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A B S T R A C T   

Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests 
that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instanta
neous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, 
age-related differences and brain topography characteristics. These effects are well captured and reflected in the 
spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is 
scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a 
suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the 
spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central 
nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of 
oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an 
EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep 
replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian 
sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, 
with spindle ranges signifying non-rapid eye movement and non-spindle oscillations – rapid eye movement 
phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the 
framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to 
bridge the gap between the two-process model of sleep regulation and clinical somnology.   

1. Introduction: measuring sleep by staging the 
polysomnographic records 

Polysomnography, the gold standard method of measuring sleep 
relies on registering and analysis of time series reflecting ongoing brain 
electrodynamics, muscle tone, eye movement, heart rate, and respira
tion (Chokroverty et al., 2005; Rundo and Downey, 2019). 
Sleep-wake-related brain processes are most commonly assessed by 
analysing the scalp-recorded electroencephalogram (EEG), one of the 
key components of polysomnography, aiming to depict the time struc
ture of summed, synchronized extracellular currents of cortical neurons 
(pyramidal cells organized along cortical columns), including synaptic 
currents, fast action potentials and their afterpotentials, calcium spikes 
and voltage-dependent intrinsic currents (Buzsáki et al., 2012; Jackson 
and Bolger, 2014). Other commonly recorded time series data in 

polysomnography recordings are the electro-oculogram (EOG) and the 
electromyogram (EMG) reflecting eye movements and muscle tone, 
respectively. Based on published expert consensual criteria, equidistant 
epochs of polysomnography records (20 or 30 s) are visually assessed by 
applying a set of written rules and categorized in different stages and 
then the whole record is characterized by the absolute or relative length 
and the pattern of succession of these sleep stages. 

The first attempt to define such stages was based on the pioneering 
works of Alfred Lee Loomis. By relying largely on EEG records, Loomis 
defined the following sleep-wake stages: Alpha (AL), Low voltage (BL), 
Spindles (CL), Spindles plus random (DL), Random (EL) (Loomis et al., 
1937). (The subscript L, standing for Loomis, is added to the original 
capital letters in order to avoid confusion with other capital letter-based 
symbols and formulae). This qualitative description contains some 
objective frequency criteria in form of 14 Hz spindles and 0.5–3 Hz 
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Contents lists available at ScienceDirect 

Progress in Neurobiology 

journal homepage: www.elsevier.com/locate/pneurobio 

https://doi.org/10.1016/j.pneurobio.2024.102589 
Received 19 August 2023; Received in revised form 26 January 2024; Accepted 5 March 2024   

mailto:bodizs.robert@med.semmelweis-univ.hu
www.sciencedirect.com/science/journal/03010082
https://www.elsevier.com/locate/pneurobio
https://doi.org/10.1016/j.pneurobio.2024.102589
https://doi.org/10.1016/j.pneurobio.2024.102589
https://doi.org/10.1016/j.pneurobio.2024.102589
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pneurobio.2024.102589&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Progress in Neurobiology 234 (2024) 102589

2

random waves, as well as some amplitude specifications (20–40 µV 
spindles and random waves as high as 300 µV). However, random 
waves, which are termed nowadays slow or delta waves were not 
defined in terms of minimum acceptable amplitudes (Table 1). 

The next consensual staging system was based on the work of 

Rechtschaffen and Kales (1968) (R&K), involving among others the 
illuminating lessons derived from the seminal discovery of the Rapid Eye 
Movement (REM) phase of sleep, as well as its recurrence in roughly 
90 minutes cycles (Aserinsky and Kleitman, 1953; Dement and Kleit
man, 1957). That is two phases of sleep were differentiated: non-REM 
(NREM) and REM sleep. The former was proposed to be further 
decomposed in Stages S1, S2, S3, and S4. S1 was defined as a transitional 
stage at the border of wakefulness and sleep (partially overlapping with 
stage BL in the Loomis coding system), whereas S2 as stable NREM sleep 
with emerging sleep spindles and K-complexes, although of low depth 
(Loomis stage CL). In turn, S3 and S4 (also termed together as slow wave 
sleep - SWS) are characterized by the presence of at least 20% or 50% of 
high amplitude (>75 µV peak-to-peak) slow waves (<2 Hz), respectively 
and are considered as deep sleep (Loomis stages DL and EL). In addition 
to low voltage fast EEG pattern with occasional theta, alpha and beta 
waves, the definition of REM sleep was linked to the presence of eye 
movement potentials as well (partial overlap with stage BL in the Loomis 
system, Table 1). Recent criteria provided by the American Academy of 
Sleep Medicine (AASM) do not differentiate between Stages S3 and S4 
sleep, considering them as a unitary stage in the context of the new 
terminology (Stages N1, N2, N3, and R, Fig. 1A). However, the criteria of 
the >75 µV peak-to-peak amplitude of slow waves was left unchanged, 
thus it is still actively used in scoring polysomnography records of sleep 
in adults (Berry et al., 2018; see Table 1 for further details). 

Although particularly important in the diagnosis and follow-up of 
several sleep disorders, polysomnography analysis techniques rely on a 
small fraction of the information available within the signals. A need to 
reconsider the current approach and extract more complex metrics to 
conform the needs of precision medicine were put forward (Lim et al., 
2020). As Neil Stanley states, there is no perfectly staged sleep record(s) 
against which to benchmark human scorers or automatic scoring algo
rithms. A logical suggestion of the author is to change the way of 
approaching the issue of sleep staging: Instead of implementing 
consensual rules of the expert committees to computer programs, there 
is need to base the rules on objectively defined computer measures 
(Stanley, 2023). Here, we put forward an alternative concept of sleep 
based on the statistical regularities of time series and the parametriza
tion of the EEG Fourier spectrum. Our intention is to transcend 
consensual staging rules and bridge the gap between the fundamental 
regulatory models and the clinical assessment of sleep. 

2. Measuring sleep by spectral analysis of the EEG 

2.1. Fourier analysis 

The Fourier’s theorem claims that any time series, irrespective of 
shape and complexity can be decomposed to regular sine and cosine 
waves of varying frequencies, phases and amplitudes. The process of this 
decomposition is known as Fourier analysis, which results in a set of 
coefficients forming complex numbers. The modulus of these complex 
numbers is an array of amplitudes of component waves (harmonics) as a 
function of frequency and called the amplitude spectrum (i.e. spectrum 
of frequencies, see Fig. 1B), whereas the sets of squared amplitudes or 
areas below the squared harmonic waves are known as power spectrum 
or power spectrum density, respectively. The squared spectra are also 
termed as periodograms (Cox and Fell, 2020; Rampil, 1998). 

2.2. Pioneering Fourier analysis studies of EEG: conclusions are still 
highly relevant today 

The first published Fourier analyses of EEG time series is a German- 
language paper emphasizing the presence of several harmonics in the 
EEG, suggesting the need to consider the potential role of other fre
quencies, besides alpha and beta waves primarily known at that times 
(Dietsch, 1932). A few years later a mechanical-electrical integrator was 
designed by Albert M. Grass and used in a seminal work in the field. The 

Table 1 
A shortened summary of rules for standard scoring of polysomnography: a his
torical and comparative account*.  

Loomis** R&K*** AASM**** 

AL (alpha): Alpha 
rhythm (9–11 Hz) 
appearing in 
trains of various 
length. The eyes 
may be slowly 
rolling 

Wake: The EEG contains alpha 
activity and/or low voltage, mixed 
frequency activity usually, but not 
necessarily accompanied by 
relatively high muscle tone, and 
often eye movements and blinks are 
present in the tracing 

W: Trains of 
posterior dominant 
EEG alpha rhythm 
(8–13 Hz), eye blinks 
(0.5–2 Hz) or 
movements (initial 
deflection lasts <
500 ms) 

BL (low voltage): A 
quite straight 
record, with no 
alpha rhythm and 
only low voltage 
changes of 
potential. Rolling 
of the eyes may 
occur. 

REM 
phase 

REM: Relatively low 
voltage, mixed 
frequency EEG with 
episodic rapid eye 
movements, presence of 
sawtooth EEG waves, 
low muscular tonus 

R: Low-amplitude, 
mixed-frequency 
EEG activity without 
K-complexes (lasting 
≥ 0.5 s) and sleep 
spindles (11–16 Hz), 
sawtooth EEG 
pattern (triangular 
2–6 Hz waves), low 
muscular tonus with 
transient irregular 
bursts (<0.25 s), 
rapid eye 
movements (initial 
deflection lasts <
500 ms) 

NREM 
phase 

S1: Relatively low 
voltage, mixed 
frequency EEG with 
prominence of activity 
in the 2–7 Hz range 
(50–75 µV). Alpha 
activity < 50% of the 
record. Vertex sharp 
waves may occur. Slow 
eye movements, muscle 
tone: S1 < Wakefulness. 

N1: Low-amplitude, 
mixed-frequency 
EEG activity 
(predominantly 
4–7 Hz), alpha 
rhythm in less than 
50% of the epoch, 
vertex sharp wave 
transients, slow eye 
movements (initial 
deflection lasts >
500 ms) 

CL (spindles): Line 
slightly irregular 
with 14 Hz 
spindles of 20–40 
µV every few 
seconds. 

S2: Presence of sleep 
spindles (12–14 Hz, 
duration ≥ 0.5 s) and K- 
complexes (duration ≥
0.5 s, maximum: vertex) 
in the EEG 

N2: presence of EEG 
transients like K- 
complexes (lasting ≥
0.5 s) and/or sleep 
spindles (11–16 Hz) 

DL (spindles plus 
random): The 
spindles continue 
together with 
large random 
potentials 
0.5–3 Hz. The 
random voltages 
may be as high as 
300 µV. 

SWS S3: EEG waves 
of < 2 Hz 
frequency and 
> 75 µV peak- 
to-peak 
amplitude in 
20–50% of the 
record 

N3: EEG slow wave 
activity (0.5–2 Hz, 
>75 µV peak-to- 
peak) present in ≥
20% of the epoch, 
optionally persisting 
sleep spindles 

EL (random): The 
spindles become 
inconspicuous, 
but the large 
random 
potentials persist 
and come from all 
parts of the 
cortex. 

S4: EEG waves 
of < 2 Hz 
frequency and 
> 75 µV peak- 
to-peak 
amplitude in 
>50% of the 
record  

* Note the lack of objective amplitude criteria in many instances (rules; e.g.: 
“relatively low voltage”) 

** Loomis et al. (1937) 
*** Rechtschaffen and Kales (1968) 
**** American Academy of Sleep Medicine (Berry et al., 2018) 
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motivation of this second investigation is still highly relevant in the 21st 
century sleep science: “The electroencephalogram as usually recorded 
shows a confusion of wave forms and a mixture of frequencies which are 
impossible of accurate visual analysis. With experience one can learn to 
detect certain gross features which have significant clinical and physi
ological correlates, but in this there is more art than science. Certain 
crude indices which have been devised as a basis for comparison are 
open to theoretical criticism. They are not arrived at objectively, and do not 
afford a consistent expression for the data” (Grass and Gibbs, 1938; 
emphasis added). The study depicts several examples of non-linear 
decrease in the amplitude spectra, transiently overridden by peaks 
emerging around the frequencies in the alpha and/or theta range, 
cohering with the current knowledge on the spectral features of resting 
state EEG. Fourier transforms of the EEG during sleep were first reported 
by Knott et al. (1942) leading the authors to conclude that the traditional 
categories of sleep (Loomis et al., 1937) do not take into account all of 
the phenomena appearing on the record. In addition, sleep was revealed 
to differ "from the waking state solely in the distribution of energy 
throughout the continuum of frequencies, not in the introduction of new 
frequencies" (Knott et al., 1942; emphasis added). In sum, the inherently 
suboptimal effectivity of visual EEG analysis and the characterization of 
sleep-wake states as a pattern of energy distribution over the frequency 
continuum are two conclusions with outstanding relevance for our 
current attempts to deliberately describe the fundamental sleep regu
latory processes. 

2.3. Band-limited and binwise spectral studies of sleep-wake EEG 

The vast majority of objective and quantified EEG data in the field of 

sleep research are derived from the Fast Fourier Transformation (FFT)- 
based analysis of short and tapered record segments of equal length, the 
squared modulus of which are averaged over longer periods (multiple 
segments), according to the Welch-procedure (Welch, 1967). Commonly 
used EEG spectral power (density) measures are band-limited, according 
to the canonical frequency boundaries, expressed as integrals over the 
relevant portion of the spectrum or binwise, reflecting the amplitude or 
energy of narrow (e.g. 1 Hz wide) frequency constituents (Campbell, 
2009), sometimes limited by the individual harmonics (the reciprocal of 
the segment length, e.g. 0.25 Hz in case of 4 s segments; (Cajochen et al., 
1999). These EEG-indices are commonly used in depicting sleep quality, 
depth, as well as its basic regulatory processes. In the next sections new 
insights and new avenues in unravelling the basic sleep regulatory 
processes by spectral EEG analysis will be presented. The aim of the 
present paper is to reframe the field and provide mathematically precise, 
non-redundant measures of basic sleep regulatory processes, which are 
appropriate for benchmarking and translation. 

3. Basic sleep regulatory processes: sleep homeostasis 

3.1. Basic concepts of homeostasis and their applicability to sleep 

Generally accepted criteria for homeostatic regulation are the exis
tence of a regulated variable (e.g. blood glucose concentration), a 
normal range or value (e.g. 70–110 mg/dl for glucose), a sensor sensing 
the deviation from the normal range (e.g. chemosensors in the hypo
thalamus/pancreas), a control center (e.g. hypothalamus), effectors (e.g. 
liver, adipose tissue, and skeletal muscle), as well as effector response (e. 
g. alter storage/metabolism/release of glucose and its related 

Fig. 1. Exemplary segments from a visually scored polysomnography record and the depiction of Fourier analysis. A. Hypnogram, as well as EEG, EOG, and EMG 
traces of a healthy adult male (age: 33 years), with samples taken from various sleep stages according to the AASM criteria. REMs – rapid eye movements. B. Fourier 
analysis of EEG time series depicted on a segment of human scalp EEG record (black). Red sinusoid waves of different frequency, amplitude and phase are examples 
for harmonics derived from Fourier analysis. Summation of all harmonics results in the original time series, whereas their amplitude along the frequency scale is the 
amplitude spectrum (dark red). That is Fourier analysis transform the data from the time domain (black) to the frequency domain (dark red). 
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compounds) (Modell et al., 2015). In addition, the concept of homeo
stasis should be approached in behavioural terms involving appetitive 
and consummative responses, the latter referring to active searching 
processes indicative of desire and the final response directed toward 
achieving a goal, respectively. These behavioural phenomena are known 
to be initiated in conditions of departing from the so-called set points, 
that is the physiological values around which the normal range of the 
regulated variable fluctuates (e.g. 37 ◦C in case of core body 
temperature). 

Any regulated variable or index assumed to be involved in or just 
reflecting the process of sleep homeostasis should depend on the amount 
and/or intensity of wakefulness and sleep of the organism. In practice 
this means a progressive change during wakefulness and sleep, where 
the changes measured during the two states are characterized by 
opposite signs. In addition, a challenge of the sleep homeostat by sleep 
deprivation is expected to induce a rebound change during subsequent 
recovery sleep. The hypothesized regulated variables involved in sleep 
homeostasis commonly consists of the accumulation and decomposition 
of various hypothetical, hypnogenic molecular factors during wakeful
ness and/or sleep (Borbély and Tobler, 1989), including adenosine, the 
breakdown molecule of ATP (Porkka-Heiskanen et al., 1997), as well as 
newer candidate factors, like metabolic waste (Xie et al., 2013), protein 
fragments (Varshavsky, 2019), and endozepines (Sher et al., 2021). 
Moreover, the use-dependent release of somnogenic cytokines 
interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) by 
glial cells (Krueger et al., 2008) or the learning/plasticity-related pro
duction of the neurotrophin brain-derived neurotrophic factor (BDNF) 
(Faraguna et al., 2008), all acting in a paracrine mode, are further po
tential regulated variables. Besides the fact that these assumptions need 
further empirical support, there is no available information on the 
normal range/set point of the above mentioned molecular factors. A 
parsimonious and biologically realistic framework is that no single 
neurotransmitter or neuromodulator, but rather their complex in
teractions within organized neuronal ensembles, regulate waking and 
sleep states (Holst and Landolt, 2022). Sleep pressure was shown to be 
reflected in terms of theta EEG activity during wakefulness of human 
subjects (Finelli et al., 2000; Snipes et al., 2022) and rats (Vyazovskiy 
and Tobler, 2005), but again, no set point for resting state theta EEG 
power was ever established. The deviation of one or more of the above 
(or other as yet undetermined) regulated variables from the assumed 
normal value is sensed by specific receptors, which would then trigger 
the control centre, presumably located within the ventrolateral preoptic 
area of the hypothalamus (Arrigoni and Fuller, 2022), and initiate the 
appetitive behaviour, which is in fact sleepiness and sleep-preparatory 
behaviour, including resting, eye closure and the search for sleep pla
ces (Axelsson et al., 2020). Once initiated, sleep can be considered as a 
consummative behaviour (c.f. eating), serving specific functions fulfilled 
by the effector organ, the central nervous system and its effector re
sponses, the latter involving sleep-state specific neural activities. Func
tions fulfilled by sleep overlap in part with the ones we can derive from 
the hypothesized regulated variables, such as removal of metabolic 
waste (Xie et al., 2013) and protein fragments (Varshavsky, 2019), 
conservation of synaptic infrastructure (Krueger and Obal, 2003) or the 
renormalization of synaptic strengths (Tononi and Cirelli, 2003, 2014). 

Given the scarcity of knowledge on the regulated variables in the 
sleep domain, as well as the excellent homeostatic behaviour of sleep 
EEG slow waves, the currently approved concepts and models of sleep 
homeostasis rely largely on the intensity of the effector response (i.e. 
sleep intensity). According to the widely acknowledged terminology, 
sleep homeostasis refers to the continuous accumulation of sleep pro
pensity in the absence of sleep, as well as its decay during the ongoing 
sleep process. Indeed, several measures and sleep features were shown 
to reflect sleep-wake history. Known indices of sleep depth or enhanced 
sleep need are increases in sensory thresholds during sleep (Blake and 
Gerard, 1937), SWS amount (Knowles et al., 1986; Webb and Agnew, 
1971), spectral power of EEG slow wave activity (SWA: 0.75–4.5 Hz; 

Achermann et al., 1993; Borbély, 2001), the amplitude, the slope and 
the frequency of individual sleep slow waves/oscillatory cycles, as well 
as a lower number of multi-peak slow waves (Bersagliere and Acher
mann, 2010; Riedner et al., 2007). 

Although, the characterization and modelling of sleep homeostasis 
by relying on the effector response of the process seems non-appropriate 
at the first sight, this approach might have its own strengths and sup
ports. As an analogy, we could consider feeding behaviour. Specifically, 
activity of lateral hypothalamic neurons producing melanin- 
concentrating hormone (MCH) increases in response to food-predictive 
cues and is correlated with food-motivated responses (indexing the 
appetitive response). In addition, MCH neuron activity is increased 
during eating per se, and this response is highly predictive of caloric 
consumption and declines throughout a meal (consummatory phase) 
(Subramanian et al., 2023). This example suggests that the appropriate 
measures of the key elements of precise neural regulatory processes of 
feeding behaviour provide us with a feasible model of the homeostatic 
process. As an analogy, we can say that the appropriate indexing of the 
key elements of the neural processes involved in sleep homeostasis, 
could provide us with a model describing sleepiness (appetitive behav
iour), sleep initiation (start of the consummative behaviour), as well as 
sleep intensity (as an analogy of caloric consumption) and its decrease 
(c.f. decline of MCH neuron activity throughout a meal). 

Indeed, such models were built and well-known in sleep research. 
The two-process model of sleep regulation posits that the homeostatic 
process (Process S) is indexed by sleep EEG SWA, reflecting sleep in
tensity, tracking sleep-wake history, especially the decline throughout 
sleep and rebounds after extended periods of sleep loss (Borbély et al., 
2016; Borbély, 1982). One significant drawback of this type of model
ling is indeed related to the lack of the normal range of values. Is there a 
chance to find a normal range of values in terms of the effector response, 
instead of the largely unavailable regulated variable? A further question 
we focus on in this paper is the following: are slow EEG waves or their 
canonical spectral measures specific in depicting sleep homeostasis? In 
order to provide a deliberate analysis of these issues, the literature on 
the human EEG spectral power indexes of individual sleep-wake history, 
current sleep stage, age-related differences and brain 
topography-characteristics is reviewed. The major findings of the liter
ature are then reframed in the context of the spectral exponent, a con
stant ratio of lower-to-higher frequency power. 

The core electrophysiological features of sleep wake-states of 
different mammalian and avian species overlap in a considerable way, 
the behavioural quiescence and increased sensory thresholds being 
hallmarked by high amplitude, low frequency EEG patterns (slow or 
delta waves) (Van Der Meij et al., 2019). Nevertheless, some birds and 
cetaceans are known for typical fluctuations in different indirect mea
sures of assumed sleep need (Rattenborg et al., 2016; Van Hasselt et al., 
2021, 2023). Along with other species-specific sleep traits this point 
constitutes a challenge for our attempts to conceptualize a universal 
framework for the regulation of sleep. In order to provide a more general 
perspective of our claims, we will return to this point in a specific sub
heading devoted to the comparative and ecological aspects of the 
fundamental sleep regulatory processes reconceptualized herein. 

3.2. Indexing sleep homeostasis: looking beyond the slow wave/delta EEG 
activity 

3.2.1. Sleep EEG spectral power as an index of sleep-wake history 
Dynamical changes in sleep EEG SWA or delta (1–4 Hz) power 

compared to the individual-specific reference values were shown to 
index sleep-wake history with high precision, the former being consid
ered as a primary marker of sleep homeostasis (Achermann et al., 1993; 
Borbély, 2001). Moreover, EEG slow waves are the epitome of deep 
NREM sleep (Borbély, 2001). Indeed, detailed analyses of the spectral 
features/frequency composition of the EEG signal in terms of sleep ho
meostasis suggest that the canonical low frequencies (delta or SWA) are 
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not exclusive in terms of indexing sleep-wake history. The earliest 
available empirical evidence based on the spectral analysis revealed that 
EEG frequency components up to 8 Hz are enhanced during recovery 
sleep after sleep deprivation (challenges of the sleep homeostat) as 
compared to baseline sleep (Borbély et al., 1981), but the contribution of 
higher frequencies seem to provide us with a diminishing return: the 
higher the EEG frequency, the lower its involvement in sleep homeo
stasis. In other words, excess power during recovery sleep levels off with 
increasing frequencies. Similar findings were reported in several 
follow-up studies. Recovery sleep after acute slow wave or total sleep 
deprivation in adult volunteers was shown to be characterized by in
creases in NREM phase delta, theta and occasionally alpha EEG power in 
many reports, but excess power declined as a function of increasing 
frequency (Cajochen et al., 1999, 2019; Dijk et al., 1990; Dijk and 
Beersma, 1989; Ferrara et al., 2002; Finelli et al., 2001; Marzano et al., 
2010). Findings derived from experimental manipulations mimicking 
chronic sleep deprivation by settings involving repeated sleep restriction 
interventions revealed that NREM sleep EEG power changes extend over 
the theta range (1.25–7.25 Hz) (Åkerstedt et al., 2009), whereas the 
frequency gradient of excess power in the conditions of elevated sleep 
pressure is characterized by a gradual levelling off (Brunner et al., 1990, 
1993). In addition, the systematic control of pre-sleep wakefulness in 
nap studies revealed a similar pattern. Increased amount of wakefulness 
was followed by increased nap sleep EEG power in the 0.25–8 Hz range, 
that is far over the upper limit of SWA, but the wake time-dependency 
progressively dampened within this array of frequencies (Dijk et al., 
1987). Last, but not least the reduction of night time sleep pressure by an 
experimentally scheduled early evening nap consistently decreased 
NREM sleep EEG power in an extended range encompassing the delta, 
theta and alpha frequencies during the first three NREM-REM cycles. 
Maximal decrease emerged in the 1–2 Hz bins, whereas the successive 
ones were characterized by a frequency-dependent, progressive damp
ening in their effectivity of reflecting the nap-related reduction of sleep 
pressure (Werth et al., 1996). Given their pivotal role in indexing 
sleep-wake history, delta (1–4 Hz) and theta (4–8 Hz) EEG were 
explicitly termed as “homeostatic frequencies” by several authors pub
lishing in this field (Campbell and Feinberg, 2009). 

The dissipation of sleep need during the course of night sleep was 
shown to be paralleled by a declining trend of power density in the 
0.25–12 Hz range over the first four NREM sleep episodes. Again, this 
finding coheres with the above mentioned involvement of theta and 
perhaps alpha frequency ranges in sleep homeostasis (in addition to the 
well-known delta or SWA frequencies). Furthermore, researchers report 
a progressive dampening in the rate of overnight decline in NREM sleep 
EEG power values with increasing frequencies within the 0.25–12 Hz 
range (Aeschbach and Borbély, 1993). Power in higher frequency bins 
(closer to the 12 Hz upper limit) followed a flatter overnight decay, 
perhaps suggesting a reduced sleep-time-dependent dampening. This 
pattern is evident, although usually not emphasized in other studies 
analysing the changes in NREM sleep EEG power in successive sleep 
cycles of healthy adults (Dijk et al., 1990; Werth et al., 1997) and ado
lescents (Jenni and Carskadon, 2004). Similar findings were reported by 
reliance on band-limited spectral power analysis: overnight declines are 
most expressed in SWA, but present in theta (4–7.75 Hz) and alpha 
(8–12 Hz) power as well. The higher the frequency range, the lower rate 
in its overnight decrease or dependence on pre-sleep wakefulness is seen 
(SWA > theta > alpha; (Gaudreau et al., 2001; Münch et al., 2010)). 

Besides the delta and theta/alpha frequency EEG activities positively 
indicating increased sleep depth (intensity), several studies admit sigma, 
beta and/or gamma activity as its potential negative correlate. Specif
ically, one study reported reductions in average-referenced EEG beta 
power in recovery sleep after sleep deprivation. Thus, the experimental 
challenge of the homeostat by sleep deprivation resulted in the well- 
studied enhancement of NREM sleep EEG power in the lower fre
quency ranges (0.75–10.5 Hz) paralleled by reduction in the ranges of 
12–12.25 Hz and 13.25–25 Hz (Finelli et al., 2001). Other findings 

indicate a reliable negative correlation between overnight changes in 
sleep EEG delta (0.3–3 Hz) and beta (20–28 Hz) power in all subjects 
(Uchida et al., 1992). In addition, sleep EEG spectral power at several 
frequency bins in the beta/gamma range was shown to increase during 
the fourth as compared to the first NREM period in healthy adult vol
unteers (Mukai et al., 2003), which is a further indirect support for the 
idea that increases in beta and gamma EEG activity might indeed index 
the dissipation of sleep need in humans. 

The above findings indicating a preponderance of low EEG fre
quencies in indexing sleep-wake history, but the diminishing return 
obtained by focusing on higher bins or ranges, implicitly suggest that the 
power ratio of lower-to-higher frequencies reflects sleep homeostasis: 
the higher the homeostatic pressure the higher the ratio of lower over 
higher frequency components in the EEG. This assumption coheres with 
findings suggesting the usefulness of different ratios of band-limited 
spectral EEG power in the automatic recognition of R&K or AASM 
sleep stages in humans (Krakovská and Mezeiová, 2011; Reed et al., 
2017). 

3.2.2. Sleep EEG spectral power as an index of sleep stages 
Given the fact, that the architecture of sleep is in itself a reflection of 

sleep homeostasis, with SWS (S3 and S4) or N3 considered as intense 
sleep (Knowles et al., 1986; Webb, 1989; Webb and Agnew, 1971), the 
comparison of the spectral characteristics of sleep stages might be 
conceived as proxies of sleep-wake history. Comparison of sleep stages 
scored on the basis of the R&K criteria in terms of power spectral density 
of the EEG records resulted in a pattern of frequency-dependent 
gradient, which is similar to the one detected in terms of the effect of 
sleep-wake history. That is, maximal between stage differences are seen 
in the lowest frequency range (0–2 Hz: S4 > S3 > S2 > REM > S1 > W). 
Moreover, increasing frequencies are characterized by decreasing stage 
differences, reaching the between stage equality in the 8–10 Hz alpha 
band. Authors of this study added that "not only was the maximal power 
found in the slowest spectrum component of stage 4, but also the min
imal power in the highest part of the spectrum of stage 4." Slowest and 
highest parts of the spectrum were 0–2 and 22–30 Hz, respectively 
(Dumermuth et al., 1983). Thus, if we consider sleep intensity or sleep 
depth on the basis of pre-defined consensual criteria and expert 
rule-based scoring anchored primarily to the presence of high ampli
tude, low frequency (<2 Hz) waves (see the R&K criteria for S3 and S4 
stages), the phenomenon of frequency-dependent diminishing returns 
emerges in a similar range (1–10 Hz), echoing the already presented 
patterns of excess power in recovery sleep and overnight decay rates. 
Moreover, an index of sleep “shallowness” is emerging in higher fre
quency ranges. Similar power gradients were reported for the difference 
between NREM and REM or R&K S2–S4 and S1 sleep EEG (Aeschbach 
and Borbély, 1993; Werth et al., 1997). As regarding NREM-REM dif
ferences, power in the delta (0.25–4.5 Hz), theta (4.75–8 Hz) and sigma 
(11.25–15 Hz) band in all derivations was higher, whereas power in the 
beta band (15.25–25 Hz) was lower in NREM sleep than in REM sleep 
(Werth et al., 1997). 

These data suggest that differences in sleep stages are found in 
spectral power at multiple EEG frequencies, but maximal effects are 
found in the slowest ranges, whereas the higher ones are characterized 
by progressively decreasing differences. In addition, the order of stage 
differences is inverted at the higher frequency (beta) range of the 
spectrum. 

3.2.3. Sleep EEG spectral power as an index of development and aging 
Several findings on the maturation and aging of sleep provide indi

rect support for the assumption of the diminishing returns in the mea
surement of sleep homeostasis by increasing the EEG frequencies. In 
order to unravel these evidences we have to consider the fact that the 
percentage of SWS, an architectural proxy of sleep intensity, is signifi
cantly negatively correlated with age (5–102 years) (Ohayon et al., 
2004). Indeed, the maturational decrease in NREM sleep EEG delta 
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(1–4 Hz) power is paralleled by similar, albeit lower rate of develop
mental reduction in theta activity (4–8 Hz) between 6 and 18 years of 
age (Feinberg and Campbell, 2013). Again, this indirect evidence sug
gests that EEG SWA/delta most distinctly prevails over theta activity in 
younger subjects when sleep was found to be deeper in architectural 
terms. 

A negative frequency gradient of excess power in younger as 
compared to older subjects was reported in several studies (Dijk, Beer
sma, and van den Hoofdakker, 1989; Gaudreau et al., 2001). In addition, 
the higher delta and theta (0.25–8 Hz) NREM sleep EEG power in 
younger as compared to older subjects was paralleled by lower beta 
frequency (18.25–32 Hz) activity in the night sleep records of the par
ticipants (Carrier et al., 2001). Both effects (increased low and decreased 
high frequency activities in younger subjects) were characterized by a 
statistically significant dampening during the successive NREM sleep 
periods, indicating the involvement of sleep homeostasis in the 
age-related effects. The reversal of the age-effects in the beta as 
compared to the delta and theta ranges in earlier NREM sleep periods 
suggests that SWA is not the only marker of age-related sleep EEG power 
differences and the overall pattern coheres with the concept of the 
frequency-dependent diminishing returns. 

3.2.4. Sleep EEG spectral power as an index of regional differences in sleep 
homeostasis 

The hypothesis on the intimate relationship between human SWS 
and the prefrontal cortex was put forward on the basis of mostly indirect 
evidence by J. A. Horne (1993). A notable early report on the frontal 
predominance of SWS delta (2.1–5 Hz) EEG activity might be considered 
as a pioneering study revealing this type of topographical pattern 
(Buchsbaum et al., 1982). A significant quote regarding delta (2.1–5 Hz) 
power states: “anterior and central midline values tripled from awake to 
stage 4, whereas occipital and temporal power merely doubled” 
(Buchsbaum et al., 1982). Later analyses focusing on the region-specific 
EEG power revealed "a specific involvement of frontal parts of the cortex 
in sleep homeostasis. The regional differences in sleep EEG spectra 
indicate that sleep is not only a global phenomenon but also a local brain 
process with a different regional involvement of neuronal populations" 
(Werth et al., 1997). Spectral analysis revealed a consistent frontal 
predominance of SWA in adult subjects, and excess SWA in recovery 
sleep after sleep deprivation is most pronounced in frontal areas 
(Cajochen et al., 1999; Finelli et al., 2001; Marzano et al., 2010; Rus
terholz and Achermann, 2011). Fronto-central over centro-parietal ra
tios of bipolarly referenced NREM sleep EEG spectra indicate the 
anterior dominance of the 0–2 Hz activity and a shift to a posterior 
dominance at higher frequencies, with the exception of spindle fre
quency activity (Werth et al., 1997). 

In sum, available data indicate that heightened sleep pressure asso
ciates with a negative frequency gradient of excess sleep EEG power, 
whereas the opposite is seen in terms of retained power in conditions of 
lowered sleep pressure. This claim got empirical support in terms of 
sleep pressure differences related to sleep-wake history, sleep stages, 
development and aging, as well as fronto-posterior localization. In 
addition, these frequency gradients extend far beyond the SWA or delta 
ranges, suggesting that these band-limited power values are not exclu
sive in tracking sleep pressure. 

3.3. The issue of appropriate reference values for SWS/N3 and/or sleep 
EEG SWA/delta power 

Several independent datasets and analyses suggest that the sleep 
intensity measures based on EEG slow waves are largely individual- 
specific, stable in time (trait-like), and consequently inappropriate for 
deriving reference values (ranges defining “normal” or healthy sleep). 

Wilse B. Webb, the leading scientist of the first series of systematic 
investigations revealing the dependence of SWS or R&K Stage 4 sleep on 
sleep-wake history, noted that around 81% of the variance in Stage 4 

time is determined by stable interindividual differences (Webb, 1989). 
Later studies revealed similar findings, as well as a repeatedly expressed 
objection in defining reference values for normal sleep, which would be 
of particular relevance for somnologists. A study based on the data of 
206 healthy adults aged from 19 to 73 years concluded that the infor
mative value of sleep reference data in healthy individuals is limited 
because of high interindividual variation within sleep variables, 
including percentages of N3 sleep and EEG power spectral measures 
(Hertenstein et al., 2018). Although a large meta-analytic study 
involving several former investigations reported age- and sex-specific 
reference values for sleep architecture, but not spectral EEG variables 
(Boulos et al., 2019), it is still highly challenging to handle the large 
interindividual differences reported in this paper. A good example for 
this type of problem is the reported average of 18.1% of N3 sleep in 
50–64 years old subjects with a 95% prediction interval of 2.5–33.7%. 
That is, two subjects of let us say equal age of 57 years with N3 percent of 
3 and 33 have to be considered as sleeping equally well and normal, 
although the former value is close to 0 (meaning almost no deep sleep at 
all), whereas the latter indicates amounts matching the average of pre
pubertal children (Scholle et al., 2011), known to be characterized by 
the highest N3 levels among all age groups. New reports of similar 
benchmarking analyses performed on a Korean population resulted in 
similar findings (Yoon et al., 2021). 

The analysis of nocturnal sleep and daytime naps revealed consis
tent, trait-like interindividual differences in SWS even after controlling 
for prior sleep-wake history leading the authors to conclude that the 
attempts to define “normal” sleep architecture in both clinical and 
experimental settings face severe problems (Gander et al., 2010). Last, 
but not least Tucker and colleagues noted that: “…for non-REM delta 
power – a putative marker of sleep homeostasis – the interindividual 
differences were from 9.9 to 12.8 times greater than the group-average 
increase following sleep deprivation relative to baseline” (Tucker et al., 
2007). The ubiquity of large interindividual differences reported in this 
ground-breaking observation haunts all attempts to define reference 
values in sleep EEG power. Using relative instead of absolute spectral 
power (Yoon et al., 2021) does not seem to resolve the issue, as non-delta 
ranges reflect primarily the reciprocal values of delta (Cox and Fell, 
2020), thus cannot fully control the inherent scaling problem in the 
field. 

Despite the significant trait-like interindividual variability outlined 
above, a recent paper presented empirical age norms for the sleep EEG 
across the lifespan from 11 days to 80 years. Variables include log- 
normalized, band-limited absolute and relative spectral power strati
fied by sex. Stage N3 relative delta power of patients suffering from 
Alzheimer’s disease or depression was shown to be lower than the 
reference (Sun et al., 2023). The potential utility of these age-norm 
measures in determining healthy sleep and optimal sleep pressure has 
to be explored in future studies. 

The scarcity of appropriate reference values in sleep EEG spectra 
caused a long-lasting translational gap in the field of sleep science. Well- 
elaborated and precise sleep regulatory models are seldom used in 
clinical sleep science or in defining the quality of sleep. Measuring delta 
power or SWA are particularly useful in predicting their own changes, 
but not appropriate to compare recordings from different subjects. 
Below we suggest an alternative approach based on the spectral expo
nent (slope) which we hypothesize to bridge this gap and provide the 
sleep scientists and clinicians with a standardisable measure expressing 
the constant ratio of lower over higher frequency EEG spectral power. 

3.4. Low frequency sleep EEG power reflects alternating up and down 
states (bistability) 

After analysing the basic phenomenological features of NREM sleep 
EEG slow waves detected by filtering and amplitude threshold-based 
criterion, Bersagliere and Achermann (2010) concluded that increased 
sleep pressure during recovery sleep after prolonged wakefulness results 
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in faster alternations between depolarized up- and hyperpolarized 
down-states at the cellular level. In addition to the increase in frequency 
and slope of NREM sleep EEG slow waves a decrease in multi-peak 
waves was reported in this study. In addition, amplitudes of slow 
waves were also elevated during recovery as compared to baseline sleep. 
Accelerated up-down state alternation together with a reduction in 

multi-peak waves are suggestive of network bistability. Moreover, au
thors conclude that findings do not question SWA as a marker of sleep 
homeostasis, as the observed changes occurred within the same fre
quency range. 

Fig. 2. Spectral power ratios, power laws, spectral exponents and the colours of noise. A. The spectral exponent is a measure of the constant ratio of lower and higher 
frequency EEG power and can be linearized in double logarithmic coordinates. Teal: whole-night NREM sleep EEG power spectral density function derived from the 
right central recording location C4 (reference: mathematically-linked mastoids, sampling rate: 249 Hz, mixed-radix FFT routine, 4 s Han window, 50% overlap, 
subject: healthy female of 27 years of age). Orange dotted line: fitted power law function according to the P(f) = Cfα formula (see the actual fitting equation in orange 
on the top of the figure). Power ratios derived from the division of lower with higher frequency bin power values in the fitted function result in constant values 
depending on the multiplier defining the distance between lower and higher frequencies and the spectral exponent (-2.44 in this case). B. Different spectral exponents 
define different types of EEG time series. Examples for EEG time series recorded in wakefulness, wake-sleep transition period and N3 sleep approximating so-called 
pink, red (also known as Brownian) and black -noise, respectively (healthy human male volunteer, age: 20 years). 
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3.5. Low frequency sleep EEG power reflects the hyperpolarization of 
thalamocortical and cortical neurons 

Neuronal membrane hyperpolarization is a critical factor in the 
emergence of low frequency EEG components during sleep. First, the 
advanced hyperpolarization of thalamocortical neurons during late 
NREM sleep results in the appearance of delta (1–4 Hz) oscillations in 
thalamocortical assemblies. Furthermore, these assemblies are partially 
synchronized by widespread depolarizations separated by long-lasting 
hyperpolarizations (cycle length ≥ 1 s), both generated in the cortex 
(Steriade et al., 1993). The latter are frequently called as cortical up and 
down states, respectively. As a consequence, the net increase in both 
thalamic and cortical hyperpolarization seems to be a crucial factor in 
understanding the neurophysiological bases of EEG slow wave activity. 

Additional evidence suggests the contribution of other mechanisms 
to the emergence of EEG slowing in states characterized by decreased 
thalamocortical membrane depolarization. A specialized subset of tha
lamocortical neurons interconnected by gap junctions were shown to 
exhibit high threshold burst firing in the range of 2–13 Hz, with the 
precise frequency increasing with increasing depolarization. As a 
consequence, the same cellular components that underlie thalamic alpha 
rhythms can also lead to theta (2–7 Hz) rhythms when the thalamo
cortical neuron population is less depolarized in early sleep periods 
(Hughes and Crunelli, 2005). 

4. The spectral exponent and sleep homeostasis 

4.1. History and definition of the EEG spectral exponent 

4.1.1. A constant ratio of lower/higher frequency power in sleep EEG 
First reports on the differential analysis of the overall declining trend 

and the peaks in the EEG power spectra relied on semilogarithmic plots 
(logarithm of power as a function of frequency) and can be considered 
now as forerunners of the spectral exponent or spectral slope-based 
approaches in electrophysiology (Dumermuth et al., 1977; Matthis 
et al., 1981). Indeed, current approaches are explicit in emphasizing the 
importance of the constant ratio of lower over higher frequency EEG 
spectral power as measured by Fourier-analysis. This ratio is elegantly 
synthesized in the compact measure called spectral exponent. The 
concept is based on the idea that the power spectral density (P) of the 
human EEG follows a power law-type distribution (Pritchard, 1992), 
depending on the exponents (α) of the frequency (f) and a constant 
multiplier (C), but containing a peak power (PPeak) function as well 
(Bódizs et al., 2021; Lázár et al., 2022): 

P(f ) = Cf αPPeak(f ) (1) 

If we consider the power law function, assuming that there are no 
spectral peaks or that the peaks were removed (PPeak(f) = 1), the ratio 
of power at frequency f and power at a higher frequency k×f, where k is 
a positive real number, results in a constant (Fig. 2A): 

P(f )
P(kf )

=
Cf α

Ckαf α =
1
kα (2) 

Thus, the ratio of lower/higher power is invariable, depending only 
on the distance chosen between the power bins (k) and the spectral 
exponent (α). Evidence presented in the former subheadings suggests the 
utmost importance of measuring power ratio in depicting sleep ho
meostasis. Accordingly, definitive evidence suggests that studies relying 
on EEG frequency band ratio measures reported in part the implicit 
involvement of the power law scaling or the spectral exponent in 
differentiating sleep stages (Donoghue et al., 2020). Moreover, pio
neering studies aiming to characterize the fractal structure of human 
EEG or automatize the R&K sleep scoring system revealed that the 
spectral exponent of the EEG is among the most reliable measures of 
sleep stage classifiers (Krakovská and Mezeiová, 2011; Pereda et al., 

1998). 

4.1.2. The spectral slope is equivalent with the spectral exponent 
Power law spectra can be linearized by its transformation to a 

function in double logarithmic coordinates (logarithm of power as a 
function of the logarithm of frequency, Fig. 2). This results in a linear 
decay in the log-transformed EEG power spectra as a function of the log- 
transformed frequency, changing the spectral exponent to a spectral 
slope (Bódizs et al., 2021): 

lnP(f ) = lnC +αlnf + lnPPeak(f ) (3) 

The spectral slope is equal with the spectral exponent in this type of 
mathematical parametrization of the periodogram, whereas the natural 
logarithm of the constant multiplier becomes the intercept of the linear 
function. Natural instead of 10-based logarithm is used because of the 
assumed natural logarithmic relationship between brain oscillators 
(Penttonen and Buzsáki, 2003). 

Due to the fact that damping is a common feature in physical sys
tems, a broad class of real-world signals have a high-frequency slope, but 
a plateau in the vicinity of zero frequency (also known as Matérn pro
cess; (Lilly et al., 2017)). As a consequence, the low-frequency limit of 
the validity of Eqs. (1) and (3), has to be considered by focusing on the 
appropriate frequency range or by explicit modelling of the low fre
quency plateau by the inclusion of the so-called spectral knee-parameter 
in the equation (Donoghue et al., 2020). The low frequency spectral 
knee of the EEG or LFP signals could vary as a function of high-pass 
filtering of the EEG recording device, the multifractality of neuronal 
processes or perhaps even brain size. 

The fact that EEG spectra can be reliably approximated by a power 
law function indicates that band power-type measures are inherently 
redundant metrics. Band power values express in fact the manifestations 
of the same underlying statistical regularity at different frequency do
mains. But band power values conflate the power law function with the 
spectral peaks indicating specific oscillatory phenomena (Donoghue 
et al., 2020). The spectral exponent/slope is an indicator of aperiodic, 
scale-free activity, in contrast with oscillatory activity characterized by 
specific periods (wavelengths) and scales. That is, the first type of ac
tivity is stochastic (c.f. the term “random activity” introduced by Loomis 
et al. (1937), whereas the latter is highly predictable (e.g. sleep spindle 
oscillations). 

4.1.3. Modelling the diminishing return by the EEG spectral exponent 
By assuming that the spectral exponent of the EEG is an index of sleep 

homeostasis, the frequency-dependent diminishing return can be 
modelled with mathematical confidence. The ratio of two power laws P1 
(f) and P2(f) expressing two different levels of sleep pressure results in a 
power law with an exponent equalling the difference between the ex
ponents of the original functions (n). 

P1(f )
P2(f )

=
C1f α

C2f α+n =
C1

C2
f − n (4) 

Usual values for the spectral exponent α vary between − 1 and − 4 
(Freeman and Zhai, 2009). In case if the denominator, which is P2(f) in 
this example is a flatter spectrum, n is a positive real number, reducing 
the steepness defined by the original exponent (α becomes less nega
tive). The resulting ratio is then a new, negatively sloped power law 
function. This coheres with the findings indicating the 
frequency-dependent levelling off of the excess sleep EEG spectral power 
in conditions of increased sleep pressure. In short, if we assume that 
sleep pressure is reflected by the spectral exponent of the sleep EEG, the 
detailed binwise spectral findings of previous reports can be modelled 
elegantly in a compact index characterizing the overall frequency 
composition of brain electrodynamics. 
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4.1.4. Variations on the spectral exponent theme 
Different terms emphasize different, but tightly interrelated aspects 

of the power law-type spectra. Thus, the spectral exponent is frequently 
termed as a measure of the fractal component of the power spectrum 
(Wen and Liu, 2016) or as aperiodic activity (Gerster et al., 2022). The 
former term refers to the fairly stable dominance of lower over higher 
frequency bins in the spectra over a wide range of frequencies. In turn, 
aperiodic activity refers to the time series from which the spectra are 
derived from. The term aperiodic activity suggests that these time series 
are not made up by oscillations (periodic, rhythmic activity), but rather 
broadband, self-similar random processes with stable statistical prop
erties over a wide range of temporal scales. Furthermore, 1/f activity or 
1/f scaling of the spectra is a historically grounded term, which refers to 
a subset of phenomena in the power law scaling domain, at least in the 
context of neuroscience and or behavioural phenomena. The logic 
behind using the term 1/f-type scaling finds its roots in the fact that the 
spectral exponent is negative in the formula put forward above, whereas 
it becomes positive when transformed to 1/fα. That is fα = 1/f-α or vice 
versa: f-α = 1/fα. Furthermore, the term 1/f suggests that the absolute 
value of the exponent roughly equals 1 (0.5 < |α| < 1.5, implying pink 
noise). In cases, if an exponent is indicated (e.g. 1/fα or 1/fx), the term is 
a synonym of power law scaling (Pereda et al., 1998; Pritchard, 1992). 
Last, the term scale-free activity means the lack of a predominant tem
poral scale of the time series (Table 2). 

4.1.5. Specific spectral exponents define specific time series 
Specific ranges of spectral exponents define specific signal charac

teristics of the underlying time series. A spectral exponent of α ≈ 0 in
dicates white noise. The term white refers to the colour of visible light 
with a spectral exponent equalling 0. This type of data implies a flat 
spectrum. In other words, power of white noise type processes is inde
pendent of frequency (Schroeder and Wiesenfeld, 1991). Time series 
with a white noise behaviour are known to be characterized by a com
plete independence of the successive samples (amplitude values). Given, 
the partial persistence of biological systems, to the best of our knowl
edge, no pure white noise type of EEG record was reported in the 
literature. Nevertheless, white noise, along with pink noise (see below) 
and spectral peaks was considered an integral part (component) of the 
EEG spectrum by some authors (Barry and Blasio, 2021). 

Pink noise is defined by a spectral exponent of α ≈ − 1, meaning a 
decrease in power along the frequency scale according to the propor
tionality formula of P(f) ∝ f− 1 or P(f) ∝ 1/f (Fig. 2B). Time series with 
pink noise-type behaviour are made up by a succession of values, which 
unlike white noises, depend on each other. Indeed pink noise-like (also 
known as 1/f) time series were shown to continuously integrate the 
effects of their own recent and more distant past with the influence of 

random events (Keshner, 1982), as well as to provide an ideally suited 
platform for complex networks and may therefore be the channel 
through which the brain influences complex processes and is influenced 
by them (Allegrini et al., 2009). Another intriguing peculiarity of pink 
noise is its antipersistence: successive increments of the time series tend 
to correlate negatively. In fact, this is a feature of all time series with a 
spectral exponent of α > − 2 and is usually described by another index of 
statistical predictability, called the Hurst-exponent (H-exponent). 
Without entering into the details of estimating the H-exponent, we only 
draw the attention toward the convertibility of the spectral to the 
Hurst-exponent and vice versa, by using the following formula (Yama
moto and Hughson, 1993): 

− α = 2H + 1 (5)  

H = −
1 + α

2
(6) 

It turns out that pink noise is characterized by a H-exponent equal
ling H = 0. If H < 0.5, the time series can be considered as antipersistent 
(increases followed by decreases and vice versa). 

Red noise, also known as Brownian noise is characterized by a 
spectral exponent of α ≈ − 2. A power decrease along the frequency scale 
is faster than in the case of pink noise (i.e. the relative predominance of 
lower frequencies is higher, Fig. 2B). The autocorrelation function of red 
noise is high at low time lags, but drops off rapidly in time, indicating the 
relatively strong effect of the recent past on actual amplitude values, but 
a diminished influence of distant past (Keshner, 1982; c.f the term 
random walk). In turn, successive increments of red (Brownian) noise 
are completely independent which is reflected in the critical value of H 
= 0.5. 

The term black noise is used for time series characterized by a 
spectral exponent of α ≈ − 3. Drop off of spectral power of black noise 
along the frequency axis is even faster than in the case of red noise (c.f. 
lower frequencies predominate even more higher ones, Fig. 2B). Both 
amplitude values and successive increments tend to correlate positively 
in these types of signals. The latter means that black noise is persistent 
(H > 0.5). 

EEG time series are often characterized by fractional spectral expo
nents, not just integers. This is highlighted in the term fractional 
Brownian motion, which can be divided into antipersistent (H < 0.5) 
and persistent (H > 0.5) types. While measurements using EEG power 
have yielded exponent values varying between − 1 and − 4 (Freeman and 
Zhai, 2009; He et al., 2010; Milstein et al., 2009; Zempel et al., 2012), 
some available evidence suggests that EEG or LFP recorded during 
wakefulness follow antipersistent dynamics, while those recorded dur
ing sleep tends to follow persistent dynamics (Lina et al., 2019; 
Schneider et al., 2022; B. Weiss et al., 2011). 

Last, it has to be emphasized that human EEG is most frequently a 
combination of aperiodic and oscillatory activity, characterized by 
power law type spectra with Gaussian spectral peaks. The latter confer a 
high level of predictability of the signal in the frequency range of the 
peaks. 

4.2. Indexing sleep homeostasis: looking at the spectral exponent of the 
EEG 

4.2.1. The EEG spectral exponent reflects sleep-wake history and correlates 
with SWA 

The earliest finding indicating the overall change in lower relative to 
higher frequency EEG activity as a function of time spent asleep is based 
on period amplitude analysis indicating a negative correlation between 
the logarithm of NREM sleep EEG amplitude and the logarithm of fre
quency in the 0.5–12 Hz range. The slope of this negative correlation 
was shown to decline in successive NREM periods, especially in young 
adults, and to a lesser extent in healthy aged subjects (Feinberg et al., 
1984). More recent analyses of the overnight dynamics in scalp-recorded 

Table 2 
Variations on the spectral exponent theme.  

Term Meaning Reference 

Power law scaling The power spectra (density) of the 
time series follows a power law 
function with a specific spectral 
exponent 

Miller et al. (2009);  
Miskovic et al. (2019) 

Fractal 
component of 
the spectrum 

Power law behaviour in the 
Fourier spectrum of the time 
series: low-to-high frequency 
ratios repeat over several 
magnitudes 

Yamamoto and 
Hughson (1993); Wen 
and Liu (2016) 

Aperiodic activity Broadband, non-oscillatory 
activity 

Rosenblum et al. (2022, 
2023) 

1/f activity or 
scaling 

The power spectra (density) of the 
time series can be described by a 
1/fα function. (Original meaning: 
pink noise with an exponent 
equalling 1). 

Lendner et al. (2020);  
Kozhemiako et al. 
(2022) 

Scale-free activity Lack of a predominant temporal 
scale of the time series 

He (2014)  
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NREM sleep EEG spectral exponents derived by relying on Fourier 
transformation revealed a progressive flattening of the slopes in suc
cessive sleep cycles (NREM periods, range: 2–48 Hz) (G. Horváth et al., 
2022). Moreover, spectral exponents correlated negatively with SWA 
(31–53% of shared variance throughout the NREM periods), such that 
steeper decay was related to higher SWA energy, providing a convergent 
validity of the former measure (G. Horváth et al., 2022). It is important 
to note that delta (0.5–4 Hz) power correlated negatively with spectral 
exponent even during wakefulness in both eyes open and eyes closed 
conditions, whereas theta (4.5–7.5 Hz) power correlated negatively 
with slope in eyes open states only (Pritchard, 1992). The above studies 
suggest that the spectral exponent is a promising alternative marker of 
sleep-wake history, being characterized by convergent validity tested 
against the gold standard measure (SWA, Fig. 3A). 

4.2.2. The EEG spectral exponent reflects arousal, vigilance, consciousness 
and sleep stages 

Early reports and proof of concept studies revealed that wakefulness 
and sleep states can be reliably discriminated by the spectral exponents 
of the associated human EEG and electrocorticography records 
(Freeman and Zhai, 2009; Pereda et al., 1998; Zempel et al., 2012). 
Moreover, these findings indicate a clear association of steeper spectral 
slopes (more negative exponents) with sleep as compared to wakeful
ness. Accordingly, double logarithmic representations of the EEG power 
spectra in the 0.5–35 Hz range were increasingly more negatively sloped 
from the REM phase to stages N2 to N3 sleep (Miskovic et al., 2019). By 
focusing on the 2–48 Hz range, a gradual decrease of slope values 
(decreasing spectral exponents, increasing steepness) during the course 
of deepening of NREM sleep, as well as a relatively increased slope in 
REM sleep (but still below the AASM N1 stage values) were revealed 
(Schneider et al., 2022; Fig. 3B). Likewise, chemically-induced decreases 
in vigilance by reliance on the potentiation of gamma-aminobutyric acid 
(GABA)-A mediated inhibition during propofol anaesthesia were shown 
to decrease the spectral exponents of the EEG in the 1–40 Hz (Colombo 
et al., 2019) and 3–55 Hz (Waschke et al., 2021) ranges. Similar findings 
were reported for anaesthesia induced by xenon, a competitive antag
onist of the N-methyl-D-aspartate (NMDA) receptors- in the 1–40 Hz 
range (Colombo et al., 2019). Higher frequency estimates relying a 
narrower focuses of 30–50 Hz in various EEG and electrocorticography 
recordings or 30–45 Hz in a particularly large sleep EEG dataset (N = 10 
225) revealed similar conclusions: slopes were steeper in sleep or pro
pofol anaesthesia as compared to wakefulness, but REM sleep was 
revealed to be even more negatively sloped than NREM sleep, including 
SWS, which is usually seen as the deepest sleep stage, by relying on these 
approaches (Kozhemiako et al., 2022; Lendner et al., 2020). In light of 
the above cited findings, it is not surprising that several attempts to 
automatically classify sleep records into stages relied in part on the 
spectral exponent measure (Demirel et al., 2021; Hassan et al., 2015) or 
heterogeneous random walks of the EEG (Metzner et al., 2021). 

Our formerly published results indicate that the EEG spectral expo
nent of α = − 2 could be a critical value delimiting wakefulness and sleep 
states in the majority of subjects (Schneider et al., 2022). Likewise, 
broadband EEG spectral exponent values derived from awake, resting 
state-records reveal α > − 2 values in both healthy (Colombo et al., 2019; 
Muthukumaraswamy and Liley, 2018; Walter and Hinterberger, 2022) 
and clinical samples (Lanzone et al., 2022), but not in subjects anes
thetized with propofol or xenon (Colombo et al., 2019). Although not 
explicitly emphasized, the latter states are characterized by EEG spectral 
exponents below the assumed critical value (α < − 2) (Colombo et al., 
2019). This value is also known for a mathematically well-defined limit 
between antipersistent and persistent fractional Brownian motion, 
characterized by negatively and positively correlating successive in
crements of the time series, respectively. Similar findings in terms of the 
H-exponent of human EEG (B. Weiss et al., 2009, 2011) and the wavelet 
analysis-based spectral exponent of rodent EEG (Lina et al., 2019) were 
published. Authors of the latter paper ascertained that „…scale-free 

activity was more anti-persistent (i.e., more different between time 
scales) during wakefulness, less anti-persistent (i.e., less different be
tween time scales) during non-rapid eye movement sleep, and generally 
intermediate during rapid eye movement sleep” (Lina et al., 2019). That 
is sleepiness as a subjective perception of sleep need, as well as the 
objective signs of advanced sleep pressure before initiating sleep per se, 
should be tested in terms of the spectral exponent of the EEG. Indirect 
evidence supporting the feasibility of this approach is promising. One set 
of reports supports the reliability of wakefulness-derived theta EEG ac
tivity in reflecting sleep homeostasis (Finelli et al., 2000; Snipes et al., 
2022). Furthermore, resting state theta EEG power was reported to 
correlate with the spectral exponent (Pritchard, 1992). In addition, 
drug-induced sleepiness of human volunteers, namely light sedation 
following the administration of subanesthetic doses of the GABA reup
take inhibitor tiagabine or the glutamatergic AMPA receptor antagonist 
perampanel was associated with modest decreases in magnetoenceph
alography spectral slopes as compared to the placebo conditions, the α 
values remaining in the antipersistent range (α > − 2) (Muthukumar
aswamy and Liley, 2018). In our view the decreasing resting state EEG 
spectral exponent values approaching the assumed critical level of α =
− 2 are hypothesized to initiate appetitive behaviour, that is the feeling 
of sleepiness or even the search for the opportunity of initiating sleep, 
the latter being defined as the consummative behaviour. It remains to be 
determined if the EEG spectral exponent of α = − 2 can be considered as 
critical in awake subjects suffering from chronic sleep deprivation or 
repeated sleep restriction. Experimental works revealed clear evidence 
for detrimental neurocognitive effects of cumulative sleep loss due to 
consecutive restrictions of sleep time (Lowe et al., 2017). These effects 
are commonly paralleled by apparent adaptations in terms of subjective 
sleepiness and EEG theta power as measured during wakefulness (no 
dose-response relationship detected), leaving the issue of the neural 
underpinnings of cognitive deficits largely unresolved (Van Dongen 
et al., 2003). The low distance of the spectral exponents of EEG records 
derived from awake subjects from the assumed critical value of α = − 2 
might constitute a candidate indicator of the detrimental neurocognitive 
effects of sleep debt, as empirical and theoretical evidence suggests that 
brain criticality is sensitive to extending the length of wakefulness 
(Meisel et al., 2013) and might be the primary target of the function of 
sleep, the latter being a tuning for criticality (Pearlmutter and 
Houghton, 2009, 2013; Xu et al., 2024). 

The unequivocal evidence suggesting that arousal, vigilance and 
sleep stages differ in terms of the spectral exponents of the EEG is sup
ported by further, albeit indirect findings. Recent human neurophysi
ology data indicate that the EEG spectral exponents derived from the 
30–45 Hz range positively correlate with pupil size, a marker of arousal 
levels during human sleep, most likely reflecting activity of the locus 
coeruleus-noradrenergic system (Carro-Domínguez et al., 2023). 
Furthermore, evidence derived from animal studies unravelling the 
neuromodulatory bases of cortical local field potential (LFP) are sug
gestive in this regard. Reports support the role of acetylcholine and 
noradrenaline in enhancing arousal and improving sensory processing 
or attention (E. Weiss et al., 2023). In addition, the extracellular levels of 
these neuromodulators are known for their significant change 
throughout the wakefulness-sleep cycle (B. E. Jones, 2005). Parallel 
findings revealed that the stimulation of the cholinergic nucleus basalis 
region in rats acutely increased higher to lower frequency cortical LFP 
power ratio (LFP power at 10–100 Hz divided by that at 1–10 Hz) 
(Goard and Dan, 2009). Similar findings were reported by the experi
mental stimulation of the locus coeruleus, the main noradrenaline 
source in the brain: an immediate shift toward higher frequencies 
(increased high to low frequency power ratio), but apparently main
tained linear power decay in the double logarithmic plain were evident 
(Liu et al., 2017). Given the widespread correspondence and conver
gence of spectral exponent-related and band-limited power 
ratio-derived findings in the electrophysiological studies of vigilance 
(Donoghue et al., 2020), as well as the fact that the spectral exponent is 
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Fig. 3. The spectral exponent as a composite measure of sleep-wake-EEG and sleep pressure in humans. A. The NREM sleep EEG spectral exponents reflect increased 
levels of sleep pressure related to sleep-wake history: spectral slopes in consecutive cycles of sleep (c1–c4). B. The EEG spectral exponents reflect increased levels of 
sleep pressure related to AASM sleep stages. C. The NREM sleep EEG spectral exponents reflect increased levels of sleep pressure related to development and aging: 
spectral slopes in different age groups. D. The NREM sleep EEG spectral exponents reflect increased levels of sleep pressure related to brain topography: front-back 
differences in spectral slopes. E. Medians, interquartile ranges, outliers, and extreme values in NREM sleep periods 1–4 EEG SWA (left prefrontal recording location 
F3, referred to the mathematically-linked mastoids). Note the high interindividual variation hindering the possibility to define reference values. F. Medians, 
interquartile ranges, and outliers in NREM sleep periods 1–4 EEG spectral exponents (left prefrontal recording location F3, referred to the mathematically-linked 
mastoids). Note the low interindividual variation providing us with the possibility to define reference values. Data presented in this figure is derived from two 
published reports, both based on second night sleep records of N = 251 healthy subjects (age range: 4–69 years, 122 females) from the Budapest-Munich database. 
Power spectral density data were derived from mixed-radix FFT analyses of non-artefactual, 4 s Hanning tapered windows with 50% overlap (G. Horváth et al., 2022; 
Schneider et al., 2022). 
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an implicit measure of power ratio, the above results are indicative of 
decreasingly negative spectral exponents (decreases in log-log slope 
steepness) in states of vigilance and high arousal. Moreover, findings 
suggest that acetylcholine and noradrenaline are involved in higher 
spectral exponents (flatter slopes) in conditions of high arousal and 
vigilance. 

Indeed, decreasing vigilance and inducing somnolence and general 
anaesthesia by means of various pharmacological agents consistently 
decreased the spectral exponent of the EEG in human subjects, 
increasing the steepness of their spectral slope in the double logarithmic 
plain. Moreover, the spectral exponent was effective in indexing the 
presence of conscious awareness in these states (Colombo et al., 2019). 
An intriguing finding indicates the potential role of spectral exponents in 
tracking the subtle peculiarities in conscious awareness during sleep. 
Thus, patients suffering from sleep state misperception (experiencing 
wakefulness during periods of sleep as defined on the basis of standard 
scoring rules detailed in Table 1) were shown to be characterized by 
flatter N2 and N3 EEG spectra, meaning higher (less negative) exponents 
as compared to (objectively and subjectively) good sleeper controls 
(Andrillon et al., 2020). Flatter N2 and N3 spectra could indicate un
usually high levels of excitation during sleep, which coheres with the 
hyperarousal model of insomnia. 

4.2.3. The EEG spectral exponent reflects development and aging 
As indicated above, the logarithm of NREM sleep EEG amplitude was 

found to be a linear function of the logarithm of frequency (0.5–12 Hz) 
in both healthy young and elderly subjects, as revealed by period 
amplitude analysis. In addition, the steepness of the slope describing the 
negative correlation between the logarithm of EEG amplitude and the 
logarithm of EEG frequency was significantly lower in older as 
compared to younger subjects (Feinberg et al., 1984). Later studies 
based on the Fourier analysis approach and extending the frequency 
range to 0.3–45 Hz largely confirmed this age-related difference (Tan 
et al., 2001). Furthermore, age was consistently shown to be a predictor 
of the EEG spectral exponents in both wakefulness (Voytek et al., 2015) 
and sleep including NREM and REM phases (Bódizs et al., 2021; Koz
hemiako et al., 2022), all NREM periods (G. Horváth et al., 2022) and 
AASM stages (Lendner et al., 2020; Schneider et al., 2022). 

Besides the formerly presented supporting evidence, the appropri
ateness of the spectral exponent in depicting sleep homeostasis is further 
strengthened by the overnight dynamics of this measure in different age 
groups. Whereas SWA and log-normalized SWA are persistently different 
among prepubertal and postpubertal ages during the course of night 
sleep, this age-effect vanishes during the night in terms of the spectral 
exponent. That is, steeper NREM sleep EEG spectra during early sleep in 
children as compared to adults are equalized during the course of night 
sleep (G. Horváth et al., 2022). This coheres with recent findings 
reporting no significant differences in all-night means of NREM sleep 
EEG spectral exponents between children and adolescents (Favaro et al., 
2023). If we assume that homeostasis implies feedback processes pro
moting the maintenance of or return to a steady state, the disappearance 
of the initially large age-differences during the course of the night could 
be considered as a conceptually valid approximation of this regulation in 
the sleep domain. 

Additional empirical evidence for the age-dependent flattening of 
sleep EEG spectral slopes can be derived from the frequency distribu
tions of aggregated exponent values (α) acquired by instantaneous pa
rametrizations of all-night polysomnography records (Fig. 4.A). It seems 
that exponent values corresponding to black noise decrease in successive 
age groups, whereas a secondary peak of pink noise emerges in young 
adults/middle aged subjects, indicating the age-dependent decrease in 
sleep pressure and/or increase in shallow sleep/wakefulness, respec
tively. In addition, these distributions are suggestive for the robustness 
of the spectral exponent-based approach in quantifying sleep intensity, 
as the results presented in Fig. 4.A are obtained from non-selected re
cords, containing all sleep stages and artefacts. 

4.2.4. The EEG spectral exponent as a function of localization 
Topographical effects in EEG spectral exponents were revealed in 

several studies comparing the power vs frequency relationship at 
different recording locations. Midline frontal, central and parietal 
recording sites were characterized by the highest spectral steepness 
during wakeful resting conditions in the pioneering study of (Pritchard, 
1992), whereas significant antero-posterior gradients in spectral expo
nents were reported by several studies focusing on sleep EEG. Anterior 
recording sites resulted in more negatively sloped spectra as compared 
to posterior ones in individual NREM sleep periods (G. Horváth et al., 
2022). The anteriority effect in spectral exponent was maximal during 
N3/SWS (Schneider et al., 2022), whereas the location with steepest 
spectra undergoes a shift from posterior to anterior regions from child
hood to adolescence, particularly during sleep (Favaro et al., 2023). 
Given the fact that frontal EEG spectral slopes were consistently found to 
be steeper in NREM sleep, especially in the deepest stages of sleep 
known for their involvement in sleep homeostasis, these findings cohere 
with the topography of sleep intensity and the prevailing frontal pre
dominance of SWA (Fig. 3D). 

4.3. The EEG spectral exponent as a reference value 

As discussed above the lack of appropriate, empirically well-founded 
and widely accepted reference values can be considered as an Achilles’ 
heel of all known indexes of sleep homeostasis. Particularly large 
interindividual differences interfere with attempts to define benchmarks 
or references in the time spent in SWS (S3 and S4, or N3 amounts) or 
SWA, whereas the relativization or log-normalization of the spectra 
might bring in its train new problems. Due to its scale-free properties the 
spectral exponent α is an ideal candidate for deriving reference values. 
Although age-effects in sleep intensity are reliably reproduced by the 
NREM sleep EEG spectral exponent (Bódizs et al., 2021), as well as by its 
historical forerunner, the slope of the negative correlation between the 
logarithm of amplitude and the logarithm of frequency (Feinberg et al., 
1984), the range of interindividual differences does not seem to override 
the sleep regulatory effects. In other words, interindividual differences 
are depicted, but not exaggerated by the spectral exponent, which we 
assumed to be the case for SWA or delta EEG power. In an explicit 
attempt to compare the interindividual variability in spectral exponents 
with a respective measure of both raw and log-normalized SWA, we 
considered the number of outliers and calculated the coefficient of 
variation (relative standard deviation) for these measures in the NREM 
sleep EEG of healthy volunteers’ all-night polysomnography records. 
Results indicate a considerably lower number of outliers in the spectral 
exponent measure, as compared to the absolute and log-normalized 
SWA. Accordingly, the coefficients of variation were 2–3 times lower 
for the spectral exponent as compared to the respective values derived 
for SWA indices. That is, the spectral slope is a less individual-specific 
metric (G. Horváth et al., 2022). Benchmark values for the EEG spec
tral exponents in various age groups are indicated in Table 3. Data on 
this normally distributed metric are derived from the baseline, 
post-adaptation nights from various studies conducted on subjects of 
4–69 years of age (G. Horváth et al., 2022; Schneider et al., 2022) and 
might be considered as starting points of a clinically approved and useful 
set of reference values. In order to promote methodological pluralism, 
which we think is inevitable at this stage of knowledge in the field, 
benchmark data obtained by an alternative method is provided in 
Supplementary table 1. 

4.4. The EEG spectral exponent reflects alternating up and down states 
(bistability) 

Several independent series of investigations aimed to unravel the 
neural bases of the ubiquitous Brownian types of power laws, frequently 
seen in mammalian LFP power spectra. Although these investigations 
did not explicitly focus on the sleep-wake state-dependency of power 
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spectra, a common solution of the endeavours find its roots in the up- 
down state alternation, which is an inherent property of low vigilance, 
NREM sleep and general anaesthesia. According to one modelling study 
completed by human LFP recordings derived from invasive epilepsy 
monitoring settings, the random alternation of periods of sustained, 
rapid cortical activity followed by intervals of inactivity (telegraphy 
process) gives rise to a Brownian-type power spectrum, characterized by 
a spectral exponent of α = − 2 in the frequency range of 1–400 Hz 
(Milstein et al., 2009). That is, bistability in itself could cause power 
spectra which are scaled like the ones derived from random motion of 
particles suspended in a medium. Furthermore, Brownian type of power 
law scaling (α = − 2) in the LFP power spectrum was found to be largely 
generated by the step like transitions between cortical up-down states in 
rats. Moreover, these transitions were hypothesized to be induced by 
synchronous changes in the membrane potential across neurons (Bar
anauskas et al., 2012). It is worth noting that these studies did not 
specifically investigated sleep, thus the fact that their authors invoke 
up-down state alternation seems largely non-appropriate at first sight. 
However, sleep was not excluded from the records in neither of the 
studies, thus it could contribute to the spectra by up-down state alter
nation. Moreover, if we consider the emergence of local down states in 
the LFP of behaving rats (Vyazovskiy et al., 2011) and humans (Slater 
et al., 2017), the explanations could partially fit within the framework of 
sleep-wake state regulation. In spite of the suggestive contribution of 
burst-like thalamocortical activity contributing to the findings, the 
above theoretical models were not confirmed in the light of the behav
ioural state-dependent changes of up-down state characteristics and 
spectral slopes. In addition, explanations are constructed on the level of 
system neuroscientific approaches, which might be appropriate, but 
leaves space for cellular level groundings of the spectral exponents. 

4.5. The EEG spectral exponent as a measure of excitation/inhibition (E: 
I) ratio 

A potential source of power law type spectra is a time series derived 
from the superposition of a range of relaxation processes, similarly to the 
varying recovery times of neurons after firing (Schroeder and Wie
senfeld, 1991). Uncorrelated cells that display sharp initial activity, 
whose extracellular fields slowly decay in time were hypothesized to 
give rise to a Brownian type of LFP power spectra (Milstein et al., 2009). 
A further elaboration of this approach postulates that the difference in 
the time constants of the decays in post-spiking extracellular fields of 
excitatory and inhibitory neurons determine the steepness of the spec
tral slope of the LFP spectra. Steeper slopes indicate a higher involve
ment of inhibition, as inhibitory neurons normalize their post-spiking 
membrane potential at a slower rate (membrane potential changes are 
more persistent). As a consequence, excitation-to-inhibition (E:I) ratio 
can be inferred from the value of the spectral exponent or the steepness 
of the slope in double logarithmic coordinates (Gao et al., 2017). An 
important point in this model is the issue of the critical frequency range 
in spectral slope steepness which was found to vary according to the 
value of the E:I ratio itself. Modelling indicated that E:I ratio is positively 
correlated with PSD slope between 30 and 50 Hz in many instances. It 
has to be noted that up-down state alternation and E:I ratio are not 
exclusive explanations of neural power law type spectra. As down states 
are characterized by widespread hyperpolarization and were originally 
termed as hyperpolarization states by Mircea Steriade and his collabo
rators (Steriade et al., 1993), the inherent association of the two phe
nomena is evident. 

Further, indirect evidence supporting the relationship between 
neural excitation and the spectral exponent comes from the already 
mentioned studies focusing on neuromodulation and low over high 
frequency LFP. Noradrenaline exerts primarily excitatory postsynaptic 
effects in cortical neurons by stimulating α1 and β receptors (Holland 
et al., 2021; Johnson et al., 1968; Koga et al., 2020), whereas the 

Fig. 4. Redistribution of aperiodic and oscillatory EEG frequencies in successive age groups and clinical conditions reveals the robustness of spectral parametrization 
against sleep staging and noise. A. Relative redistribution of probabilities (P) of obtaining black noise-type EEG segments toward hazards of seeing pink noise-type 
epochs from childhood to middle aged subjects coheres with the reported age-related changes in sleep composition (α – spectral exponent). B. Redistribution of 
probabilities of obtaining theta (4–7 Hz) maximal peak frequencies (fmaxPeak) in the whitened spectra of children toward alpha (7–11 Hz) and beta (16–30 Hz) 
spectral peaks in middle aged subjects. Findings cohere with the reported increases in oscillatory alpha and beta frequencies in the aged reflecting shallow or more 
activated sleep states/wake after sleep onset. C. Redistribution of probabilities (P) of obtaining black noise-type EEG segments toward hazards of seeing pink noise- 
type epochs in psychophysiological insomnia as compared to control subjects coheres with the reported flattening of EEG spectra in insomnia (α – spectral exponent). 
D. Redistribution of probabilities of obtaining spindle (11–16 Hz) maximal peak frequencies (fmaxPeak) in the whitened spectra of control subjects toward alpha 
(7–11 Hz) spectral peaks in insomnia subjects. Findings cohere with the reports on alpha activity indexing arousal. Data depicted in panels A and B are derived from 
the Budapest-Munich database (N = 251 healthy subjects, age range: 4–69 years, 122 females) by the parametrization of all night sleep-wake EEG spectra according 
to the modified FOOOF procedure (Schneider et al., 2022) on moving averages of 75 consecutive periodograms of 4 s long, Hanning-tapered EEG-segments (overlap 
74×4 s, left central recording location C3-A1A2, no sleep stage- and artefact-related information used, panels. Panels C and D depict data derived from an open 
database of N = 11 psychophysiological insomnia and N = 11 control subjects aged between 18 and 63 years (43.2±14.2), 14 females (Rezaei et al., 2017). Due to 
low-pass filtered EEG data used in panels C and D, the fitting of spectral slopes and peaks in these latter cases were performed in the 2–30 Hz range. 

Table 3 
Benchmark values for sleep EEG spectral exponents derived from the left central recording location (C3) of healthy subjects of different ages*.   

Group [age] Children [4, 10[ Teenagers [10, 20[ Young adults [20, 40[ Middle-aged adults [40, 70[   

Mean S.D. N Mean S.D. N Mean S.D. N Mean S.D. N 

NREM night average -2.81 0.15 31 -2.73 0.21 36 -2.72 0.17 150 -2.63 0.14 34 
cycle 1 -3.17 0.18 31 -2.95 0.29 36 -2.89 0.22 150 -2.74 0.15 34 
cycle 2 -2.83 0.27 31 -2.76 0.23 36 -2.78 0.20 150 -2.72 0.19 34 
cycle 3 -2.60 0.24 31 -2.67 0.23 36 -2.67 0.20 148 -2.57 0.17 34 
cycle 4 -2.56 0.24 30 -2.58 0.23 36 -2.61 0.18 143 -2.51 0.18 30 

REM night average -2.49 0.17 31 -2.39 0.22 36 -2.36 0.14 150 -2.27 0.13 34 
cycle 1 -2.70 0.16 29 -2.50 0.20 30 -2.44 0.17 139 -2.31 0.16 33 
cycle 2 -2.57 0.21 31 -2.44 0.23 36 -2.38 0.17 148 -2.32 0.15 34 
cycle 3 -2.52 0.14 31 -2.40 0.22 36 -2.36 0.17 146 -2.27 0.15 34 
cycle 4 -2.46 0.21 30 -2.37 0.23 35 -2.35 0.18 143 -2.23 0.15 29  

* Data obtained by using the FOOOF procedure (Donoghue et al., 2020) on the Budapest-Munich database (Bódizs et al., 2017); EEG reference: 
mathematically-linked mastoids; night average refers to the average spectra of all night NREM or REM sleep, including all available sleep cycles 
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stimulation of the locus coeruleus, the main source of central nervous 
system noradrenaline resulted in immediate shift to the relative increase 
in high (10–100 Hz) over low (1–10 Hz) frequency LFP power, but 
roughly maintained power law type scaling (Liu et al., 2017). Likewise, 
acetylcholine release in the cortex can induce activation of pyramidal 
neurons by two parallel mechanisms related to muscarinic and nicotinic 
receptors (Carcea and Froemke, 2013), whereas the experimental 
facilitation of this release results in increased high over low frequency 
LFP (Goard and Dan, 2009). 

In sum, the spectral exponent of the EEG is not just an expression of 
the constant ratio of lower/higher frequency power, but also a com
posite and non-redundant mathematical abstraction formalizing several 
regularities of sleep homeostasis. The latter encompass the law of 
diminishing return, reflection of sleep-wake history, sleep stage differ
ences, development and aging, as well as brain topography and local 
differences in sleep intensity. In addition, the spectral exponent is suit
able for building reference values, because of its lower interindividual 
variability as compared to SWA and due to the existence of specific 
exponent values determining specific time series dynamics. Last, but not 
least, the EEG spectral exponent is related to neurophysiological pro
cesses formerly revealed to be critically involved in sleep regulation, 
including network bistability, E:I ratio and the release of key neuro
transmitters, like noradrenaline, acetylcholine, GABA, and glutamate. 

5. Basic sleep regulatory processes: circadian rhythmicity 

5.1. Basic concepts of circadian rhythmicity and their applicability to 
sleep 

A significant growth in understanding the maintenance of the sta
bility of the internal milieu of the organism emerged after the recogni
tion of the anticipatory types of adaptive mechanisms working in strong 
association with the biological clocks, especially the master circadian 
timer (Moore-Ede, 1986). This type of predictive homeostatic mecha
nism was hypothesized to play central role in the regulation and func
tion of sleep (Simor et al., 2023). In other words, the circadian rhythms 
or Process C can be considered as a timer of sleep and wakefulness, with 
prevailing night-time sleep promotion in diurnal beings, including 
humans (Borbély, 1982; Borbély et al., 2016). The anatomo-functional 
basis of the self-sustaining circadian oscillator is found within the 
master circadian pacemaker, known to be located in the suprachiasmatic 
nuclei of the hypothalamus. Neurons of the suprachiasmatic nuclei tend 
to fire at a higher rate during the day and lower their activity during the 
night. Clock genes (Period and Cryptochrome) within the neurons of the 
suprachiasmatic nuclei express clock proteins during the biological day, 
whereas clock proteins form dimers and translocate to the cytoblast, 
inhibiting their own further expression. The inhibition of clock gene 
expression by clock protein dimers in the cytoblast is attained by 
repressing the CLOCK-BMAL1 transcription factors, the latter effect 
prevailing during the biological night. This transcriptional-translational 
feedback loops repeatedly with an approximate cycle length of 24 hours 
and relatively high persistence (Maywood, 2020; Young, 2018), at least 
compared to the flexibility of sleep homeostasis. External timers, called 
Zeitgebers provide an appropriate adjustment of circadian phase to 
external physical or social requirements. Suprachiasmatic nuclei 
neuronal activity is a timer of regular night-time pineal melatonin 
release. Given the preponderance of melatonin receptors in the supra
chiasmatic region, melatonin feeds back on the master circadian clock, 
strengthening the “night-mode” of activity, whereas light has an oppo
site effect. Light is known to induce an acute activation of suprachias
matic nuclei neurons via the retinohypothalamic tract, an effect 
associated with immediate early gene and Period2 gene expression in 
these cells. Moreover, pineal melatonin is acutely supressed by light. 
These effects convey a “day-mode” message to the master clock (Borjigin 
et al., 2012; Pevet and Challet, 2011). 

5.2. Indexing circadian rhythms: classic measures and some EEG 
correlates 

Markers of circadian rhythm include behavioural indices like ques
tionnaires, sleep logs/diaries, and rest-activity rhythms as measured by 
actigraphy. Furthermore, biometric markers include drops in core body 
temperature and release of melatonin during the biological night, as well 
as clock gene expression assessed in whole-blood samples, peripheral 
blood mononuclear cells, oral mucosa or hair and beard follicles (Crnko 
et al., 2021; Reid, 2019). Recently proposed, new measures indicating 
circadian rhythms include one or a few samples of high dimensional data 
derived from transcriptomes and/or metabolomes (Dijk and Duffy, 
2020). The gold standard method of circadian phase assessment is the so 
called Dim Light Melatonin Onset procedure involving the detection of 
the individual starting times of melatonin production by analysing saliva 
samples in conditions of low ambient illumination during evening hours 
(Lewy and Sack, 1989; Pandi-Perumal et al., 2007). 

According to the widely acknowledged claim, polysomnography is 
not useful in the diagnosis or treatment of circadian rhythm sleep dis
orders (Chokroverty et al., 2005). This could be one of the reasons of the 
fact that the time-course of Process C in the two-process model of sleep 
regulation was derived from physiological and behavioural variables, 
but not from EEG measures (Borbély et al., 2016). Indeed, several EEG 
and polysomnographic measures of circadian phase were revealed. Most 
of these measures were not clinically validated yet, or were not specific 
enough to be translated to chronomedical settings. Examples of process - 
related polysomnography measures include alpha EEG activity 
(8.25–10.25 Hz) during REM sleep or REM sleep percent (relative to 
total sleep time) (Dijk et al., 1997), as well as the somewhat unexpected 
finding, indicating that the incidence, amplitude, frequency, and the 
slope of slow waves (0.5–4 Hz) were revealed to follow a circadian 
rhythm, with acrophases during the biological day and with prevailing 
centro-posterior topography (Lazar et al., 2015). In addition to these 
examples of polysomnogaphy-derived correlates of circadian regulatory 
processes, the oscillatory frequency of sleep spindles was also empha
sized in some studies. 

5.3. Indexing circadian rhythmicity: looking beyond the classical 
measures 

5.3.1. Oscillatory sleep spindle frequency as a putative index of circadian 
phase 

Sleep spindles are burst-like sequences of 11–16 Hz (most commonly 
12–14 Hz) sinusoidal cycles in the EEG of N2 and N3 sleep stages with a 
duration ≥0.5 s according to the commonly used criteria (Fernandez 
and Lüthi, 2020; Kane et al., 2017). A minimum length of 0.5 s was not 
part of the original description of the phenomena, but the typical fre
quency of 14 Hz was already emphasized (Loomis et al., 1935). Spindle 
bursts constitute a common physiological oscillatory activity pattern in 
the human NREM sleep EEG, forming clear spectral peaks in the perio
dograms (Jobert et al., 1992). Frequency and antero-posterior topo
graphical axis delineate slow (~12 Hz) frontally dominant and fast 
(~14 Hz) parietally dominant sleep spindles (Gibbs and Gibbs, 1951), 
usually forming two distinct spectral peaks in some but not all subjects 
(Gennaro et al., 2005; Jobert et al., 1992). 

Studies conducted by the use of the forced desynchrony protocol 
(experimentally scheduled sleep on a 28 hours day basis) are instru
mental in the differentiation of the effects of sleep-wake history and 
circadian phase on the specific EEG markers. Studies of this type 
revealed a predominant effect of time-of-day or circadian phase on the 
spectral power of NREM sleep EEG spindle frequency activity (Dijk et al., 
1997) or more specifically on the oscillatory frequency of R&K Stage 2 
sleep spindles. Spindle frequency reached its nadir at the trough of the 
body temperature cycle (Wei et al., 1999). In addition, spindle frequency 
showed a U-shaped overnight time course, significantly decreasing from 
a highest level in NREM episode 1 to NREM episode 2 and increasing 

R. Bódizs et al.                                                                                                                                                                                                                                  



Progress in Neurobiology 234 (2024) 102589

16

from NREM episode 3–4 (Bódizs et al., 2022; Knoblauch et al., 2003). 
The slowing of sleep spindle oscillations around 3–4 AM was revealed in 
a time-of-day-dependent analysis, after removing the effects of time 
elapsed since sleep onset (Purcell et al., 2017). 

Further spectral analyses revealed similar findings in both forced 
desynchrony (Dijk, 1999) and sleep displacement (Aeschbach et al., 
1997) studies. Specifically, spindle frequency activity as measured by a 
binwise approach, redistribute toward lower frequencies during the 
habitual night sleep period, whereas the opposite change was observed 
during transitioning toward the day. Furthermore, evenly spaced naps 
during the 24 hours day indicate that sleep spindle frequency de
celerates during the night, when melatonin production peaks (Kno
blauch et al., 2005), whereas daytime sleep following a night of total 
sleep deprivation is characterized by higher frequency sleep spindles, as 
compared to the baseline, nocturnal sleep period (Rosinvil et al., 2015). 
Last, but not least daytime nap sleep spindles were revealed to be faster 
than night sleep spindles (Bódizs et al., 2022), whereas the timing of the 
nadir in sleep spindle frequency reliably correlates with 
actigraphy-derived measures of circadian phase (G. Horváth and Bódizs, 
2024). 

Above reported evidence suggests that oscillatory sleep spindle fre
quency is a putative sleep EEG-based biomarker of circadian rhythms, 
with lower and higher values indicating biological night and day, 
respectively. The formalization of this assumption can be elegantly 
performed on the basis of the power law and spectral-peak scaling for
mula of the EEG presented in our previously published work (Bódizs 
et al., 2021) and in the current paper as well. The marker of process C 
could indeed be the location of the local maximum of the PPeak(f) 
function within the spindle range (fmaxPeak). In order to avoid shifts 
among slow-anterior and fast-posterior sleep spindle types, frequency 
ranges or recording locations have to be selected carefully. Alterna
tively, the parallel analysis of both slow and fast sleep spindles as 
embedded in the Individual Adjustment Method (IAM) of sleep spindle 
analysis (Bódizs et al., 2009) can be adopted. 

5.3.2. Sleep spindle frequency as a putative index of development and aging 
Age is a crucial variable in circadian biology. On the phenotypic level 

children are characterized by an advanced phase of their circadian 
rhythms as compared to adults. Data derived from the reported timing of 
sleep on free days indicate that phases age-dependently delay until the 
end of adolescence (roughly 2.5 hours delay until the age of 20 years), 
whereas adulthood is characterized by an age-dependent, slow, gradual 
phase advancement of circa 30 minutes/decade (Roenneberg et al., 
2004). These findings are consistent with data on preferred schedules of 
sleep (Randler et al., 2016). Besides phase advancement, aging is also 
associated with the reduction of the amplitude of circadian modulation 
of several variables, including among others rest-activity rhythms, sleep, 
melatonin and cortisol release, as well as metabolic rate (Hood and 
Amir, 2017). 

The above mentioned age-related alterations in circadian phase and 
amplitude are paralleled by similar changes in sleep spindle frequency. 
Thus, the estimated phases of the nadirs in sleep-spindle frequencies 
were advanced in children of 4–9 years as compared to teenagers (10–19 
years), as well as young (20–39 years) and middle-aged (40–69 years) 
subjects by 1–2.5 hours, depending on spindle type (slow vs fast), age 
group and sex (Bódizs et al., 2022). Moreover, a notably lower ampli
tude of the circadian rhythm of R&K Stage 2 sleep spindles in older 
(64–72 years) as compared to younger (21–25 years) subjects was 
revealed in a forced desynchrony study (Wei et al., 1999). Accordingly, 
the deceleration of sleep spindle oscillations during the middle of the 
night-time sleep period attenuates in an age-dependent manner (Bódizs 
et al., 2022; Purcell et al., 2017). Night sleep spindle spectral peak fre
quencies of the whitened frontopolar EEG spectra (with a removed 
power law trend) confirmed this assertion: the lack of an U-shaped 
overnight dynamics is evident in middle aged subjects (40–69 years), 
whereas it is present in all other age groups (G. Horváth et al., 2022). 

Likewise, the significant day-night difference in nap sleep spindle fre
quency of younger subjects (20–31 years) was not revealed in older 
(57–74 years) volunteers (Knoblauch et al., 2005). Similar findings were 
reported for sleep periods of habitual length: daytime recovery vs 
night-time baseline sleep spindle frequency differed less in middle aged 
(40–60 years) than in young (20–38 years) subjects (Rosinvil et al., 
2015). 

In sum, available evidence suggests that oscillatory sleep spindle 
frequency measures are instrumental in depicting the age-related 
changes in circadian rhythmicity, including advanced phase in chil
dren and decreased amplitude or attenuated diurnal changes in middle- 
aged or older adults. 

5.3.3. Oscillatory sleep spindle frequency reflects core body temperature 
Temperature-dependence of EEG power spectral measures is widely 

reported in hibernating species, but could have potential relevance in 
humans as well. Accordingly, most biological processes have a temper
ature coefficient (Q10) between 2 and 3, such that the speed of the 
process doubles or triples as temperature increases by 10◦C (Deboer, 
1998). Although, this would mean just a few tenths of Hz changes in case 
of a sleep EEG oscillation throughout the physiological variations in 
body temperatures, these small fluctuations could provide us with cues 
regarding circadian phase. 

In subjects with conventional sleep timing the nadir of core body 
temperature typically occurs during the latter part of the habitual sleep 
period (around 3–4 AM) (Reid, 2019). Moreover, forced desynchrony 
investigations revealed the coincidence in the nadirs of core body tem
perature and sleep spindle frequency rhythms in humans (Wei et al., 
1999). In addition, unequivocal findings indicate an age-dependent 
attenuation in the amplitudes of both core body temperature (Hood 
and Amir, 2017) and sleep spindle frequency changes throughout the 
day (Bódizs et al., 2022; Wei et al., 1999). 

Further correlative evidence suggesting the close correspondence 
between body temperature and sleep spindle frequency comes from the 
studies focusing on menstrual cycle-related variations in neural oscil
lations in females. Increased progesterone level during the luteal phase 
of the menstrual cycle is characterized by both increased core body 
temperatures (Baker et al., 2001) and accelerated sleep spindles (Driver 
et al., 1996; Ishizuka et al., 1994). The overall faster sleep spindles in 
females as compared to males was revealed in a wide reproductive age 
range (Bocskai et al., 2023; Bódizs et al., 2022; Markovic et al., 2020; 
Ujma et al., 2014) and could reflect the accelerated thalamocortical 
oscillatory dynamics in slightly hyperthermic luteal phase records of the 
menstrual cycles of women involved in the studies. 

These indirect findings suggest a close correspondence between body 
temperature and sleep spindle frequency. Indeed, rodent models 
focusing on the effect of local brain temperature manipulations on 
neural oscillations revealed a positive correlation between temperature 
and sleep spindle frequency. The acceleration of sleep spindle by local 
warming followed a Q10 value perfectly fitting the biological range of 
2–3 (Csernai et al., 2019). 

5.3.4. Oscillatory sleep spindle frequency reflects melatonin-release 
The reticular thalamic nucleus is a key neuroanatomical structure in 

the generation of sleep spindles, specifically involved in the hyperpo
larization of thalamocortical neurons during periods of NREM sleep 
(Steriade, 2003). Melatonin receptors are expressed in the reticular 
thalamic nucleus (Ng et al., 2017). Besides the anatomical overlap 
mentioned above, diurnal/circadian, as well as age-related changes in 
melatonin and sleep spindle frequency are known to follow parallel 
patterns. As regarding the former, the acrophase of salivary melatonin 
level was shown to coincide with the nadir in sleep spindle frequency in 
humans (Knoblauch et al., 2005). Age-effects in melatonin production 
and sleep spindle frequency are also coherent with the hypothesis of 
their negative correlation. Nocturnal serum melatonin levels are around 
two times higher in prepubertal children as compared to adults 
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(Waldhauser et al., 1988), while this is an age range known to be 
characterized by particularly low sleep spindle frequencies (Ujma et al., 
2014; Z. Y. Zhang et al., 2021). Furthermore, aging is associated with a 
slow reduction in melatonin release (Hood and Amir, 2017; Waldhauser 
et al., 1988; Wetterberg et al., 1999), as well as with an attenuation in 
circadian and/or overnight changes in sleep spindle frequency (Bódizs 
et al., 2022; Wei et al., 1999). Taken together these results might indi
cate the potential involvement of melatonin in the deceleration of sleep 
spindles during the biological night. However, the specific mechanism of 
this potential involvement is still largely unrevealed. One possibility is 
the indirect route, that is a sleep spindle deceleration effect of melatonin 
through hypothermia (Marrin et al., 2013), but direct neural mecha
nisms involving the core structure of sleep spindle generation cannot be 
ruled out. 

6. Basic sleep regulatory processes: ultradian rhythmicity 

6.1. Basic concepts of ultradian rhythmicity and their applicability to 
sleep 

Ultradian rhythms or episodic ultradian events are rhythmic or 
episodic phenomena with a cycle length/recurrence rate of less than 
24 hours, but usually between the limits of 20 minutes to 6 hours. These 
phenomena are ubiquitous in all biological systems, being rooted in 
many divergent molecular and brain mechanisms (Goh et al., 2019). 
Sleep is known to be organized in ultradian cycles made up by an 
alternation of NREM and REM phases in roughly 90 minutes long bouts 
(Aserinsky and Kleitman, 1953; Dement and Kleitman, 1957). Evidence 
suggests the pivotal role of the reciprocal interaction of REM-sleep 
inhibiting monoaminergic (serotoninergic dorsal raphe and noradren
ergic locus coeruleus, termed REM-off) and REM sleep-promoting 
cholinergic (laterodorsal tegmental and peduculopontine tegmental, 
REM-on) nuclei within the brainstem in producing the ultradian rhythm 
of sleep (Hobson et al., 1975; McCarley, 2004). More recent neuro
physiological studies revealed the leading role of ventrolateral peri
aqueductal gray and dorsal paragigantocellular reticular GABAergic 
nuclei in driving this interaction and producing ultradian sleep cycles 
(Luppi et al., 2012). 

6.2. Indexing the ultradian rhythmicity of NREM-REM alternation: 
classic measures 

The commonly used consensual rules of staging polysomnography 
records according to the R&K and AASM criteria (see Table 1) provide us 
with a rough picture of ultradian sleep regulation: the number and the 
length of sleep cycles, as well as their regularity is in fact reflected in the 
hypnogram. Specific sets of rules applied to staged sleep records clari
fying ultradian sleep cycle boundaries were put forward (Feinberg and 
Floyd, 1979) and adapted or specified in later reports (Aeschbach and 
Borbély, 1993; Tarokh et al., 2011). It is obvious that sleep staging-based 
definition of ultradian sleep cycles has its own merits, constituting the 
classical way of approaching the issue. However, the basis of this defi
nition suffers from all caveats of rule-based sleep scoring, which were 
already mentioned before (Lim et al., 2020; Stanley, 2023). 

Studies relying on the overnight dynamics of band-limited or binwise 
spectral EEG measures successfully reproduce the cyclic recurrence of 
increased SWA/delta power in NREM sleep phases, as well as the 
dampening of these measures in REM phases (Aeschbach and Borbély, 
1993). Detailed binwise spectral analyses of state transitions revealed a 
change in power density over practically the entire frequency range: 
high delta and sigma activity, as well as low beta power were revealed 
for both initial and final periods of NREM sleep (S2–S4) compared to S1 
and REM, respectively (Aeschbach and Borbély, 1993). The Neuronal 
Transition Probability Model is one of the most elaborated approaches of 
this kind and relies on sequential and interdependent changes in the 
relative predominance of beta, sigma and delta band power values, 

defining the dynamics of ultradian sleep cycles (Merica and Fortune, 
1997). The model successfully integrates ultradian regulation with 
neuronal activity (Merica and Fortune, 2004) and circadian regulation 
(Merica and Fortune, 2011). Although well-elaborated, this model and 
the other EEG power-based approaches inherently conflate ultradian 
regulation and sleep homeostasis, as EEG power is a strong indicator of 
the latter process as well. 

Besides sleep scoring and band-limited EEG spectra the analysis of 
the EOG signal provides us with a further potential insight into the 
presence or absence of an actual REM stage, thus the recurrent emer
gence of episodes with rapid eye movements indicates the ultradian 
periodicity of NREM-REM alternation (Hilbert and Naitoh, 1972). 
Indeed, wakefulness is characterized by eye movements as well, thus, 
the distinction between REM and wake states is difficult when relying on 
this measure. Furthermore, rapid eye movement density during REM 
sleep was shown to reflect sleep homeostasis as well (Aserinsky, 1969, 
1973; Barbato et al., 1994; Marzano et al., 2011). As a result, early REM 
phases of sleep might contain a low number of scarcely detectable eye 
movements, especially in conditions of high homeostatic sleep pressure. 

6.3. Indexing the ultradian rhythmicity of NREM-REM alternation: 
looking at the spectral exponent of the EEG 

The formerly presented, wide-range EEG power redistributions 
during the process of transitioning toward or away from the NREM 
phase of sleep (Aeschbach and Borbély, 1993; Merica and Fortune, 
1997) as well as the sleep stage-based differences in the spectral expo
nent (Miskovic et al., 2019; Schneider et al., 2022) suggest that the 
steepness of the EEG spectra follows an ultradian rhythm. Indeed, the 
time series of spectral slopes were shown to descend and ascend cycli
cally across a night such that the troughs of the time series coincide with 
non-REM sleep while the peaks of these time series coincide with REM 
sleep. Based on this observation the concept of “fractal cycles” of sleep 
has been introduced as a measure of ultradian rhythmicity of 
NREM-REM alternations (Rosenblum et al., 2023 a). A typical night 
sleep consists of 4–6 fractal cycles which last for approximately 
90 minutes, a description that strikingly resembles that for classical 
NREM-REM cycles. Interestingly, children and adolescents as well as 
older healthy adults show shorter fractal cycles as compared to young 
healthy adults (inverted U-shape as a function of age), whereas medi
cated patients with depression showed longer fractal cycles compared to 
their own unmedicated state and healthy controls (Rosenblum et al., 
2023 a). Moreover, the fractal cycle algorithm reliably detects the 
so-called “skipped” cycles, the cycles where only a “lightening of sleep” 
occurs and no REM sleep is observed, possibly due to too high non-REM 
sleep pressure (Le Bon, 2020). This is a very important methodological 
strength of this approach, which might help in, for example, REM sleep 
behaviour disorder as a means to more easily detect REM sleep without 
atonia episodes, which currently, are often mistaken as non-REM sleep. 
In sum, these recent findings suggest that spectral slopes-based “fractal 
cycles” of sleep can measure ultradian rhythmicity of NREM-REM 
alternations. 

6.4. Indexing the ultradian rhythmicity of NREM-REM alternation: 
recurrent and abrupt shifts in oscillatory peak frequencies 

Unequivocal evidence supports the specificity of the emergence of 
sleep spindle oscillatory peak frequencies to the EEG spectra of the 
NREM phases of sleep. The already mentioned characteristic emergence 
of spindle frequency spectral peak or peaks in the NREM (N2 and N3) 
periodogram (Jobert et al., 1992) seems to be particularly specific to the 
mentioned sleep phase (stages). The earliest reports comparing R&K 
sleep stages or NREM and REM phases revealed a peak or a transient 
cessation in the monotonously decreasing power along the frequency 
axis at the spindle frequency in R&K stages 2–4 sleep, but not REM, stage 
1 or wakefulness (Borbély et al., 1981; Dumermuth et al., 1983). 

R. Bódizs et al.                                                                                                                                                                                                                                  



Progress in Neurobiology 234 (2024) 102589

18

Moreover, wake to NREM sleep transitions were evidently characterized 
by the emergence of the spectral peak in the spindle range, whereas 
NREM to REM phase transitions are related to disappearance of that 
peak (Aeschbach and Borbély, 1993). Likewise the parametrization of 
sleep EEG spectra indicates the confinement of maximal spectral peak 
frequencies to NREM sleep periods including AASM stages N2 and N3, 
but not N1, whereas wakefulness and REM sleep are largely character
ized by spectra peaking in the non-spindle ranges, the latter covering the 
theta, alpha or beta domains (Schneider et al., 2022). The ubiquity of 
this finding suggests that distinct oscillatory categories define distinct 
phases of the ultradian sleep cycles. As a consequence, sleep is not only a 
more or less smooth fluctuation in EEG SWA/delta power or spectral 
exponent at the ultradian, roughly 90 minutes rate, but also a recurrent 
and abrupt shift between spindle and non-spindle oscillatory modes of 
the cortex. 

7. Reconsidering the two-process model of sleep regulation in 
terms of fractal and oscillatory spectra 

7.1. Sleep EEG spectral exponents and peak frequencies as indicators of 
homeostatic, circadian and ultradian sleep regulatory processes 

In coherence with the core theses of the two-process model, ho
meostatic timekeeping and circadian timing are crucial factors in the 
regulation of sleep propensity and intensity in humans and other 
mammals (Borbély, 1982; Borbély et al., 2016). Overwhelming evidence 
suggests that there are two types of brain activity that coexist: the 
broadband, aperiodic activity and the narrow-band, rhythmic oscilla
tions (He, 2014). The conceptual framework presented herein is largely 
based on this latter distinction. The proposal is based on the following 
claims:  

1. sleep homeostasis is reflected by the spectral exponent, a composite 
measure of the dominance of lower over higher frequency EEG: 
steeper slopes indicate higher sleep propensity (accumulated sleep 
need).  

2. circadian regulation of sleep is reflected by the oscillatory frequency 
of sleep spindles, with a U-shaped overnight dynamic, the deceler
ation period indicating a biological night.  

3. ultradian regulation of sleep consists of abrupt and recurrent shifts in 
dominant resonance oscillatory frequency of the EEG, where spindle 
frequency oscillations indicate the presence of NREM phases, 
whereas their replacement by theta or beta waves reveals REM 
phase; in addition, ultradian regulation is indexed by the time series 
of fractal spectral slopes. 

The EEG spectral exponent can be defined in terms of a normal range, 
unlike SWS/N3 amount or SWA. We think that the chances to fill the gap 
in the knowledge on normative sleep parameters are increased by 
assuming that the decreased (more negative) spectral exponent is the 
standardisable effector response of the central nervous system during 
sleep. In addition to the attractive option for dealing with the gap be
tween basic sleep science and somnology, the focus on the spectral 
exponent could provide us with further, albeit theoretical advantages. 
Our proposal to assess sleep in terms of the departure of the EEG spectral 
exponent from the critical value of α = − 2, fluctuating in the form of 
fractal cycles, might deepen our understanding of the studies focusing 
on the function of sleep or on the nature of conscious awareness. 
Moreover, the core of the present hypothesis (i) is a conceptual change 
in the focus or the nature of the homeostatic effector mechanism per se. 
Instead of hypothesizing a leading role of the slow oscillation and or 
delta wave activity in the dissipation of sleep need, the present assertion 
suggests that it is rather the aperiodic, non-oscillatory dynamics of the 
time series which plays a major role. Lower spectral exponents, indi
cating steeper spectral slopes, reflect a statistical tendency of increasing 
membrane hyperpolarization in neural network elements to be followed 

by further increases in hyperpolarization, whereas increases in depo
larization are followed by further increases in depolarization. This is 
called neuronal bistability in classical neurophysiological terms and 
persistent fractional Brownian motion in the science of statistical frac
tals. Obviously, this hypothesis does not contradict the involvement of 
specific slow oscillatory mechanisms in sleep homeostasis but we have 
to consider that sleep is local (Krueger et al., 2008). Thus in the scalp 
EEG, we detect the summation of potentials of various local neural as
semblies, which are averages and aggregates of basically uneven pro
cesses. As a consequence, clear limits between the up-down states of the 
slow oscillation are usually not always discernible in the EEG nor can we 
be sure if the actually measured deflection is an oscillatory or aperiodic 
element of the EEG. Indeed, the presence of a spectral peak (upward 
deflection above the levels predicted by the underlying power law) can 
indicate an oscillation. It remains to be determined if whitened spectral 
peaks of the slow oscillation/delta activity as measured by whitened 
spectral peak sizes, play specific roles in the process of sleep homeostasis 
or are indeed parts of the same mechanism we put implicitly forward in 
this theoretical context. In short, we propose that wakefulness implies an 
antipersistent type of EEG dynamics, characterized by a spectral expo
nent of α > − 2. In this state, increases in hyperpolarization are typically 
followed by decreases in hyperpolarization. The same holds true for 
depolarization. The longer (and perhaps the stronger, the latter meaning 
higher α values) this dynamical property is maintained, the higher the 
need to change to persistent fractional Brownian motion, characterized 
by steep spectral slopes already characterized above. This assumption 
fits with reported evidence suggesting that the task-specific EEG spectral 
exponents capture focal attention-related changes in E:I brain state 
(Waschke et al., 2021), whereas tasks that require more attention drive 
sleep need and sleep intensity (Kirszenblat and van Swinderen, 2015). In 
addition to the above considerations, the present concept is coherent 
with the recently proposed reciprocal dynamic of reactive and predictive 
homeostasis during sleep (Simor et al., 2023). Steeper fractal spectra (G. 
Horváth et al., 2022) and deeper fractal cycles (Rosenblum et al., 2023 
a) seen during the early night sleep could reflect intensive restorative 
processes (which are also reflected by SWA), whereas flatter fractal 
slopes/shallower fractal cycles seen during the later part of night’s sleep 
could reflect more active future-oriented processes, characterized by 
relatively higher cognitive load and a shift towards neural excitation 
relative to inhibition. 

SWA was proposed to vary between the upper and the lower limits 
defined by the circadian phase in the detailed, mathematically formu
lated version of the two-process model of sleep regulation (Daan et al., 
1984). Here we proposed that the underlying circadian phase is indi
cated by the oscillatory frequency of sleep spindles. Further work is 
needed to determine the mathematically precise and physiologically 
meaningful relationship between the fast and slow sleep spindle fre
quencies and the upper and lower limits of Process, respectively. Indeed, 
the evidence for the relationship between oscillatory sleep spindle fre
quency and circadian modulation is strong. 

The two-process model parametrized the ultradian oscillation as an 
autonomous rhythm generator as described by the reciprocal interaction 
model, but gated by process (Borbély, 1982). This coheres with the 
current proposal of the oscillatory peak frequency as being the common 
denominator of circadian and ultradian regulation of sleep. While Pro
cess is proposed to be indexed by slow drifts in oscillatory sleep spindle 
frequency, ultradian regulation is modelled by the recurrent and abrupt 
shifts in the oscillator, leading to a rapid departure from the canonical 
sigma range and fluctuations in the steepness of the fractal slopes. 
Further studies need to clarify if the ongoing and Process -reflecting 
oscillatory spindle frequency is indeed an empirically testable modu
lator of REM initiation tendencies. Specifically, we need to unravel if 
spindle oscillatory frequencies are predictors of the transition into the 
REM phase of sleep or modulators of REM duration. 

Based on the physiologically and empirically meaningful decompo
sition of the EEG time series into fractal and oscillatory spectral 
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measures we put forward the basic elements of a renewed conceptual 
framework of sleep regulation. The proposed name of this framework 
could be termed as the Fractal and Oscillatory Adjustment Model 
(FOAM) of sleep regulation (Fig. 5). 

7.2. Is FOAM somnologically meaningful: clinical relevance of the revised 
two-process model of sleep regulation? 

7.2.1. Revisiting the S-deficiency hypothesis of major depressive disorder 
Within the context of the very first clinical application of the two- 

process model of sleep regulation, authors aimed to model the sleep 
alterations of patients suffering from major depression, by assuming a 
reduced level of Process S in this psychiatric condition (Borbély and 
Wirz-Justice, 1982). Given the conceptual and predictive validity of the 
S-deficiency hypothesis of depression (Borbély, 1987; Macher et al., 
2004), any alternative index of sleep homeostasis is expected to provide 
us with a similar group difference between depressed and non-depressed 
subjects (discriminative validity). Indeed, stage N2 sleep EEG spectral 
slopes were examined and reported to indicate flatter spectral decay in 
patients diagnosed with major depressive disorder as compared to 
healthy control participants (Rosenblum et al., 2023 b). Such findings 
maintain the creative potential of the S-deficiency hypothesis of 
depression, but might open further avenues in understanding the nature 
of sleep alterations in patients suffering from mood disorders. 

In addition to discriminative validity, the FOAM of sleep regulation 

resolves the apparent contradiction between the gender differences in 
the prevalence of major depressive disorder and sleep EEG SWA. Spe
cifically, the incidence of depression is significantly higher in women as 
compared to men (Albert, 2015), while in terms of SWA, the gold 
standard measure of Process S, women are consistently characterized by 
higher values, the latter suggesting deeper sleep (Carrier et al., 2001; 
Dijk, Beersma, and Bloem, 1989). In spite of the intriguing gender dif
ferences in rebound sleep after extended wakefulness in patients with 
major depression (Armitage and Hoffmann, 2001), the findings on the 
baseline differences contrast the prediction of the S-deficiency hypoth
esis. Indeed, the new sleep homeostatic measure put forward in the 
FOAM of sleep regulation, namely the EEG spectral exponent was not 
revealed to differ significantly among women and men (Bódizs et al., 
2021). Although, the potential role of sex hormones in mood disorders is 
still an important issue (Albert, 2015), the equality of spectral exponents 
among the sexes leaves space for these effects. 

7.2.2. Flatter EEG spectra and more alpha peaks in insomnia and sleep 
state misperception 

Patients suffering from chronic insomnia or sleep state mispercep
tion, both characterized by fragility of sleep and sleep-related conscious 
awareness, were revealed to express flatter stage N2 and N3 sleep EEG 
spectral decay as compared to good sleeper controls (Andrillon et al., 
2020). The typical finding of increased high-frequency sleep EEG ac
tivity in insomnia sufferers, as well as the occasionally reported, but not 

Fig. 5. From the two-process model to the Fractal and Oscillatory Adjustment Model (FOAM) of sleep regulation. A. The two-process model of sleep regulation 
adapted from (Borbély, 1982). B. The correspondence between Process S and the spectral exponent, as well as Process and the spectral peak frequency in the spindle 
range. Data are based on the left frontopolar recording locations (Fp1-A1A2) of N = 251 subjects (age range: 4–69 years, 122 females) and adapted from (G. Horváth 
et al., 2022). C. Depicting the spectral picture of FOAM in double logarithmic coordinates: model and empirical example (insert figure). The latter depicts the power 
spectral densities of the fronto-frontal recording (F7-Fpz) performed by the usage of a mobile sleep recording headband (Hypnodyne Zmax) in NREM period 1 (dotted 
line) and 3 (continuous line). Note, the flattening of spectral decay is assumed to reflect decreased homeostatic sleep pressure, as well as the deceleration in spindle 
peak frequency (assumed to indicate circadian regulation/biological night). D. Ultradian sleep regulation as indexed in the FOAM. Maximal peak frequency (fmaxPeak, 
green) in the whitened spectra (power law scaling removed) as expressed in moving averages of 75 consecutive, 4 s long, Hanning-tapered segments (overlap 74×4 s) 
of left central (C3-A1A2) recording location of a healthy male volunteer (age: 20 years). The recording was intentionally not de-artefacted before the analysis in order 
to emphasize usability in everyday practice. An overplot of fmaxPeak and the spectral exponent (α, blue) with the R&K-staged hypnogram is a proof for an excellent 
correspondence between ultradian NREM-REM cycles and recurrent, abrupt departures of fmaxPeak far above the spindle range. In addition, rhythmic changes in the 
spectral exponent α cohere with ultradian cycles and transient awakenings during the night. 
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always revealed decrease in NREM sleep EEG delta power (Zhao et al., 
2021) suggests that band-limited power differences among insomnia 
patients and good sleepers could indeed reflect the alterations in spectral 
slope steepness of the former group. Thus, the spectral exponent is a 
simple, composite and non-redundant measure indicating central ner
vous system and/or cognitive hyperarousal in insomnia/sleep state 
misperception patients. 

Intriguingly, greater sleep complaints and a higher prevalence of 
insomnia disorder in women are not reflected in objective sleep pa
rameters. The latter indicates higher SWS/N3 sleep and SWA in women 
as compared to men, “suggesting that objective and subjective assess
ments tap into different constructs of sleep” (Baker et al., 2023). How
ever, the sharp contradiction between subjective and objective sleep 
quality could be partially attenuated by relying on the spectral exponent 
instead of SWA, as the former was shown to be characterized by equal 
values in women and men (Bódizs et al., 2021). 

We provide a re-analysis of an open database on psychophysiological 
insomnia and control subjects (N = 11 subjects in each group) in Fig. 4. 
C, D (Rezaei et al., 2017). Aggregated slopes derived from sequential fits 
to instantaneously changing moving average EEG spectra highlight the 
above mentioned difference in spectral exponents (i.e. more frequent 
episodes of flatter spectral slopes in insomnia records, Fig. 4. C), whereas 
oscillatory peak frequencies redistribute from spindle to alpha oscilla
tions (Fig. 4. D). The latter finding coheres with reports suggesting that 
EEG alpha activity can be considered as an index of arousal during sleep 
(Halász et al., 2004; McKinney et al., 2011; Pivik and Harman, 1995; 
Simor et al., 2013). 

7.2.3. Steeper spectral slopes in NREM parasomnia disorders 
In contrast to the findings reported in insomnia subjects, NREM sleep 

parasomnia disorders (sleep-related eating disorder, sleepwalking, sleep 
terrors, and confusional arousals) are known to be indexed by transient 
episodes of unusually high amplitude slow EEG waves during NREM 
sleep, leading to dissociated arousal responses (Camaioni et al., 2021). 
In coherence with the present conceptual framework, patients diagnosed 
with NREM parasomnia were revealed to be characterized by lower N3 
sleep EEG spectral exponents (steeper slopes) as compared to a group of 
sleep-related hypermotor epilepsy patients, characterized by partially 
overlapping symptoms, but different aetiologies (Pani et al., 2021). 
Thus, microstructural alterations specific to NREM parasomnia might be 
detectable by reliance on the sleep EEG spectral exponent (slope 
steepness). 

7.2.4. Accelerated oscillatory spindle frequency - I: an index of circadian 
dysregulation in Williams syndrome? 

Mistimed sleep or disrupted circadian rhythms are alternative causes 
of sleep insufficiency. Although the direct evidence supporting the 
reliability of the measures of sleep spindle frequency in clinical condi
tions characterized by alterations of the circadian rhythm is scarce, some 
indirect findings are suggestive in this regard. Williams syndrome (also 
called as Williams-Beuren syndrome), a neurodevelopmental disorder 
caused by microdeletion of 25–27 genes on the chromosomic region 
7q11.23 (Kozel et al., 2021) and characterized among others by signif
icant alterations in sleep quality (Bódizs, Gombos, Gerván, et al., 2014; 
Gombos et al., 2011), was shown to be associated with a less pronounced 
increase in melatonin release at bed time (Sniecinska-Cooper et al., 
2015). Indeed, Williams syndrome subjects were shown to express an 
overall increase in sleep spindle frequency as compared to their age- and 
sex-matched, typically developing peers (Bódizs et al., 2012; Bódizs, 
Gombos, Szocs, et al., 2014). The overnight dynamics of oscillatory sleep 
spindle frequency has to be determined, but higher mean values 
resemble daytime sleep or the lack of sufficient circadian modulation 
(night time deceleration), perhaps related to reduced melatonin levels. 
In addition, accelerated sleep spindle frequencies associate with 
non-continuous sleep in these groups of subjects. 

7.2.5. Accelerated oscillatory spindle frequency - II: an index of circadian 
dysregulation in post-traumatic stress disorder? 

Disruption of circadian clocks often represents a hallmark of several 
neuropsychiatric disorders rooted in prenatal/early-life insults (Marco 
et al., 2015) or traumatic stress suffered during adulthood (Agorastos 
and Olff, 2020). Indirect evidence supporting the relationship between 
assumed circadian dysregulation, sleep insufficiency and increased 
oscillatory sleep spindle frequency comes from studies conducted on 
post-traumatic stress disorder patients. Posttraumatic chronodisruption 
was shown to represent a core feature of trauma-related disorders 
mediating enduring neurobiological correlates of traumatic stress and 
leading to a breakdown of biobehavioral adaptive mechanisms (Ago
rastos and Olff, 2020). Besides reporting evidence supporting the 
elevated oscillatory sleep spindle frequency in this psychiatric condition 
(Denis et al., 2021; Wang et al., 2020), authors revealed correlations 
between the acceleration of sleep spindles and the symptoms of sleep 
alteration, including the occurrence rate of arousals during sleep (Wang 
et al., 2020). 

7.3. FOAM in a comparative perspective: nocturnality, extreme 
environments and avian sleep 

Rodents are frequently used model species in sleep research. 
Empirical evidence suggests that the Fourier spectra of rodent EEG re
cords follow a power law scaling (Magyar et al., 2023; F. Zhang et al., 
2019). Preliminary findings in mice indicate that EEG spectral slope 
steepness reflects increases in sleep intensity after stress (Jász et al., 
2023) and following periods of extended wakefulness (Magyar et al., 
2023). Furthermore, steepening of the rat sleep EEG spectral slope was 
evidenced in post-stroke periods (Leemburg et al., 2018), an EEG-feature 
which is peculiar to human clinical samples as well (Lanzone et al., 
2022). 

