Egyszerű nézet

dc.contributor.author Andreas Keller
dc.contributor.author Richard C. Gerkin
dc.contributor.author Yuanfang Guan
dc.contributor.author Amit Dhurandhar
dc.contributor.author Turu, Gábor
dc.contributor.author Szalai, Bence
dc.contributor.author Joel D. Mainland
dc.contributor.author Yusuke Ihara
dc.contributor.author Chung Wen Yu
dc.contributor.author Russ Wolfinger
dc.contributor.author Celine Vens
dc.contributor.author Leader Schietgat
dc.contributor.author Kurt De Grave
dc.contributor.author Raquel Norel
dc.contributor.author DREAM Olfaction Prediction Consortium
dc.contributor.author Gustavo Stolovitzky
dc.contributor.author Guillermo A. Cecchi
dc.contributor.author Leslie B. Vosshall
dc.contributor.author Pablo Meyer
dc.date.accessioned 2018-10-13T08:09:19Z
dc.date.available 2018-10-13T08:09:19Z
dc.date.issued 2017
dc.identifier 85013999403
dc.identifier.citation pagination=820-826; journalVolume=355; journalIssueNumber=6327; journalTitle=SCIENCE;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/4800
dc.identifier.uri doi:10.1126/science.aal2014
dc.description.abstract It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce.We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features.The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit.These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule.
dc.relation.ispartof urn:issn:0036-8075
dc.title Predicting human olfactory perception from chemical features of odor molecules
dc.type Journal Article
dc.date.updated 2018-02-15T15:23:33Z
dc.language.rfc3066 en
dc.identifier.mtmt 3233866
dc.contributor.department SE/AOK/I/Élettani Intézet
dc.contributor.department SE/AOK/I/ÉI/MTA-SE Molekuláris Élettani Kutatócsoport
dc.contributor.institution Semmelweis Egyetem
dc.mtmt.swordnote FELTÖLTŐ: Sonnevend Kinga - sonnevend.kinga@med.semmelweis-univ.hu


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet