Egyszerű nézet

dc.contributor.author Vörös Zsuzsanna
dc.contributor.author Csik Gabriella
dc.contributor.author Herényi Levente
dc.contributor.author Kellermayer Miklós
dc.date.accessioned 2018-03-05T08:50:41Z
dc.date.available 2018-03-05T08:50:41Z
dc.date.issued 2017
dc.identifier 85010338864
dc.identifier.citation pagination=1136-1143; journalVolume=9; journalIssueNumber=3; journalTitle=NANOSCALE;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/4787
dc.identifier.uri doi:10.1039/c6nr06598h
dc.description.abstract Viruses are nanoscale infectious agents constructed of a proteinaceous capsid that protects the packaged genomic material. Nanoindentation experiments using atomic force microscopy have, in recent years, provided unprecedented insight into the elastic properties, structural stability and maturation-dependent mechanical changes in viruses. However, the dynamics of capsid behavior are still unresolved. Here we used high-resolution nanoindentation experiments on mature, DNA-filled T7 bacteriophage particles. The elastic regime of the nanoindentation force trace contained discrete, stepwise transitions that cause buckling of the T7 capsid with magnitudes that are integer multiples of approximately 0.6 nm. Remarkably, the transitions are reversible and contribute to the rapid consolidation of the capsid structure against a force during cantilever retraction. The stepwise transitions were present even following the removal of the genomic DNA by heat treatment, indicating that they are related to the structure and dynamics of the capsomeric proteins. Dynamic force spectroscopy experiments revealed that the thermally activated consolidation step is approximately 104 times faster than spontaneous buckling, suggesting that the capsid stability is under strong dynamic control. Capsid structural dynamics may play an important role in protecting the genomic material from harsh environmental impacts. The nanomechanics approach employed here may be used to investigate the structural dynamics of other viruses and nanoscale containers as well.
dc.relation.ispartof urn:issn:2040-3364
dc.title Stepwise reversible nanomechanical buckling in a viral capsid.
dc.type Journal Article
dc.date.updated 2018-02-14T15:25:06Z
dc.language.rfc3066 en
dc.identifier.mtmt 3184162
dc.identifier.wos 000394781100018
dc.identifier.pubmed 28009879
dc.contributor.department SE/AOK/I/Biofizikai és Sugárbiológiai Intézet
dc.contributor.department SE/AOK/I/BSI/MTA-SE Molekuláris Biofizikai Kutatócsoport
dc.contributor.institution Semmelweis Egyetem
dc.mtmt.swordnote FELTÖLTŐ: Haluszka Dóra (SE_AOK_Adm5_Biofiz_HD) - haluszka.dora@med.semmelweis-univ.hu Hiányzó szerző: 'http'


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet