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1. INTRODUCTION 

1.1. Definition of heart failure 

Chronic heart failure (HF) is defined as a complex clinical syndrome in which there is 

exertional limitation due to impaired ventricular filling and/or ejection of blood. HF is 

caused by a loss of a large quantity of functional myocardium after injury to the heart 

from various causes. The most common etiologies are ischemic heart disease, 

hypertension or diabetes mellitus, but also important causes of HF are inherited 

cardiomyopathies, infections, toxins (e.g. cytotoxic drugs, alcohol) or anatomical 

anomalies (e.g. valvular heart diseases) (1). These critically ill patients suffer from life 

threatening clinical symptoms including pulmonary edema, chronic hypoperfusion of 

brain, liver or kidney, thromboembolic events and cardiac cachexia.  

The prevalence of diagnosed HF is estimated at 1-2% of adult population in developed 

countries, and more than 60 million people are living with this condition worldwide (see 

for review: (2)). The increasing number of patients reflects on one hand the overall aging 

of the population, while improved survival from myocardial injuries and cardiovascular 

diseases, and the epidemic of metabolic comorbidities also contributes to the high 

prevalence of HF. HF inflicts significant morbidity and mortality that consumes a notable 

part of healthcare resources; HF patients take on average 4-6 HF-related medications, and 

majority of them is hospitalized one or two times a year (3, 4).  

Pathomechanism behind heart failure including the processes of maladaptive hypertrophy 

and cardiac remodeling has been investigated extensively. These mechanisms are 

developed as a response to stress signals by the pathological conditions mentioned to 

adjust to the impaired cardiac function and to maintain cardiac output and tissue 

perfusion. These compensatory mechanisms become maladaptive over time, and lead to 

the uncontrollable activation of renin-angiotensin-aldosterone system and autonomic 

nervous system. Both neurohormonal alternations and increased sympathetic activity may 

have profound impact on cardiac structure and function by increasing the secretion of 

angiotensin II, aldosterone and catecholamines, which promote interstitial fibrosis and 

cellular apoptosis by their downstream signaling and the secondary release of other 

mediators (5-7). These pathways are the major targets of currently used pharmaceuticals 

in the management of HF, and angiotensin-converting enzyme inhibitors, angiotensin 

receptor and beta adrenergic receptor blockers are recommended as first-line treatment 
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for HF (8). However, the long-term prognosis of HF is still devastating even in case of 

proper treatment. Therefore, new effective therapeutic strategies that might improve 

outcome of HF are needed. 

1.2. Inflammation and anti-inflammatory therapies in heart failure 

Inflammation consists of a complex cascade of molecular and cellular events, which plays 

an important role in the pathomechanism of cardiovascular diseases such as 

atherosclerosis, myocardial infarction, stroke or even heart failure (9-13). It has been also 

shown that the increased number of circulating leukocytes and the level of monocyte- or 

macrophage-derived pro-inflammatory cytokines including interleukin-1β (IL-1β), 

interleukin-6 (IL-6), transforming growth factor β (TGF-β) or tumor necrosis factor-α 

(TNF-α) correlates with a more advanced stage and worse outcomes independent of 

traditional metrics e.g. left ventricular ejection fraction. Furthermore, this strong 

association between outcome and inflammation is observed in the groups of HF patients 

both with reduced or preserved ejection fraction (14-18). The increase in the levels of 

pro-inflammatory cytokines is considered to be a responsive mechanism which generally 

provides benefits by mediating cardiac repair; nevertheless, sustained elevation of pro-

inflammatory cytokines results in a low-grade inflammation that has been identified as a 

contributor to the development and progression of cardiac injury (19). The safe 

intervention by anti-inflammatory drugs remains a challenge; however, results from 

recent preclinical and clinical studies prove that targeting inflammation may offer a novel 

approach to reduce risk for cardiac diseases and complications. In the following sections, 

the role of inflammatory pathways and their potential as therapeutic targets are 

summarized (Fig.1-2). 

1.2.1. Inflammatory mediators in the pathomechanism of heart failure 

The innate and adaptive inflammatory responses are important for maintaining normal 

cardiac tissue homeostasis. The immune system responses to cardiac injury by 

recognizing specific damage or injury associated molecular patterns (DAMPs). DAMPs 

are various molecules such as double-stranded DNA (dsDNA) from the nucleus or the 

mitochondria, RNA or organelle components released from damaged cardiomyocytes or 

other resident cardiac cells (20-22). DAMP-induced inflammatory response is activated 

by numerous pattern recognition receptors localized on the cell membrane e.g. Toll-like 

(TLRs), retinoic acid-inducible gene I-like or oligoadenylate synthase-like receptors and 
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in the intracellular space e.g. nucleotide-binding oligomerization domain-like receptors 

(NLRs) (23, 24). The DAMPs contribute to mediate initial immune response via 

cytokines by inducing chemotaxis, adhesion and migration of monocytes and neutrophils 

to repair cardiac injury. Although pattern recognition receptors are well-characterized in 

immune cells, their role in cardiac diseases is still under intensive research. 

Immune responses by cytokines are generally mediated by activating their specific 

receptors and converging to regulate transcription factors from which nuclear factor 

kappa B (NF-κB) is the best characterized (25). NF-κB normally is inhibited by inhibitors 

of κB (IκBs). Classically, these inhibitors can be degraded by pro-inflammatory signals 

e.g. cytokines that activate IκB kinases. The phosphorylation and consequent degradation 

of IκB free NF-κB that in turn translocate to nucleus. In the non-canonical pathway, 

different signaling is activated which eventually based on the processing of p100 (a 

precursor of NF-κB) and activation of p52-Re1B dimer. The activation of NF-κB play a 

crucial role in the pathomechanism of cardiac remodeling and heart failure by fine 

modulation of cytokine secretion and genes related to hypertrophy and fibrosis (26-28). 

Nevertheless, it must be emphasized that NF-κB signaling can induce cardioprotective 

mechanisms beside its well-characterized harmful effects especially when activated in the 

early phase of cardiac insult (28-30). This presumably contributes to the mixed outcomes 

of anti-inflammatory therapies in cardiac diseases (see later in details). 

In the following section, we summarize the most relevant data on cytokines concentrating 

on their role in cardiac diseases in particular heart failure and cardiac remodeling.  

Tumor necrosis factor-α 

TNF-α is one of the key pro-inflammatory cytokines playing a role in the molecular 

pathomechanism of HF (31-35). The signaling of TNF-α is mediated through NF-κB 

pathway by two different receptors (TNF-α receptor 1 and 2, TNFR1/2) which have 

soluble forms as well. It is considered that the two receptors have divergent effects; thus, 

the relative expression ratio of these can determine the phenotype in a specific tissue. For 

instance, TNFR1 is associated with death domain that can induce caspase-mediated 

apoptosis, while TNFR2 lacks it. Moreover, classical NF-κB pathway is activated by 

TNFR1, while TNFR2 regulates predominantly via non-canonical pathway. However, 

crosstalk via TNF receptor-associated factor 2 (TRAF2) between the two types of 

receptors is a known phenomenon (36). Cardiac presence of TNF-α results in depressed 
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cardiac function by negative inotropic effects, which is believed to be a consequence of 

crosstalk between TNF-α signaling and sympathetic activity. According to preclinical 

studies, TNF-α also alters Ca2+ homeostasis, sphingolipid mediators and the function of 

G protein coupled receptor kinases that may lead to beta adrenergic receptor 

desensitization (37).  

Therefore, the role of TNF-α in cardiac physiology and pathophysiology is highly 

complicated which led to the failure of clinical translation of its inhibitors for cardiac 

diseases as discussed later in this dissertation. 

Transforming growth factor β 

TGF-β is a fibrogenic cytokine contributing to cardiac fibrosis, and its expression level is 

increased in fibrotic myocardium (38). TGF-β is a universal mediator with diverse effects 

in cardiac fibrosis by binding to TGF-β receptors (TβRI and TβRII) and activating TGF-

β/Smad pathway and increasing the transcription of α-smooth muscle actin (39). TGF-β 

could induce the transformation of fibroblasts and cardiomyocyte hypertrophy, and 

increase expression of extracellular matrix proteins and secretion of other cytokines (40, 

41). TGF-β receptors are expressed on a large population of immune cells such as 

monocytes, macrophages and mast cells (42). TGF-β can regulate immune function in 

multiple manner; thus, TGF-β may induce the secretion of profibrotic cytokines as well 

as suppress the release of these signals in specific microenvironment (43-45). These 

results suggest that early and moderate activation of TGF-β signaling might be beneficial; 

however, chronic overactivation is rather detrimental in cardiovascular diseases. 

Interleukin-6 

IL-6 was shown to be a pleiotropic as well as two-faced mediator in heart failure with 

wide array of functions through JAK-STAT and phosphoinositide 3-kinase (PI3K) 

pathways (46, 47). Acute secretion of IL-6 was demonstrated to be cardioprotective in 

particular during ischemia-reperfusion injury (48), while chronic elevation of IL-6 is a 

maladaptive response to cardiac insult (47). IL-6 promotes cardiac fibrosis and 

hypertrophy alone, but it is also critical in angiotensin-induced fibrosis and 

atherosclerosis (49, 50). In line with that, elevated levels of circulating IL-6 in heart 

failure patients were observed in clinical studies (10, 31, 51, 52). In contrast, other 

preclinical studies found that deletion of IL-6 is not sufficient to prevent fibrosis; 

moreover, lack of IL-6 was associated with cardiac dysfunction (53). Thus, further 
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preclinical and clinical studies are needed to clarify the role of IL-6 signaling in the 

progression of heart failure. 

Interleukin-1 superfamily 

IL-1 superfamily consists of a few cytokines such as IL-1α, IL-1β, IL-18 or IL-33 playing 

central role in the regulation of immune function. The members of this family share some 

similar biological features including being secreted as an inactive precursor and requiring 

further maturation by proteolytic cleavage to become active.  

IL-1β is one of the most intensively investigated among the known cytokines that 

associates with a large number of acute and chronic inflammatory diseases. The 

downstream signaling of IL-1β and its close relative, interleukin-1α is mediated by IL-1 

receptor type 1 (IL-1R1), a cell membrane receptor and its accessory protein (IL-1RAcP) 

which is recruited by IL-1R1 bound its ligand. The IL-1 receptor type 2 is a decoy receptor 

without significant downstream signaling; thus, it acts as a suppressor of IL-1 pathway. 

Another endogenous suppressor is IL-1 receptor antagonist (IL-1RA) that inhibits IL-1R1 

and IL-1RAcP transactivation preventing the activation of signaling pathway. Activation 

of IL-1R1 initiates phosphorylation of several interleukin-1 receptor activated kinases, 

which eventually leads to the modulation of NF-κB pathway (54).  

