dc.contributor.author |
Andreas Keller |
|
dc.contributor.author |
Richard C. Gerkin |
|
dc.contributor.author |
Yuanfang Guan |
|
dc.contributor.author |
Amit Dhurandhar |
|
dc.contributor.author |
Turu, Gábor |
|
dc.contributor.author |
Szalai, Bence |
|
dc.contributor.author |
Joel D. Mainland |
|
dc.contributor.author |
Yusuke Ihara |
|
dc.contributor.author |
Chung Wen Yu |
|
dc.contributor.author |
Russ Wolfinger |
|
dc.contributor.author |
Celine Vens |
|
dc.contributor.author |
Leader Schietgat |
|
dc.contributor.author |
Kurt De Grave |
|
dc.contributor.author |
Raquel Norel |
|
dc.contributor.author |
DREAM Olfaction Prediction Consortium |
|
dc.contributor.author |
Gustavo Stolovitzky |
|
dc.contributor.author |
Guillermo A. Cecchi |
|
dc.contributor.author |
Leslie B. Vosshall |
|
dc.contributor.author |
Pablo Meyer |
|
dc.date.accessioned |
2018-10-13T08:09:19Z |
|
dc.date.available |
2018-10-13T08:09:19Z |
|
dc.date.issued |
2017 |
|
dc.identifier |
85013999403 |
|
dc.identifier.citation |
pagination=820-826;
journalVolume=355;
journalIssueNumber=6327;
journalTitle=SCIENCE; |
|
dc.identifier.uri |
http://repo.lib.semmelweis.hu//handle/123456789/4800 |
|
dc.identifier.uri |
doi:10.1126/science.aal2014 |
|
dc.description.abstract |
It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce.We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features.The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit.These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. |
|
dc.relation.ispartof |
urn:issn:0036-8075 |
|
dc.title |
Predicting human olfactory perception from chemical features of odor molecules |
|
dc.type |
Journal Article |
|
dc.date.updated |
2018-02-15T15:23:33Z |
|
dc.language.rfc3066 |
en |
|
dc.identifier.mtmt |
3233866 |
|
dc.contributor.department |
SE/AOK/I/Élettani Intézet |
|
dc.contributor.department |
SE/AOK/I/ÉI/MTA-SE Molekuláris Élettani Kutatócsoport |
|
dc.contributor.institution |
Semmelweis Egyetem |
|
dc.mtmt.swordnote |
FELTÖLTŐ: Sonnevend Kinga - sonnevend.kinga@med.semmelweis-univ.hu |
|