In contrast to the apparent steadiness of sleep homeostasis in most of 
the mammalian species analysed in common settings, there are several 
experimentally supported examples for dynamically changing sleep 
homeostatic set points in some aquatic mammals, like the northern 
elephant seals (Mirounga angustirostris) (Kendall-Bar et al., 2023), 
reindeer in the arctic (Rangifer tarandus tarandus) (Furrer et al., 2024) 
and several avian species. Indeed, the evidence for avian sleep homeo
stasis is much more conflicting. Reported examples are the significant 
and largely uncompensated reductions in uni- and bihemispherical sleep 
amounts during migratory behaviour of great frigatebirds (Fregata 
minor) (Rattenborg et al., 2016), the curtailment of sleep by lengthened 
light phases in European jackdaws (Coloeus monedula) (Van Hasselt 
et al., 2023), or the season-specific attenuation in the reactions to ho
meostatic challenges of sleep in barnacle geese (Branta leucopsis) (Van 
Hasselt et al., 2021). Whereas the above examples might indicate the 
flexibility of the set point of the sleep homeostat in at least some avian 
species, other findings indicate the similarity of avian and mammalian 
sleep homeostasis. Likewise, the analysis of the EEG of white-crowned 
sparrows (Zonotrichia leucophrys) revealed a clear homeostatic 
behaviour characterized by sleep-time-dependent decline and sleep 
deprivation-induced increase in SWA. It is remarkable that excess EEG 
power recorded during recovery sleep of white-crowned sparrows 
extended beyond SWA and levelled off with increasing frequencies (S. G. 
Jones et al., 2008), as did excess sleep EEG power in the ipsilateral 
hemisphere of unihemispherically sleep deprived pigeons (Columba 
livia) (Lesku et al., 2011). Together with reports on apparent power law 
scaling of the EEG spectra in zebra finches (Taeniopygia guttata) anes
thetized with isoflurane, these types of evidence are suggestive for a 
convergence of the functions of sleep in mammals and birds. Altogether 
the overall landscape of avian sleep homeostasis is still controversial, 
and the evidence for the involvement of fractal neurodynamics in this 
process is largely based on scarce and indirect data. Well-designed 
future studies or reanalyses of existing avian EEG-data could clarify 
the above issue. Remodelling the process in the context of FOAM could 
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paw the way toward the understanding of the peculiarities of avian sleep 
homeostasis. 

To the best of our knowledge there is no published data on the 
circadian variation of oscillatory sleep spindle frequencies in rodents. 
Although, the positive correlation between (locally manipulated) brain 
temperature and oscillatory sleep spindle frequency was evidenced in 
mice (Csernai et al., 2019), the diurnal pattern of core body temperature 
is a complex issue, given the prevailing nocturnality in rodent species. In 
contrast to diurnal species, which were shown to lower their core body 
temperature in response to melatonin treatment (Dawson et al., 1996; 
Schwimmer et al., 2010), nocturnal rodents reacted to exogenous 
melatonin by hyperthermia (Huber et al., 1998). As a consequence, 
melatonin release and the circadian nadir in core body temperature are 
out of phase in nocturnal species (Challet, 2007). It remains to be 
determined if sleep spindle frequencies fluctuate in synchrony with core 
body temperature or rather with melatonin in nocturnal rodents. This 
would then define the way of modelling sleep regulation of nocturnal 
mammals in the context of FOAM (that is, by preferred sleep periods at 
the nadir or the crest of sleep spindle frequencies). A further intriguing 
open issue is the circadian rhythm in polar vertebrates. Data on elec
trical brain activity-related circadian indices could reveal the peculiar
ities of the species characterized by maintained persistent rhythmicity in 
constant environmental light conditions. This persistence was suggested 
to be adaptive due to interdependence between circadian clock function 
and homeostatic processes (Williams et al., 2015). 

Neither spontaneous, nor benzodiazepine-altered sleep recordings 
resulted in revealing sleep spindles in avian species studied so far (Van 
Der Meij et al., 2019). The lack of a spindle frequency spectral peak in 
avian sleep EEG constitutes a major challenge in applying the herein 
proposed version of FOAM to explain and describe bird sleep regulation. 
The peculiar presence of multiple, interconnected circadian pacemakers 
in birds, including the pineal gland and the retinae besides the supra
chiasmatic nuclei (Cassone, 2014), as well as the strong dependence of 
avian sleep on external light (Aulsebrook et al., 2021) might be at the 
basis of these divergences and inconsistencies between the animal 
classes. Future studies focusing on the circadian phase- and environ
mental light-dependent aspects of avian electrophysiology could shed 
light on sleep spindle-equivalent EEG measures of birds, which could 
substitute the neurophysiological machinery of thalamic gating in the 
mammalian version of FOAM presented herein. 

8. Conclusion: toward the abandonment of sleep staging 

Sleep is a complex process probably evolving from a metabolically 
quiescent rest state and constituting a fundamental property of neuronal 
assemblies (Krueger et al., 2008). The detailed and comprehensive dis
cussion of the multitudinous molecular, neurochemical and neural fac
tors of sleep regulation is beyond the scope of the present paper. As a 
consequence, some of the biochemical and neurological explanations we 
put forward might look a bit over-simplistic, and should be specified in 
future works focusing on FOAM. Instead of a molecularly rooted model 
we opted for a synthesis of core findings on collective, state-dependent 
neuronal dynamics and the reframing of fundamental regulatory pro
cesses of sleep and wakefulness. We also aimed to explicitly reflect on 
the issue of objective sleep measurement in human subjects, which we 
considered critical in constructing new theories or models. 

Staging of sleep records on the basis of consensual rules is a more 
than eight decades old practice (see the timeline highlighted in Table 1). 
Although, the approach is deeply rooted in the era of paper-based (non- 
digital) polysomnography, it is still considered as a gold standard 
method of evaluating sleep. Without disputing the extraordinary 
importance of the procedure in historical terms, we agree with the views 
expressing the need for a renewal in the human scorer-dependent, 
consensual rule-based approach (Stanley, 2023). The distinction be
tween fractal (aperiodic, scale-free) and oscillatory spectra could 
constitute a basis of this reframing. This could provide us with the option 

of tracking fundamental sleep regulatory processes in the clinical prac
tice, leading to a fruitful synthesis of academic sleep research concepts 
and sleep medicine. One such potentially reframing approach would be 
the recently proposed spectral slope-based concept of fractal cycles of 
sleep (Rosenblum et al., 2023 a). Circumstantial evidence suggests that 
the spectral exponent of human EEG is a promising and reliable measure 
of sleep homeostasis or sleep intensity, reflecting sleep-wake history, 
sleep stage differences, sleep cycles, age-effects, local sleep and sleep 
disorders. The spectral exponent determines the power law of the overall 
frequency-dependent decay of EEG power and equals the spectral slope 
in double logarithmic coordinates. Potential sources of specific spectral 
exponent values might stem from the E:I ratio of the central nervous 
system, as well as the bistability of the network (the overall tendency of 
alternating up and down states). Moreover, some well characterized 
neurochemical regulatory factors of wake and sleep states, like 
noradrenaline and acetylcholine, were shown to modulate the steepness 
of spectral slopes. Last, but not least spectral exponents provide us with a 
measure of sleep intensity which is promising in terms of comparability 
of individual records, increasing the plausibility of establishing clear 
reference values. 

Circadian rhythms were usually not assessed from polysomnography 
or EEG measures of sleep. Indeed, evidence from various sources sug
gests that the oscillatory frequency of sleep spindles follows a circadian 
modulation. Both slow and fast sleep spindles seem to decelerate in the 
middle of the night period, following a U-shaped overnight dynamic. 
Although the deceleration is usually limited to a few tenths of Hz (up to a 
0.5 Hz day vs night difference), it could provide us with a promising 
measure of the circadian modulation strength and phase. Results on this 
measure successfully reproduce predicted age-effects and cohere with 
both the temperature-dependence of biological oscillators and the pu
tative effects of melatonin on the reticular thalamic nucleus. 

Ultradian sleep organization is usually defined in terms of the hyp
nogram, the latter derived from the work of rule-based scorers of poly
somnography records, involving inherent subjectivity. Our novel 
approach of detecting ultradian cycles of sleep relies on the fact that the 
maximal peak frequency in the whitened EEG spectra is characterized by 
recurrent and abrupt shifts made up by sudden departures from the sleep 
spindle frequency range. The regularity of these sudden shifts consti
tutes an ideal marker of the underlying state changes. The character
ization of sleep can be fine-graded by the analysis of the contribution of 
specific spectral peak frequencies relative to all-night averages (see 
Fig. 4. B and D). In addition, ultradian sleep organization can be tracked 
with times series of spectral slopes (i.e., fractal cycles of sleep). The 
combination of the spectral exponent and the maximal oscillatory peak 
frequency of the EEG could constitute a promising new way of charac
terizing the overnight dynamics, as well as the clinically important 
features of sleep processes leading to the potential abandonment of sleep 
staging in future studies. Moreover, the dynamical properties of the 
above indicators are partially coherent with the basic assumptions of the 
two-process model of sleep regulation and are summarized in the 
context of a new putative conceptual framework termed FOAM. Indirect 
and preliminary evidence suggests that FOAM can be a theoretical 
framework with significant translational relevance in the field of sleep 
medicine or clinical somnology. Further research supporting this claim, 
as well as relevant comparative studies on avian species, as well as 
aquatic and nocturnal mammals are needed and are aimed to be facili
tated by the theoretical framework presented above. 
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Aeschbach, D., Dijk, D.J., Borbély, A.A., 1997. Dynamics of EEG spindle frequency 
activity during extended sleep in humans: Relationship to slow-wave activity and 
time of day. Brain Res. 748 (1–2), 131–136. https://doi.org/10.1016/S0006-8993 
(96)01275-9. 

Agorastos, A., Olff, M., 2020. Traumatic stress and the circadian system: neurobiology, 
timing and treatment of posttraumatic chronodisruption. Eur. J. 
Psychotraumatology 11 (1). https://doi.org/10.1080/20008198.2020.1833644. 

Åkerstedt, T., Kecklund, G., Ingre, M., Lekander, M., Axelsson, J., 2009. Sleep 
homeostasis during repeated sleep restriction and recovery: support from EEG 
dynamics. Sleep 32 (2), 217–222. https://doi.org/10.1093/sleep/32.2.217. 

Albert, P.R., 2015. Why is depression more prevalent in women? J. Psychiatry Neurosci. 
40 (4), 219–221. https://doi.org/10.1503/jpn.150205. 

Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., West, B. 
J., Paradisi, P., 2009. Spontaneous brain activity as a source of ideal <math 
display="inline"> <mrow> <mn>1</mn> <mo>/</mo> <mi>f</mi>
</mrow> </math> noise. Phys. Rev. E 80 (6), 61914. https://doi.org/10.1103/ 
PhysRevE.80.061914. 

Andrillon, T., Solelhac, G., Bouchequet, P., Romano, F., Le Brun, M.P., Brigham, M., 
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Bódizs, R., Gombos, F., Kovács, I., 2012. Sleep EEG fingerprints reveal accelerated 
thalamocortical oscillatory dynamics in Williams syndrome. Res. Dev. Disabil. 33 
(1), 153–164. https://doi.org/10.1016/j.ridd.2011.09.004. 
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Bódizs, R., Szalárdy, O., Horváth, C., Ujma, P.P., Gombos, F., Simor, P., Pótári, A., 
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Borbély, A.A., 1987. The S-deficiency hypothesis of depression and the two-process 
model of sleep regulation. Pharmacopsychiatry 20 (01), 23–29. https://doi.org/ 
10.1055/s-2007-1017069. 
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sleep electroencephalogram across the menstrual cycle in young healthy women. 
J. Clin. Endocrinol. Metab. 81 (2), 728–735. https://doi.org/10.1210/jc.81.2.728. 

Dumermuth, G., Gasser, T., Germann, P., Hecker, A., Herdan, M., Lange, B., 1977. 
Studies on EEG activities in the beta band. Eur. Neurol. 16 (1–6), 197–202. https:// 
doi.org/10.1159/000114900. 

Dumermuth, G., Lange, B., Lehmann, D., Meier, C.A., Dinkelmann, R., Molinari, L., 1983. 
Spectral analysis of all-night sleep eeg in healthy adults. Eur. Neurol. 22 (5), 
322–339. https://doi.org/10.1159/000115579. 

Faraguna, U., Vyazovskiy, V.V., Nelson, A.B., Tononi, G., Cirelli, C., 2008. A causal role 
for brain-derived neurotrophic factor in the homeostatic regulation of sleep. 
J. Neurosci. 28 (15), 4088–4095. https://doi.org/10.1523/JNEUROSCI.5510- 
07.2008. 

Favaro, J., Colombo, M.A., Mikulan, E., Sartori, S., Nosadini, M., Pelizza, M.F., 
Rosanova, M., Sarasso, S., Massimini, M., Toldo, I., 2023. The maturation of 
aperiodic EEG activity across development reveals a progressive differentiation of 
wakefulness from sleep. NeuroImage 277, 120264. https://doi.org/10.1016/j. 
neuroimage.2023.120264. 

Feinberg, I., Floyd, T.C., 1979. Systematic trends across the night in human sleep cycles. 
Psychophysiology 16 (3), 283–291. https://doi.org/10.1111/j.1469-8986.1979. 
tb02991.x. 

Feinberg, I., Campbell, I.G., 2013. Longitudinal sleep EEG trajectories indicate complex 
patterns of adolescent brain maturation. Am. J. Physiol. - Regul. Integr. Comp. 
Physiol. 304 (4), R296–R303. https://doi.org/10.1152/ajpregu.00422.2012. 

Feinberg, I., March, J.D., Floyd, T.C., Fein, G., Aminoff, M.J., 1984. Log amplitude is a 
linear function of log frequency in NREM sleep EEG of young and elderly normal 
subjects. Electroencephalogr. Clin. Neurophysiol. 58 (2), 158–160. https://doi.org/ 
10.1016/0013-4694(84)90029-4. 

Fernandez, L.M.J., Lüthi, A., 2020. Sleep spindles: mechanisms and functions. Physiol. 
Rev. 100 (2), 805–868. https://doi.org/10.1152/physrev.00042.2018. 

Ferrara, M., De Gennaro, L., Curcio, G., Cristiani, R., Corvasce, C., Bertini, M., 2002. 
Regional differences of the human sleep electroencephalogram in response to 
selective slow-wave sleep deprivation. Cereb. Cortex 12 (7), 737–748. https://doi. 
org/10.1093/cercor/12.7.737. 
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Reed, C.M., Birch, K.G., Kamiński, J., Sullivan, S., Chung, J.M., Mamelak, A.N., 
Rutishauser, U., 2017. Automatic detection of periods of slow wave sleep based on 
intracranial depth electrode recordings. J. Neurosci. Methods 282, 1–8. https://doi. 
org/10.1016/j.jneumeth.2017.02.009. 

Reid, K.J., 2019. Assessment of circadian rhythms. Neurol. Clin. Vol. 37 (Issue 3), 
505–526. https://doi.org/10.1016/j.ncl.2019.05.001. 

Rezaei, M., Mohammadi, H., Khazaie, H., 2017. EEG/EOG/EMG data from a cross 
sectional study on psychophysiological insomnia and normal sleep subjects. Data 
Brief. 15, 314–319. https://doi.org/10.1016/j.dib.2017.09.033. 

Riedner, B.A., Vyazovskiy, V.V., Huber, R., Massimini, M., Esser, S., Murphy, M., 
Tononi, G., 2007. Sleep homeostasis and cortical synchronization: III. A high-density 
EEG study of sleep slow waves in humans. Sleep 30 (12), 1643–1657. https://doi. 
org/10.1093/sleep/30.12.1643. 

Roenneberg, T., Kuehnle, T., Pramstaller, P.P., Ricken, J., Havel, M., Guth, A., 
Merrow, M., 2004. A marker for the end of adolescence. Curr. Biol. Vol. 14 (Issue 24) 
https://doi.org/10.1016/j.cub.2004.11.039. 

Rosenblum, Y., Bovy, L., Weber, F.D., Steiger, A., Zeising, M., Dresler, M., 2023b. 
Increased aperiodic neural activity during sleep in major depressive disorder. Biol. 
Psychiatry Glob. Open Sci. 3 (4), 1021–1029. https://doi.org/10.1016/j. 
bpsgos.2022.10.001. 
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Werth, E., Dijk, D.J., Achermann, P., Borbély, A.A., 1996. Dynamics of the sleep EEG 
after an early evening nap: Experimental data and simulations. Am. J. Physiol. - 
Regul. Integr. Comp. Physiol. 271 (3 40-3), R501–R510. https://doi.org/10.1152/ 
ajpregu.1996.271.3.r501. 

Wetterberg, L., Bergiannaki, J.D., Paparrigopoulos, T., Von Knorring, L., Eberhard, G., 
Bratlid, T., Yuwiler, A., 1999. Normative melatonin excretion: a multinational study. 
Psychoneuroendocrinology 24 (2), 209–226. https://doi.org/10.1016/S0306-4530 
(98)00076-6. 

Williams, C.T., Barnes, B.M., Loren Buck, C., 2015. Persistence, entrainment, and 
function of circadian rhythms in polar vertebrates. Physiology Vol. 30 (Issue 2), 
86–96. https://doi.org/10.1152/physiol.00045.2014. 

Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., 
Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M., 
2013. Sleep drives metabolite clearance from the adult brain. Science 342 (6156), 
373–377. https://doi.org/10.1126/science.1241224. 

Xu, Y., Schneider, A., Wessel, R., Hengen, K.B., 2024. Sleep restores an optimal 
computational regime in cortical networks. Nat. Neurosci. https://doi.org/10.1038/ 
s41593-023-01536-9. 

Yamamoto, Y., Hughson, R.L., 1993. Extracting fractal components from time series. 
Phys. D: Nonlinear Phenom. 68 (2), 250–264. https://doi.org/10.1016/0167-2789 
(93)90083-D. 

Yoon, J.E., Oh, D., Hwang, I., Park, J.A., Im, H.J., Lee, S.K., Jung, K.Y., Park, S.H., 
Thomas, R.J., Shin, C., Yun, C.H., 2021. Sleep structure and electroencephalographic 
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