IL-1β has diverse effects on myocardium leading to impaired cardiac function. IL-1β was 

shown to decrease responsiveness to sympathetic stimuli, attenuate the expression of 

important genes of Ca2+ homeostasis and inhibit mitochondrial functions (55-57). The 

impact on Ca2+ handling may increase the risk of arrhythmias as well (12). IL-1β also 

promote cardiac remodeling, atherosclerosis and vascular dysfunction by activating TGF-

β signaling and enhancing activity of matrix metalloproteases (58-60). Eventually, 

activation of IL-1β signaling enhances the secretion of pro-inflammatory cytokines such 

as IL-6, TNF-α or even IL-1β itself. These findings may facilitate the intensive 

investigations to translate inhibitors of IL-1 pathway into clinical practice in the 

management of cardiac diseases. 

IL-18 is another member of IL-1 superfamily, and it shares signaling pathways and 

biological effects similar to IL-1β on cardiac system (61). IL-18 signaling is associated 

with diet-induced cardiac dysfunction in a mouse model of Western type diet by 

contributing to systemic inflammation (62). It has been also demonstrated that the 

deleterious cardiac effects of IL-1β may be partially IL-18-dependent or the cytokines 
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can act synergistically (63). Treatment with IL-18 neutralizing antibody or recombinant 

IL-18 binding protein, which is an endogenous inhibitor of IL-18, might be promising as 

therapeutic strategies; however, there is a general lack of preclinical and clinical studies 

in relation to cardiac diseases. Additionally, the controversial correlation between cardiac 

function, the prognosis of HF and circulating level of IL-18 indicate that IL-18 might play 

a mixed role in the modulation of HF-related inflammation that needs to be clarified in 

the future (64). 

 

Figure 1 – Summary of cytokine-mediated inflammatory pathways and their effects in cardiac diseases. 

Danger-associated molecular patterns (DAMPs) as well as pro-inflammatory cytokines released after 

cardiac insult can modulate the activity of nuclear factor kappa B (NF-κB) and related pathways. NF-κB 

activity regulates the secretion of profibrotic, pro-hypertrophic and pro-inflammatory cytokines at 

transcriptional level. The activation of precursor IL-1β and IL-18 is an inflammasome-dependent process, 

which is induced by sensing intracellular DAMPs with intracellular pattern recognition receptors (PRR). 

Inflammasome activation may be modulated by cell ion channels including purinergic receptors and 

pannexin channels. The cytokines act on cardiomyocytes, non-immune cells of cardiac tissue e.g. 

fibroblasts and endothelial cells and immune cells in paracrine or autocrine manners that results in cardiac 

remodeling and chronic inflammation. Abbreviations: PRR – pattern recognition receptor, IL-1R1 – 

interleukin-1 receptor 1, TNFR – tumor necrosis factor receptor, TβR – TGF-β receptor, TLR – Toll-like 

receptor, P2X4/7 – purinergic receptor 2X 4 and 7, IL-1β/18/6 – interleukin-1β, -18 and -6, TNF-α – tumor 

necrosis factor-α, TGF-β – transforming growth factor-β, ROS – reactive oxygen species. (Summary figure 

was prepared according to references cited in the main text.) 
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1.2.2. Inflammasome activation - a key source of active IL-1β  

IL-1β is secreted by immune cells as a part of the inflammatory reaction and acts both via 

autocrine and paracrine manner. IL-1β activity is strictly regulated, as it requires the 

conversion of the inactive protein, the IL-1β precursor or pro-IL-1β, to the cleaved or 

active cytokine by proteolysis. A set of endogenous signals including the stimulation of 

TLRs, TNFRs or even interleukin-1 receptor itself induces the synthesis of the inactive 

IL-1β precursor via NF-κB and related pathways (30, 65). This process, when precursor 

IL-1β and inflammasome components are accumulated to create a reserve waiting for 

further processing, is called “priming”. 

The maturation and release of IL-1β is controlled by inflammasomes, which are 

cytoplasmic multiprotein complexes comprising a sensor protein, inflammatory caspases, 

and adapter proteins in some cases (Fig.2) (66, 67). Inflammasomes emerged in the last 

decade to constitute essential processing units contributing to DAMP sensing (24). 

Inflammasome-related pattern recognition receptors (PRR) are expressed in numerous 

cell types such as monocytes, macrophages, neutrophils or even in epithelial cells (68). 

The assembly of inflammasomes is localized in the cytoplasm of immune cells leading to 

proteolytic activation of caspases and interleukins, which drives the immune responses. 

Although inflammasome activation has been shown to be vital to host defense, the 

activation process needs to be strictly regulated to limit collateral damage to the host 

itself. 

A few cytoplasmic PRRs can assemble into the inflammasome complex. These are 

categorized on the basis of protein domain structures (69). The NOD leucine-rich repeat-

containing receptor (NLR) family consists of subfamilies by N-terminal effector domains: 

the acidic transactivation domain, pyrin domain (PYD), caspase recruitment domain 

(CARD), and baculoviral inhibitory repeat-like domains (NLRA, NLRP, NLRC and 

NLRB, respectively). Another class of PRR is represented by PYHIN protein family 

members, such as absent in melanoma 2 (AIM2) containing hematopoietic interferon-

inducible nuclear domain 200 and PYD.  

The different inflammasomes converge onto the common signaling pathway, i.e. caspase 

activation. Inflammasome sensors or so-called scaffold proteins (NLRPs or AIM2) 

assemble to oligomer complexes, which are sometimes completed with adaptor and 

effector proteins such as apoptosis-associated speck-like protein containing a CARD 
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(ASC). The activated caspases (usually caspase-1 in case of canonical inflammasome 

activation) cleave pro-inflammatory cytokines IL-1β, IL-18 and pore-forming protein 

gasdermin D (70).  The pore-forming activity of gasdermin D is essential for releasing 

cytokines and mediating a highly inflammatory form of programmed cell death called 

pyroptosis (71). In case of non-canonical inflammasome activation, caspase-11 in mice 

or its human orthologues caspase-4/5 can initiate pyroptosis and interleukin cleavage by 

sensing intracellular pathogens and molecular patterns e.g. lipopolysaccharide via TLR-

independent manner (72). 

 

Figure 2 – Inflammasome signaling – priming and activation. The transcription of precursor interleukins 

(“priming”) is modulated by different receptors via nuclear factor kappa B (NF-κB) and related pathways. 

Specific signals such as danger- of pathogen-associated molecular patterns (DAMP, PAMP) induce the 

assembly of inflammasome complex leading to caspase activation and cleavage of precursor interleukins 

and/or gasdermin pore-forming (“activation”). Abbreviations: IL-1R – interleukin-1 receptor, TNFR – 

tumor necrosis factor receptor, TLR – Toll-like receptor, P2X4/7 – purinergic receptor 2X 4 and 7, dsDNA 

– double stranded DNA, IL-1β/18 – interleukin-1β and -18. (Summary figure was prepared according to 

references cited in the main text.) 

In the past decade, researchers have focused on the role of inflammasomes, in particular 

NLRP3, in large number of diseases including some common cardiovascular conditions 

(73, 74). According to preclinical studies, NLRP3 inflammasome activation is an 

important player in early fibrosis, cardiac remodeling and ventricular dysfunction after 
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ischemic injury which can be attenuated by NLRP3 inhibition (75-78). Additionally, the 

NLRP3 inflammasome also contributes to the pathogenesis and progression of cardiac 

dysfunction induced by early pressure-overload, infection, angiotensin II-related 

hypertrophy, obesity or aging (79-83). NLRP3 inflammasome activation has been shown 

to be localized in immune cells; nevertheless, there are controversial reports showing that 

cardiomyocytes and fibroblasts may be capable of expressing inflammasome components 

and even to undergo pyroptotic cell death (75, 76, 79). 

In addition to the best characterized NLRP3 inflammasome activation, other 

inflammasome pathways have been identified playing a role in cardiovascular diseases as 

well. According to recent reports, NLRP1 and NLRC4 are associated with cardiac 

diseases such as stroke or cardiomyopathies (11, 84). Non-NLR type inflammasome 

sensor AIM2, which senses cytoplasmic dsDNA, has been proven to participate in 

inflammatory responses after cardiac events as well. The AIM2 inflammasome has shown 

to display enhanced activity in response to acute myocardial infarction, diabetic 

cardiomyopathy, stroke and atherosclerosis in various animal models (11, 20, 21, 85-87).  

In summary, these promising data from basic and preclinical research facilitate the 

translation of various anti-inflammatory strategies into clinical practice in the 

management of chronic cardiovascular conditions. 

1.2.3. Anti-inflammatory therapies in cardiac diseases 

A large set of studies were published studying anti-inflammatory therapies in HF. 

Preclinical studies have demonstrated the beneficial effects of targeting inflammatory 

pathways in various models for atherosclerosis, myocardial infarction, stroke or HF. 

Despite the promising preclinical findings, clinical studies have provided disappointing 

and conflicting results so far (Table 1). The literature on using anti-inflammatory drugs 

in cardiovascular diseases are revised in the following section. 

Nonsteroidal anti-inflammatory drugs 

Nonsteroidal anti-inflammatory drugs (NSAIDs), including diclofenac, naproxen, 

ibuprofen and others inhibit prostaglandin synthesis by blocking cyclooxygenase-1 and -

2 (COX-1, -2) enzymes leading to reduction of inflammation, fever and pain. Both non-

selective and COX-2-selective NSAIDs aside from low-dose aspirin, which is widely 

used as secondary prevention of acute coronary syndromes and stroke (88, 89), are 
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associated with increased cardiovascular risk particularly with major cardiac events such 

as myocardial infarction (90). The use of NSAIDs is not recommended after acute 

coronary syndromes for at least 3-6 months (91). NSAIDs may increase the risk for 

developing heart failure and its complications even without the history of previous cardiac 

events (90, 92). Interestingly, ibuprofen and some other NSAIDs can still be used in the 

management of pericarditis (93). 

Glucocorticoids 

Glucocorticoids are released from the adrenal cortex cyclically and in response to stress 

signals. These hormones act on intracellular glucocorticoid receptors which are expressed 

nearly on all tissues in the human body. Thus, the effects of glucocorticoids are highly 

variable depending on the cell and tissue context. In the cardiovascular system, 

glucocorticoids have significant impact on the development and maturation of cardiac 

myocytes (94, 95). In pathological conditions, glucocorticoids may increase contractility 

and cardiomyocyte survival (96). However, chronic glucocorticoid administration with 

persistently high levels may lead to the increased risk of various systemic side effects 

such as diabetes mellitus, hyperlipidemia or hypertension which are the major risk factors 

of cardiovascular events. Moreover, high dose glucocorticoids can act on 

mineralocorticoid receptors as well; the stimulation of which promotes fibrosis and 

cardiac remodeling (97). Therefore, clinical translation of anti-inflammatory therapy by 

glucocorticoids is limited due to diverse side effects which exceed the potential benefits. 

TNF-α inhibitors 

TNF-α inhibitors, a group of biologic agents in the treatment of inflammatory diseases, 

arose as innovative therapeutic agents in HF after observations that TNF-α may play a 

role in impaired cardiac pump function and cardiac remodeling (98-100). Despite the 

numerous promising preclinical results (32, 33, 101), Randomized Etanercept Worldwide 

Evaluation (RENEWAL) study revealed that etanercept did not improve outcomes at 

primary endpoints; moreover, it suggested that etanercept tended to increase HF 

hospitalization resulting in early termination of similar trials (35). Anti-TNF Therapy 

Against Congestive Heart Failure trial (ATTACH) confirmed these results (102). In 

accordance with the findings of RENEWAL, not only that TNF-α inhibitors were unable 

to improve outcomes but high dose infliximab (10mg/body weight kg) significantly 

increased all-cause mortality and HF-related hospitalization. This double-edged effect of 
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TNF-α may be explained by its complex role in cardiovascular diseases; TNF-α acts via 

NF-κB pathway which also participate in cardioprotection by reducing mitochondrial 

dysfunction, cell damage and reactive oxygen species activation (103). 

Methotrexate 

Methotrexate is an immunosuppressant drug, which is widely used to treat proliferative, 

inflammatory and autoimmune diseases. As an antimetabolite it can inhibit 

tetrahydrofolate synthesis competitively by blocking dihydrofolate reductase enzyme. 

Additionally, it was also reported that methotrexate can inhibit IL-1β and IL-6 signaling 

(104, 105). Previous observations on patients with rheumatoid arthritis and other 

inflammatory diseases revealed that methotrexate treatment reduces cardiovascular 

events compared to other therapies (106, 107). Therefore, a large prospective randomized 

study (Cardiovascular Inflammation Reduction Trial, CIRT) was conducted to evaluate 

the efficacy of low-dose methotrexate in the prevention of cardiovascular events among 

patients with history of atherosclerosis (108). CIRT showed no benefits of methotrexate 

in the prevention of cardiovascular events or HF hospitalization. Interestingly, 

methotrexate was not capable of reducing the serum levels of IL-1β and IL-6, indicating 

a distinct mechanism behind the original observation among rheumatologic patients.   

IL-1 inhibitors 

As described in the previous section, the role of IL-1β in cardiac diseases has been 

demonstrated before. Thus, targeting IL-1β and its signaling pathway by different 

biologic agents such as anakinra (a recombinant human analogue of IL-1RA) or 

canakinumab (a fully human monoclonal antibody against IL-1β) in the prevention and 

management of cardiovascular disease gained interest for many years. Previous clinical 

observations on small numbers of rheumatologic patients provided promising evidences 

on the efficacy of blocking IL-1β as therapeutic strategy for cardiac conditions (109).  

Pilot studies with anakinra (Virginia Commonwealth University Anakinra Remodeling 

Trial, VCU-ART and VCU-ART2) suggested mixed effects of anakinra; anakinra did not 

prevent new cardiac events but tended to decrease the risk of novel onset HF (110). Other 

clinical trials with anakinra e.g. Diastolic Heart Failure Anakinra Response Trials (D-

HART and D-HART2) and Recently Decompensated Heart Failure Anakinra Response 

Trial (REDHART) had similar results; there were slight improvements in some of the 

primary endpoints (111, 112). Furthermore, anakinra was well-tolerated in these studies. 
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The phase II study on the efficacy of canakinumab (Canakinumab. Anti-Inflammatory 

Thrombosis Outcome Study, CANTOS) included 10,061 patients with history of 

myocardial infarction and serum C-reactive protein level ≥ 2mg/L (113). Blockade of IL-

1β with canakinumab (single dose of 150mg in every 3 months) was capable of reducing 

the incidence of major cardiovascular events such as myocardial infarction, stroke and 

cardiovascular related death as well as the hospitalization for HF exacerbation. However, 

the initial optimism about canakinumab faded quickly. Canakinumab increased the risk 

of severe infections; thus, all-cause mortality was not reduced presumably due to 

increased fatality caused by infections. Ultimately, U.S. Food and Drug Administration 

(FDA) rejected canakinumab in cardiac indications.  

Of note, the use of rilonacept, a chimeric fusion protein of IL-1R1 and IL-1RAcP acting 

as a decoy receptor for the members of IL-1 superfamily, and gevokizumab, another 

monoclonal antibody against IL-1β, was associated with unfavorable U-shaped dose-

response curve and discouraging real-life experiences leading to the premature 

termination of their testing in cardiovascular indications (114).  

In addition to direct blockers of IL-1β, the inhibitors of IL-1β secretion and activation 

may represent a new innovative way of anti-inflammatory therapy. NLRP3 

inflammasome inhibitors such as inzomelid (developed by Roche) or dapansutrile 

(OLT1177) are intensively investigated for the use of inflammatory indications. 

Dapansutrile has been tested for acute myocardial infarction and heart failure in phase 1 

(77). However, these results are not reported yet (115).  

Colchicine 

Colchicine is an anti-inflammatory drug which is extensively used in the management of 

acute attacks of gout. It can act through various mechanisms of action. It inhibits tubulin 

polymerization and microtubule generation presumably resulting in decreased migration 

and adhesion of immune cells, but also has significant effect on cytokine production and 

downstream signaling (116, 117).  

There are now clinical data available, that suggests that low dose (0.5mg) colchicine may 

reduce cardiovascular risk after ischemic events according to low-dose colchicine trials 

(LoDoCo and LoDoCo2) (118, 119) and Colchicine Cardiovascular Outcomes Trial 

(COLCOT) (120). Of note, non-cardiovascular mortality increased tendentiously in 

colchicine-treated groups in LoDoCo2 which phenomenon was not observed in 
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COLCOT. Still, the mixed tolerability, controversial outcomes and long-term effects of 

colchicine in trials require further investigations. 

IL-6 inhibitors 

IL-6 inhibitors e.g. tocilizumab or sarilumab are essential biological agents in the 

management of inflammatory diseases. As it was mentioned before, elevated serum IL-6 

has been observed in high-risk cardiovascular patients. The beneficial results of CANTOS 

study in prevention of atherosclerotic complications were associated with not only the 

reduced level of IL-1β but IL-6; furthermore, the residual inflammatory risk has shown a 

stronger relation to serum IL-6 than serum IL-18 (121).  

Population studies suggest that anti-IL-6 therapies such as tocilizumab are safe in high-

risk cardiovascular patients with rheumatic diseases, and these can decrease the levels of 

circulating inflammatory markers; however, tocilizumab has been shown to induce 

disturbances in lipid homeostasis, which may be disadvantageous in the prevention of 

cardiac diseases (122, 123). Nevertheless, innovative new IL-6 inhibitor ziltivekimab has 

been shown to be effective for reducing inflammatory markers in patients with high serum 

level of high-sensitivity C-reactive protein and chronic kidney disease in phase II trial 

RESCUE without significant adverse events (50). Therefore, new clinical trial called 

Ziltivekimab Cardiovascular Outcomes Study (ZEUS) has been scheduled to 2021 in 

order to investigate the efficacy of IL-6 inhibition in the prevention of cardiovascular 

events (124). 

Table 1 – Summary of anti-inflammatory therapies in cardiovascular diseases.  

Drug Clinical trials Outcome, results References 

Nonsteroidal anti-

inflammatory drugs 
metanalyses on safety cardiovascular risk↑ (90) 

Glucocorticoids QUEST-RA 
controversial; strongly depending on 

dose and patient population 
(107) 

Tumor necrosis 

factor-α inhibitors 

RENEWAL 

ATTACH 
cardiovascular risk ~ or ↑ (35, 102) 

Methotrexate CIRT no improvement at end points (108) 

Interleukin-1β 

inhibitors 

VCU-ART 

D-HART 

REDHART 

CANTOS 

anakinra: no significant improvement 

at primary end points 

canakinumab: cardiovascular mortality 

and risk↓, but overall mortality ~ 

(110-113) 
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Colchicine 
LoDoCo 

COLCOT 

cardiovascular risk↓ 

non-cardiovascular mortality ↑ in 

LoDoCo2 

(119, 120) 

Interleukin-6 

inhibitors 

RESCUE 

ZEUS (ongoing in 

2021) 

tocilizumab, sarilumab: cardiovascular 

events ~, inflammatory markers↓, but 

lipid profile disturbances 

ziltivekimab: inflammatory and 

thrombotic biomarkers in patients with 

chronic kidney disease↓ 

(50, 124) 

1.3. The endocannabinoid system and its role in cardiovascular diseases 

The endocannabinoid system (ECS) has been proven as a modulator of the cardiovascular 

system and inflammation under certain conditions in particular in obese and 

atherosclerotic patients (125). The cannabinoid receptors and their lipid-derived ligands, 

the endocannabinoids, receive attraction for being promising therapeutic targets for 

numerous diseases; however, the clinical translation of newly developed ECS modulators 

has encompassed challenges mostly due to serious adverse effects. For instance, 

cannabinoid receptor antagonist rimonabant, approved in 2006 for the management of 

obesity and its complications, was withdrawn two years later due to serious psychiatric 

side effects despite its clear effectiveness in its indication (126). In 2016, phase 1 trial on 

the promising anxiolytic and analgesic medication BIA 10-2474, which is an inhibitor of 

endocannabinoid degrading fatty acid amide hydrolase (FAAH), resulted in fatal 

outcome: one volunteer died, and others suffered permanent brain damage (127, 128). 

These unexpected adverse events and fails have pointed out the urgent need for 

broadening the knowledge on ECS in physiological and pathological processes. 

1.3.1. The endocannabinoid system: endocannabinoids, receptors and enzymes 

The ECS consists of cannabinoid receptors, the endocannabinoids, their synthetic or 

catabolic enzymes and transport proteins. The most significant and characterized ECS 

components, i.e. the two main types of cannabinoid receptors, endocannabinoids and 

related enzymes are reviewed in the following section. 

Cannabinoid receptors 

The cannabinoid receptor type 1 and 2 (CB1R and CB2R) are the products of two different 

genes (CNR1 and CNR2, respectively). These G protein-coupled receptors are expressed 
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in various types of organs and tissues, and they are involved in several physiological and 

pathological processes (129). 

CB1R is abundant in the central and the peripheral nervous systems, and it is responsible 

for the psychotropic effects of cannabis and its constituents as well as for the effects on 

appetite and energy balance. CB1R is also expressed in other organs and tissues in low-

to-moderate level. CB1R in gastrointestinal tract and enteral nerves regulates motility, 

enteroendocrine and barrier functions (130). On the other hand, CB1R can be upregulated 

in pathological conditions e.g. in fibrosis, ischemia or even insulin resistance which are 

mainly associated with elevated CB1R level in the liver or the heart (131, 132).  

In contrast to CB1R, CB2R shows a higher expression on immune cells and peripheral 

organs, while much lower level can be detected in the central nervous system mostly on 

resident immune cells (133). By the high abundance on immune cells, CB2R has a wide 

variety of immunomodulatory function. A series of papers reported both anti- and pro-

inflammatory effects of CB2R induced by endocannabinoids (134). Interestingly, 

selective exogenous agonists of CB2R show predominantly anti-inflammatory than pro-

inflammatory effects. The activation of CB2R attenuates leukocyte migration and the 

secretion of pro-inflammatory cytokines such as TNF-α, IL-6 or IL-12, but increases the 

level of anti-inflammatory cytokine IL-10. In line with the aforementioned results, despite 

the low expression level in nervous system CB2R still plays an important role in 

neurological disorders particularly if inflammation is present (135).  

Thus, modulating CB1R- or CB2R-mediated signaling selectively are believed promising 

approaches in the treatment of different diseases; however, the issue of adverse events 

still needs to be explored in the future.  

Endocannabinoids and their metabolism 

The most investigated players of ECS are the phospholipid-derived endocannabinoid 2-

arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (also known as 

anandamide; AEA) which are widely expressed throughout the human body. The 

properties of the two endocannabinoids to cannabinoid receptors are highly diverse; AEA 

is a high-affinity partial agonist of CB1R, but nearly inactive on CB2R, while 2-AG can 

act as full agonist on both receptors with moderate affinity. Additionally, both ligands 

can modulate other receptors e.g. subtypes of transient receptor potential channels and G 

protein coupled receptors. 
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As the endocannabinoids are secreted on demand, the tissue level of endocannabinoids is 

strongly dependent on the balance between biosynthesis and degradation by specific 

enzymes (Fig.3). The 2-AG is produced from diacylglycerol (DAG), by the activity of 

diacylglycerol lipase α and β (DAGLα/β) enzymes. The AEA with other N-acyl 

ethanolamines is released from N-acyl-phosphatidylethanolamine (NAPE) by N-acyl 

phosphatidylethanolamine phospholipase D (NAPE-PLD) enzyme. The degradation of 2-

AG and AEA are mediated by hydrolases; AEA is catabolized through the activity of 

FAAH, while 2-AG is hydrolyzed by several enzymes including monoacylglycerol lipase 

(MGLL), α,β-hydrolase domain containing proteins 6 and 12 (ABHD6, ABHD12). Both 

endocannabinoids are hydrolyzed to arachidonic acid (AA) and serve as substrates of AA-

metabolizing enzymes such as COX-2 or lipoxygenases (136, 137). 

1.3.2. Endocannabinoid system in cardiac physiology and pathology 

Endocannabinoids have been implicated in the regulation of vascular tone, atherogenesis, 

oxidative stress, inflammation, fibrosis and cell death in cardiovascular system (Fig.3). 

These effects can be mediated mainly by cannabinoid receptors directly through the 

myocardium, vascular structure or circulating blood cells as well as indirectly through the 

nervous system (138-141).  

CB1R has been shown to be involved in a series of pathological processes in 

cardiovascular diseases. Overproduction of endocannabinoids by immune cells can be 

observed in various conditions including cardiomyopathies and chronic ischemia, and it 

leads to acute cardiac depression and hypotension via CB1R signaling (142, 143). In 

accordance with these observations, CB1R antagonists may improve cardiac function 

when administered acutely, and may also attenuate pathological processes upon chronic 

treatment (144). CB1R activation promotes atherosclerosis and inflammation 

independently from the lipid profile, and inhibition of CB1R is suggested to be 

antiatherogenic. Furthermore, elevated expression of CB1R was detected in patients with 

ischemic heart disease (145, 146). CB1R may also play a role in remodeling, fibrosis and 

tissue damage as receptor inhibitor rimonabant mitigated these effects (144, 147, 148).  

In opposition to the main effects of CB1R, the selective agonists of CB2R might be 

cardioprotective by reducing inflammatory signaling and fibrosis. Endothelial CB2R 

agonist attenuates the release of TNF-α and chemokines that leads to decreased leukocyte 

migration (149, 150). In addition, there are evidences on the role of CB2R in the 
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prevention of atherosclerosis and related inflammation (151, 152). Interestingly, CB2R 

activation has no direct effects on cardiac function (153). Despite the accumulating 

evidences of the beneficial effects of CB2R activation in cardiovascular system, the role 

of this receptor is still under investigation. 

 

Figure 3 – The endocannabinoids and their receptors in ischemia-related cardiac diseases. The 

endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) act through cannabinoid 

receptor type 1 and 2 (CB1R, CB2R) with opposing effects; CB1R facilitates inflammation, damage, 

atherosclerosis and fibrosis, while CB2R attenuates these harmful effects. The endocannabinoids are 

secreted on demand and degraded rapidly mediated by synthetic enzymes and hydrolases (see section 1.3.1. 

for details). (Summary figure was prepared according to references cited in the main text.) 
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2. OBJECTIVES 

The number of preclinical studies is increasing quickly on the role of inflammation and 

inflammatory pathways in cardiovascular diseases; however, the clinical translation of 

anti-inflammatory agents and therapies is still controversial. The clinical ineffectiveness 

or unexpected adverse effects have pointed out the importance of detailed knowledge on 

the complexity and connections between signaling pathways and disease stages as well 

as the critical differences between animal models and real-life human observations. The 

enthusiastic efforts for developing new drugs with unique mechanisms of action e.g. 

NLRP3-selective or endocannabinoid degrading-enzyme inhibitors arises the urgent need 

for investigating the role of these pathways in cardiovascular diseases and in human 

samples. 

Therefore, the major objectives of this work were: 

1. First, to investigate the inflammasome activation and endocannabinoid-related 

signaling pathways in human failing hearts. 

2. To find a suitable translational animal models for examining relevant 

inflammasome activation in heart failure. 

3. To test the potential anti-inflammatory effects of pannexin-1 (Panx1) channel 

inhibitor probenecid in vitro and in vivo.  
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3. RESULTS 

3.1. Inflammation and endocannabinoid system in human heart failure 

3.1.1. The expression of AIM2 and NLRC4 inflammasome sensors are elevated in 

human heart failure 

To investigate inflammasome activation in the late-stage of HF, expression of well-

characterized inflammasome sensors (NLRP3, NLRC4, AIM2 and NALP1) were 

detected by Western blot in left ventricular tissue harvested from healthy donor patients 

(CON, n=12) as well as from HF patients with ischemic (ICM, n=12) or non-ischemic 

(DCM, n=11) cardiomyopathy. Patient characteristics are summarized in Table 2.  

Table 2 - Patient characteristics. Data are expressed as mean and range. *p<0.05 vs CON; #p<0.05 vs 

DCM, †p<0.05 vs ICM. Abbreviations: CON – control, ICM – ischemic cardiomyopathy, DCM – dilated 

cardiomyopathy, HCM – hypertrophic cardiomyopathy, ACE – angiotensin converting enzyme. (154) 

Parameter CON ICM DCM HCM 

Gender (male/female) 6/6 11/1 10/1 2/3 

Age (years) 32.6 (17-52) 57.8 (38-67)*# 39.1 (23-53) 49.6 (33-66) 

Body mass index (kg/m2) 24.0 (18-31) 26.9 (20-32) 24.9 (20-31) 22.3 (13-30) 

Left ventricular end-

diastolic dimension (mm) 
 72.3 (64-82) 75.4 (57-92) 57.0 (38-70) 

Left ventricular end-

systolic dimension (mm) 
 65.4 (58-75) 67.3 (51-85) 43.5 (43-44) 

Ejection fraction (%) > 60 20.7 (10-33) 17.0 (10-25) 34.4 (13-70) 

Posterior wall (mm)  9.0 (6-11) 10 (8-12) 9.5 (7-12) 

Septal thickness (mm)  8.6 (6-13) 9.9 (7-12) 13.2 (8-16) 

Pulmonary artery 

diameter (mm) 
 27.0 (22-34) 29.5 (22-34) 20.3 (19-22) 

Right atrial pressure 

(mmHg) 
 9.9 (1-21) 15.9 (5-31)† 9.4 (4-19) 

Mean pulmonary wedge 

pressure (mmHg) 
 25 (7-45) 21 (12-31) 15 (7-22) 

Pulmonary vascular 

resistance (wood units) 
 1.7 (0.6-2.2) 2.4 (0.7-6.6) 2.0 (0.6-4.1) 

Cardiac index (L/min/m2)  2.2 (1.3-3.9) 2.1 (1.4-3.0) 2.2 (1.4-3.0) 

Heart rate (/min) 103 (70-125) 79 (70-95) 104 (99-110) 60 (50-70) 

Systolic arterial blood 

pressure (mmHg) 
123 (90-150) 104 (76-135) 99 (80-115) 103 (80-141) 

Diastolic arterial blood 

pressure (mmHg) 
74 (50-90) 56 (15-72) 62 (31-77) 54 (31-70) 

N-terminal pro-BNP 

(pg/mL) 
 2798 (338-7699) 

7796 (1050-

25539) 

12163 (4159-

26284) 

 
Medications 

ACE inhibitors 0 10 8 4 
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Beta receptor blockers 0 12 11 5 

Digoxin 0 3 3 1 

Ivabradine 0 1 3 0 

Diuretics 0 12 11 5 

Mineralocorticoid receptor 

inhibitor 
0 12 11 4 

Statins 0 12 3 2 

Antiplatelets 0 8 1 1 

 As it can be seen in Figure 4, there was no difference in NLRP3 protein expression in 

the HF groups compared to control. In contrast, the expression of AIM2 remarkably 

increased both in ICM and DCM groups, and we also found a significant increase of 

NLRC4 protein level in left ventricular tissue of HF patients (Fig.4A-B). 

 

Figure 4 - AIM2 and NLRC4 are the major inflammasome components expressed in human failing 

hearts. Western blot analysis of the inflammasome sensors (NLRP3, AIM2, NLRC4 and NALP1) and 

downstream signaling (ASC, caspase-1, IL-1β) in left ventricle of patients with dilated (DCM, A) or 
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ischemic cardiomyopathy (ICM, B). *p<0.05 vs. CON, Student’s t-test; n=11-12. (C) Quantification of IL-

1β content in human left ventricular tissue by ELISA. *p<0.05 vs. CON, Student’s t-test; n=7-8. (154) 

 

Figure 5 - AIM2 is upregulated in human hearts from patients with hypertrophic cardiomyopathy. 

Western blot analysis and representative images of the main inflammasome sensors (NLRP3, AIM2, 

NLRC4 and NALP1). GAPDH is shown as loading control. Results are expressed as mean ± SEM; *p<0.05 

vs. CON, Student’s t-test, n=5-6. (154) 

The increased AIM2 expression was also observed among patients with hypertrophic 

cardiomyopathy (HCM; n=5), but NLRC4 expression showed only a tendency towards 

increase in HCM patients (Fig.5). The expression of NALP1 protein did not change in 

HF induced by any forms of cardiomyopathies examined (Fig.4A-B, Fig.5). 

Inflammasome activation was further confirmed by detection of downstream signaling 

components such as the cleaved fragments of caspase-1 and IL-1β and by the detection 

of elevated IL-1β levels by ELISA in failing hearts (Fig.4A-C). 

3.1.2. AIM2 inflammasome sensor is expressed in monocytes and macrophages in 

heart 

Inflammasomes are predominantly expressed in the innate immune cells e.g. in 

monocytes, macrophages or granulocytes. To assess the presence of monocytes and 

macrophages in failing hearts, immunohistochemistry was performed to stain Iba1 and 

CD68, markers of monocyte-macrophage lineage (Fig.6-7). The number of cells were 
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counted as well. We observed a tendency of increase in the total number of monocytes 

and macrophages in the left ventricle (Fig.7).  

 

Figure 6 – Double-stranded DNA-sensitive AIM2 inflammasome sensor is expressed in monocytes and 

macrophages in human failing hearts. (A) Identification of monocytes and macrophages in human heart 

tissue by immunohistochemical detection of Iba1. Scale bar: 100μm. (B) Representative images of 

immunofluorescence detection of AIM2 (red) and Iba1 (green) proteins in failing heart collected from ICM 

and DCM patients. DAPI (blue) was used for counterstain. Scale bar: 30μm. (C) Representative images of 

immunofluorescence detection of double-stranded DNA (dsDNA, red) and AIM2 (green) protein in a 

failing heart collected from a DCM patient. DAPI (blue) was used for counterstain. Scale bar: 20μm. (154) 

Despite the number of investigations on the inflammasome activation in cardiac diseases, 

there is a general lack of reliable evidence in which cell types of human hearts the 

inflammasomes are expressed. Immunofluorescence staining was performed to confirm 

the localization of AIM2 inflammasomes by detecting AIM2 in combination with 

monocyte/macrophage marker Iba1 (Fig.6B). Immunofluorescence staining showed that 
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AIM2 is localized mainly in Iba1 positive monocytes and macrophages, although AIM2 

signals can be detected in other cell types, suggesting that primarily monocytes and 

macrophages might contribute to the enhanced inflammasome activity. However, their 

interactions with the surrounding cells might be also substantial for developing a pro-

inflammatory milieu in failing hearts (Fig.6B). Interestingly, immunofluorescence assay 

revealed that a subpopulation of Iba1 positive cells shows low or undetectable AIM2 

expression indicating the presence of a heterogeneous macrophage population in the 

myocardium of HF patients (Fig.6B). 

 

Figure 7 – The population of macrophages in left ventricle of failing hearts showed a slight tendency to 

expand. (A) Identification of monocytes/macrophages in human heart tissue by immunohistochemical 

detection of CD68. Scale bar: 100µm. (B) Quantification of macrophages based on Iba1+ cells in human 

failing hearts. p>0.05 vs. CON, one-way ANOVA, n=5. (154) 

Extensive cell death may lead to the release of nuclear or mitochondrial dsDNA to the 

cytosol that can be recognized by the AIM2 inflammasome initiating the release of IL-1β 

and IL-18. We performed co-staining of dsDNA and AIM2 in sections from failing 

human hearts, and found that extranuclear dsDNA (Fig.6C, red signal) shows tight co-

localization with the AIM2 signal (Fig.6C, green signal) further confirming the presence 

of activated AIM2 inflammasomes.  
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3.1.3. Ischemic failings hearts show heterogeneous phenotypes based on the 

alteration of lipid and hydrolase activity profile 

Despite the growing interest in the role of endocannabinoid signaling in cardiac diseases 

associated with atherosclerosis and dyslipidemia, the ECS-related enzymes in HF has not 

been investigated before. To examine the involvement of the ECS in HF with ischemic 

origin, we used quantitative real-time polymerase chain reaction (qRT-PCR) to measure 

the expression levels of ECS-related genes in control (n=6) and ischemic (n=6) failing 

hearts (Fig.8).  

 

Figure 8 – mRNA expression of enzymes of endocannabinoid-related enzymes decreased. Analysis of 

mRNA expression of endocannabinoid-related genes by qRT-PCR. Rplp0 was used as reference. Results 

are normalized to control, and expressed as mean ± SEM. *p<0.05 vs. control, Student’s t-test; n=6. (155) 

CNR1 mRNA expression was increased in some of the ischemic samples, however the 

overall increase was not significant (Fig.8). Reduced mRNA expression of 2-AG 

biosynthetic enzyme DAGLβ and the 2-AG hydrolytic enzymes MGLL and ABHD6 was 

detected in the ischemic hearts. The AEA metabolic enzymes did not change 

significantly, nor did CNR2 expression. 
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Figure 9 – Overall hydrolase activity was reduced in a subgroup of ischemic failing hearts. (A) Gel-

based activity-based protein profiling of ischemic and control hearts. Coomassie blue (COM) was shown 

as loading control. Asterisk (*) was used to indicate a subgroup of ischemic samples with distinct lipid 

profile. (B) Activity-based proteomics on ischemic and control hearts. Heat map summary of mean 

abundance of hydrolases and hydrolase activity relative to mean control. Ischemic samples were 

categorized in subgroups (below). Results are expressed as mean ± SEM, #p<0.05, ##p<0.01 vs control; 

Student’s t-test, n=9. (Experiments and data analysis were performed by van Esbroeck et al, Leiden Institute 

of Chemistry, Leiden University, the Netherlands.) (155) 
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The activity of the ECS-related metabolic enzymes was investigated by activity-based 

protein profiling (ABPP, Fig.9), which was performed exclusively in the laboratory of 

Prof. Mario van der Stelt by Annelot C.M. van Esbroeck (Leiden Institute of Chemistry, 

Leiden University, the Netherlands). The tissue samples from control and failing hearts 

were lysed and labeled with fluorescent activity-based probes to visualize the targets in 

gels. The tailored lipase probe MB064 preferentially reacts with the DAGLα, DAGLβ, 

ABHD6, and ABHD12. FP-TAMRA, a broad spectrum serine hydrolase probe, labels 

ABHD6, MGLL and FAAH. Probe DH379 selectively labels DAGL and ABHD6. The 

overall hydrolase activity was reduced in a subgroup of ischemic samples (Fig.9A, 

indicated with *) separated previously based on a significantly distinct lipid profile (data 

not shown). Additionally, MGLL activity and expression was reduced in these samples 

as well, while an additional band was observed in the activity profile of ischemic 

subgroup (Fig. 9A, indicated with #). The remaining ischemic samples only showed mild 

deviations compared to controls (Fig.9A). There were no significant differences in the 

overall protein staining. Of note, the other ECS metabolic hydrolases, including DAGLα 

(∼120 kDa), DAGLβ (∼70 kDa), ABHD6 (∼35 kDa), and FAAH (∼60 kDa) were not 

detected in human heart tissue (Fig.9A). 

The biotinylated counterparts of FP-TAMRA and MB064, FP-biotin and MB108 

respectively, were then used for target identification by mass spectrometry-based 

chemical proteomics (Fig. 9B). 31 hydrolases were identified, which included MGLL as 

the only ECS-related hydrolase (Fig. 9B). A slight, but not significant downregulation of 

several hydrolases, including MGLL was observed (Fig. 9B). Separation of the ischemic 

samples into two subgroups (based on lipid profile, data not shown) revealed that 13 

hydrolase activities, including MGLL, were drastically reduced in the subgroup with an 

altered lipid profile (Fig.9B). Hydrolase activities from the first subgroup, however, were 

not significantly altered (Fig.9B). 

3.2. Inflammation in animal models for heart failure 

3.2.1. AIM2 inflammasome expression is elevated in heart failure induced by 

pressure overload and postinfarction but not by volume overload in rats 

It was previously demonstrated that NLRP3 inflammasome activation might play a 

significant role in initiating inflammatory reactions in animal models of early-stage HF. 

However, there is no data on the activation of other inflammasome types, especially in a 
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later stage of HF. To find suitable translational animal models to study inflammasome 

activation, we assessed three pathologically different models of HF. The pressure-

overload (transverse aortic constriction - TAC), volume-overload (infrarenal arterio-

venous shunt - AVS) and the postinfarction HF rat model (LAD) were developed and 

characterized by Mihály Ruppert et al. (Heart and Vascular Center, Semmelweis 

University, Hungary) (156). The functional characterization of each model with 

transthoracic echocardiography is shown in Table 3. In line with the fact that the three 

models are pathologically diverse, marked differences were found in morphology and 

function. Pressure-overload induced excessive cardiac fibrosis with hypertrophy in TAC 

animals, while volume-overload and ischemia promoted severe dilation as shown by the 

left ventricular dimensions and relative wall thicknesses (Tabl.3, Fig.10).  

Table 3 – Echocardiography data on chronic heart failure rat models. Abbreviations: LV – left ventricle; 

FS – fractional shortening; RWT – relative wall thickness; LVEDV – left ventricular end-diastolic volume; 

LVESV - left ventricular end-systolic volume; LVEF – ejection fraction; TAC – transverse aortic 

constriction; LAD – left anterior coronary artery occlusion; AVS – arteriovenous shunt. (Echocardiography 

and data analysis were performed by Mihály Ruppert, Heart and Vascular Center, Semmelweis University, 

Hungary.) (154) 

Group  

Short axis transection (mm)  

LV 

mass (g) 

FS 

(%)  
RWT  

LVEDV 

(uL)  

LVESV 

(uL)  

LVEF 

(%) 
LV anterior wall  LV internal  LV posterior wall 

Diastole  Systole  Diastole Systole  Diastole  Systole 

Sham  
1.89±0.0

4 

3.10±0.0

8 

7.59±0.3

3 

4.21±0.2

5 

2.17±0.0

9 

3.34±0.0

9 
1.19±0.07 45±1 0.54±0.03 594±43 207±18 65±1 

TAC  
2.82±0.1

1 

3.45±0.1

4 

9.07±0.3

1 

6.95±0.3

4 

3.23±0.2

0 

3.73±0.2

1 
2.83±0.16 24±2 0.68±0.04 849±47 528±52 39±4 

LAD 
1.17±0.0

7 

1.26±0.0

5 

10.23±0.

40 

8.62±0.4

9 

1.77±0.1

0 

2.65±0.1

1 
1.26±0.09 16±2 0.29±0.02 1045±96 711±100 34±4 

P (sham 

vs TAC) 
<0.001 0.051 0.005 <0.001 <0.001 0.108 <0.001 <0.001 0.024 0.001 <0.001 <0.001 

P (sham 

vs LAD) 
<0.001 <0.001 0.001 <0.001 0.011 <0.001 0.506 <0.001 <0.001 <0.001 <0.001 <0.001 

Sham 
1.88±0.0

8 

2.95±0.1

6 

8.25±0.3

4 

4.53±0.3

3 

2.05±0.1

2 

3.31±0.2

0 
1.29±0.05 45±3 0.49±0.04 709±36 215±25 70±2 

AVS 
2.05±0.0

8 

3.02±0.1

2 

13.30±0.

37 

8.77±0.2

1 

2.51±0.0

7 

4.06±0.3

2 
3.51±0.23 34±2 0.35±0.01 2574±170 1054±57 59±1 

P (sham 

vs AVS) 
0.148 0.729 <0.001 <0.001 0.005 0.064 <0.001 0.005 0.002 <0.001 <0.001 <0.001 

Protein expression of NLRP3 did not increase in any of the HF groups as compared to 

corresponding sham groups. As it was observed in human experiments, the expression of 

AIM2 protein increased significantly in TAC and LAD, but not in AVS rats (Fig.10). A 

tendency towards elevation in the level of NLRC4 was detected in TAC and LAD groups 

(Fig.10). In accordance with the elevation in the expression levels of inflammasome 

DOI:10.14753/SE.2022.2611



34 

 

sensors, the tissue level of IL-1β increased in TAC animals and, interestingly, in AVS 

animals (Fig.10).  

 

Figure 10 - AIM2 inflammasome expression increased in the late phase of chronic heart failure in rats. 

Pressure-overload, post-infarction and volume-overload-induced rat models of chronic heart failure with 

representative M-mode echocardiographic images, Western blot analysis of the inflammasome sensors and 

downstream signaling. Scale bar (echocardiography): 1cm, timestamp: 1s; *p<0.05 vs. corresponding 

Sham, Student’s t-test; n=6-8. (Representative echocardiographic images were taken by Mihály Ruppert, 

Heart and Vascular Center, Semmelweis University, Hungary.) (154) 

We found increased mRNA expression of the macrophage markers Aif1 (gene of Iba1 

protein) and Cd68 with qRT-PCR analysis in rat failing hearts indicating enhanced 

monocyte and macrophage presence (Fig.11A). By detecting AIM2 and 

monocytes/macrophages with immunofluorescence, AIM2 showed predominant co-

localization with the pan-macrophage marker CD68 in myocardial sections from TAC 

animals which is in line with our human results (Fig.11B). Surprisingly, detection of Ccl2, 

Il23, Il6 and Cd206, Mrc2, Mgl1 mRNAs showed an M1 to M2 change in macrophage 
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phenotype in TAC hearts while only slight changes were found in LAD and AVS hearts 

(Fig.11C).  

 

Figure 11 – Expansion of macrophage population is observed in rat failing hearts. (A) Analysis of 

mRNA expression of macrophage marker Cd68 and Aif1 by qRT-PCR. Rplp0 was used as reference. 

Results are normalized to the control and expressed as mean ± SEM. *p<0.05 vs. corresponding Sham, 

Student’s t-test; n=6-8. (B) Representative images of immunofluorescence detection of AIM2 (red) and 

CD68 (green) proteins in a failing heart harvested from a TAC animal. DAPI (blue) was used for 

counterstain. Scale bar: 20μm.  (C) Analysis of mRNA expression of the M1 and M2 macrophage markers 

(Ccl2, Il23, Il6 and Cd206, Mrc2, Mgl1, respectively) by qRT-PCR. Rplp0 was used as reference. Results 

are normalized to the control and expressed as mean ± SEM. *p<0.05 vs. corresponding Sham, Student’s 

t-test; n=6-8. (154) 

3.2.2. AIM2 expression increased in the chronic stage of heart failure in porcine 

model for myocardial ischemia-reperfusion 

We aimed to further investigate inflammasome activation in late stage of chronic heart 

failure induced by ischemia-reperfusion injury in a translational pig model as well 

(Fig.12). We assessed ischemic left ventricular samples harvested from pigs exposed to 

ischemia and reperfusion at three different time points: 3 hours (acute), 3 days (subacute) 

or 2 months (chronic) after ischemia-reperfusion (Fig.12), representing the acute injury, 

the early inflammatory and the late remodeling phase, respectively. The characterization 

of pig model was published previously by our research group (157, 158). Surprisingly, 

the level of AIM2 protein in heart tissue was not altered at 3 hours or 3 days, but it was 

markedly elevated at 2 months (Fig.12).  
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Figure 12 – AIM2 inflammasome sensor is expressed in the late stage of postinfarction heart failure in 

pigs. Chronic ischemia/reperfusion-induced pig heart failure model with Western blot analysis of time-

dependent AIM2 protein expression. *p<0.05 vs. Sham, one-way ANOVA; n=6-8. (154) 

3.3. In vitro platform of AIM2 inflammasome activation and anti-inflammatory 

effect of probenecid 

3.3.1. Setting up a cell model for AIM2 inflammasome activation 

To investigate inflammasome activation in vitro, AC16 human cardiac and THP-1 human 

monocytic cell lines were stimulated with naked or cationic liposome encapsulated 

(LyoVec™) poly(dA:dT), a specific AIM2 inducer, for 24 hours (Fig.13A). Naked 

poly(dA:dT) was unable to induce AIM2 inflammasome activation (Fig.13B), however, 

liposome encapsulated poly(dA:dT) increased the expression of AIM2 in THP-1 cells 

(Fig.13C), suggesting that vesicular uptake of dsDNA is essential in the induction of 

AIM2 inflammasome activation. Inflammasome activation was confirmed with detection 

of downstream signaling as well; we detected significantly increased level of cleaved 

caspase-1, IL-18 and IL-1β from the supernatant of THP-1 cells (Fig.13C-D). To 

visualize inflammasome activation, we performed immunofluorescence detection of the 

inflammasome adaptor protein ASC and AIM2 in THP-1 cell line (Fig.13E). 

Interestingly, poly(dA:dT) treatment led to the induction of AIM2 protein expression in 

the AC16 cells without significant interleukin release (Fig.13C-D).  
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Figure 13 - Liposome encapsulated poly(dA:dT) induced the expression of AIM2 and inflammasome 

activation in vitro. (A) Experimental protocol for AIM2 induction in human AC16 cardiac and THP-1 

monocytic cell lines. (B) Representative Western blot images for naked poly(dA:dT) stimulus on AC16 

and THP-1 cells. (C) Representative Western blot images for liposome encapsulated poly(dA:dT) on AC16 
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and THP-1 cell lines. (D) Quantification of Western blot analysis on poly(dA:dT)-induced AIM2 

inflammasome activation in AC16 and THP-1 cells. *p<0.05 vs LV, Student’s t-test; n=4-6. (E) 

Representative images of immunofluorescence detection of AIM2 (red) and ASC (green) proteins in 

poly(dA:dT)-stimulated THP-1 cells. DAPI (blue) was used for counterstain. Scale bar: 50μm. (154)  

3.3.2. Pannexin-1 channel inhibitor probenecid attenuated AIM2 inflammasome 

activation in THP-1 monocytic cell line in vitro 

Inflammasome activation by NLRP3 or NALP1 has been shown to be strongly associated 

with the activation of purinergic signaling via P2X7 and hemichannel Panx1. However, 

it is unknown whether AIM2 inflammasomes and Panx1 have molecular interactions. We 

performed co-immunoprecipitation on control and poly(dA:dT)-stimulated THP-1 cells, 

and saw that AIM2 was co-immunoprecipitated with Panx1 in activated cells indicating 

a potential interaction between the AIM2 inflammasome complex and Panx1 channels 

(Fig.14).  

 

Figure 14 - Pannexin-1 channel is associated with AIM2 inflammasome sensor by co-

immunoprecipitation. Representative Western blot images for co-immunoprecipitation from control and 

poly(dA:dT)-stimulated THP-1 cell lysate. Panx1 is shown as a loading control. Isotype anti-rabbit control 

was used as negative control. (154) 

As the opening of Panx1 channels modulate immune responses by releasing of “find me” 

signals, we tested the effects of probenecid, a clinically used uricosuric and also known 

to be a potent Panx1 inhibitor, on AIM2 inflammasome activation in vitro (Fig.15). 

Treatment of different concentrations of probenecid (1-100μM) showed a dose-dependent 

reduction in the protein expression of AIM2 in both THP-1 and AC16 cells without a 

significant effect on cell viability (Fig.15B-C, Fig.16). By detecting downstream 

effectors, high dose probenecid was shown to be capable of attenuating AIM2 

inflammasome activation in vitro (Fig.16).  
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Figure 15 - Pannexin-1 channel inhibition attenuates AIM2 inflammasome expression in vitro. (A) 

Experimental protocol for testing the Panx1 blocker probenecid in cell model for AIM2 inflammasome 

activation on human AC16 and THP-1 cell lines. (B) Western blot analysis of AIM2 protein expression on 

poly(dA:dT)-stimulated THP-1 monocytic and AC16 cardiac cells in the presence or absence of different 

concentration of probenecid. *p<0.05 vs control; #p<0.05 vs poly(dA:dT) without probenecid; one-way 
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ANOVA; n=5-6. (C) Cell viability of poly(dA:dT)-stimulated (left) or liposome-treated (right) AC16 cells 

in the presence or absence of different concentration of probenecid. *p<0.05 vs control; #p<0.05 vs 

poly(dA:dT) without probenecid; one-way ANOVA; n=5-6. (154) 

 

Figure 16 - Pannexin-1 channel inhibition by probenecid inhibits AIM2 inflammasome activation in 

vitro. Western blot analysis of downstream signaling of AIM2 inflammasome activation in cell lysate and 

supernatant of poly(dA:dT)-stimulated THP-1 cells in the presence of 100μM probenecid. *p<0.05 vs 

control; #p<0.05 vs poly(dA:dT) without probenecid; one-way ANOVA; n=5-6. (154) 

Interestingly, the expression of Panx1 showed no significant differences in Panx1 levels 

between healthy and failing hearts with high individual variability (Fig.17). 

 

Figure 17 - Pannexin-1 protein expression did not change in human failing hearts. Western blot analysis 

and representative images of pannexin-1. GAPDH is shown as loading control. Results are expressed as 

mean ± SEM; p>0.05 vs. CON, Student’s t-test, n=8-9. (154) 
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3.4. Oral probenecid treatment improved outcomes in pressure overload heart 

failure rat model in vivo 

After our encouraging in vitro results, we investigated probenecid in the rat HF model 

induced by TAC to test if probenecid improves cardiac function in vivo (Fig.18, Table 4). 

In these rats, cardiac function was assessed at 6 weeks and 14 weeks after TAC, while the 

rats were orally treated with probenecid (100 mg/body weight kg/day) or vehicle 

(hydroxyethyl cellulose) control during the experiment (Fig.18A).  

We monitored the mortality throughout the whole study. The group treated with vehicle 

and having TAC-induced HF showed an increased mortality rate compared with vehicle-

treated sham operated rats as nearly half of the animals died until week 14 (Fig.18B). 

However, the group treated with a 100 mg/kg dose of probenecid showed significant 

amelioration of mortality compared with vehicle-treated TAC rats in Kaplan–Meier 

analyses (Fig.18B).  

As observed before (Fig.10), TAC rats developed HF. 14 weeks after TAC, left 

ventricular ejection fraction was reduced significantly compared to baseline from 69.2 ± 

1.8% to 54.0 ± 2.0% and from 69.7 ± 0.9% to 60.2 ± 0.6% in rats allocated to vehicle or 

probenecid treatment groups, respectively (Fig.18C). Oral probenecid treatment of rats 

with TAC significantly prevented deterioration of ejection fraction compared to vehicle 

treatment. In accordance, at 14 weeks after TAC, left ventricular end‐systolic volumes 

increased more in the vehicle group compared with the probenecid treated group 

(Fig.18C, Table 4). In accordance with our previous results above (Fig.10), the protein 

levels of IL-1β and its mature form increased 14 weeks after TAC surgery, which was 

reduced by probenecid treatment (Fig.18D). In addition, treatment with probenecid 

prevented the development of left ventricular hypertrophy (Fig.18C, E-F). 14 weeks after 

TAC, in vehicle‐treated TAC operated rats the left ventricular mass significantly 

increased (compared to sham) with a significant reduction after probenecid treatment 

(Fig.18C, E). This was further confirmed by analysis of pro-hypertrophic genes (Nppa 

and Nppb) and the pro-fibrotic factor Ctgf (Fig.18F). All these transcripts were 

significantly induced by TAC surgery, and their upregulation was prevented by 

probenecid (Fig.18F). 
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Figure 18 - Pannexin-1 channel inhibitor probenecid improves survival and cardiac function in vivo (A) 

Study design for investigating the effects of probenecid (Prob) in a rat model for chronic heart failure 

(TAC). (B) Kaplan-Meier analysis of overall mortality. p<0.05, log-rank (Mantel-Cox) test; n=11-23. (C) 

Representative M-mode echocardiography images and assessment of cardiac function at week 14 after 

surgery. Scale bar: 1cm; timestamp: 0.5sec. *p<0.05 vs Sham + Veh, #p<0.05 vs TAC + Veh, two-way 

ANOVA; n=11-17 (D) Western blot analysis and representative images of IL-1β and cleaved IL-1β in left 

ventricle of heart. *p<0.05 vs. Sham + Veh, #p<0.05 vs. TAC + Veh; two-way ANOVA; n=6-8. (E) 

Representative histology images (hematoxylin eosin) at week 14. Scale bar: 2mm. (F) Analysis of mRNA 
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expression of hypertrophy and failure markers (Nppa, Nppb and Ctgf) by qRT-PCR. *p<0.05 vs. Sham + 

Veh, #p<0.05 vs TAC + Veh, one-way ANOVA; n=7-8. (Representative echocardiographic images were 

taken by Alex Ali Sayour, Heart and Vascular Center, Semmelweis University, Hungary.) (154) 

Table 4 – Echocardiography data on vehicle- or probenecid-treated rats with pressure overload induced 

heart failure. Abbreviations: s – systolic; d – diastolic; Veh – vehicle; TAC – transverse aortic constriction; 

Prob - probenecid; LV – left ventricle; Cor – corrugated; LVAW – left ventricular anterior wall thickness; 

LVPW - left ventricular posterior wall thickness; MV – mitral valve; IVRT - isovolumic relaxation time; 

RWT – relative wall thickness. (Echocardiography and data analysis were performed by Alex Ali Sayour 

and Mihály Ruppert, Heart and Vascular Center, Semmelweis University, Hungary.) (154) 

  Parasternal LONG AXIS (PSLAX) B-MODE 

Group 
ID 

 
Heart 
Rate 

Area;s Area;d Volume Volume;s Volume;d 
Stroke 
Volume 

Ejection 
Fraction 

Fractional 
Shortening 

Cardiac 
Output 

Sham 
+ Veh 

Mean 421,16 39,77 82,42 124,77 124,77 405,34 280,57 69,19 22,95 145,04 

SD 23,36 3,48 6,13 17,81 17,81 46,97 34,30 2,75 1,86 53,39 
 

Sham 
+ 

Prob 

Mean 409,10 41,27 86,71 130,75 130,75 433,36 302,60 69,75 22,33 142,54 

SD 17,98 3,45 5,60 16,80 16,80 49,80 40,46 2,97 2,02 71,97 

P vs. Sham 
+ Veh 

0,223 0,333 0,112 0,439 0,439 0,200 0,193 0,660 0,473 0,928 

 

TAC + 
Veh 

Mean 410,23 51,02 82,62 251,17 182,21 397,13 214,92 53,96 15,82 87,78 

SD 28,29 5,46 6,50 88,48 30,23 48,58 38,90 6,58 2,90 15,21 

P vs. Sham 
+ Veh 

0,326 0,000 0,941 0,000 0,000 0,682 0,000 0,000 0,000 0,008 

 

TAC + 
Prob 

Mean 417,38 48,92 86,71 187,05 171,76 430,91 259,15 60,17 18,76 116,18 

SD 22,37 5,34 7,33 37,12 27,60 59,03 33,80 2,29 1,53 23,54 

P vs. Sham 
+ Veh 

0,702 0,000 0,128 0,000 0,000 0,242 0,140 0,000 0,000 0,135 

P vs. TAC + 
Veh 

0,459 0,304 0,123 0,022 0,341 0,103 0,003 0,004 0,003 0,001 

            

  SHORT AXIS (SAX) M-MODE 

Group 
ID 

 Volume;s Volume;d 
Ejection 
Fraction 

Fractional 
Shortening 

LV Mass 
LV Mass 

Cor 
LVAW;s LVAW;d LVPW;s LVPW;d 

Sham 
+ Veh 

Mean 304,93 231,95 76,24 46,50 739,74 591,80 2,95 1,53 2,50 1,35 

SD 44,58 30,92 2,78 2,68 41,39 33,11 0,26 0,20 0,21 0,16 
 

Sham 
+ 

Prob 

Mean 302,91 231,51 76,58 47,09 792,01 633,61 3,05 1,66 2,50 1,38 

SD 48,33 39,34 5,78 5,62 76,74 61,39 0,21 0,18 0,26 0,10 

P vs. Sham 
+ Veh 

0,922 0,978 0,864 0,760 0,067 0,067 0,358 0,144 0,979 0,630 

 

TAC + 
Veh 

Mean 324,03 206,11 63,59 35,91 1098,95 879,16 3,22 1,98 2,70 1,72 

SD 30,28 22,81 3,61 2,74 137,70 110,16 0,24 0,18 0,35 0,26 

P vs. Sham 
+ Veh 

0,258 0,040 0,000 0,000 0,000 0,000 0,018 0,000 0,094 0,000 

 

TAC + 
Prob 

Mean 362,48 239,08 66,44 38,37 969,36 775,49 3,04 1,68 2,59 1,52 

SD 59,64 34,44 6,15 4,90 111,84 89,47 0,30 0,19 0,27 0,15 

P vs. Sham 
+ Veh 

0,011 0,595 0,000 0,000 0,000 0,000 0,421 0,082 0,330 0,018 

P vs. TAC + 
Veh 

0,038 0,005 0,139 0,106 0,010 0,010 0,085 0,000 0,377 0,017 

            

  SHORT AXIS (SAX) B-MODE MV FLOW  

RWT Group 
ID 

 Area;s Area;d 
Fractional 

Area 
Change 

 E' IVRT MV E MV E/E'  

Sham 
+ Veh 

Mean 13,34 37,64 64,53  -84,86 18,36 796,62 -9,48  0,36 

SD 1,71 3,02 2,60  12,94 0,86 169,95 2,24  0,06 
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Sham 
+ 

Prob 

Mean 14,58 42,42 65,74  -77,17 17,02 779,38 -10,86  0,37 

SD 3,64 5,54 7,34  21,79 1,46 103,32 2,50  0,05 

P vs. Sham 
+ Veh 

0,329 0,025 0,618  0,359 0,029 0,799 0,236  0,731 

 

TAC + 
Veh 

Mean 21,38 44,79 52,13  -61,57 21,08 943,02 -15,51  0,44 

SD 3,33 5,20 5,91  10,64 2,09 140,11 2,20  0,07 

P vs. Sham 
+ Veh 

0,000 0,000 0,000  0,001 0,002 0,055 0,000  0,006 

 

TAC + 
Prob 

Mean 20,58 46,54 55,83  -77,03 19,44 1046,29 -13,87  0,38 

SD 3,11 4,46 4,49  10,98 1,75 150,14 2,88  0,06 

P vs. Sham 
+ Veh 

0,000 0,000 0,000  0,154 0,073 0,002 0,001  0,552 

P vs. TAC + 
Veh 

0,514 0,343 0,071  0,002 0,054 0,090 0,119  0,011 
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4. DISCUSSION  

In this present work, we detected increased expression of the AIM2 inflammasome sensor 

and its downstream signaling in failing hearts harvested from human patients. This 

finding was confirmed in different small and large animal models of chronic HF, 

highlighting the importance of chronic inflammatory reactions in these conditions. 

