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4. Discussion 

The heart adapts to regular physical activity resulting in morphological and functional 

cardiovascular changes, termed athlete’s heart (2-4, 6, 7). In the past decades, the 

athletes’s heart phenomenon has become the focus of interest in sports cardiology as there 

are increasing numbers of top-level athletes (155, 169). Moreover, there is a demand for 

improved physical fittness in the general population as well (17, 155, 170). Athlete’s heart 

is a benign, physiological and reversible condition (6, 7, 11, 19). It has been well 

documented that regular aerobic exercise induces hypertrophy of the cardiac chambers, 

i.e. atria and the ventricles (7, 15, 16, 171-173). Moreover, it is accompanied by improved 

contractility, relaxation and mechanoenergetic status (7, 9, 12, 28, 174). It has been 

recognized that athlete’s heart is also associated with supernormal left ventricular 

compliance (2, 48, 49). Cardiac compliance is mainly regulated by the giant elastic 

protein titin (49, 91). However, titin alterations induced by long-term endurance exercise 

and its potential contribution to the improved functional performance of athlete’s heart 

have not been studied completely.  

Additionally, previous human and animal studies have revealed that exercise-induced 

cardiac morphological alterations are completely reversible after detraining (7, 10, 13, 62, 

143, 150). However, the specific deconditioning period required for structural regression 

has not been defined yet. Furthermore, the functional consequences of the cessation of 

training are still unclear. Thus, additional comprehensive research is required to reveal 

the reversibility of the functional parameters of athlete’s heart. Importantly, in some 

cases, exercise-induced cardiac hypertrophy falls into the ‘grey zone’ and displays similar 

features of pathological conditions (7, 10, 22). Therefore, it is crucial to distinguish 

athlete’s heart from pathological diseases and short-term deconditioning could contribute 

to the differential diagnostics (9, 11, 152, 155). 

In the present study we provide further assessment of the cardiac adaptation to 

exercise on the cellular and molecular level. We characterize titin content and post-

translational phosphorylation alterations in the rat model of exercise-induced left 

ventricular hypertrophy and its impact on myofibril structure and elasticity. Furthermore, 

we evaluate the functional reversibility of athlete’s heart after an 8-week-long detraining 

period by using in vivo pressure-volume analysis. 
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4.1. Induction of athlete’s heart by 12-week-long swimming training 

Several exercise protocols have been established to induce cardiac hypertrophy, hence 

athlete’s heart, to investigate the effects of physical activity on the cardiovascular system 

(29, 159, 160). According to our previously published protocol, we used a 12-week-long 

swimming training to induce athlete’s heart in a rat model (12). Swimming exercise is a 

well regulated, balanced endurance training (12, 159, 165). In the current study, the 

exercised rats swam 120 min/day 5 days/week. In order to eliminate the effects of stress 

caused by water, control animals also swam 5 min/day 5 days/week. Our research group 

has previously evaluated the morphological and functional properties of the athlete’s 

heart in detail (12, 28, 44). In accordance with our previous data, in the current study, we 

found significantly increased left ventricular wall dimensions (anterior and posterior wall 

thickness), LV mass and LV mass index in the exercised group. The EF and FS also 

improved significantly in the trained rats. Moreover, HW/BW, HW/TL ratios increased 

significantly after the 12-week-long training period. Therefore, athlete’s heart has 

developed after the swimming protocol. 

 

4.2. Alterations in titin isoform expression induced by long-term exercise  

The main regulator of passive stiffness in cardiac and skeletal muscle is the giant 

elastic protein, titin (49, 91). It has been previously discussed, that titin-based passive 

stiffness also predicts exercise tolerance (49). Due to alternative splicing by RBM20, titin 

has two main isoforms in the adult cardiac muscle; the longer, and more compliant N2BA 

titin and the shorter and stiffer N2B titin (96, 106). Overall passive stiffness in cardiac 

muscle is defined by the ratio of these isoforms (98, 99, 110). Importantly, elevated N2BA 

expression, hence increased N2BA/N2B titin ratio is associated with reduced passive 

stiffness (98, 99, 103, 110). Furthermore, reduced titin-based passive stiffness 

corresponds to improved cardiac compliance (49). A hallmark study by Nagueh et al. also 

reported ameliorated exercise tolerance in patients with dilated cardiomyopathy who had 

increased N2BA/N2B ratio (110). 

In our study we showed significantly increased N2BA/N2B titin ratio in exercised 

animals, suggesting a more compliant heart after swimming training compared to 

controls. We did not detect any differences in total titin content or T2 expression in the 

two groups. The study of Hidalgo et al., in accordance with Slater et al. did not reveal 
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titin isoform alterations after 3-6 weeks voluntary wheel running in mice (63, 117). 

However, recently Chung et al. published an elevated titin isoform ratio in exercised rats 

(131). It is important to note, that in their study rats performed exercise training on 

voluntary running wheels for 12 weeks (131). Even though voluntary wheel running is an 

accepted training method for exercise-induced cardiac hypertrophy (159), our swimming 

training is more rigorous, regulated and minimizes the different biological responses to 

exercise (12). Furthermore, it mimics the training program of top-level athletes (12). 

Nevertheless, our findings on titin isoform modifications induced by exercise is in 

accordance with the study of Chung et al.  

 Overall, we propose that long-term regular physical activity induces a shift 

towards the more compliant titin isform resulting in the upregulation of the N2BA/N2B 

ratio. Moreover, the elevated N2BA titin is a possible adaptive mechanism to the 

increased diastolic demand of the heart, induced by exercise.  

 

4.3. Titin’s post-translational phosphorylation modifications in the athlete’s 

heart 

Phosphorylation is the most extensively investigated post-translational modification 

process of titin (115). Although titin has several phosphorylation sites, a few well-

recognized motifs have been evaluated in the N2B unique sequence and the PEVK region 

(63, 116-119, 122, 125). We found no alterations in total titin phosphorylation, that is in 

line with the findings of Chung et al (131). However, by the evaluation of specific 

phosphosites, we showed significant hypophosphorylation of the Ser11878 site, while the 

phosphorylation of the Ser12022 residue remained unaltered. This points to reduced titin-

based passive stiffness of the heart after long-term exercise. Our results are in agreement 

with the study of Slater et al. that reported reduced phosphorylation of the Ser11878 

residue after 3 weeks of voluntary wheel running (63). They additionally showed 

hyperphosphorylation of the Ser4010 site in the N2B-us (63). However, Hidalgo et al. 

demonstrated hypophosphorylation of the Ser12022 residue, while the phosphorylation 

of Ser11878 remained unchanged (117). The PKCα possibly has a higher affinity to 

Ser11878 that may indicate the distinct phosphorylation patterns (175). Overall, chronic 

exercise reduces titin-based passive stiffness (63, 117). On the contrary, it has been 

revealed that Ser4099 is hypophosphorylated in the N2B-us, while Ser11878 is 
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hyperphosphorylated in the PEVK element in rat LV samples after a single bout of 15 

min treadmill running (125). This leads to increased titin-based passive stiffness and may 

contribute to the Frank-Starling mechanism, thereby resulting a quicker adaptation to the 

rapid volume changes in the heart (53, 125).  

In summary, our findings suggest that passive stiffness is reduced in the athlete’s heart 

via the hypophosphorylation of titin’s PEVK element. 

 

4.4.  Evaluation of the structure and elasticity of cardiac myofibrils after chronic 

exercise 

In order to evaluate whether long-term exercise affects sarcomeric stiffness, we 

analyzed the transverese elasticity of single myofibrils after chronic exercise. Myofibrils 

were isolated from the LV of rats after 12-week-long swimming training (176, 177). 

Atomic force microscopy was used to image and mechanically manipulate single 

myofibrils under buffer solution at room temperature (178). Myofibrils were subsrate-

attached to a mica surface, generally used in AFM (137, 179). To enhance the fixation to 

the surface, we introduced an additional rapid centrifuge step, that affected the Ex 

myofibrils to a higher degree compared to control samples. We recognized the sarcomere 

structure in both groups by resonant (non-contact/AC-mode) scanning (178). However, 

exercised myofibrils displayed more flexible sarcomeres and greater level of 

irregularities, while control myofibrils showed straighter sarcomeres. This could be 

explained by the mechanical effects of exercise. Although sarcomere lengths (SL) were 

in the in vivo working length in both groups (1.7-2.2 µm) (95), we recognized slightly 

shorter SL in the exercised myofibrils. The I-band region of titin functions as a molecular 

spring (91, 180) and we propose that a larger relative amount of the more compliant 

N2BA isoform may allow larger amplitude contractions. This could potentially explain 

the more irregular and shorter sarcomeres of the exercised myofibrils. Furthermore, 

although 2,3-butanedione-monoxime (BDM) was added in the myofibril 

permeabilization solution to prevent further contractions of the samples (177), it is 

possible that internal stores of ATP could have contributed to additional sarcomere 

shortening (181).  

