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1. LIST OF ABBREVIATIONS 

Sd: Danforth‘s short-tail 

Skt: Sickle tail gene 

Shh: Sonic hedgehog 

NT: neural tube 

SC: sclerotome 

NC: notochord  

VB: vertebral body  

CEP: cartilagous endplate 

DDD: degenerative disc diseases  

LBP: low back pain 

IDD: intervertebral disc degeneration 

IVD: intervertebral disc 

ECM: extracellular matrix 

NP: nucleus pulposus 

AF: annulus fibrosus 

SNP: single nucleotide polymorphism 

GWAS: genome wide association study 

NSAID: non-steroid anti-inflammatory drug 

FBSS: failed back surgery syndrome 

ODI: Oswestry Disability Index 

ZDS: Zung Depression Scale  

SIPS: stress-induced premature senescence 

SASP: senescence-associated secretory phenotype 

MMP-13: matrix metalloproteinase 13  

ADAMTS5: and a disintegrin and metalloproteinase with thrombospondin motifs 5  

VDR: Vitamin D receptor 

LDD: lumbar disc degeneration 
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2. INTRODUCTION 

2.1. Degenerative intervertebral disc diseases 

2.1.1. Anatomy and development of the intervertebral discs  

 

The vertebrate axial skeleton developed to protect the spinal cord and to provide 

support for the body [1]. The spine as an organ consists of two major parts, the bony 

vertebral column that develops through endochondral bony formation and the fibrous part 

that contains the intervertebral discs (IVD) and the spinal ligaments. The IVD functions as 

a mechanical shock absorber of the spine and consist of two components; the nucleus 

pulposus (NP) which is the gel like central region and the second part is a fibrous sheet the 

annulus fibrosus (AF). The IVDs are positioned in between two adjacent vertebral bodies 

which creates the spine‘s segmented structure [1]. 

The NP and AF together form the mature IVD but they are derived from different 

embryonic structures [2] (Figure 1 The development of NP and AF ). The NP comes from 

the notochord while the AF originates from the sclerotomes of the somites [3]. Somites 

determine the segmented structure of the spine and forms the vertebral bodies, the AFs, 

ligaments, and the tendons. 

The development of the AF starts with the somitogenesis at the beginning of 

gastrulation [4]. Most of the skeleton is build up from the mesoderm, precisely the AF is 

formed from the paraxial mesoderm, which goes through a mesenchymal epithelial 

transition then it starts to differentiate to dermatome, myotome, and sclerotome. Then from 

the sclerotomes the vertebrae, the cartilaginous endplates and the AF are formed [5][6]. 

After the sclerotome has been specified the resegmentation process starts which is 

necessary for IVD and vertebrae formation, disturbance in this process has clinical 

implications such as proatlas segmentation anomalies [7][8].  

The NP arises from the notochord, and its development begins during gastrulation. 

Mechanical forces play a role in the growth of notochord and it is hypothesized that they 

also play a role in the transition of notochord to NP [9]. Not only notochord formation but 

also notochord maintenance is a vital step during the development of NP, as it affects the 
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morphology of the NP at the same time it also maintains the boundary between NP and AF 

[10][11]. This process is affected by Danforth‘s short-tail (Sd) mutation which is located on 

the same chromosome as the Sickle tail gene (Skt). Skt gene single nucleotide 

polymorphism (SNP) have been reported to have an association with IVD herniation in 

Japanese and Finnish population [11]. The notochord sheath also plays an important role in 

the formation of NP [1]. Sonic hedgehog (Shh) gene is secreted both from notochord and 

postnatal NP and it is substantial in the notochord to NP transition [12]. A recent study by 

Bonavita and his colleagues demonstrated in mice that the collapse of the sacral discs is 

associated with the down-regulation of Shh signaling in NP which results in the bony 

fusion and formation of the sacrum [13]. Studying the process of notochord to NP transition 

is essential for understanding the process of IVD aging and degeneration. 

 

 

Figure 1 The development of NP and AF  

NT: neural tube, SC: sclerotome, NC: notochord, VB: vertebral body, CEP: cartilagous 

endplate, NP: nucleus pulposus, iAF: inner annulus fibrosus, oAF: outer annulus fibrosus 

((Williams et al. 2019) 
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2.1.2. Epidemiology of intervertebral disc degeneration 

Degenerative disc diseases (DDD) and its most frequent manifestation low back 

pain (LBP) are the leading health care problems which occur in low-, high- and middle-

income countries in all age groups [14]. Publications investigating the lifetime prevalence 

of LBP report it ranging between 75 and 84% [15]. Years lived with disability caused by 

low back pain increased significantly in the last 3 decades, primarily due to aging and 

increasing population [14]. It is reported that people with physically demanding 

occupations, mental or chronic physical comorbidities, obesity and smokers are more 

susceptible to develop low back pain [14]. In most of the LBP cases it is not possible to 

accurately identify the exact source of the symptoms – such as vertebral fractures, 

infections, degenerative disc disease etc. LBP is a complex bio-psycho-social entity that is 

characterized by biophysical, psychological, and social dimension [14]. 

However, in some cases the biophysical background of LBP is intervertebral disc 

degeneration (IDD). IDD starts to develop in adolescence and progress with age [16]. IDD 

is usually more frequent and severe at the lower lumbar level [17]. Excessive mechanical 

stress, trauma, smoking and genetics attributes to IDD [18]–[20]. Age-related changes in 

the IVDs starts earlier compared to other tissues. Pathological changes (IDD) are hard to 

distinguish from age-related physiological changes. Pathological changes can occur in 

younger life and it is influenced by factors other than aging, such as trauma, environmental 

factors and genetic predisposition [21]. IDD can occur only on a single level while 

physiological aging usually more systematic and is present on all spinal levels [21]. 

2.1.3. Biochemical and histological changes during intervertebral disc 

degeneration 

The biochemical changes during the degeneration process includes the reduction of 

IVD cells thus decreasing the production of extracellular matrix (ECM), which tips the 

scale to catabolic activities over anabolic activities leading to accelerated degeneration [16]. 

Genomic instability which leads to cell senescence is an important driver of IDD [21]. The 

risk and frequency of DNA damage overcomes the DNA repair mechanism with aging, 
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resulting in an accumulation of scrap DNA which can lead to disc aging. In ERCC1-XPF 

(involved in DNA repair) deficient mice the IVDs showed typical features of IDD such as 

decreased disc height, loss of proteoglycans, and an abundance of senescent cells. 

Genotoxic stresses such as smoking or radiation causes disc aging which supports the 

theory that DNA damages contributes to disc aging [22] [23]. The other possible source of 

DNA damage is oxidative stress induced by inflammation. Interleukin-1 (IL 1), a cytokine 

involved in IDD, has been showed to induce cell senescence in NP, furthermore IL-1 

receptor knockout mice showed typical features of IDD and its NP cells showed senescence 

[16]. 

There are two types of cell senescence, stress-induced premature senescence (SIPS) 

and replicative senescence. SIPS is caused by genomic and mitochondrial damage. Cells 

with premature stress-induced senescence acquire a so-called senescence-associated 

secretory phenotype (SASP), which is characterized by the overexpression of inflammatory 

cytokines and matrix proteases. The aforementioned cytokines and proteases have a 

profound catabolic effect on the cells in its vicinity which promotes tissue degeneration 

[24]–[26]. This mechanism of IDD is supported by previous papers which showed an 

increased frequency of senescent cells which were marked with senescence-associated beta-

galactosidase in human IVD tissue samples. These markers were positively associated with 

matrix metalloproteinase 13 (MMP-13) and a disintegrin and metalloproteinase with 

thrombospondin motifs 5 (ADAMTS5). A study demonstrated the causal relationship 

between cellular aging and age-related IDD by using a p16-3MR transgenic mouse model 

in which the senescent cells could be eliminated by administering ganciclovir. The treated 

mice showed significantly decreased level of catabolic factors and better histological 

features of IDD at the age of 2 compared to the non-treated group. This indicates that cell 

senescence has a direct effect on the development of IDD [27]. 

As IDD progresses a shift occurs in production of collagen type 2 to collagen type 1 

by the nucleus pulposus (NP), also the cross-linking of collagen fibres increases which 

renders the IVDs more susceptible to mechanical damage [28]. Furthermore in degenerated 

IVD a localization of collagen X has been observed to cause formation of cell clusters and 

clefts [16]. A decrease in the proteoglycan content of IVD is seen during the degenerative 
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process, in addition the keratin sulfate content increases in the glycosaminoglycan chains 

which cause dehydration. The change observed in type 1 collagen also makes the IVDs less 

capable to withstand physical stress [29], [30]. 

 The histological changes to IVDs during the degeneration manifest as loss of 

demarcation between NP and annulus fibrosus (AF), presence of fissures, cell cluster 

formation, disruption the lamellar structure of AF and increased vascularization and 

innervation [31], [32]. 

2.1.4. Phenotypes of intervertebral disc degeneration 

Back pain does not always correlate with the presence of DDD, however there are 

some publication that demonstrated that MRI changes in DDD can predict a painful 

deranged disc [33]. The direct association of back pain and degenerative changes are not 

consistent, although pain is the most frequent syndrome associated with DDD [33]. Most 

frequently the changes during the degeneration process are seen in the IVDs, the endplates 

and in the facet joints. These findings can be observed with MRI in supine position, but  a 

recent publication by Tarantino and his study group states that roughly one third of the 

physiological supine MRI shows some degree of degeneration with standing MRI [34]. 

 Disc degeneration is mainly characterized by dehydration on the MRI [35], which is 

linked to the decrease of highly water binding proteoglycans[36]. On MRI the IVD 

degeneration is visible as loss of hyperintensity in the NP on T2 sequence and a 

consequential narrowing of disc height. Pfirrmann and his colleagues classified the level of 

disc degeneration by the distinction between AF and NP, signal intensity on MRI, disc 

structure and the intervertebral disc height [37] (Figure 2). Another manifestation of the 

IDD is bulging/herniation. The distinction between bulging and herniation is clinically 

important, bulging can represent the normal aging of discs and often seen in asymptomatic 

patients. The AF in disc bulging is intact while in herniation the AF loses its integrity [38] 

(Figure 3).  

 Endplate changes on the MRI were classified into three types by Modic and his 

study group according to the underlying bone marrow signal change [39][40]. Modic I 

changes are seen as hypointense on T1 and as hyperintense on T2 sequence, where the 
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underlying cause are subchondral fractures and fibrous tissue replacing the bone marrow 

due to stress reaction [41]. Modic II manifests as hyperintense T1 and T2 signal, it is seen if 

the bone marrow undergoes fatty replacement [39]. Modic III changes represent the 

presence of dense woven bone and are seen as T1 and T2 hypointensity [39]. Modic I and 

III are more often linked to back pain than type II Modic [42]. 

 

 

 

Figure 2 Pfirrmann grading  

Grade 1: homogenous structure, white hyperintense signal, clear distinction between NP 

and AF, normal disc height 

Grade 2: inhomogeneous structure, white hyperintense signal, clear distinction between NP 

and AF, normal disc height 

Grade 3: inhomogeneous structure, gray intermediate signal, unclear distinction between 

NP and AF, normal disc height 

Grade 4: inhomogeneous structure, dark gray hypointense signal, lost distinction between 

NP and AF, normal or moderately decreased disc height 

Grade 5: inhomogeneous structure, black hypointense signal, lost distinction between NP 

and AF, disc space is collapsed 

(Pfirrmann et al- 2001) 
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Figure 3 Intervertebral disc protrusion on axial T2 images 

IVD bulging (left) and herniation (right) (Li et al. 2015) 

2.1.5. Heritability of intervertebral disc degeneration 

Investigating and evaluating the IDD heritability is problematic because there are 

several fundamental obstacles, that need to be addressed. Firstly, there is no standard 

definition of IDD because the phenomenon is not entirely understood. Conceptually, disc 

degeneration is physiological lifelong process with synchronized remodelling of discs and 

adjacent vertebrae which includes response to changing physical load and occasional 

injuries [43]. Surgically IDD is defined largely by the method of evaluation [43]. The 

currently preferred method for IDD evaluation is through MRI because it allows to 

simultaneously observe several phenotypes of degeneration such as disc narrowing, bulging 

or signal intensity loss. Adams and his colleagues suggested the following definition for 

disc degeneration: ―the process of disc degeneration is an aberrant, cell-mediated response 

to progressive structural failure. A degenerated disc is one with structural failure combined 

with accelerated or advanced signs of aging. Early degenerative changes should refer to 

accelerated age-related changes in a structurally intact disc. Degenerative disc disease 

should be applied to a degenerate disc that is also painful‖[44].  

The exact pathomechanism of IDD is still unclear. Age, environmental factors (e.g.: 

heavy physical loading, smoking, vibration, etc.) have been reported to be risk factors 

[45][46]. However numerous studies from the early 2000s suggest that the genetic factors 
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(heredity) play a dominant role in IDD [47]. Adams and his study group defined the 

underlying cause of IDD as tissue weakening occurring primarily from aging, nutritional 

compromise, physical load and genetic inheritance [44]. Battié et al. concluded in a review 

that the genetically determined natural progression of degeneration can be modified to 

some extent by environmental and behavioural factors [48]. The first systematic analysis of 

familial aggregation of IDD were carried out on monozygotic twins in 1995 by Battié et al. 

and  their results suggested a substantial genetic influence on IDD [49]. Sambrook 

conducted a classic twin study to distinguish the hereditary effects from the cultural 

influences and found that the heritability estimates were 74% for lumbar spine and 73% for 

cervical spine [50][49] (Figure 4). In more recent twin studies the heritability estimates for 

back pain were 32-44%.[51][52]. The risk for developing disc herniation before 21 is four 

to five times greater with positive family history compared to those without [53]. With the 

technical advancement in the field of genetic sciences studying large variety of genes and 

its polymorphisms become more and more frequent in the early 2000s. One way to easily 

examine hundreds of gene polymorphism is the so-called genome wide association study 

(GWAS). During GWAS a large pool of DNA is created from all the study population then 

a genotyping is made with previously selected gene polymorphism markers. This way we 

can get allelic frequency data from thousands of SNP simultaneously. 
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Figure 4 Genetic influence on LDD (Battié 1995) 

2.2. Candidate genes and single nucleotide polymorphisms in lumbar disc degeneration 

As previously mentioned twin studies have revealed a significant genetic influence 

in the development of LDD estimated around 40-70% [42] [43]. Over the last decades 

numerous genes and its SNPs were identified as risk factors in LDD. Vitamin D receptor 

gene (VDR) polymorphisms was amongst the most studied genes. Its effect were shown in 

several diseases such as type 1 and 2 diabetes [54] [55], nephrolithiasis [56], prostate 

cancer [57], breast cancer [58], osteoarthritis [59] and also with degenerative spinal 

diseases [60]. Interleukin genes and its polymorphisms were also intensively studied in 

different pathologies. A recent meta-analysis found strong association between IL6 gene 

SNP and susceptibility to LDD [61]. However, for all reported associations there are some 

publications that states the opposite, which makes the results questionable. Rajasekaran and 

his colleagues published a well-rounded meta-analysis which concluded that all GWAS 

results are incoherent due to the lack of uniform definition of LDD and small population 

size [60]. 
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2.3. Treatment of lumbar disc degeneration 

The clinical manifestation of LDD is versatile it ranges from mild loss of sensory 

functions to serious vegetative and motoric function loss, but amongst them one of the most 

significant symptoms in respect of the patient‘s well-being is pain. Back pain especially 

chronic pain can be associated with work incapacity, functional disability and affect the 

everyday quality of life [62]. The treatment of LDD depends on the seriousness of the 

symptoms, the patient‘s habit, and pain tolerance and on the regional guidelines of spinal 

specialists. Pain caused by LDD can be treated conservatively and surgically. Conservative 

treatments include non-pharmacological treatments such as non-specific exercises (i.e.: 

yoga, pilates, tai chi, motor control exercise, etc.), or structured exercises (i.e: spinal 

manipulation, physiotherapy, etc.), education about the causes and self-management of pain 

[62]. Newer guidelines do not recommend manual traction, electrotherapy, corsets, or foot 

orthotics neither for acute nor for chronic back pain [62]. Other conservative treatment 

includes pharmacological treatment such with non-steroid anti-inflammatory drugs 

(NSAID) or weak opioids. Opioids and duloxetine (serotonin and norepinephrine reuptake 

inhibitor) are considered second-line medications for LBP if NSAIDs are contraindicated. 