Enhanced NLRC4 expression and decreased activity of ECS-related biosynthetic and 

hydrolytic enzymes were observed in human failing hearts as well. We showed that 

dsDNA is capable of inducing the AIM2 inflammasome activation in both human 

monocytic and cardiomyocyte cell lines, suggesting that apoptotic or necrotic DNA might 

be the major trigger of the AIM2 inflammasome in the chronic phase of HF. In addition, 

we showed that the AIM2 inflammasome associated Panx1 channels may play a role in 

inflammasome activation, since the Panx1 inhibitor probenecid significantly reduced IL-

1β secretion and maturation. Chronic treatment with probenecid improved outcomes 

including survival, cardiac function and failure markers of pressure-overload induced HF. 

These novel anti-inflammatory properties of probenecid could facilitate potential 

repurposing and use of this drug in chronic heart failure. 

The role of inflammatory signaling pathways in cardiac diseases has been extensively 

studied over the last decades; nevertheless clinical translation of these findings was rather 

mixed and controversial as it was demonstrated by large prospective studies e.g. 

RENEWAL, CIRT or REDHART (35, 112). However, the CANTOS trial highlighted 

that significant reductions can be achieved in incidence of major cardiovascular adverse 

events of specific subpopulation of postinfarction patients by neutralizing IL-1β with 

canakinumab (113). These results confirm the active role of IL-1β in the pathomechanism 

of certain cardiovascular diseases. Nevertheless, there are limitations of the use of 

canakinumab (e.g.: high cost, infectious side effects) that led to the rejection by FDA in 

cardiovascular indications. Apart from this failure, modulating IL-1β-related pathways in 

cardiovascular diseases including chronic heart failure might be of major therapeutic 

importance.  

Our human and translational animal data provides evidences for elevated expression of 

AIM2 and NLRC4 inflammasome sensors as well as significant inflammasome activation 

in chronic heart failure. Increasing number of evidences has indicated that AIM2 

inflammasome activation is a key player of various cardiovascular diseases including 

DOI:10.14753/SE.2022.2611



46 

 

diabetic and ischemic cardiomyopathy (20, 21), atherosclerosis (85, 86) and ischemic 

stroke (11). It is hypothesized that the major inducer of AIM2 inflammasome activation 

might be double stranded DNA of mitochondrial and nuclear origin which is released as 

a result of permanent cellular damage and low degree of apoptosis and necrosis during 

cardiac remodeling (20, 85).  

The elevated expression of NLRC4 in failing hearts is more surprising. The most 

characterized trigger of NLRC4 is flagellin of Gram negative bacteria (159). It is believed 

that HF-associated global hypoperfusion induces dysbiosis and increased gut 

permeability, promoting a chronic systemic inflammatory state, which is supported by 

showing gut microbiome modulation as an interesting target to alleviate the systemic 

inflammatory state in human HF (160). This hypothesis might provide an explanation for 

increased NLRC4 expression in human failing hearts. Of note, it is unknown whether 

significant gut hypoperfusion could have developed in our animal models. Furthermore, 

a similar co-activation pattern of AIM2 and NLRC4 has been described in animal models 

of stroke and ischemic cardiomyopathy previously, suggesting that the activation of these 

two inflammasomes might be linked (11, 20). We also show that co-activation of AIM2 

and NLRC4 inflammasomes is a possible phenomenon, suggesting that single 

inflammasome targeting may not be sufficient in case of cardiovascular diseases 

including atherosclerosis and chronic heart failure. 

The complex interplay between endocannabinoid signaling and inflammation including 

inflammasomes is under intense research recently (161). CB1R upregulation can be 

observed with pro-inflammatory milieu e.g. in atherosclerosis or ischemic injury (145, 

147). In our study, a subgroup of ischemic patients showed elevated expression of CB1R 

as well as endocannabinoids but not of CB2R. These results are in line with previous 

observation partially; however, CB2R may be also increased in certain types of 

cardiomyopathies indicating the influence of other factors such as etiology (162). Another 

important point of our study was the decrease in the activity of endocannabinoid-

degrading enzyme MGLL in the subgroup of ischemic patients. This finding confirms 

recent observation on impaired activity of MGLL as well as the detrimental effects of 

AEA and 2-AG in ischemic myocardium (163). However, the heterogeneity of the patient 

population observed in our study highlights the need for further research to identify the 

major factors leading to controversial results. 
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The complex pathways converging to inflammasome activation and signaling involve a 

series of triggers and modulators that may influence inflammasome activity and 

assembly. The best characterized triggers are the classic mediators promoting 

inflammasome priming through various PRRs e.g. TLR4, TLR9, TNF-α and interleukin 

receptors and inflammasome oligomerization, which is modulated by purinergic and 

pannexin channels (164). Panx1 channels have been known as modulators of NALP1, 

NLRP3 as well as of non-canonical inflammasome activities via ATP release (165-168). 

We have shown that Panx1 channels associate to the AIM2 inflammasome as well, and 

showed a notable anti-inflammatory effect of the Panx1 channel inhibitor probenecid in 

vitro. We have seen a reduction in the expression of AIM2 and its downstream signaling 

in vitro in both dsDNA stimulated monocytes/macrophages and cardiac cells. The anti-

inflammatory effect of probenecid was mediated by decreasing Il-1β level in a rabbit 

sepsis model (169). In addition to AIM2 inflammasome inhibition, Panx1 channels may 

play a role in leukocyte migration and in modulation of the NF-κB pathway (170). A 

recent study has also confirmed that probenecid improves cardiac function at early phase 

of post-infarction heart failure via inhibiting endothelial Panx1 channels and 

consequential leukocyte infiltration (171). Therefore, we propose that probenecid might 

be a `broad-spectrum` inflammasome inhibitor and anti-inflammatory agent besides its 

well characterized uricosuric properties in gout. Probenecid has been proven to improve 

outcome in an animal model of ischemic HF with a shorter 4-week follow-up period by 

exerting positive inotropic effects via transient receptor potential cation channel 

subfamily V member 2 (TRPV2), and the positive inotropic effect was confirmed in a 

small number of patients with HF (172). We showed that probenecid is able to prevent 

adverse cardiac remodeling upon a more prolonged period of pressure-overload in vivo. 

However, the interplay between anti-inflammatory effects of probenecid and its action on 

TRPV2 as well as on myocardial contractility was not investigated in our study which 

should be acknowledged as a limitation. Nevertheless, the already published positive 

inotropic effects through TRPV2 and the novel anti-inflammatory effects might explain 

the recently observed clinical benefits of probenecid use in patients suffering from heart 

failure, as well as the epidemiological observation, that patients receiving probenecid 

therapy for gouty arthritis have better cardiovascular outcomes (172-174). Thus, we 
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believe that probenecid or potential derivatives of it might be useful therapeutic tools and 

adjuvants for the management of chronic heart failure.   
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5. CONCLUSIONS 

Here we have demonstrated with a series of experiments on human failing heart tissues 

that AIM2 and NLRC4 inflammasome activation play a role in the later stage of chronic 

HF. It was also shown that monocytes and macrophages are the main scene of AIM2 

inflammasome activation. In addition, the investigation on the role of endocannabinoid 

system in human ischemic cardiomyopathy identified a subgroup within the ischemic 

specimens which displayed increased expression of CB1R as well as reduced expression 

and activity of some hydrolases responsible for the degradation or biosynthesis of 

endocannabinoids. Additionally, activity-based protein profiling was proven to be a 

potent tool to examine the activity of ECS-related enzymes in cardiovascular conditions. 

Human findings were further confirmed in preclinical animal models such as pressure-

overload and postinfarction heart failure rat models; however, lack of AIM2 

inflammasome activation in volume-overload model points out the possible disease and 

stage specificity of the inflammasome pattern. Our results highlight the importance of 

specific inflammation patterns and the involvement of multiple pathways. Thus, it might 

facilitate the development of ‘board spectrum’ inflammasome inhibitors instead of 

inflammasome-specific ones. 

In this study, AIM2 inflammasome has been found to be associated with pannexin-1 

channels by co-immunoprecipitation. We have shown that probenecid, a pannexin-1 

channel inhibitor drug, is able to reduce AIM2 inflammasome activation by reducing the 

expression of AIM2 inflammasome sensor, its downstream signaling and cleavage of 

effector caspase-1 or IL-1β in both human monocytic and cardiomyocyte lines in vitro. 

In addition, probenecid improves outcomes of heart failure in pressure overload rat model 

by reducing mortality, improving cardiac function and reversing cardiac remodeling. The 

recently described anti-inflammatory properties as well as previously published 

beneficial (e.g. non-injurious positive inotropic) effects on cardiac function may speed up 

the repurposing of probenecid for the treatment of heart failure.    
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6. SUMMARY 

Inflammatory mechanisms and related pathways including inflammasomes or 

endocannabinoid signaling are important pathogenic factors in cardiovascular diseases. 

The CANTOS trial has proven new evidences that anti-inflammatory therapy by 

inhibiting IL-1β reduces effectively the incidences of major cardiovascular events and 

prevents complications.  Therefore, IL-1β, inflammasomes and associated pathways are 

promising therapeutic targets in these cardiac diseases. In this recent study, we aimed to 

assess inflammasome activation and ECS-related pathways in chronic heart failure to 

identify potential new targets. 

In human, the expression of the inflammasome protein AIM2 and NLRC4 as well as 

downstream signaling increased in failing hearts regardless of the etiology (ischemic or 

dilated cardiomyopathy) while the NALP1 and NLRP3 inflammasome showed no 

change. AIM2 expression was primarily detected in monocytes/macrophages of failing 

hearts. The mRNA expression of endocannabinoid 2-AG-related biosynthetic and 

hydrolytic enzymes decreased in a subgroup of ischemic cardiomyopathy, while the 

mRNA level of CNR1 increased in the same subgroup. Translational animal models of 

HF, i.e. pressure- or volume-overload, and permanent coronary artery ligation in rat, as 

well as ischemia/reperfusion-induced HF in pigs, demonstrated an activation pattern of 

AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 

inflammasome activation in human THP-1 monocytic cells and human AC16 cells 

induced by specific double-stranded DNA was significantly reduced by pharmacological 

blockade of pannexin-1 channels by probenecid, a clinically used uricosuric drug. 

Probenecid was also able to reduce pressure overload-induced mortality and restore 

indices of disease severity in a rat chronic HF model in vivo. 

In summary, AIM2 and NLRC4 inflammasome activation contribute to chronic 

inflammation in heart failure. The activity of ECS-related enzymes was shown to be 

specific of the disease or its stage. Furthermore, pannexin-1 channel inhibitor probenecid 

alleviates chronic HF by reducing inflammasome activation. The present results suggest 

the possibility of repositioning of probenecid as for HF indications.  
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