 We determined the length of the different sarcomeric structures based on the study 

of Ogneva et al (182). We did not see any alterations in the I-band/SL and A-band/SL in 
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the two groups. Moreover, the Co and Ex myofibrils did not show any differences in the 

I-band height/Z-diks height and I-band height/M-band height. However, the Z-disk 

height-to M-band height was significantly decreased in the exercised myofibrils. It is 

plausible that the exercised myofibrils became more flattened due to the centrifuge step.  

We also investigated the Young’s modulus (elastic modulus) of the myofibrils exposed 

to chronic exercise, by fast force mapping (FFM) mode of the AFM (138, 139, 182). The 

Young’s modulus of the Ex myofibrils was significantly decreased, indicating reduced 

passive-stiffness. Even though we revealed differences in titin isoform and site-specific 

phosphorylation localized in the I-band, the mechanical alterations were manifested 

across the entire sarcomere. Further molecular evaluation is required to explain this 

phenomenon. To date, only few groups analyzed the Young’s modulus of striated muscle 

by FFM. A study by Li et al. reported that titin contributes to A-band lateral stiffness in 

psoas and diaphragm muscles and thus may be involved in active contraction (140). 

Akiyama et al. demonstrated lower Young’s modulus of control cardiac myofibrils 

compared to our results (183). However, it is important to emphasize that they evaluated 

neonatal LV muscle, containing the fetal titin that is known to be the most compliant titin 

isoform (99, 128, 129). Nevertheless, to our knowledge, this is the first study to examine 

the elasticity of adult cardiac control and exercised myofibrils by fast force mapping. 

In summary, our results demonstrate that long-term exercise leads to increased 

sarcomeric compliance in cardiac muscle. We propose that the changes in sarcomeric 

mechanics are related to the modifications in the titin isoform ratio and the PEVK element 

phosphorylation. Moreover, we speculate that this is an additional mechanism to aid the 

physiological adaptation of the heart in response to chronic exercise. Nonetheless, we 

evaluated samples from male rats, thus further investigations would be needed to examine 

whether any gender differences are present in titin alterations induced by exercise. 
 

4.5.  Left ventricular morphology after detraining 

Numerous research groups focused on the morphological reversibility of exercise-

induced cardiac hypertrophy (10, 11, 148). Human studies revealed regression of 

structural parameters of athlete’s heart after 2 months of deconditioning (10, 148). On the 

other hand, Bocalini et al. showed complete regression of chronic exercise-induced 

alterations after 2 weeks of detraining in a rodent model (62). However, it is important to 
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note, that in some cases the LV appears less responsive to deconditioning, suggesting that 

increased body-weight and recreational exercise may influence the morphological 

regression of athlete’s heart (10, 151). 

Our research group also demonstrated regression of exercise-induced LV morphology 

after the cessation of training by echocardiography (12, 26). Based on previous reports, 

there is a variability in the detraining time needed for regression (10, 14, 62, 184, 185). 

Therefore, we evaluated the effects of deconditioning on cardiac function after an 8-week-

long detraining period to surely detect any structural and functional reversibility of the 

athlete’s heart. 

After the detraining period, we found no differences in the wall thickness parameters, 

LV mass and LV mass index by echocardiography in detrained control (DCo) and 

detrained exercised (DEx) rats. Even more, the basic functional parameters, EF and FS 

also returned to control levels after detraining. Furthermore, heart weight, heart weight-

to-body weight ratio and the cardiomyocyte diameters also returned to baseline levels in 

the DEx group. These results indicate that the loss of hypertrophic stimuli signals via the 

cessation of training can revert the exercise-induced molecular and cellular adaptation to 

control parameters (185). Although it has been reported that chronic exercise may induce 

fibrotic remodeling in the myocardium (184, 186), our research group did not reveal 

increased collagen deposit or activation of pathological signaling markers in the athlete’s 

heart (12). However, we wanted to evalute whether deconditionig has an effect on 

myocardial fibrosis. In the current study, we showed unaltered LV collagen content in 

both groups by picrosirius red staining after the 8-weeks-long detraining time. This is in 

agreement with the finding that the potentially arrhythmogenic collagen infiltrates are 

completely reversible (13). Additionally, the current consensus is that chronic exercise 

does not lead to myocardial fibrosis (187). 

Overall, our data support the previous findings that exercise-induced LV hypertrophy 

is completely reversible after deconditioning. Furthermore, athlete’s heart is not 

associated with fibrotic remodeling, even after the cessation of training. 
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4.6. Consequences of detraining on cardiac function 

4.6.1. Baseline pressure-volume (P-V) parameters 

Regular training improves the cardiovascular capacity in order to adapt to the 

increased circulatory demand of exercise (3, 7, 16). As a consequence of the increased 

vagal tone associated with exercise, athletes often present sinus bradycardia (64, 188). 

However, Evangelista et al. demonstrated the loss of resting bradycardia after 2 weeks of 

detraining (189). Accordingly, we showed equal heart rates (HR) in our groups by P-V 

measurements after 8 weeks of deconditioning. Moreover, we found no differences in the 

pressure parameters (MAP, LVESP, LVEDP) between DCo and DEx rats. Stroke volume 

(SV) is signficantly improved in athlete’s heart that is associated with a slight degree of 

LV dilation, thereby increased EDV (13, 21, 190). However, we previously reported no 

diffenreces in LVEDV, along with reduced LVESV in our athlete’s heart rat model (12). 

This leads to significantly increased stroke volume and EF in exercise-induced LV 

hypertrophy (12). After deconditioning, we showed that SV and EF regressed to control 

levels in the DEx group as demonstrated on the baseline P-V loops. Our results are in line 

with the study of Martin et al., who found significantly reduced SV in top-level athletes 

after the cessation of training (191). 

All together the baseline functional characteristics of athlete’s heart completely 

regressed after the 8-week-long detraining period. 

 

4.6.2. Systolic function 

Most studies evaluate the cardiac morphology and function by noninvasive 

modalitites (7, 11, 51, 155). We found no differences regarding the traditional LV systolic 

parameteres between the detrained groups. EF, CO, CI and dP/dtmax were equal in the 

DCo and DEx animals. However, these values are highly dependent on loading conditions 

and HR (6, 192). Therefore, they might not display the enhanced systolic function of 

athlete’s heart properly. However, P-V analysis is an effective tool to characterize the 

contractile function of the heart in vivo (12, 52, 54). In athlete’s heart the 3 load-

independent sensitive chronotropic indices, ESPVR, PRSW and dP/dtmax-EDV are 

significantly improved compared to sedentary controls (12, 28). In our current study, we 

did not reveal any differences in these parameters between the groups after detrainig. In 

vitro experimental studies on isolated cardiomyocytes and papillary muscles revealed 
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regression of exercise-induced contractility enhancement after 2-4 weeks (62, 150). 

Nevertheless, to our knowledge, this is the first in vivo pressure-volume analysis to 

evaluate the effects of detraining on cardiac function.  

Overall, our results show complete reversibility of the improved exercise-induced 

cardiac function after 8 weeks of deconditioning. 

 

4.6.3. Diastolic function 

LV diastolic function is determined by the early, energy-dependent active relaxation 

and the late, passive relaxation (193, 194). Previous findings showed that athlete’s heart 

is associated with improved active relaxation and unaltered or even enhanced passive 

relaxation (2, 12, 28, 48). However, after detraining no alterations were revealed 

regarding the load-dependent (dP/dtmin) and the load-independent (tau) values of active 

relaxation in the DCo and DEx groups. Alterations in EDPVR, the load-independent 

parameter of total LV stiffness may reflect changes in the collagen content of the 

myocardium (12, 195). Exercise-induced LV hypertrophy develops without increased 

interstitial fibrosis (13, 187). Furthermore, titin-based passive stiffness is reduced in the 

myocardium after long-term exercise (63). In our study, EDPVR was unchanged after 

deconditioning in the DEx rats compared to the DCo group. This is in agreement with 

human echocardiographic studies, which demonstrate regression of the enhanced 

diastolic function after deconditioning (192, 196). 

Overall, our results point to complete regression of the improved exercise-induced 

active relaxation, hence diastolic function, after the cessation of training. 

 

4.6.4. Mechanoenergetic status of the heart 

Exercise-induced LV hypertrophy is characterized by improved metabolism and 

energetics, including enhanced glucose and fatty acid oxidation (72, 174, 197). In 

accordance with these findings, the in vivo analysis revealed improved LV efficiency in 

the athlete’s heart, determined by stroke work (SW), the total LV mechanical work and 

by pressure-volume area (PVA), the total mechanical energy of cardiac contraction (12, 

28, 198). The improved cardiac energetic parameters regressed completely after the 8-

week-long detraining period in the DEx group.  
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Moreover, there is improved coupling between the LV and the arterial system in 

athlete’s heart, described by ventriculo-arterial coupling (VAC) (12, 198). In our 

experiments VAC was also reverted after deconditioning. 