Around 5% of the patients are not responding to conservative treatment [63]. Surgery 

shouldn‘t be used in non-specific LBP [62]. Absolute indication for spinal surgeries are 

rare, it includes loss of neurologic functions (sensory, motoric and/or vegetative) [63]. 

There are a lot of surgical techniques for different spinal pathologies and there is no ―good 

for all‖ gold standard method [64]. 

2.4. Failed back surgery syndrome 

Around 5% of the patients don‘t respond for conservative treatment, in this 

population spine surgery can bring some pain relief [63]. With the aging of population the 

incidence of lumbar surgery for low back pain increases [65]. ―Failed back surgery 

syndrome (FBSS) is defined by the International Association for the Study of Pain as 

lumbar spinal pain of unknown origin either persisting despite surgical intervention or 

appearing after surgical intervention for spinal pain originally in the same topographical 
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location‖ [65]. The exact estimation of FBSS is difficult due to its heterogenous etiology 

and its broad definition [66]. The complexity of the surgery increases the incidence of 

FBSS, failure rates ranges from 30% to 46% for spinal fusion and 19% to 25% for 

discectomy [67][68]. The pathophysiology of FBSS is complex and hard to assess and is 

attributable to several factors. Common pathologies include painful disc degeneration, 

lateral stenosis of the foramina, disc herniation, neuropathic pain and pseudoarthrosis 

[65][69]. Psychiatric conditions such as depression and anxiety have high comorbidity with 

FBSS [70]. Therefore, the treatment/management of FBSS should be multi-disciplinary 

which assesses the biological and the psychological alterations. Conservative treatment 

should always come first before surgery [71]. Physical therapy, pharmacological agents 

(classic NSAIDs and off label use of anticonvulsants), neuromodulatory therapy (e.g.: 

spinal cord stimulation) can be used before surgical intervention [65]. Cognitive behaviour 

therapy or other psychiatric therapy may enhance the efficacy of the treatment for the 

patient‘s pain and can lead to better outcomes [72]. Surgery may be a solution only if there 

is a clearly identified pain source that can be relieved with surgery. Reoperation generally 

correlates with worse outcome than conservative treatment [73]. 
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3. OBJECTIVES 

It is crucial to understand the underlying pathophysiological process of a disease to 

treat it successfully. Intervertebral disc degeneration is a complex entity which starts to 

develop in early years. There is a possibility that specific anthropometric attributes that lead 

to degeneration are influenced by gene variations, so our first objective was to find any 

correlation between quantitative traits and genetic variations. 

Numerous studies investigated the possible correlation of the different spinal pathologies 

and gene variations, however they yielded mostly inconsistent results. These 

inconsistencies could be the result of small study populations, heterogenous inclusion 

criteria and the lack of clear definition of degeneration. To rule out the inconsistencies we 

intended to use endophenotype for each degenerative trait instead of the umbrella term 

degeneration. Endophenotype is a quantitative biological trait that is reliable in reflecting 

the function of a discrete biological system and is reasonably heritable, and as such is more 

closely related to the root cause of the disease than the broad clinical phenotype [74]. Our 

second objective was to investigate one of the most promising candidate gene VDR and 

other genes in association with lumbar degenerative pathologies and structural quantitative 

traits. 

On one hand it is crucial to understand the pathophysiology of degeneration to treat low 

back pain effectively on the other hand it is also very important to identify comorbidities 

and genetic susceptibility which affect the long-term outcome of treatment. The third 

objective was to identify specific gene variations which can alter the effect of the long-term 

outcome of the surgical interventions in spinal pathologies. 

Based on the above mentioned we wanted to answer the following questions:  

 

1. Is there an association between certain quantitative traits and genetic 

variations? 

2. Do VDR gene variations influence the development of IDD? 

3. Do gene variations alter the preoperative physical status of a patient? 
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4. Can we identify gene variations that alter the long-term outcome of spinal 

surgeries? 

5. Can we identify genes that affect the need of subsequent surgery? 
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4. METHODS 

4.1. Genetic associations with the development of spinal column 

4.1.1. Genotyping 

 An international database (GENODISC) containing radiological, genetical and 

clinical data of more than 3000 patient from three European country (UK, Italy, Hungary) 

was used as a base cohort for our investigations. All the database‘s subject was hospitalized 

and surgically treated for lumbar degenerative disease. DNA was extracted from venous 

blood or saliva samples using commercial kits. All candidate gene variations were 

genotyped at the Technology Centre, Institute for Molecular Medicine Finland (FIMM), 

University of Helsinki, using a Sequenom MassArray technology and the iPLEX Gold 

reagents (Sequenom Inc., San Diego, USA). Allelic and genotype distributions, Hardy–

Weinberg equilibrium, minor allele frequency (MAF) were analysed using the ―SNPassoc‖ 

and ―haplo.stats‖ R software packages [75].  

4.1.2. Study population, genotyping and statistical analysis 

For the study we used the international GENODISC database which consisted of 

2635 patients. Patients with incomplete genetic data (n=754) and incomplete radiologic 

data (n=266) were ruled out from the study, a total of 1615 Caucasian patient were 

involved in the study cohort. Mean age was 48.1 years with a range from 18-89years. The 

male/female ratio was 46.7% and 53.3%. Mean height 170.5 cm (SD 12) and mean weight 

was 79.7 kg (SD 16.5). In accordance with previous literature Disruptor of telomeric 

silencing 1-like (DOT1L)  gene variant rs12982744 were examined with quantitative 

attributes such diameter of the bony canal and height [76][77]. The ap diameter of the bony 

spinal canal were determined previously in the GENODISC project individually at every 

lumbar level (from L1 to L5) (Figure 5). According to literature we analysed the mean ap 

diameter of L1-4 and the diameter of L5 [78]. Genetic associations were determined and 

analysed using the ―SNPassoc‖ and ―haplo.stats‖ R software packages [75]. P values less 

than 0.05 was considered significant. 
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Figure 5 Measurement of AP diameter on axial T2 images 
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Measurement of diameter is seen at the upper endplate of L.1 level, above there is a normal 

bony canal below there is a congenitally narrow canal. 

4.2. VDR gene variations and lumbar degenerative diseases 

4.2.1. Genotyping 

 DNA was extracted from venous blood or saliva samples using commercial kits. 

Seven candidate VDR SNPs were genotyped at the Technology Centre, Institute for 

Molecular Medicine Finland (FIMM), University of Helsinki using a Sequenom MassArray 

technology and the iPLEX Gold reagents (Sequenom Inc., San Diego, USA). Allelic and 

genotype distributions, Hardy-Weinberg equilibrium, minor allele frequency (MAF) as well 

as associations between genetic variants and degenerative phenotypes were determined and 

analysed using the 'SNPassoc' and 'haplo.stats' R software package [75]. Individual 

genotype-phenotype associations and gene-gene interactions were studied in generalized 

linear models while haplotype-phenotype association was analysed applying haplo.score 

tests. In haplo.score analysis, a global test of association as well as individual haplotype-

specific tests were carried out using a score function. Significant covariates (age, gender, 

weight and height, and smoking status) were determined for each phenotype and a p-value 

less than 0.05 was considered significant. The genetic association analysis was also 

approved by the Scientific and Research Ethics Committee of the Medical Research 

Council of Hungary (431/PI/2007). All the investigated VDR SNPs were in Hardy–

Weinberg equilibrium (HWE) (Table 1). At the 3′-end of the gene a haploblock constructed 

by three candidate SNPs, BsmI, ApaI and TaqI (rs1544410, rs7975232, rs731236), was 

identified, and another haploblock constructed by two SNPs, Cdx2 and A1012G 

(rs11568820, rs4516035), was found at the 5′-end of the gene (Figure 6). 
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Table 1 Studied VDR SNPs and descriptive statistics of genotyping (Biczo et al. 2019)  

 

rs number Traditional name Alleles Region Success rate 

(%) 

MAF HWp 

rs11568820 Cdx2 G/A Promoter 95.7 0.190 0.659 

rs4516035 A1012G T/C Promoter 99.3 0.415 0.661 

rs2228570 FokI C/T Exon 2 98.2 0.405 0.867 

rs3782905 Ddel C/G Intron 2 98.9 0.295 0.522 

rs1544410 BsmI G/A Intron 8 99.3 0.397 0.505 

rs7975232 ApaI A/C Exon 9 99.5 0.480 0.456 

rs731236 TaqI T/C Exon 9 99.6 0.388 0.434 

MAF: minor allele frequency, HWp: p-value of Hardy-Weinberg equilibrium 

 

 

Figure 5 Linkage disequilibrium (LD) map of the seven candidate SNPs 
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Squares are colored darker if the |D‘| value is high, that is, LD is strong. Empty dark 

squares mean |D‘|=1, that is, complete LD between two single nucleotide polymorphisms.  

 

4.2.2. Study population and genotyping 

For the study we used the international GENODISC database which consisted of 

2635 patients. 455 patients with incomplete radiologic and 754 patients with incomplete 

genetic data were ruled out from the analysis. 1426 Caucasian subjects were involved from 

the GENODISC database into the analyses. Mean age was 49.2 years with a range from 18 

to 87 years. The male/female ratio was 46% and 54%. Average height was 170.6 cm (SD 

10.5) and mean weight was 79.7 kg (SD 16.6) in the cohort. In the study population, there 

was no data available about the smoking habits of 128 subjects, 593 subjects were never-

smoker, and 705 patients were ever-smoker.  

 

4.2.3. Radiographic features 

A set of selected degenerative endophenotypes (Pfirrmann grade, Modic change, 

disc prolapse, endplate defect) were assessed at five lumbar segments. In the subsequent 

analysis, we determined the genetic association with the phenotypes at any lumbar levels, at 

L4/5 and L5/S1 levels separately. Pfirrmann grading system was used to determine the 

level of overall disc degeneration. Mean Pfirrmann grade and dichotomous derivate were 

analysed statistically. In the latter case, as suggested by others [79][80], discs were scored 

as ―normal‖ (Pfirrmann 1–2) and ―pathologic‖ (Pfirrmann 3–5) (Figure 7). Degenerative 

endplate changes, such as Modic I and Modic II changes, were grouped together into the 

dichotomous Modic change phenotype. Disc prolapse was defined as the presence of disc 

bulging or herniation at the given spinal segment. Endplate defect was determined as bony 

defect at either the upper or the lower endplate (e.g.: Schmorl‘s node). The distribution of 

the studied phenotypes in the final study population is shown in Table 2. 
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Figure 6 Degenerative phenotypes on sagittal T2 images 

a Healthy disc 

b black arrows show degenerated discs, from top to bottom 

Pfirrmann grades III, IV and V 

c white star indicates type I Modic change at the lower endplate of 

the L.V and at the upper 

d black arrow indicates posterior disc herniation; white arrow 

shows posterior disc bulging 

e black arrowheads show endplate defects 
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Table 2 Prevalence and overlap of degenerative phenotypes in the study population 

(Biczo et al. 2019) 

 Any L4/5 L5/S1 L4/S1 

Modic 873 447 529 782 

Pathologic Pfirrmann 1402 1185 1186 1385 

Endplate 460 140 40 168 

Disc prolapse 1364 1038 1013 1335 

 

 

4.3.  Genetic associations with clinical outcome of surgically treated degenerative disc 

diseases 

4.3.1. Study population 

Data were collected prospectively from adults (above the age of 18) who underwent 

routine, elective surgery for lumbar disc degeneration at one or two levels at a tertiary spine 

center. Prospective clinical data were linked with the subjects‘ genetic data derived from 

the GENODISC database. Patients with minimum 2-year follow-up data were included into 

the final study cohort to explore the long-term outcome of the surgical procedures. Patients 

reoperated within 2 years due to a surgical site infection, proximal junctional kyphosis 

(PJK) or adjacent segment degeneration (ASD) as well as subjects undergoing either acute 

intervention because of neurological emergency or tumour surgery was excluded from the 

study. Surgeries were performed by board-certified orthopaedic surgeons or neurosurgeons 

specified in spinal surgery. Applied procedures included microdiscectomy, decompression 

and instrumented fusion (transforaminal lumbar interbody fusion or posterior fusion). All 

procedures were carried out using the standard median-sagittal posterior approach. All 

subjects signed a written consent form describing the scientific purpose of the systematic 

DOI:10.14753/SE.2023.2746



26 

 

collection of their clinical and genetic data. The study was approved by the Scientific and 

Research Ethics Committee of the Medical Research Council Hungary (431/PI/2007). 

For the study we used the Hungarian cohort from the international GENODISC 

database which consisted of 1181 patients. Out of the 1181 Hungarian patients only 668 

patients had at least 2-year follow-up data, amongst these patients 237 of them had 

insufficient genetic data and clinical data. A total of 431 subjects (all Caucasians) met the 

study inclusion criteria. Mean age were 52.7 (SD: 13.9y) years (from 20 to 88 years) and 

male/female ratio was 0.6 (male: 166, female: 265). As the index surgery 171 patients had 

discectomy, 22 patients had decompression, 142 patients had one level fusion and 96 

patients had 2-level fusion. In the final study cohort, 44 patients required a subsequent 

lumbar surgery at the index level during the follow-up. Eight patients had re-discectomy or 

decompression, 35 required fusion and in 1 case the implants had to be removed. 

4.3.2. Clinical data 

Patients completed standard and validated PROMs to assess their clinical status 

before the surgery and during the follow-up period. Pain was evaluated by the 10 cm long 

Visual Analogue Scale. Lumbar spine related function was measured with Oswestry 

Disability Index (ODI). Psychologic distress was measured by evaluating the level of 

depression and somatisation and was assessed with the Zung Depression Scale (ZDS) and 

the Modified Somatic Perception Questionnaire (MSPQ), respectively. Patients were asked 

to rate the overall outcome of the surgery using a five-category question; ‗‗helped a lot‘‘, 

‗‗helped‘‘, ‗helped only little‘‘, ‗‗didn‘t help‘‘, ‗‗made things worse‘‘. To measure global 

treatment outcome (GTO) a dichotomous variable was generated based on these given 

answers. Good outcome was defined if the patient responded by ‗helped a lot, ‗helped‘ and 

poor in case the patient replied by ‗only little‘, ‗didn‘t help‘, ‗made things worse‘ [81], 

[82]. Surgical outcome was considered ―good‖ if no re-operation was performed at the 

index level within 2 years and ―poor‖ if a subsequent surgery was needed within 2 years. 
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4.3.3. Genotyping and statistical analysis 

DNA was extracted from venous blood or saliva samples. Five SNPs in IL1B and 

four SNPs in IL6 genes were selected for genotyping based on previous literature data 

[83]–[88]. Genotyping was performed at the Technology Centre, Institute for Molecular 

Medicine Finland (FIMM), University of Helsinki using a Sequenom MassArray 

technology and the iPLEX Gold reagents (Sequenom Inc., San Diego, USA).  

Allelic and genotype distributions, Hardy-Weinberg equilibrium, minor allele 

frequency (MAF) as well as associations between genetic variants and outcomes were 

determined and analysed  using the 'SNPassoc' and 'haplo.stats' R software packages [75]. 

Genetic associations with preoperative and postoperative pain, disability, and psychological 

distress as well as global treatment and surgical outcome were investigated. Individual 

genotype-phenotype associations were studied in generalized linear models (GLM). 

Genetic subgroups with less than 4 (1%) subjects were excluded from subsequent statistical 

analyses. Haplotype-phenotype association was analysed applying haplo.score tests and 

GLM models. In haplo.score analysis, a global test of association as well as individual 

haplotype-specific tests is carried out using a score function. Significant covariates (age, 

gender,  weight, and height, preop ZDS and preop MSPQ score, type of surgery) were 

determined and calculated into the models for each outcome. P-values less than 0.05 were 

considered significant. The genotyping success rate was more than 97% in all cases (Table 

3). All studied SNPs were in Hardy-Weinberg equilibrium.  

Two haploblock from IL1B gene were identified consisting of 2-2 SNPs 

(‗rs1143634-rs1143633‘and ‗rs1143627-rs16944‘) and no haploblock was identified on the 

IL6 gene as seen on Figure 8.  
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Table 3 Descriptive statistics of the genotyped SNPs 

HWE: Hardy-Weinberg equilibrium 

 

 

Figure 8 Linkage disequilibrium (LD) maps of IL1B (A) and IL6 (B) SNPs 

Squares are colored darker if the |D‘| value is high, that is, LD is strong. Empty dark 

squares mean |D‘|=1, that is, complete LD between two single nucleotide polymorphisms. 

Gene rs number Position Alleles Major allele frequency % HWE missing (%) 

IL1B rs3917365 3‘ UTR C/T 91.5 0.344 0.2 

IL1B rs1143634 Exon 5 C/T 73.7 1.000 0.5 

IL1B rs1143633 Intron 4 G/A 65.1 0.521 1.2 

IL1B rs1143627 Promoter T/C 65.6 0.914 0.2 

IL1B rs16944 Promoter G/A 65.8 1.000 2.1 

IL6 rs2069852 3‘ UTR G/A 95.1 0.613 0 

IL6 rs2069861 3‘ UTR C/T 93.6 0.688 0.5 

IL6 rs2069835 Intron T/C 92.7 0.264 1.4 

IL6 rs1800796 Promoter G/C 93.4 1.000 1.2 

B A 
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5. RESULTS 

5.1. Genetic associations with the development of spinal column 

5.1.1. Genetic association of rs12982744 with ap diameter of bony spinal canal 

The mean ap diameter of the L1-4 levels was 1.68 cm (SD 0.24), while the mean 

diameter of L5 was 1.76 (SD 0.34). DOT1L gene variant rs12982744 was found to be 

associated with the average L1-4 diameter of the bony canal. The more ‗G‘ allele a 

patient had the wider the spinal canal was (mean±SD 1.75±0.44, 1.79±0.41, 1.83±0.39, 

p=0.0005 in log-additive model, for ‗C/C‘, ‗C/G‘ and ‗G/G‘ genotype respectively) 

(Figure 9). No other association was found. 

 

 

 

 

Figure 9 Mean AP diameter of L.1-4 levels in asociation with different 

rs12982744 genotypes 

 

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

C/C C/G G/G

rs12982744  mean diameter of L.1-4 
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5.2. VDR gene variations and lumbar degenerative disc disease 

5.2.1. Pfirrmann grade 

Pfirrmann grade was associated with Ddel (rs3782905), FokI (rs2228570), and ApaI 

(rs7975232) polymorphisms. ―G/G‖ genotype of Ddel was significantly associated with the 

presence of disc degeneration at level L4/5 (ref=C/C; C/G: OR=0.75, 95%CI=0.55-1.03; 

G/G: OR=2.01, 95%CI=1.00-4.05; p=0.0064 in codominant model) (Figure 7 10). At 

L5/S1 level, ―C/C‖ genotype of ApaI was significantly related to the risk for severe 

degeneration (ref=A/A-C/A; C/C, OR=1.46, 95%CI=1.01-2.13, p=0.0408). 

5.2.2. Disc prolapse 

ApaI was associated with disc prolapse. Homozygous subjects had a higher 

frequency of disc prolapse at any spinal level (p=0.0458). At L5/S1 region, ―C/C‖ carriers 

showed the highest risk for disc prolapse (ref=A/A-C/A; C/C: OR= 1.39 95%CI= 1.03-

1.88; p= 0.0271, in recessive model) (Figure 811). 

5.2.3. Modic change 

―A/A‖ genotype of BsmI (rs1544410) was associated with a lower frequency of 

Modic change at any spinal level (ref=G/G-G/A; A/A, OR=0.67, 95%CI=0.49-0.91, 

p=0.01, recessive model) and at L4-5 (ref=G/G-G/A; A/A, OR=0.65, 95%CI=0.47-0.91, 

p=0.0103 in recessive model) (Figure 92). C/C genotype of TaqI (rs731236) polymorphism 

had also a protective effect against Modic change at any level (ref=T/T-C/T; C/C, 

OR=0.62, 95%CI=0.45-0.86, p=0.0032) and at L4/5 segment (ref=T/T-C/T; C/C, OR=0.61, 

95%CI=0.43-0.86, p=0.0034). FokI (rs2228570) polymorphism was found to have an 

association with Modic change in codominant genetic model at level L4/5 (ref=C/C; T/C, 

OR=1.27, 95%CI=0.98- 1.64, T/T, OR=0.83, 95%CI=0.58- 1.20, p=0.0302).  

5.2.4. Endplate defect  

―G‖ allele of Ddel (rs3782905) polymorphism was associated with endplate defect 

at any lumbar level (ref=C/C; C/G–G/G, OR 1.38, 95% CI 1.09–1.74, p=0.0064, in 
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dominant model) (Figure 103). ―A/A‖ genotype of Cdx2 (rs11568820) variant was related 

to the higher risk of having an endplate defect at L4/5 level (ref=G/G–A/G; A/A, OR 2.32, 

95% CI 1.08–4.9, p=0.0444, in the recessive model) (Figure 114).  
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Figure 7 Association of Ddel with Pfirrmann grade distribution of healthy and 

pathologic endophenotype is represented by genotypes 

 

 

Figure 8 Association of ApaI with disc prolapse distribution of healthy and pathologic 

endophenotype is represented by genotypes 

 

16% 20.1% 8.2% 

84% 79.9% 91.8% 

C/C C/G G/G

DdeI vs Pfirrmann grade 

L4-5 level 

Healthy Degenerated p=0.006 

31.7% 30.1% 24.1% 

68.3% 69.9% 75.9% 

A/A C/A C/C

ApaI vs Disc prolapse 

L5-S1 level 

Healthy Disc prolapse p=0.027 
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Figure 9 Association of BsmI with Modic change distribution of healthy and 

pathologic endophenotype is represented by genotypes 

 

 

Figure 10 Association of Ddel with endplate defect distribution of healthy and 

pathologic endophenotype is represented by genotypes 

 

57.5% 55.5% 64.5% 

43.5% 44.5% 35.5% 

G/G G/A A/A

BsmI vs Modic change  

Any spinal level 

Healthy Modic p=0.01 

70.4% 63.5% 65.8% 

29.6% 36.5% 34.2% 

C/C C/G G/G

Ddel vs Endplate defect  

Any spinal level 

 

Healthy Endplate defect p=0.006 
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Figure 11 Association of Cdx2 with endplate defect distribution of healthy and 

pathologic endophenotype is represented by genotypes 

68.1 65.6 65.1 

G/G A/G A/A

Cdx2 vs Endplate defect  

L5-S1 level 

 

Healthy Endplate defect p=0.025 
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5.2.5. Haplotype analyses 

Three haplotypes with more than 1% frequency were identified inside the VDR 

haploblock located at the 3'-end of the gene (BsmI-ApaI-TaqI). The haploblock was 

significantly associated with the Modic change at L4/5 level (pglobal=0.0185 in recessive 

model) where the second most common, ―AAC‖ haplotype was associated with lower risk 

for Modic change (p=0.0045). Another haploblock with three different haplotypes was 

identified at the 5‘-end (Cdx2-A1012G). It was related to the endplate defect at L4/5 level 

(pblobal=0.048 in additive model), where the rarest ―AT‖ haplotype was associated with the 

highest risk for endplate defect (p=0.0055) (Table 4). 

 

Table 4 Association of haploblocks with endophenotypes 

 

Haplotype Frequency (%) Hap-Score p value 

(A)    

AAC 38.6% -2.84 0.0045 

GAT 12.6% -1.21 0.2260 

GCT 47.4% 0.42 0.6775 

(B)    

GC 41.6% -1.43 0.1525 

GT 39.4% -0.76 0.4448 

AT 19.0% 2.78 0.0055 

(A) Association of BsmI–ApaI–TaqI haploblock with Modic change (pglobal=0.0185) and 

(B) association of Cdx2–A1012G haploblock with endplate defect (pglobal=0.048) 

 

5.2.6. Gene-gene interaction analysis 
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Significant GxG interactions were found between Cdx2 and BsmI 

(pinteraction=0.0206) and between Cdx2 and TaqI (pinteraction=0.0062) on endplate defect at 

L4/5 level (Figure 15). 

 

Figure 12 G x G interaction between Cdx2 and BsmI (A) and Cdx2 and TaqI (B) on 

endplate defect Bubbles represent the percentage of subjects with endplate defect at L4/5 

in different genotype combinations, pinteraction values are 0.0206 and 0.0062 for Cdx2-BsmI 

and Cdx2-TaqI respectively 

 

A 

B 
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5.3. Association of IL1B and IL6 gene variants with the long-term outcome after 

lumbar degenerative spinal surgery 

5.3.1. Association of IL1B and IL6 gene variants with preoperative outcome 

In the overall population the mean±SD values of preoperative ODI score was 

47.4±18.4 and the mean VAS score was 7.2±1.9, the mean ZDS was 39.6±8.1, MSPQ was 

8.3±5.7. No individual SNP was associated with preoperative ODI and pain (Table 5), 

however both IL genes had SNPs related to the level of depression. ‗T‘ allele of rs1143627 

IL1B SNP was associated with higher level of depression (ZDS was 40.6±8.7, 39.2±7.3 and 

38.3±8.0 in case of ‗T/T‘, ‗T/C‘ and ‗C/C‘ genotypes, respectively, p-value=0.025 in log 

additive model). IL1B rs16944 ‗G‘ allele carriers also showed higher level of depression 

(ZDS was 40.6±8.8, 39.2±7.3 and 38.0±8.0 in case of ‗G/G‘, ‗A/G‘ and ‗A/A‘ genotypes, 

respectively, p-value=0.025 in log additive model). rs1143634 IL1B was associated with 

ZDS in an overdominant model (p=0.025, ―C/T‖ mean ZDS±SD was 40.8±8.4 and 

39.0±7.8 in case of ‗C/T‘ and ‗C/C‘+‘T/T‘ genotype groups). The ‗C‘ allele of IL6 SNP 

rs2069835 was linked to increased level of depression (mean ZDS±SD were 39.2±7.8, 

42.2±9.2, and 45.3±10.1 in case of ‗T/T‘, ‗T/C‘ and ‗C/C‘ genotypes, respectively, p=0.003 

in log-additive model). 

IL6 rs2069835 was associated with the level of preoperative somatization (Mean 

MSPQ±SD was 8.0±5.3 and 10.2±7.0 in case of ‗T/T‘ and ‗T/C‘+‘C/C‘ genotypes 

respectively, p=0.010, in dominant model) (Table 5 and Table 6).  

IL1B haplotypes were not associated with preoperative ODI, depression, 

somatization, and pain (data not shown). 
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5.3.2. Associations of IL1B and IL6 gene variants with postoperative outcome 

5.3.2.1. Change in pain and disability 

The mean overall improvement in pain intensity was 3.4±3.2 points in the study 

cohort. IL1B rs1143633 was strongly associated with the change in the reported pain at 

follow-up, where the ‗A‘ allele carriers had the largest improvement in pain intensity (mean 

change in pain intensity was -3.7±3.3 in ‗A/G‘+‘A/A‘ group vs. -2.9 ±3.2 in ‗G/G‘ 

genotype, p=0.00085 in dominant model) (Table 7). The preoperative pain intensity was 

associated with the ‗C‘ allele of rs1143634 in the microdiscectomy subgroup (Figure 136). 

Change in ODI score was not associated with the studied gene variants. 

 

 

Figure 13 Preoperative pain intensity in the different rs1143634 genotypes 

The ‗C/C‘ genotype of rs1143634 is strongly associated with higher pain before surgery 

(7.5±1.9, 6.6±2.2, 6.7±2.3 for ‗C/C‘, ‗C/T‘ and ‗T/T‘ respectively, p=0.006 in dominant 

model) 
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5.3.2.2. Global treatment outcome 

In the study cohort 350 patients (82%) reported good outcome while 75 patients 

(17%) reported poor outcome (6 patients‘ data were missing). The ‗C‘ allele of IL1B 

rs1143627 was related with better GTO (OR:1.49, p=0.049 in log-additive model) (Table 7 

and Table 8). 

5.3.2.3. Surgical outcome 

In the overall population 44 patients had poor surgical outcome (10.2%). All 4 IL6 

SNPs were associated with the risk of reoperation within 2 years, even after adjusting to 

type of index surgery. ‗G/G‘ genotype of rs1800796 (OR:6.6, p=0.009, dominant model), 

‗G/A‘ genotype of rs2069852 (OR:5, p=0.039 in codominant model) and ‗C‘ allele of 

rs2069835 (p=0.027, OR:1.27 in log-additive model) were associated with worse outcome. 

rs2069861 was associated with surgical outcome in an overdominant model (p=0.014) 

(Table 7and Table 8). 

5.3.2.4. Results of haplotype analysis 

There was one haploblock in IL1B gene (rs1143634-rs1143633) which was 

associated with change in pain. ‗C-A‘ haplotype was associated with the greater 

improvement in pain compared to the most common ‗C-G‘ haplotype (p= 0.001) (Table 9).   
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6. Discussion 

 The degenerative spinal diseases play a very important role in the life of the modern 

society. They are amongst the most common causes for everyday burden that can affect all 

sex, ethnicity, and age group [14]. The number of spinal surgeries continuously increasing 

not just in the developed countries but also in the third world countries. There is a huge 

technical advancement in the medical equipment, surgical techniques, better pharmaceutics, 

better diagnostics in the field of spine surgery. Before the spinal fixation techniques were 

developed the treatment of spinal diseases centered around immobilization, bed rest, 

traction, splinting and bracing [64]. During the 20
th

 century new and new fixational 

techniques were developed which gave new hope to the spine patients. However, despite 

the modern techniques the outcome of a spine remained relatively poor. Most of the time 

the goal of spine surgery is to restore the normal quality of life of a patient but around 5% 

to 70% of the cases the poor quality of life or at least some disability remains [82]. In the 

late 20
th

 century, a lot of study examined the basic physiological changes during 

intervertebral disc degeneration. With the development of genetic examination technologies 

new type of studies became available to assess the ―root of all evil‖ the aging of the 

intervertebral disc. 

 

6.1. Genetic association of anthropometric attributes 

 

 During the embryonic stage a lot of things can go sideways which can cause 

different developmental anomalies, such as extra or less limbs, body parts, malformations, 

loss of different functions. In our study we found that patient who carried the ‗G‘ allele of 

rs12982744 had significantly wider spinal canal in a log-additive model. DOT1L gene and 

its variants were in the focus of anthropometric studies because it has a role in 

chondrogenic differentiation and articular cartilage [89]. The gene also has a published 

association with peak height velocity in puberty and with adolescent idiopathic scoliosis 

[76]. Sovio et al. reported that the ‗G‘ allele of DOT1L gene SNP rsl2459350 resulted in an 

DOI:10.14753/SE.2023.2746



46 

 

increased peak height velocity [77].These effects on the development of the vertebrae could 

be linked to the DOT1L gene‘s role in chondrogenesis. In an in vitro mouse model 

knockdown of DOT1L resulted in reduced chondrogenic differentiation in a cell line. 

DOT1L influenced chondrogenic differentiation by regulating transcription of Wnt target 

genes [89]. Wnt signaling is crucial in the formation and development of synovial joint 

[90]. Mutants in the Wnt signaling pathway have been shown to cause developmental 

abnormalities [89]. Since DOT1L gene functions is linked to Wnt signaling it can not only 

cause disruption in the development of synovial cartilage but in the process of 

endochondral bone formation such as vertebrae formation. However, in the development of 

degenerative spinal diseases not only anthropometric attributes play role.  

 

6.2. The role of VDR gene variants in the degeneration process 

 

 VDR is among the most intensely studied candidate genes in extraskeletal and 

musculoskeletal conditions. Its association with osteoporosis, muscle function and 

increased fracture risk has already been showed, but papers on the role of the VDR 

polymorphisms in the development of LDD have shown conflicting results as discussed by 

recent meta-analyses about the association of VDR genotypes and LDD [91]–[100][101]–

[103]. The cited papers highlight the importance of large-scale, well-designed international 

investigations to overcome the contradictory results related to the heterogenous phenotype 

definitions as well as population differences. The direct biological effect of VDR genomic 

variants is not known in the development of LDD. In a cell line study, it was reported that 

the 3‘UTR haploblock‘s (BsmI-ApaI-TaqI) ―GCT‖ haplotype resulted in 15% less mRNA 

and has 30% increased decay rate than ―AAC‖ haplotype [104]. This alteration could cause 

a decreased quantity of VDR protein in target cells for vitamin D giving such cells an 

impaired response to vitamin D. The 3‘UTR ―GCT‖ haplotype was published in association 

with increased fracture risk and weaker hand grip strength [92][96]. Polymorphisms in the 

VDR promoter region can also influence the genetic function. Transcriptional activity of 

the VDR promoter is 30% less active in case of Cdx2 ―G‖ allele compare to ―A‖ allele 
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[105]. The ―A‖ to ―G‖ transition in A1012G SNP negatively modifies the GATA-3 

transcription factor binding ability in the VDR promoter region [106]. ―A‖ allele (―T‖ in 

this thesis) results in an increased promoter activity proved by luciferase activity 

measurements [104]. These in vitro results support the various possible biological role for 

VDR variants in the processes of intervertebral disc degeneration. Our results indicate that 

the distinct phenotypes are differently associated with VDR gene variants, we introduced 

the use of the ―endophenotype‖ term in LDD genetic association research, which has been 

already in use in psychiatric genetic association studies. Endophenotype is a quantitative 

biological trait that is reliable in reflecting the function of a discrete biological system and 

is reasonably heritable, and as such is more closely related to the root cause of the disease 

than the broad clinical phenotype [74].  

 Even though the pathomechanism of a Modic change is not known Modic change is 

an excellent example of an endophenotype in LDD as it can be present before any visible 

damage on the intervertebral disc itself [39]. Some suggest that Modic change is caused by 

mechanical stress and others suppose that it is related to ongoing inflammation the 

degeneration process [107]. The mechanical stress model is based on biomechanical studies 

which found that increased shear force on endplates adjacent to degenerated discs resulted 

in microtrauma in the endplates with consequential bone marrow oedema like that seen on 

MRI for Modic I changes [39]. An alternative pathway via elevated levels of 

proinflammatory mediators such as IL-6 and prostaglandin E2 has been suggested in a 

study where surgically removed disc tissue from patients undergoing instrumented fusion 

because of LBP was compared to tissue from patients undergoing discectomy for sciatica 

[108]. An inflammatory pathway for Modic changes has been also suggested in a study 

which found higher expression of tumour necrosis factor (TNF), an increase in ingrowth of 

immunoreactive nerve fibers and elevated cytokine levels in surgically extracted disc tissue 

of patients with Modic I change [109]. VDR SNPs appears to be more susceptible to 

inflammatory diseases; the prevalence of TaqI is a relative risk for chronic periodontitis 

[110], the frequency of the ‗C‘ allele of a TaqI is higher in chronic extremity osteomyelitis 

[111], the ―A‖ allele of BsmI seems to be protective against rheumatoid arthritis [112] and, 

the ―C/C‖ genotype of FokI has a positive correlation with rheumatoid arthritis [112]. 
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Considering the above-mentioned correlations, it is not impossible that the VDR gene 

polymorphisms can play a role in the emergence of Modic change through modulation of 

inflammation in the bone marrow.  

 In our previous studies the risk for Modic change was significantly lower in carriers 

of 3‘-end ―AAC‖ haplotype, while the promoter haplotype was associated with the 

presence of structural endplate defects. These two - endplate related - phenotypes were also 

associated with VDR genetic variants in individual SNP analyses. Since VDR is known 

affect different bone tissue related physiological processes (e.g.: remodelling, immune 

response) [98][100] and VDR gene variations have an effect on fracture risk and bone 

density [104] it is plausible that through these mechanisms the endplates of a vertebrae 

could be genetically more susceptible to mechanical injuries (fractures, Schmorl‘s nodes) 

[113]. 

 We also examined the degenerative changes in the intervertebral disc itself, namely 

disc prolapse and loss of signal intensity and disc height, classified by the Pfirrmann grade 

[114]. The intervertebral disc is made of two independent anatomical structures, the outer 

annulus fibrosus and the inner nucleus pulposus. The nucleus pulposus cells produce 

extracellular matrix components such as type II collagen or aggrecan which govern the 

disc‘s biomechanical behaviour [115]. The resident cells in degenerated discs also produce 

inflammatory cytokines (TNF-α, IL-1β) which result in an ―inflammation-like‖ state [116] 

[117] and which stimulate expression of matrix degrading enzymes (ADAMTS, MMPs), 

resulting in loss of aggrecan which leads through consequent dehydration to a weakened 

resistance against mechanical loading and fall in disc height [118] [119] [120]. This 

inflammatory state can be modified by VDR as discussed before. We found some 

associations between VDR gene variants and these disc related endophenotypes, however 

they were not supported by haplotype and gene-gene interaction analysis, possibly because 

of the complexity of the disc degeneration process. 

 Degeneration not only has a multigenetic background, where several gene and gene 

variants play small, but significant roles, but it is also influenced by external factors. The 

influence of environment could explain the findings that genetic influence on the 

degeneration process differs at different spinal levels (where loading and other 
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biomechanical factors are also different). Hence, although the exact pathomechanism is 

unknown, degeneration appears to arise as a consequence of the influences of aging and 

environmental factors such as mechanical loading on a strong genetic background [121]. 

 

6.3. Genetic associations with the long-term outcome of spinal surgery 

 

 With a strong genetic background through environmental factors the intervertebral 

disc starts to disintegrate in the early adult life. This process can lead to symptomatic 

degeneration that requires treatment. Ultimately some of the symptomatic IDD will require 

surgical intervention if conservative treatment proves ineffective. Unfortunately, a portion 

of patients will sustain some pain or disability after spinal surgery, they can even develop 

chronic pain conditions such as FBSS. Understanding the pathophysiology of chronic pain 

conditions - such as FBSS - can lead clinicians to develop and apply new therapeutic 

methods to alleviate pain and improve the quality of life in this large patient group. The 

well-being of a patient is determined by multiple musculoskeletal, functional, and 

psychosocial factors [82]. Genetic influence on surgical outcome has been highlighted by 

previous papers [122]. In the present thesis, polymorphisms of two interleukin (IL1B, IL6) 

genes in a large cohort of 431 patients who underwent elective lumbar spinal surgery for 

DDD were investigated in terms of the therapeutical outcome. Relationship between long-

term treatment results, psychological factors, pain, and different IL gene variants were 

supported by individual SNP associations and haplotype analyses. Outcome of routine 

lumbar degenerative surgeries was analysed in different dimensions. Associations of IL 

gene variants with change in pain, disability as well as patient-reported global treatment 

outcome and need for a subsequent surgery were determined to elucidate the potential 

genetic influence.  

 IL1B variants were significantly related to the improvement in pain after the spine 

surgery, ‗A‘ allele of rs1143633 as well as ‗C-A‘ haplotype of rs1143634-rs1143633 

haploblock were associated with greater improvement in pain. No other gene variant was 

associated with pain relive however when we analysed the microdiscectomy subgroup we 
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found that patients with ‗C/C‘ genotype of rs1143634 had significantly higher preoperative 

pain compared to the other genotypes. Other IL1B variant (rs1143627) was associated with 

patient reported global treatment outcome, while majority of the studied IL1B variants were 

related to the preoperative level of depression. Interestingly IL6 variants were significantly 

associated with the need for a subsequent surgery during the follow-up period. The ‗C‘ 

allele of rs2069835 IL6 SNP was associated with a higher risk for reoperation and with 

increased level of preoperative depression and somatization. None of the studied gene 

variants were associated with preoperative spinal pain and disability level. 

 Number of studies supported the relationship between intervertebral disc 

degeneration and IL1, IL6 gene variants [79], [123]–[127]. SNPs of these genes have been 

showed to be associated with the outcome of different surgical treatment [128]–[131], but 

only Moen et al. have studied the possible association of IL1 gene family and long-term 

outcome in patients treated because of lumbar disc herniation [122]. They did not find a 

significant relationship between rs1143627 IL1B SNP and treatment outcome, however 

they did not publish the genetic effect of single SNPs but their combinations on a mixed 

(surgically and non-surgically treated) patient groups. The same SNP (rs1143627) was 

found to be associated with symptomatic disc herniation [132] and with DDD associated 

pain [133] by others. IL1B variants have been also described in association with DDD 

[124], [134]. IL6 variants have not been studied related to the surgical outcome of DDD yet 

but they were previously associated with the process of lumbar disc degeneration [79], 

[123], [126]. 

 The association between IL1B, IL6 genetic variants and the therapeutic outcome 

after lumbar spinal surgeries can be explained by different mechanisms: 

 1) Progressive degeneration process can lead to persistent spinal pain and a potential 

indication of a subsequent surgery. IL1B is involved in multiple pathological process of 

disc degeneration. It stimulates extracellular matrix degradation, accelerates cellular 

senescence and induces apoptosis [135]. rs1143633 in IL1B was associated with 

improvement of pain after surgery in our study while this SNP was previously found to be 

associated with higher occurrence of disc degeneration (high intensity zone) [124]. IL6 

variants have been also described in relation to DDD [136][137][126].  
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 2) Tissue damage is often mediated through local inflammation. Inflammatory 

mediators such as IL6 and IL1B carry an important role in regulating and sustaining 

inflammation and pain. Different studies showed their potential role in disc degeneration 

related inflammatory process [138]–[140]. IL6 is crucial in homeostasis maintenance and 

host defence but its overproduction can cause the development or progression of diseases 

(such as pathologic pain) [141], [142]. The serum level of IL6 is increased in herniated disc 

which promotes upregulation of MMPs [142], [143]. Kraychete et al. also showed that 

patients with chronic low back pain due to disc herniation had higher level of serum IL6 

[144]. The tissue level of IL6 can be related to the genetic variant of the gene. For example, 

rs1800796 IL6 SNP (what we found to be strongly associated with FBSS) is associated 

with increased promoter activity boosting the local secretion of IL6 [126], [137]. The two 

genes have a potential influence on each other, while IL1B is described as one of the key 

local inducers of IL6 production [139], [140], [145]. Not surprisingly, the variants of IL1B 

and IL6 genes have been associated with other chronic inflammatory conditions such as 

periodontitis, cancer, osteoporosis, type 2 diabetes and diabetic nephropathy [83]–[86], 

[146]–[151].  

 3) Psychological issues are also important in pain response and in the development 

of chronic pain. Depression and anxiety have been previously described as risk factors of 

DDD and poor surgical outcome after spine surgeries [82], [152]–[154]. Interleukin genes 

can significantly influence the patient‘s psychological profile. Chronic inflammation and 

dysregulation of the immune response is a key factor in the development of major 

depressive disorders (MDD) [155], [156]. Patients with MDD show an abnormal profile of 

pro- and anti-inflammatory circulating cytokines [156]–[159]. In animal models of MDD, 

increased level of pro-inflammatory cytokines caused central serotonin depletion, 

hypothalamic–pituitary–adrenal (HPA) axis dysregulation, microglial activation and brain 

structure alteration [156]. In animal inflammatory MDD (MDD-I) models, IL1B appears to 

be the initial triggering complex of the inflammatory cascade both centrally and 

peripherally [156]. In our study, some IL1B variants were significantly associated with the 

preoperative level of depression. These findings are in accordance with previous report 

about the positive association between rs1143627 IL1B polymorphisms and MDD [160]. In 
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accordance with our findings, Yu et al. found that the homozygotic ‗T/T‘ patients of 

rs1143634 had a tendency of suffering from less severe depressive symptoms than ‗T/C‘ 

homozygotes [161]. ‗T/T‘ genotype of rs1143627 is reported to have a strong connection 

with major recurrent depression [162], while we found that patients with this particular 

genotype had worse scores on the depression scale. Two of the investigated SNPs, rs16944 

and rs1143627 are located in the promoter region of the gene. These polymorphisms lead to 

altered expression of IL1B which results in local inflammation and promotes the production 

of MMPs [163]. A study suggested that IL1B rs16944 gene polymorphism hinder the 

pharmacological response in the treatment of MDD by increasing the risk of non-remission 

over 6 weeks of antidepressant treatment [164]. Another IL1B SNP (rs1143633) was 

strongly associated with postoperative pain in our study while rs1143634 was strongly 

associated with the preoperative pain intensity but only in the microdiscectomy subgroup. 

Previously association of intensity of back pain and rs1143634 have been published in war 

veterans with posttraumatic stress disorder [165]. Association between rs1143633 and pain 

have not been published yet, however there are a few studies investigating its relationship 

in paediatric MDD and schizophrenia [166], [167]. rs2069861 in IL6 was associated with 

both depression and somatization in our cohort. Somatization is also an important factor in 

the development of symptomatic DDD [154]. Genetic variants of IL6 were linked to 

depression, somatization and anxiety in numerous studies [168]–[172].  

 Recently published data showed the possible role of interleukin agonist drugs in the 

treatment of pathological pain (e.g., chronic pain, inflammatory pain etc.) [173], therefore 

novel therapeutic strategies targeting IL6 or its receptors have been developed and 

successfully used in the treatment of selected diseases. In a paper a single intradiscal 

injection of tocilizumab (IL6 receptor antibody) provided short-term alleviation of 

discogenic pain [174]. Variants of the interleukins‘ and their receptors‘ genes can modify 

the effect of this targeted anti-inflammatory therapies, however there is no data about that 

so far.  
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6.4. Limitations 

There are some important limitations in this thesis. Population selection bias cannot be 

ruled out  because only Caucasian patients who underwent degenerative spinal surgeries 

were enrolled to the study. All the analysed polymorphisms were in Hardy-Weinberg 

equilibrium. We did not apply any correction of the alpha-level during the genetic 

association testing process. We used a hypothesis-driven approach where effect of 

candidate SNPs on a phenotype/endophenotype was calculated. Genetic associations were 

analysed with multiple statistical models (haplotype analysis, individual SNP association) 

to confirm the associations of the thesis. The examined comorbidities can influence the 

genetic association even if we tried to rule it out by adjusting our models. Another 

limitation is the size of the studied population which can lead to inconsistent results, we 

aimed to rule out this kind of population size bias by using a big international large dataset 

to strengthen our findings. Overall study population selection bias cannot be ruled out 

completely. 
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7. Conclusion 

For the questions established in the Objective section of this thesis we conclude the 

following:  

 

1. Is there an association between certain quantitative traits and genetic variations? 

 

We found association between DOT1L gene variation and the diameter of the bony spinal 

canal. The more ‗G‘ allele a patient had the wider the spinal canal was (mean±SD 

1.75±0.44, 1.79±0.41, 1.83±0.39, p=0.0005 in log-additive model for ‗C/C‘, ‗C/G‘ and 

‗G/G‘ genotype respectively). 

 

2. Does VDR gene variations influence the development of IDD? 

 

We found association between VDR genetic variants and intervertebral disc degeneration 

and support the previously described complexity of the genetic background of this 

condition. In this thesis, we analysed the genetic and imaging data of a large homogenous 

sample of subjects treated because of LDD. We determined and analysed associations 

between VDR genetic variants distinct degenerative disc MRI phenotypes, Pfirrmann 

grade, disc prolapse, Modic change and endplate defect. Association between LDD 

phenotypes and VDR gene variants was supported by different level of genetic analyses, 

namely individual SNP associations, haplotype analyses and gene-gene interactions. We 

found that each of the specific disc degeneration-linked phenotypes examined was 

differently associated with VDR polymorphisms; Pfirrmann grade was associated with 

DdeI, FokI, ApaI; disc prolapse was associated with ApaI; Modic change was associated 

with BsmI, TaqI, FokI SNPs and the BsmI-ApaI-TaqI haploblock; endplate defect was 

associated with DdeI, Cdx2 SNPs and the Cdx2-A1012G haploblock. Significant VDR 

gene-gene interactions were also found to be associated with endplate defects. 
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3. Do gene variations alter the preoperative physical status of a patient? 

 

We found that IL1B and IL6 gene variations can alter certain patient reported mental status. 

No individual SNP was associated with preoperative ODI and pain, however both IL genes 

had SNPs related to the level of depression. ‗T‘ allele of rs1143627 IL1B SNP was 

associated with higher level of depression. IL1B rs16944 ‗G‘ allele carriers also showed 

higher level of depression. rs1143634 IL1B was associated with ZDS. The ‗C‘ allele of IL6 

SNP rs2069835 was linked to increased level of depression. IL6 rs2069835 was associated 

with the level of preoperative somatization. ). The preoperative pain intensity was 

associated with the ‗C‘ allele of rs1143634 in the microdiscectomy subgroup. 

IL1B haplotypes were not associated with preoperative ODI, depression, somatization, and 

pain. 

 

 

4. Can we identify genes variations that alter the long-term outcome of spinal 

surgeries? 

 

IL1B and IL6 gene variants was associated with different postoperative elements. IL1B was 

strongly associated with the intensity of pain after surgery, and with global treatment 

outcome . Change in ODI score was not associated with any studied gene variation. 

Interestingly one IL1B haplotype showed association with the improvement of pain after 

surgical intervention. 

 

5. Can we identify genes that affect the need of subsequent surgery? 

 

All studied IL6 SNP were associated with surgical outcome but no other postoperative 

element. rs1800796, rs2069852 and rs2069835 were associated with worse outcome while 

rs2069861 was associated with better surgical outcome. 
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8. Summary 

 IDD is a complex bio-psycho-social entity that appears to arise because of aging and 

environmental factors on a strong genetic background. Symptomatic IDD affect all age 

group all around the globe. The prevalence of FBSS after surgical treatment for lumbar 

degenerative pathology is more than 20%. 

 In our examinations we studied the possible role of different genetic variations on 

the development of some anthropometric trait, the development of degeneration and the 

possible association with the perioperative patient reported outcomes as well as the long-

term outcome of surgical intervention. 

 We found that the diameter of the bony spinal canal is affected by the DOT1L gene 

and its variation. Patients with ‗G‘ allele of rs1143634 had significantly wider bony canal 

in the L1-4 region which increased with the number of ‗G‘ alleles. This gene has published 

effect on the Wnt signaling pathway that could lead to different skeletal malformations 

through endochondral bone formation.  

 Interleukin 1B variants analysis confirmed association with improvement of pain 

after surgery, moreover relationship with patient reported outcome and preoperative level 

of depression was also found. IL6 variants were associated with preoperative depression, 

somatization and with subsequent surgery. 

 Haplotype analyses confirmed the association between the 3‘-end VDR variants and 

Modic change as well as the relationship of 5‘-end variants with endplate defects. We also 

found significant interactions between the 3‘ and 5‘-end regulatory regions and endplate 

defects. Based on our results, VDR and its gene variants are highly associated with specific 

degenerative LDD endophenotypes. 

 In conclusion we state that VDR gene variants are associated with different disc 

degeneration related endophenotypes moreover; we state that IL1B and IL6 gene variants 

are associated with the psychological status and the long-term outcome of surgically treated 

lumbar DDD patients. 

 Based on our findings and the corresponding literature advanced treatment methods 

could be established targeting interleukin 1B, interleukin 6 and its genes to successfully 

prevent/treat FBSS or even primary lumbar degenerative pathologies. On the other hand, 

the consideration of patient-specific genetic difference can be important to maximize the 

therapeutic outcome. 
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9. Összefoglalás 

 A degeneratív gerincbetegségek kialakulásában központi szerepet játszik a 

porckorong degeneráció, mint patológiai alapfolyamat, azonban a tünetes betegséget a 

környezeti hatásokkal és az öregedéssel interakcióban poligénes örökletes háttér alakítja. 

Ágyéki gerincműtétek után krónikus fájdalomszindróma, ún. „failed back surgery 

syndrome‖ alakulhat ki, amelynek kezelése komprehenzív megközelítést igényel. 

 A vizsgálataink során különböző génvariációk szerepét vizsgáltuk bizonyos 

antropometriai jellemzők létrehozásában, degeneratív gerincbetegségek kialakításában 

továbbá vizsgáltuk a genetikai tényezők szerepét gerincműtétek sikerességének 

vonatkozásában rövid és hosszútávon. A vizsgálatainkhoz nagy nemzetközi adatbázist 

használtunk, amely tartalmazta a betegek radiológiai, klinikai és genetikai adatait egyaránt.  

 A vizsgálatok során azt találtuk, hogy a csontos gerinccsatorna átmérőjének 

kialakításában a DOT1L génnek és polimorfizmusainak lehet befolyásoló szerepe. Az 

rs1143634 egypontos nukleotid polimorfizmus ‘G‘ alléljéhez szignifikánsabb tágabb 

gerinccsatorna társult az ágyéki LI-IV-es szakaszokon. Ennek a génnek korábban leírták 

módosító hatását a Wnt jelátviteli útvonalon keresztül az endochondralis csontosodásra. 

 A VDR génpolimorfizmusoknak igazoltuk a szerepét az ágyéki degeneratív 

endofenotípusok kialakításában. Pfirrman degenerációban a DdeI, FokI, ApaI; a 

porckorong kiboltosulás vonatkozásában az ApaI; Modic instabilitás kialakulásában a 

BsmI, TaqI, FokI polymorfizmusok és a BsmI-ApaI-TaqI haploblock; a véglemez sérülés 

megjelenésében a DdeI, Cdx2 polimorfizmusok, valamint a Cdx2-A1012G haploblock 

játszottak szerepet. 

 Összefoglalva azt mondhatjuk, hogy a csontos gerincsatorna átmérőjének 

kialakulásában a DOT1L gén modulátorként szerepelhet, a VDR gén variációk hatással 

vannak a különböző degeneratív endofenotípusok kialakításáaban, továbbá az IL1B és IL6 

gének befolyásolják a betegek pszichés statusát, fájdalomérzetét, valamint egy ágyéki 

gerincműtét hosszútávú kimenetelét. 

 Az eredményeinkre és az ide tartozó nemzetközi eredményekre alapozva modern 

terápiás módszerek kerülhetnek kifejlesztésre, amely az interleukin gyulladásos citokinek 

génjeit célozva kezelhetik/megelőzhetik FBSS kialakulását. Továbbá a genotipizálás 

elterjedésével rizikóbecslő módszerek hozhatók létre, amelyek alapján a terápiás kimenetel 

javítható. 
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Abstract
Purpose  Numerous candidate genes and single-nucleotide polymorphisms (SNPs) have been identified in the background 
of lumbar disc degeneration (LDD). However, in most of these underpowered studies, definitions of LDD are inconsistent; 
moreover, many of the findings have not been replicated and are contradictory. Our aim was to characterize LDD by well-
defined phenotypes and possible endophenotypes and analyse the association between these and candidate vitamin D receptor 
(VDR) gene polymorphisms on a large (N = 1426) dataset.
Methods  Seven candidate VDR SNPs were genotyped. Individual association, haplotype and gene–gene interaction analy-
ses were performed. All degenerative endophenotypes were significantly associated with one or more candidate VDR gene 
variants.
Results  Haplotype analyses confirmed the association between the 3′-end VDR variants (BsmI, ApaI, TaqI) and Modic 
changes as well as the relationship of 5′-end variants (Cdx2, A1012G) with endplate defects. We also found significant inter-
actions between the 3′- and 5′-end regulatory regions and endplate defects. Based on our results, VDR and its gene variants 
are highly associated with specific degenerative LDD endophenotypes.
Conclusion  Understanding relationships between phenotype and gene variants is crucial for describing the pathways leading 
to the multifactorial, polygenic degeneration process and LDD-related conditions.

Graphic abstract
These slides can be retrieved under Electronic Supplementary Material.

Keywords  VDR · Lumbar disc degeneration · Single-nucleotide polymorphism · Haplotype · Endophenotype

Introduction

Low back pain (LBP) is one of the most significant health-
care problems worldwide [1] and imposes a heavy burden 
on the national health systems in the industrialized coun-
tries. Low back pain is thought to be associated with various 
spinal pathologies (such as disc herniation, spinal stenosis, 
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segmental instability) arising from lumbar intervertebral 
disc degeneration (LDD). The pathomechanism leading to 
LDD is still unclear. Twin studies showed that up to 70% of 
LDD could be genetically determined [2]. Candidate gene 
and genome-wide association studies have identified numer-
ous genes and single-nucleotide polymorphisms (SNPs) in 
the background of LDD [3]. Vitamin D receptor gene (VDR) 
has been reported to be one of the first [4] and since then one 
of the most studied [5] candidate genes. However, studies of 
the possible role of VDR genetic variants have led to contra-
dictory results with only few findings replicated. Videman 
et al. [4] in a Finnish population found that “tt” genotype 
of TaqI polymorphism was associated with the most severe 
degenerative MRI phenotype, yet, also in Finnish popula-
tions, Noponen-Hietala et al. [6] and Kelempisioti [6, 7] 
found no association with disc degeneration and FokI and 
TaqI variants. On the other hand, in a Japanese population, 
Kawaguchi et al. [8], in agreement with Videman et al. [4], 
found that TaqI VDR variant was associated with severe 
degeneration based on Schneiderman score, though here the 
risk genotype was “Tt” [8].

Some of the contradictions in the literature could be 
related to differences in the definition of the LDD pheno-
type. Rajasekaran et al. [9] critically reviewed the LDD-
related genetic studies and examined gene associations with 
LDD-related morphological phenotypes such as degree of 
disc degeneration, disc bulging, Modic change, endplate 
defects and Schmorl’s node on a large cohort. They high-
lighted the importance of standardizing the description of 
disc degeneration for studies of this topic. The contradictions 
could also arise from underpowered studies, with only small 
numbers of subjects examined (e.g. Noponen-Hietala com-
pared only 29 subjects with 56 controls; Kawaguchi’s study 
population consisted of 205 young adults; Toktas compared 
75 subjects with 25 controls).

Hence, in the present study, well-defined phenotypes 
within a homogenous dataset of a large, international cohort 
were analysed in association with the candidate VDR single-
nucleotide gene variants and haplotypes to clarify the pos-
sible significance of VDR in LDD. These results point to the 
existence of endophenotypes in the process of disc degen-
eration, viz. specific phenotypes (Pfirrmann score, endplate 
defect, Modic changes, disc prolapse) each with a clear dis-
tinct genetic connection underpinning a biological pathway.

Materials and methods

Study population

An international database (Genodisc cohort) containing 
the clinical, radiological, demographic and genetic data of 
2635 low back pain patients from spine hospitals in three 

European countries (Hungary, Italy, UK) was used [10–14]. 
All subjects were hospitalized and surgically treated for 
degenerative lumbar spine pathology. Subjects were involved 
in the study after signing a written informed consent with the 
approval of the competent ethical committee. The original 
dataset of the present study is available upon request.

Phenotype measurements

A set of degenerative phenotypes was qualitatively deter-
mined on lumbar spine MRIs by the same radiologist (IM). 
Four different phenotypes (Pfirrmann grade, Modic change, 
disc prolapse, endplate defect) were used in the present anal-
ysis. All the phenotypes were assessed at five lumbar seg-
ments. In the subsequent analysis, we determined the genetic 
association with the phenotypes at any lumbar levels, at also 
at L4/5 and L5/S1 levels separately. Pfirrmann grading sys-
tem was used to determine the level of overall disc degenera-
tion. Mean Pfirrmann grade and dichotomous derivate were 
analysed statistically. In the latter case, as suggested by oth-
ers [7, 15], discs were scored as “normal” (Pfirrmann 1–2) 
and “pathologic” (Pfirrmann 3–5) (Fig. 1). Degenerative 
endplate changes, such as Modic I and Modic II changes, 
were grouped together into the dichotomous Modic change 
phenotype. Disc prolapse was defined as the presence of disc 
bulging or herniation at the given spinal segment. Endplate 
defect was determined as bony defect at either the upper 
or the lower endplate (e.g. Schmorl’s node). The distribu-
tion of the prevalence of the degenerative phenotypes in the 
Genodisc cohort was the following: 1858 patients had Modic 
change, 2586 patients had pathologic Pfirrmann grade, 1225 
patients had endplate defect and 2541 patients had disc pro-
lapse. The distribution of the studied phenotypes in the final 
study population is given in Table 1.

Genotyping

DNA was extracted from venous blood or saliva samples 
using commercial kits. Seven candidate VDR SNPs were 
genotyped at the Technology Centre, Institute for Molec-
ular Medicine Finland (FIMM), University of Helsinki, 
using a Sequenom MassArray technology and the iPLEX 
Gold reagents (Sequenom Inc., San Diego, USA). Allelic 
and genotype distributions, Hardy–Weinberg equilibrium, 
minor allele frequency (MAF) as well as associations 
between genetic variants and degenerative phenotypes 
were determined and analysed using the “SNPassoc” and 
“haplo.stats” R software packages [16]. Individual geno-
type–phenotype associations and gene–gene interactions 
were studied in generalized linear models, while haplo-
type–phenotype association was analysed applying haplo.
score tests. In haplo.score analysis, a global test of asso-
ciation as well as individual haplotype-specific tests was 
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carried out using a score function. Significant covariates 
(age, gender, weight and height, and smoking status) were 
determined for each phenotype, and a p value less than 
0.05 was considered significant. The genetic association 
analysis was also approved by the Scientific and Research 
Ethics Committee of the Medical Research Council of 
Hungary (431/PI/2007).

Results

Descriptive statistics

A total of 1426 Caucasian subjects with a complete dataset 
were involved in this study (Supplementary Figure 1). Mean 
age was 49.2 years with a range from 18 to 87 years. The 
male/female distribution was 46% and 54%. Mean height 
was 170.6 cm (SD 10.5) and mean weight was 79.7 kg (SD 
16.6) in the cohort. In the study population, we had no data 
about the smoking habits of 128 subjects, while 593 sub-
jects were never-smoker and 705 patients were ever-smoker. 
Table 2 shows the result of the genotyping process. Genotyp-
ing success rate was more than 95% for all variants. All the 
seven candidate SNPs were in Hardy–Weinberg equilibrium 
(HWE). A haploblock constructed by three candidate SNPs, 
BsmI, ApaI and TaqI (rs1544410, rs7975232, rs731236), was 
identified at the 3′-end of the gene, and another haploblock 

Fig. 1   Degenerative phe-
notypes. a Healthy discs 
(T2-weighted sagittal MR 
image); b black arrows show 
degenerated discs, from top to 
bottom Pfirrmann grades III, 
IV and V; c white star indicates 
type I Modic change at the 
lower endplate of the L.V and 
at the upper endplate of S.I; d 
black arrow indicates posterior 
disc herniation; white arrow 
shows posterior disc bulging; e 
black arrowheads show endplate 
defects

Table 1   Prevalence of the degenerative phenotypes in the study popu-
lation

Any L4/5 L5/S1 L.4/S1

Modic 873 447 529 782
Pathologic Pfirrmann 1402 1185 1186 1385
Endplate 460 140 40 168
Disc prolapse 1364 1038 1013 1335

Table 2   Studied VDR SNPs 
and descriptive statistics of 
genotyping

MAF minor allele frequency, HWp p value of Hardy–Weinberg equilibrium

rs number Traditional name Alleles Region Success rate (%) MAF HWp

rs11568820 Cdx2 G/A Promoter 95.7 0.190 0.659
rs4516035 A1012G T/C Promoter 99.3 0.415 0.661
rs2228570 FokI C/T Exon 2 98.2 0.405 0.867
rs3782905 Ddel C/G Intron 2 98.9 0.295 0.522
rs1544410 BsmI G/A Intron 8 99.3 0.397 0.505
rs7975232 ApaI A/C Exon 9 99.5 0.480 0.456
rs731236 TaqI T/C Exon 9 99.6 0.388 0.434
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constructed by two SNPs, Cdx2 and A1012G (rs11568820, 
rs4516035), was found at the 5′-end of the gene (Fig. 2).

Individual genetic associations

Pfirrmann grade

Ddel (rs3782905), FokI (rs2228570), and ApaI (rs7975232) 
polymorphisms were found to be associated with Pfir-
rmann grade (Supplementary Table 1). “G/G” genotype of 
Ddel was significantly associated with the presence of disc 
degeneration at level L4–5 (ref = C/C; C/G: OR 0.75, 95% 
CI 0.55–1.03; G/G: OR 2.01, 95% CI 1.00–4.05; p = 0.0064 
in codominant model) (Fig. 3a). At L5–S1 level, “C/C” 
genotype of ApaI was significantly related to the risk of 
severe degeneration (ref = A/A–C/A; C/C, OR 1.46, 95% 
CI 1.01–2.13, p = 0.0408).

Disc prolapse

ApaI was associated with disc prolapse (Supplementary 
Table 2). Homozygous subjects had a higher frequency 
of disc prolapse at any spinal level (p = 0.0458). At L5/S1 
region, “C/C” carriers showed the highest risk of disc pro-
lapse (ref = A/A–C/A; C/C: OR 1.39, 95% CI 1.03–1.88; 
p = 0.0271, in recessive model) (Fig. 3b).

Modic change

“A/A” genotype of BsmI (rs1544410) was associated with 
a lower frequency of Modic change at any spinal level 
(ref = G/G–G/A; A/A, OR 0.67, 95% CI 0.49–0.91, p = 0.01, 
recessive model) and at L4–5 (ref = G/G–G/A; A/A, OR 0.65, 
95% CI 0.47–0.91, p = 0.0103 in recessive model) (Fig. 3c) 
(Supplementary Table 3). C/C genotype of TaqI (rs731236) 
polymorphism had also a protective effect against Modic 
change at any level (ref = T/T–C/T; C/C, OR 0.62, 95% CI 
0.45–0.86, p = 0.0032) and at L4/5 segment (ref = T/T–C/T; 
C/C, OR 0.61, 95% CI 0.43–0.86, p = 0.0034). FokI 
(rs2228570) polymorphism was found to have an association 
with Modic change in codominant genetic model at level L4/5 
(ref = C/C; T/C, OR 1.27, 95% CI 0.98–1.64, T/T, OR 0.83, 
95% CI 0.58–1.20, p = 0.0302).

Endplate defect

“G” allele of Ddel (rs3782905) polymorphism was associated 
with endplate defect at any lumbar level (ref = C/C; C/G–G/G, 
OR 1.38, 95% CI 1.09–1.74, p = 0.0064, in dominant model) 
(Fig. 3d) (Supplementary Table 4). “A/A” genotype of Cdx2 
(rs11568820) variant was related to the higher risk of hav-
ing an endplate defect at L4/5 level (ref = G/G–A/G; A/A, OR 
2.32, 95% CI 1.08–4.9, p = 0.0444, in the recessive model).

Haplotype analyses

Three haplotypes with more than 1% frequency were identified 
inside the VDR haploblock located at the 3′-end of the gene 
(BsmI–ApaI–TaqI). The haploblock was significantly asso-
ciated with the Modic change at L4/5 level (pglobal = 0.0185 
in recessive model) where the second most common “AAC” 
haplotype was associated with lower risk of Modic change 
(p = 0.0045) (Table 3A). Another haploblock with three differ-
ent haplotypes was identified at the 5′-end (Cdx2–A1012G). It 
was related to the endplate defect at L4/5 level (pblobal = 0.048 
in additive model), where the rarest “AT” haplotype was asso-
ciated with the highest risk of endplate defect (p = 0.0055) 
(Table 3B).

Gene–gene interaction analysis

Significant GxG interactions were found between Cdx2 
and BsmI (pinteraction = 0.0206) and between Cdx2 and TaqI 
(pinteraction = 0.0062) on endplate defect at L4/5 level (Fig. 4).

Fig. 2   Linkage disequilibrium (LD) map of the seven candidate SNPs 
squares that are coloured darker if the |D′| value is high, that is, LD 
is strong. Empty dark squares mean |D′| = 1, that is, complete LD 
between two single-nucleotide polymorphisms
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Discussion

Our study underlines the association between VDR genetic 
variants and intervertebral disc degeneration and also sup-
ports the previously described complexity of the genetic 
background of this condition. In this study, we analysed the 
genetic and imaging data of a large homogenous sample 
(N = 1426) of subjects treated because of LDD. We deter-
mined and analysed associations between VDR genetic 
variants and distinct degenerative disc MRI phenotypes 
Pfirrmann grade, disc prolapse, Modic change and endplate 
defect. Association between LDD phenotypes and VDR 
gene variants was supported by different levels of genetic 
analyses, namely individual SNP associations, haplotype 
analyses and gene–gene interactions. We found that each of 
the specific disc degeneration-linked phenotypes was differ-
ently associated with VDR polymorphisms; Pfirrmann grade 
was associated with DdeI, FokI and ApaI; disc prolapse was 
associated with ApaI; Modic change was associated with 
BsmI, TaqI, FokI SNPs and the BsmI–ApaI–TaqI haploblock; 
endplate defect was associated with DdeI, Cdx2 SNPs and 
the Cdx2–A1012G haploblock. Significant VDR gene–gene 
interactions were also found to be associated with endplate 
defects.

VDR is one of the most intensely studied candidate genes 
in musculoskeletal and extra skeletal conditions. Its influ-
ence has already been shown in osteoporosis [17], muscle 
function [11] and increased fracture risk [18], but studies on 
the role of the VDR polymorphisms in the development of 
LDD have shown conflicting results [8, 19–24] as discussed 
by three recent meta-analyses about the association of VDR 
genotypes and LDD [5, 25, 26]. These papers have under-
lined the importance of large-scale, well-designed interna-
tional studies to overcome the contradictory research results 
related to the heterogeneous phenotype definitions as well as 
gender and ethnic differences.

The direct biological effect of VDR genomic variants is 
not known in LDD process, some in vitro data can support 
the genetic results. In a previous cell line study, it was shown 
that the 3′UTR haploblock’s (BsmI–ApaI–TaqI) “GCT” hap-
lotype resulted in 15% less mRNA and has 30% increased 
decay rate than “AAC” haplotype [27]. This alteration likely 
causes a decreased quantity of VDR protein in target cells 
for vitamin D giving such cells an impaired response to vita-
min D. The 3′UTR “GCT” haplotype was published in asso-
ciation with increased fracture risk [20] and weaker hand 
grip strength [11]. On the other hand, polymorphisms in 
the VDR promoter can also influence the genetic function. 

16% 20.1% 8.2%

84% 79.9% 91.8%

C/C C/G G/G

DdeI vs Pfirrmann grade
L4-5 level

Healthy Degenerated
p=0.006

A 
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E

Fig. 3   Association of Ddel with Pfirrmann grade (a), ApaI with disc 
prolapse (b), BsmI with Modic change (c) and Ddel and Cdx2 with 
endplate defect (d, e) distribution of healthy and pathologic endophe-
notype is represented by genotypes
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Transcriptional activity of the VDR promoter is 30% less 
in case of Cdx2 “G” allele compared to “A” allele [28]. The 
“A” to “G” transition in A1012G SNP negatively modifies 
the GATA-3 transcription factor-binding ability of the VDR 
promoter [29]. “A” allele (“T” in our paper) results in an 
increased promoter activity proved by Fang et al. [27] using 
luciferase activity measurements. These in vitro results thus 
support the role of various possible biological roles for VDR 
variants in the processes of disc degeneration.

As our results indicate the distinct phenotypes are differ-
ently associated with VDR genetic variants, we introduce the 
use of the “endophenotype” term in LDD genetic associa-
tion research, which has been already applied in psychiatric 
genetic association studies. Endophenotype is a quantitative 
biological trait that is reliable in reflecting the function of a 
discrete biological system and is reasonably heritable, and as 
such is more closely related to the root cause of the disease 
than the broad clinical phenotype [30].

A Modic change is an excellent example of an endophe-
notype in LDD as it can be present before any visible dam-
age on the intervertebral disc itself [31] even though the 
pathomechanism of a Modic change is not known. Some 
authors suggest that it is caused by mechanical stress while 
others suppose that it is related to ongoing inflammation 
in the degeneration process [32]. The mechanical stress 
model is based on biomechanical studies which found that 
increased shear force on endplates adjacent to degener-
ated discs resulted in microtrauma in the endplates with 
consequential bone marrow oedema similar to that seen on 
MRI for Modic I changes [31]. An alternative pathway via 
elevated levels of proinflammatory mediators such as IL-6 
and prostaglandin E2 has been suggested in a study where 
surgically removed disc tissue from patients undergoing 
fusion because of LBP was compared to tissue from patients 
undergoing discectomy for sciatica [33]. An inflammatory 
pathway for Modic changes has been also suggested in a 
study which found higher expression of tumour necrosis fac-
tor (TNF), an increase in ingrowth of immunoreactive nerve 
fibres and elevated cytokine levels in surgically extracted 
disc tissue of patients with Modic I change [34]. VDR SNPs 
appear linked to elevated susceptibility to inflammatory dis-
eases; the prevalence of TaqI is a relative risk of chronic 
periodontitis [35], the frequency of the “C” allele of a TaqI 
polymorphism is higher in chronic extremity osteomyelitis 
[36], the “A” allele of BsmI seems to be protective against 
rheumatoid arthritis [37], and the “C/C” genotype of FokI 
has a positive correlation with rheumatoid arthritis [37]. 
Considering the above-mentioned correlations, it is not 
impossible that the VDR gene polymorphisms can play a 
role in the emergence of Modic change through modulation 
of inflammation in the bone marrow.

In our study, risk of Modic change was significantly lower 
in carriers of 3′-end “AAC” haplotype, while the promoter 
haplotype was associated with the presence of structural 
endplate defects. These two endplate-related phenotypes 
were also associated with VDR genetic variants in individual 
SNP analyses. Since VDR is known to have an effect on 
different bone tissue-related physiological processes (e.g. 
remodelling, immune response) [19–22, 24] and VDR SNPs 
have an effect on fracture risk and bone density [27], it is 
plausible that through these mechanisms the endplates of a 

Table 3   (A) Association of BsmI–ApaI–TaqI haploblock with Modic 
change (pglobal = 0.0185) and (B) association of Cdx2–A1012G hap-
loblock with endplate defect (pglobal = 0.048)

Haplotype Frequency (%) Hap-Score p value

(A)
AAC​ 38.6 − 2.84 0.0045
GAT​ 12.6 − 1.21 0.2260
GCT​ 47.4 0.42 0.6775
(B)
GC 41.6 − 1.43 0.1525
GT 39.4 − 0.76 0.4448
AT 19.0 2.78 0.0055

Fig. 4   GxG interaction between Cdx2 and BsmI (a) and Cdx2 and 
TaqI (b) on endplate defect (bubbles represent the percentage of sub-
jects with endplate defect at L4/5 in different genotype combinations)
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vertebrae could be genetically more susceptible to mechani-
cal injuries (fractures, Schmorl’s nodes) [38] too.

Besides the endplate changes in degenerative spinal 
disorders, we examined the degenerative changes in the 
intervertebral disc itself, namely disc prolapse and also loss 
of signal intensity and disc height, classified by the Pfir-
rmann grade [39]. The intervertebral disc is made of two 
independent anatomical structures, the outer annulus fibro-
sus and the inner nucleus pulposus. The nucleus pulposus 
cells produce extracellular matrix components such as type 
II collagen or aggrecan which govern the disc’s biomechani-
cal behaviour [40]. In human degenerative discs, the resident 
cells also produce inflammatory cytokines (TNF-α, IL-1β) 
which result in an “inflammation-like” state [41, 42] and 
which stimulate expression of enzymes able to degrade the 
matrix (ADAMTS, MMPs), resulting in loss of aggrecan 
leading to consequent dehydration to a weakened resistance 
against mechanical loading and fall in disc height [43–45]. 
This inflammatory state can be modified by VDR as dis-
cussed above [22, 24, 32]. We found some associations 
between VDR gene variants and these disc-related endo-
phenotypes; however, they were not supported by haplotype 
and gene–gene interaction analysis, possibly because of the 
complexity of the disc degeneration process.