These data suggest that the improved mechanoenergetic status of the athlete’s heart 

regresses completely after 8 weeks of deconditioning.  

Overall, athlete’s heart is completely reversible after 8 weeks of inactivity. Thus, 

deconditioning is a truly beneficial tool to differentiate pathological and physiological 

conditions. Nevertheless, further evaluations may be required to determine the exact time 

point where morphological and functional reversibility of athlete’s heart begins in order 

to prepare the best training plan for top-level athletes, with a special focus on the allowed 

number of resting days. 
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5. Conclusions 

We evaluated titin alterations in the cardiac muscle after long-term exercise that 

mimics the training of top level athletes. The significantly increased N2BA/N2B titin 

ratio along with the decreased phosphorylation of titin’s PEVK element suggests reduced 

titin-based passive stiffness and a more compliant heart after chronic exercise. The 

increased N2BA content possibly led to more flexible exercised myofibrils. To our 

knowledge, this is the first study to reveal decreased Young’s modulus in cardiac 

myofibrils of the athlete’s heart that is associated with decreased passive stiffness and 

more compliant conditions. Overall, titin modifications in the athlete’s heart are potential 

mechanisms to improve cardiac compliance and provide the best adaptation and 

performance to the increased circulatory demand of long-term exercise. 

 

Additionally, we investigated the effects of detraining on the athlete’s heart. We 

revealed complete morphological and functional regression of exercise-induced cardiac 

adaptation after 8 weeks of deconditioning. LV hypertrophy developed after the 12-week-

long swimming training, that regressed completely after the cessation of training. The 

morphological reversibility of the physiological LV hypertrophy was not associated with 

altered LV collagen content. Based on our sensitive pressure-volume analysis, we 

demonstrated equal data of the contractility and relaxation parameters in the detrained 

control and exercised rats. Furthermore, the cardiac energetics did not show any 

differences in the detrained animals. All together, these results indicate morphological 

and functional reversibility of the exercise-induced LV hypertrophy and the improved 

myocardial contractility and mechanoenergetic status. Moreover, to the best of our 

knowledge, this is the first study to report functional reversibility of athlete’s heart by in 

vivo P-V haemodynamic characterization.  
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6. Summary 

Long-term exercise induces benign morphological and functional adaptation of the 

myocardium, referred to as athlete’s heart. Exercise tolerance is associated with reduced 

myocardial passive stiffness. The main determinant of the passive stiffness of the heart 

muscle is titin. Titin-based passive stiffness may be modified by changes in titin isoform 

expression (altered N2BA/N2B) or via post-translational alterations, mainly 

phosphorylation. To date there is limited knowledge about titin’s role in the cardiac 

adaptation after long-term exercise. Moreover, although the functional condition of 

athlete’s heart in enchanced, the effects of detraining on left ventricular (LV) function is 

unclear.  

Therefore, the purpose of this study was to evaluate the N2BA/N2B isoform ratio and 

titin’s post-translational phosphorylation in the LV and to correlate the findings with the 

cardiac sarcomere structure and elasticity in a rat model of athlete’s heart. In addition, our 

aim was to investigate the reversibility of the improved functional parameters of athlete’s 

heart after detraining. 

We induced athlete’s heart by a 12-week-long swimming training. We showed 

significantly increased N2BA/N2B ratio (Ex 0.40±0.03 vs. Co 0.32±0.01) and 

hypopohosphorylation of titin’s PEVK element at the Ser11878 residue (Ex 0.56±0.08 

vs. Co 1±0.17) in the exercised group. Moreover, the sarcomeric elastic modulus was 

reduced in the exercised rats (Ex 1.35±1.51 MPa vs. Co 3.56±1.17 MPa). These data 

indicate decreased titin-based passive stiffness of the myocardium, that is potentially 

caused by a shift towards the expression of the more compliant titin isoform and softening 

of the PEVK element induced by post-translational phosphorylation. These alterations 

are manifested as local mechanical rearrangements within the cardiac sarcomere and may 

contribute to the improved cardiac compliance of athlete’s heart. 

After the training period, rats of the control and exercised group remained sedentary 

for 8 weeks. We revealed no differences in the LV wall thickness and cardiomyocyte 

diameter in the two groups after deconditioning. Furthermore, the improved contractility, 

relaxation and mechanoenergetic parameters of the athlete’s heart were comparable to the 

control levels after the cessation of training. Our results demonstrate complete 

morphological regression of athlete’s heart and reversibility of exercise-induced LV 

functional enhancement after 8 weeks of detraining.  
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