Degeneration not only has a multigenetic background, 
where several gene and gene variants play small, but sig-
nificant, roles, but it is also influenced by external factors. 
The influence of environment could explain the findings that 
genetic influence on the degeneration process differs at dif-
ferent spinal levels (where loading and other biomechanical 
factors are also different). Hence, although the exact patho-
mechanism is unknown, degeneration appears to arise as a 
consequence of the influences of ageing and environmental 
factors such as mechanical loading on a strong genetic back-
ground [46].

There are some important limitations of the present 
study. We could not take into account possibly relevant 
environmental effects such as physical loading history or 
diet. Also, there could be an overlapping between the phe-
notypes even with the use of the endophenotype approach. 
We did not apply any correction of the alpha level during the 
genetic association testing process. We followed this method 
because we used a hypothesis-driven approach where effect 
of candidate SNPs on a phenotype was calculated. Moreo-
ver, genetic associations were tested on different levels with 
different statistical models (individual SNP association, 
haplotype analysis, gene–gene interaction) to confirm the 
associations of the study even if the type I error rate was 
not conservatively reduced. Moreover, some of our results 
showed a different association with that reported in previ-
ous papers; whether this arises from differences in study 
population phenotype definitions or even selection bias can-
not be ascertained. These limitations above can influence 

the reliability of our findings; therefore, independent rep-
lications of the study on different populations are strongly 
recommended.

In conclusion, we state that VDR gene variants are asso-
ciated with different disc degeneration-related endophe-
notypes. The most plausible explanation of these associa-
tions is related to the influence of vitamin D on modulating 
inflammation and the immune response, but this assumption 
needs more in vitro and in vivo studies to confirm it. Based 
on our results, analysis of well-defined endophenotypes on 
large, homogenous datasets would be required to clarify the 
multifactorial, multigenetic background of intervertebral 
disc degeneration.
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Genetic variants of interleukin 1B and 6 are 
associated with clinical outcome of surgically 
treated lumbar degenerative disc disease
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Abstract 

Background:  Successfully surgically treating degenerative disc diseases can be challenging to the spine surgeons, 
the long-term outcome relies on both the physical and mental status of the patient before and after treatment. 
Numerous studies underlined the role of inflammatory cytokines – like interleukin 1B and 6 – in the development of 
chronic diseases such as failed back surgery syndrome (FBSS) and major depressive disorder (MDD) which alter the 
outcome after spinal surgery. Our aim was to evaluate the associations of IL6 and IL1B gene polymorphisms with the 
long-term outcome of degenerative lumbar spine surgeries.

Methods:  An international genetical database (GENODISC) was combined with our institute’s clinical database to 
create a large pool with long term follow up data. Altogether 431 patient’s data were analysed. Patient reported 
outcome measures and surgical outcome was investigated in association with IL1B and IL6 SNPs with the help of 
‘SNPassoc’ R genome wide association package.

Results:  Interleukin 1B variants analysis confirmed association with improvement of pain after surgery on individual 
SNP level and on haplotype level, moreover relationship with patient reported outcome and preoperative level of 
depression was found on individual SNP level. IL6 variants were associated with preoperative depression, somatization 
and with subsequent surgery.

Conclusion:  Understanding the complexity of spinal surgery patients’ long-term well-being is crucial in effectively 
treating chronic debilitating somatic diseases and the associated mental illnesses. Further studies should investigate 
more comprehensively the linkage of chronic physical and mental illnesses focusing on their simultaneous treatment.

Keywords:  Interleukins, Degenerative disc diseases, Long term outcome, Single nucleotide polymorphism
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Introduction
Degenerative disc disease (DDD) is a chronic and debil-
itating condition, which leads to loss of workdays in an 
active adult’s life [1]. Conservative treatments are mainly 
effective but occasionally surgical treatment is inevitable 

[2]. The surgical intervention in DDD aims to reduce pain 
and restore function. Surgical outcome is complex and 
multifactorial. It can be measured with objective (e.g.: 
muscle strength, vegetative functions) and subjective 
(patient reported outcome measures ‘PROMs’) assess-
ment tools. Not uncommonly, despite the perfect surgical 
technique for an obvious pathology, the patient reports 
no significant improvement and continues to suffer from 
pain and even failed back surgery syndrome (FBSS) can 
develop [3].
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Pain processing is a complex multifactorial pathway 
with different regulatory molecules. It has a biomedical 
component defined by tissue damage, an evaluative com-
ponent which is influenced by coping mechanisms and 
an affective component which is altered by psychologi-
cal disorders like depression and anxiety [4]. Cytokines 
and interleukins – such as interleukin 6 (IL6) and inter-
leukin 1B (IL1B) - have an important role in regulating 
local pain response [5–8]. IL1B also act as an upregula-
tor of other nociceptive agents and cascades such as IL6, 
prostaglandins, substance-P and matrix metalloprotease 
(MMP) 9 [9].

Single nucleotide polymorphisms (SNPs), the most 
common genetic variants have been identified in the 
genetic background of the development and outcome 
of several multifactorial diseases [10–14]. DDD is also 
a multifactorial entity with a strong genetic background 
[15] and high number of genes and their SNPs are linked 
to its pathomechanism [16–18]. Also genetic variations 
occurring in COL1A1, COL9a3 and VDR genes seems 
to be associated with the development of LDD [19]. 
DDD related pain is also influenced by different genes 
and their variations such as catechol-O-methyltrans-
ferase (COMT) [20] and β2-adrenergic receptor genes 
(ARDRB2) [5, 21]. According to published data the IL1 
gene family (IL1A, IL1B, IL1RN) and the IL6 gene varia-
tions have connection with degenerative spinal patholo-
gies [22–24], DDD related pain (low back pain, leg pain) 
[12, 25, 26] and the outcome of conservative treatment 
[27], but there is limited amount of data available about 
the associations of these gene variants in relation to spi-
nal surgery outcome [28].

The current study focuses on evaluating the relation-
ship between IL1B and IL6 gene polymorphisms and 
the long-term outcome of degenerative lumbar spine 
surgeries.

Materials and methods
Study population
Data were collected prospectively from adults (above the 
age of 18) who underwent routine, elective surgery for 
lumbar disc degeneration at one or two levels at a ter-
tiary spine center. Prospective clinical data were linked 
with the subjects’ genetic data derived from the GENO-
DISC multicenter international collaboration. Patients 
with minimum 2-year follow-up data were included into 
the final study cohort to explore the long-term outcome 
of the surgical procedures. Patients reoperated within 2 
years due to a surgical site infection, proximal junctional 
kyphosis (PJK) or adjacent segment degeneration (ASD) 
as well as subjects undergoing either acute intervention 
because of neurological emergency or tumour surgery 
were excluded from the study. Surgeries were performed 

by board-certified orthopaedic surgeons or neurosur-
geons specified in spinal surgery. Applied procedures 
included microdiscectomy, decompression and instru-
mented fusion (transforaminal lumbar interbody fusion 
or posterior fusion). All procedures were carried out 
using the standard median-sagittal posterior approach. 
All subjects signed a written consent form describing the 
scientific purpose of the systematic collection of their 
clinical and genetic data. The study was approved by the 
Scientific and Research Ethics Committee of the Medical 
Research Council Hungary (431/PI/2007).

Clinical data
Patients completed standard and validated PROMs to 
assess their clinical status before the surgery and during 
the follow-up period [29, 30]. Pain was evaluated by the 
10 cm long Visual Analogue Scale. Lumbar spine related 
function was measured with Oswestry Disability Index 
(ODI). Psychologic distress was measured by evaluating 
the level of depression and somatisation and was assessed 
with the Hungarian versions of Zung Depression Scale 
(ZDS) [30] and the Modified Somatic Perception Ques-
tionnaire (MSPQ) (Supplementary Material), respec-
tively. Patients were asked to rate the overall outcome 
of the surgery using a five-category question; “helped 
a lot”, “helped”, ‘helped only little”, “didn’t help”, “made 
things worse”. To measure global treatment outcome 
(GTO) a dichotomous variable was generated based on 
these given answers. Good outcome was defined if the 
patient responded by ‘helped a lot, ‘helped’ and poor in 
case the patient replied by ‘only little’, ‘didn’t help’, ‘made 
things worse’ [31, 32]. Surgical outcome was considered 
“good” if no re-operation was performed at the index 
level within 2 years and “poor” if a subsequent surgery 
was needed within 2 years.

Genotyping
DNA was extracted from venous blood or saliva sam-
ples using commercial. Five SNPs in IL1B and four 
SNPs in IL6 genes were selected for genotyping based 
on previous literature data [11, 33–37]. Genotyping was 
performed from 2007 to 2013 at the Technology Cen-
tre, Institute for Molecular Medicine Finland (FIMM), 
University of Helsinki using a Sequenom MassArray 
technology and the iPLEX Gold reagents (Sequenom 
Inc., San Diego, USA).

Statistics
Allelic and genotype distributions, Hardy-Weinberg 
equilibrium, minor allele frequency (MAF) as well as 
associations between genetic variants and outcomes 
were determined and analysed using the ’SNPassoc’ 
and ’haplo.stats’ R software packages [38]. Genetic 
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associations with preoperative and postoperative pain, 
disability, and psychological distress as well as global 
treatment and surgical outcome were investigated. Indi-
vidual genotype-phenotype associations were studied 
in generalized linear models (GLM). Genetic subgroups 
with less than 4 (1%) subjects were excluded from sub-
sequent statistical analyses. Haplotype-phenotype 
association was analysed applying haplo.score tests 
and GLM models. In haplo.score analysis, a global test 
of association as well as individual haplotype-specific 
tests are carried out using a score function. Disc hernia-
tion subgroup (patients underwent microdiscectomy) 
was also analysed separately to investigate the role of 
IL SNPs in sciatica. Significant covariates (age, gender, 
weight, height, preop ZDS and preop MSPQ score, type 
of surgery) were determined and entered into the mod-
els for each outcome. P-value less than 0.05 was consid-
ered significant.

Results
Study population
A total of 431 subjects (all Caucasians) met the study 
inclusion criteria. Mean age were 52.7 (SD:13.9y) years 
(from 20 to 88 years) and male/female ratio was 0.6 
(male:166, female:265). As the index surgery 171 patients 
had microdiscectomy, 22 patients had decompres-
sion, 142 patients had one level fusion and 96 patients 
had 2-level fusion. In the final study cohort, 44 patients 
required a subsequent lumbar surgery at the index level 
during the follow-up. Eight patients had re-discectomy 
or decompression, 35 required fusion and in 1 case the 
implants had to be removed.

Descriptive statistics of genotyping
Table 1 shows the results of the genotyping process. The 
genotyping success rate was more than 97% in all cases. 
All studied SNPs were in Hardy-Weinberg equilibrium. 

Two haploblock from IL1B gene were identified consist-
ing of 2-2 SNPs (‘rs1143634-rs1143633’and ‘rs1143627-
rs16944’) and no haploblock was identified on the IL6 
gene as seen on Fig. 1.

Associations of IL1B and IL6 gene variants 
with preoperative PROMs
In the overall population the mean±SD values of pre-
operative ODI score was 47.4±18.4 and the mean 
VAS score was 7.2±1.9, the mean ZDS was 39.6±8.1, 
MSPQ was 8.3±5.7. No individual SNP was associated 
with preoperative ODI and pain (Table  2), however 
both IL genes had SNPs related to the level of depres-
sion. ‘T’ allele of rs1143627 IL1B SNP was associated 
with higher level of depression (ZDS was 40.6±8.7, 
39.2±7.3 and 38.3±8.0 in case of ‘T/T’, ‘T/C’ and ‘C/C’ 
genotypes, respectively, p-value=0.025 in log additive 
model). IL1B rs16944 ‘G’ allele carriers also showed 
higher level of depression (ZDS was 40.6±8.8, 39.2±7.3 
and 38.0±8.0 in case of ‘G/G’, ‘A/G’ and ‘A/A’ genotypes, 
respectively, p-value=0.025 in log additive model). 
rs1143634 IL1B was associated with ZDS in an over-
dominant model (p=0.025, “C/T” mean ZDS±SD was 
40.8±8.4 and 39.0±7.8 in case of ‘C/T’ and ‘C/C’+’T/T’ 
genotype groups). The ‘C’ allele of IL6 SNP rs2069835 
was linked to increased level of depression (mean 
ZDS±SD were 39.2±7.8, 42.2±9.2, and 45.3±10.1 in 
case of ‘T/T’, ‘T/C’ and ‘C/C’ genotypes, respectively, 
p=0.003 in log-additive model).

IL6 rs2069835 was associated with the level of pre-
operative somatization (Mean MSPQ±SD was 8.0±5.3 
and 10.2±7.0 in case of ‘T/T’ and ‘T/C’+’C/C’ geno-
types respectively, p=0.010, in dominant model) 
(Table 2).

IL1B haplotypes were not associated with preoperative 
ODI, depression, somatization, and pain (data not shown).

Table 1  The descriptive statistics of the genotyped SNPs

The descriptive statistics of the genotyped SNPs, HWE: Hardy-Weinberg equilibrium

Gene rs number Position Alleles Major allele frequency 
%

HWE missing (%)

IL1B rs3917365 3’ UTR​ C/T 91.5 0.344 0.2

IL1B rs1143634 Exon 5 C/T 73.7 1.000 0.5

IL1B rs1143633 Intron 4 G/A 65.1 0.521 1.2

IL1B rs1143627 Promoter T/C 65.6 0.914 0.2

IL1B rs16944 Promoter G/A 65.8 1.000 2.1

IL6 rs2069852 3’ UTR​ G/A 95.1 0.613 0

IL6 rs2069861 3’ UTR​ C/T 93.6 0.688 0.5

IL6 rs2069835 Intron T/C 92.7 0.264 1.4

IL6 rs1800796 Promoter G/C 93.4 1.000 1.2
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Associations of IL1B and IL6 gene variants 
with postoperative outcome
Change in pain and disability
The mean overall improvement in pain intensity was 
3.4±3.2 points (overall 61% improvement) in the study 
cohort. IL1B rs1143633 was strongly associated with the 
change in the reported pain at follow-up, where the ‘A’ 
allele carriers had the largest improvement in pain inten-
sity (mean change±SD (%) in pain intensity was -3.7±3.3 
(50%) in ‘A/G’+’A/A’ group vs -2.9 ±3.2 (40%) in ‘G/G’ 
genotype, p=0.00085 in dominant model) (Table  3). 
Another IL1B SNP (rs1143634) was associated with sci-
atica in the disc herniation subgroup. In this cohort, the 
level of preoperative pain was significantly higher in the 
‘CC’ genotype (VAS=7.5±1.9, 6.6±2.2 and 6.7±2.3 for 
‘C/C’, ‘C/T’ and ‘T/T’ genotypes respectively, p=0.006 in 
dominant model) (Fig. 2). Change in ODI score was not 
associated with the studied gene variants.

Global treatment outcome
In the study cohort 350 patients (82%) reported good 
outcome while 75 patients (17%) reported poor outcome 

(6 patients’ data were missing). The ‘C’ allele of IL1B 
rs1143627 was related with better GTO (OR:1.49, 
p=0.049 in log-additive model) (Table 3).

Surgical outcome
In the overall population 44 patients had poor surgical 
outcome (10.2%). All 4 IL6 SNPs were associated with 
the risk of reoperation within 2 years, even after adjust-
ing to type of index surgery. ‘G/G’ genotype of rs1800796 
(OR:6.6, p=0.009, dominant model), ‘G/A’ genotype of 
rs2069852 (OR:5, p=0.039 in codominant model) and 
‘C’ allele of rs2069835 (p=0.027, OR:1.27 in log-additive 
model) were associated with worse outcome. rs2069861 
was associated with surgical outcome in an overdomi-
nant model (p=0.014) (Table 3).

Results of haplotype analysis
There was one haploblock in IL1B gene (rs1143634-
rs1143633) which was associated with change in pain. 
‘C-A’ haplotype was associated with the greater improve-
ment in pain compared to the most common ‘C-G’ hap-
lotype (p= 0.001) (Table 4).

Fig. 1  Linkage disequilibrium (LD) map of IL1B (A) and IL6 (B) SNPs. Squares are colored darker if the |D’| value is high, that is, LD is strong. Empty 
dark squares mean |D’|=1, that is, complete LD between two single nucleotide polymorphisms
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Discussion
Number of spine surgeries because of DDD is continu-
ously increasing. The rate of patients with poor out-
come is between 5-70% in different surgical cohorts, and 
chronic pain condition because of failed back surgery 
syndrome (FBSS) is also not uncommon in this popula-
tion. Understanding the pathophysiology of chronic pain 
conditions - such as FBSS - can lead clinicians to develop 
and apply new therapeutic methods in order to alleviate 
pain and improve the quality of life in this large patient 
group. The well-being of a patient is determined by mul-
tiple musculoskeletal, functional, and psychosocial fac-
tors [32]. Genetic influence on surgical outcome has been 
also highlighted by previous studies [28]. In the present 
study, polymorphisms of two interleukin (IL1B, IL6) 
genes in a large cohort of 431 patients who underwent 
elective lumbar spinal surgery for DDD were investi-
gated in terms of the therapeutical outcome. Relationship 
between long-term treatment results, psychological fac-
tors, pain, and different IL gene variants were supported 
by individual SNP associations and haplotype analyses. 
Outcome of routine lumbar degenerative surgeries was 
analysed in different dimensions. Associations of IL gene 

variants with change in pain, disability as well as patient-
reported global treatment outcome and need for a subse-
quent surgery were determined to elucidate the potential 
genetic influence.

IL1B variants were significantly related to the improve-
ment in pain after the spine surgery, ‘A’ allele of rs1143633 
as well as ‘C-A’ haplotype of rs1143634-rs1143633 hap-
loblock were associated with greater improvement in 
pain. No other gene variant was associated with pain 
relieve however when we analysed the microdiscectomy 
subgroup we found that patients with ‘C/C’ genotype 
of rs1143634 had significantly higher preoperative pain 
compared to the other genotypes. Other IL1B variant 
(rs1143627) was associated with patient reported global 
treatment outcome, while majority of the studied IL1B 
variants were related to the preoperative level of depres-
sion. Interestingly IL6 variants were significantly associ-
ated with the need for a subsequent surgery during the 
follow-up period. The ‘C’ allele of rs2069835 IL6 SNP 
was associated with a higher risk for reoperation and also 
with increased level of preoperative depression and som-
atization. None of the studied gene variants were associ-
ated with preoperative spinal pain and disability level.

Table 2  Associations of IL1B and IL6 gene variants with preoperative PROMs

* : significant in dominant model, **: significant in overdominant model, †: significant in codominant model, ‡: significant in recessive model, ƒ: significant in log-
additive model

SNP Genotype Preop ZDS p Preop MSPQ p Preop ODI p Preop pain p
(N) Mean+SD Mean+SD Mean+SD Mean+SD

IL1B_rs3917365 C/C (358)
T/C (71)
T/T (1)

39.5+8.2
39.6+7.1
63

0.146 8.3+5.8
8.2+4.9
22

0.832 47.5+18.7
47.1+16.7
60

0.78 7.2+2.0
7.2+1.9
8

0.69

IL1B_rs1143634 C/C (233)
C/T (166)
T/T (31)

39.0+7.8
40.7+8.4
38.4+7.9

0.025** 8.2+5.7
8.3+5.3
9.3+7.4

0.401 47.1+17.9
47.7+19.0
48.3+18.5

0.655 7.3+1.9
7.1+2.0
7.0+2.1

0.253

IL1B_rs1143633 G/G (184)
A/G (187)
A/A (41)

39.4+8.1
39.9+7.8
39.7+9.0

0.526 8.6+5.6
7.9+5.4
8.9+6.9

0.183 47.1+17.9
47.4+19.2
47.6+16.0

0.813 7.1+2.0
7.3+1.8
7.4+2.0

0.170

IL1B_rs1143627 T/T (184)
T/C (196)
C/C (50)

40.6+8.7
39.2+7.3
38.0+8.0

0.025ƒ 8.0+5.5
8.5+5.8
8.6+5.6

0.371 48.8+18.2
46.0+18.8
48.3+16.9

0.135 7.1+2.1
7.3+1.8
7.2+2.2

0.338

IL1B_rs16944 G/G (182)
A/G (191)
A/A (49)

40.6+8.8
39.2+7.3
38.0+8.0

0.025ƒ 8.0+5.5
8.5+5.9
8.5+5.6

0.424 48.6+18.2
46.3+19.0
48.5+17.0

0.207 7.1+2.1
7.3+1.8
7.3+2.2

0.253

IL6_rs2069852 G/G (389)
G/A (42)
A/A (0)

39.7+8.0
39.1+8.7
-

0.629 8.4+5.8
7.0+4.4
-

0.192 47.2+18.3
59.8+18.5
-

0.375 7.2+2.0
7.1+2.0
-

0.623

IL6_rs2069861 C/C (376)
T/C (51)
T/T (2)

39.7+8.0
39.4+8.5
33.5+0.7

0.282 8.5+5.8
7.3+4.7
n/a

0.103 47.9+18.5
43.5+16.2
26+25.5

0.095 7.2+1.9
7.1+2.1
5.4+4.2

0.191

IL6_rs2069835 C/C (4)
T/C (54)
T/T (367)

45.3+10.1
42.2+9.2
39.2+7.8

0.003ƒ 10.0+10.7
10.2+6.9
8.0+5.3

0.010* 39.5+31.8
48.5+18.4
47.2+18.2

0.393 8.1+1.3
7.2+1.6
7.2+2.0

0.385

IL6_rs1800796 G/G (371)
G/C (54)
C/C (1)

39.8+8.0
38.4+8.6
40

0.239 8.5+5.7
6.8+4.7
14

0.087 47.0+18.1
50.2+19.3
40

0.208 7.2+2.0
7.1+1.9
4.4

0.149
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Number of studies supported the relationship between 
intervertebral disc degeneration and IL1, IL6 gene vari-
ants [23, 24, 39–42]. SNPs of these genes have been 
showed to be associated with the outcome of different 
surgical treatment [43–46], but only Moen et  al. have 
studied the possible association of IL1 gene family and 
long-term outcome in patients treated because of lumbar 
disc herniation so far [28]. They did not find a significant 
relationship between rs1143627 IL1B SNP and treatment 
outcome, however they did not publish the genetic effect 
of single SNPs but their combinations on a mixed (sur-
gically and non-surgically treated) patient groups. The 
same SNP (rs1143627) was found to be associated with 
symptomatic disc herniation [26] and with DDD asso-
ciated pain [25] by others. IL1B variants have been also 
described in association with DDD [22, 40]. IL6 variants 
have not been studied related to the surgical outcome of 
DDD yet but they were previously associated with the 
process of lumbar disc degeneration [24, 39, 42].

The association between IL1B, IL6 genetic variants and 
the therapeutic outcome after lumbar spinal surgeries 
can be explained by different mechanisms:

1) Progressive degeneration process can lead to persis-
tent spinal pain and a potential indication of a subsequent 
surgery. IL1B is involved in multiple pathological process 
of disc degeneration. It stimulates extracellular matrix 
degradation, accelerates cellular senescence and induces 
apoptosis [47]. rs1143633 in IL1B was associated with 
improvement of pain after surgery in our study while 
this SNP was found to be associated previously with the 
higher occurrence of disc degeneration (HIZ) [40] what 
can be a potential chronic pain source. IL6 variants have 
been also described in relation to DDD [48, 12, 42].

2) Tissue damage is often mediated through local 
inflammation. Inflammatory mediators such as IL6 and 
IL1B carry an important role in regulating and sustaining 
inflammation and pain. Different studies showed their 
potential role in disc degeneration related inflammatory 
process [49–51]. IL6 is crucial in homeostasis mainte-
nance and host defence but its overproduction can cause 
the development or progression of diseases (such as path-
ologic pain) [52, 53]. The serum level of IL6 is increased 
in herniated disc which promotes upregulation of MMPs 
[53, 54]. Kraychete et  al. also showed that patients with 
chronic low back pain due to disc herniation had higher 
level of serum IL6 [55]. The tissue level of IL6 can be 
related to the genetic variant of the gene. For example, 
rs1800796 IL6 SNP (what we found to be strongly asso-
ciated with FBSS) is associated with increased promoter 
activity boosting the local secretion of IL6 [12, 42]. The 
two genes have a potential influence on each other, while 
IL1B is described as one of the key local inducers of IL6 
production [50, 51], [56]. Not surprisingly, the variants 
of IL1B and IL6 genes have been associated with other 
chronic inflammatory conditions such as periodonti-
tis, cancer, osteoporosis, type 2 diabetes and diabetic 
nephropathy [33–36, 57–62].

Fig. 2  Preoperative pain in microdiscectomy subgroup (mean ±SD)

Table 4  IL1B haplotype association (GLM and hapscore) with 
the change in pain after surgery

a global p-value: 0.051

Change in max pain GLM model

Haploblock Haplotype Haplotype 
frequency

diff (95% 
CI)

hap 
scorea

p

IL1B 
rs1143634-
rs1143633

C-A
T-G
C-G

0.34
0.25
0.38

-0.7 (-1.2 
– (-)0.3)
-0.2 (-0.7 
– 0.3)
-3.8 (ref-
erence)

-2.46742
1.59408
0.38051

0.001
0.37
-
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3) Psychological issues are also important in pain 
response and in the development of chronic pain. 
Depression and anxiety have been previously described 
as risk factors of DDD and poor surgical outcome after 
spine surgeries [4, 32, 63, 64]. Interleukin genes can sig-
nificantly influence the patient’s psychological profile. 
Chronic inflammation and dysregulation of the immune 
response is a key factor in the development of major 
depressive disorders (MDD) [65, 66]. Patients with MDD 
show an abnormal profile of pro- and anti-inflammatory 
circulating cytokines [66–69]. In animal models of MDD, 
increased level of pro-inflammatory cytokines caused 
central serotonin depletion, hypothalamic–pituitary–
adrenal (HPA) axis dysregulation, microglial activation 
and brain structure alteration [66]. In animal inflamma-
tory MDD (MDD-I) models, IL1B appears to be the ini-
tial triggering complex of the inflammatory cascade both 
centrally and peripherally [66]. In our study, some IL1B 
variants were significantly associated with the preop-
erative level of depression. These findings are in accord-
ance with previous report about the positive association 
between rs1143627 IL1B polymorphisms and MDD [70]. 
In accordance with our findings, Yu et al. found that the 
homozygotic ‘T/T’ patients of rs1143634 had a tendency 
of suffering from less severe depressive symptoms than 
‘T/C’ homozygotes [71]. ‘T/T’ genotype of rs1143627 is 
reported to have a strong connection with major recur-
rent depression [72], in the meantime we found that 
patients with this particular genotype had worse scores 
on the depression scale. Two of the investigated SNPs, 
rs16944 and rs1143627 are located in the promoter 
region of the gene. These polymorphisms lead to altered 
expression of IL1B which results in local inflammation 
and promotes the production of MMPs [73]. A study 
suggested that IL1B rs16944 gene polymorphism hinder 
the pharmacological response in the treatment of MDD 
by increasing the risk of non-remission over 6 weeks 
of antidepressant treatment [74]. Another IL1B SNP 
(rs1143633) was strongly associated with postoperative 
pain in our study while rs1143634 was strongly associ-
ated with the preoperative pain intensity but only in 
the disc herniation subgroup. Previously, association of 
intensity of back pain and this SNP have been published 
in war veterans with posttraumatic stress disorder [75]. 
Association between rs1143633 and pain have not been 
published yet, however there are a few studies investigat-
ing its relationship in paediatric MDD and schizophre-
nia [76, 77]. rs2069861 in IL6 was associated with both 
depression and somatization in our cohort. Somatization 
is also an important factor in the development of symp-
tomatic DDD [64]. Genetic variants of IL6 were linked to 
depression, somatization and anxiety in numerous stud-
ies [78–82].

Recently published data showed the possible role of 
interleukin agonist drugs in the treatment of pathologi-
cal pain (e.g., chronic pain, inflammatory pain etc.) [83], 
therefore novel therapeutic strategies targeting IL6 or 
its receptors have been developed and successfully used 
in the treatment of selected diseases. In a paper a sin-
gle intradiscal injection of tocilizumab (IL6 receptor 
antibody) provided short-term alleviation of discogenic 
pain [84]. Variants of the interleukins’ and their recep-
tors’ genes can modify the effect of this targeted anti-
inflammatory therapies, however there is no data about 
that so far.

In genetic association studies the sample size is 
highly important, as it can significantly alter the results. 
However, the sample size varies in the published stud-
ies, hence inconsistent genome wide association study 
results with non-reproducible results exist [16]. Thus, 
in our study we aimed to avoid sample size related 
study bias by using a prospective international large 
dataset to strengthen the findings. There are some 
limitations of the present study. Selection and regional 
population bias cannot be ruled out fully because only 
Caucasian patients were enrolled to the study. We did 
not apply any correction of the alpha-level during the 
genetic association testing process. We followed this 
method because we used a hypothesis-driven approach 
where effect of candidate SNPs on a phenotype was 
calculated. Moreover, genetic associations were tested 
with different statistical models (individual SNP associ-
ation, haplotype analysis) to confirm the associations of 
the study even if the Type I error rate was not reduced. 
Comorbidities (e.g.: psychiatric disorders) can influ-
ence the genetic associations even if we have adjusted 
the statistical analyses for individual level of depression 
and anxiety. Therefore, study population selection bias 
cannot be ruled out completely. These limitations above 
can influence the credibility of our findings, therefore 
independent replications of the study are strongly rec-
ommended on different populations.

In conclusion we can state that IL1B and IL6 gene vari-
ants are associated with the psychological status and the 
long-term outcome of surgically treated lumbar DDD 
patients and these associations can be related to each 
other. The most plausible explanation to these findings 
could be linked to the major role of these cytokines in 
local and systemic chronic inflammation. Based on our 
findings and the corresponding literature advanced treat-
ment methods could be established targeting interleukin 
1B, interleukin 6 and its genes to successfully prevent/
treat FBSS or even primary lumbar degenerative patholo-
gies. On the other hand, the consideration of patient-spe-
cific genetic difference can be important to maximize the 
therapeutic outcome.
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