dc.contributor.author |
Szekeres Mária |
|
dc.contributor.author |
Nádasy György László |
|
dc.contributor.author |
Dörnyei Gabriella |
|
dc.contributor.author |
Szénási Annamária |
|
dc.contributor.author |
Koller Ákos |
|
dc.date.accessioned |
2018-03-21T20:27:22Z |
|
dc.date.available |
2018-03-21T20:27:22Z |
|
dc.date.issued |
2018 |
|
dc.identifier |
85042094070 |
|
dc.identifier.citation |
pagination=87-97;
journalVolume=55;
journalIssueNumber=2;
journalTitle=JOURNAL OF VASCULAR RESEARCH; |
|
dc.identifier.uri |
http://repo.lib.semmelweis.hu//handle/123456789/5189 |
|
dc.identifier.uri |
doi:10.1159/000486571 |
|
dc.description.abstract |
PURPOSE: Exercise elicits early adaptation of coronary vessels enabling the coronary circulation to respond adequately to higher flow demands. We hypothesized that short-term daily exercise induces biomechanical and functional remodeling of the coronary resistance arteries related to pressure. METHODS: Male rats were subjected to a progressively increasing 4-week treadmill exercise program (over 60 min/day, 1 mph in the final step). In vitro pressure-diameter measurements were performed on coronary segments (119 +/- 5 mum in diameter at 50 mm Hg) with microarteriography. The magnitude of the myogenic response and contribution of endogenous nitric oxide and prostanoid production to the wall mechanics and pressure-diameter relationship were assessed. RESULTS: Arterioles isolated from exercised ani mals - compared to the sedentary group - had thicker walls, increased distensibility, and a decreased elastic modulus as a result of reduced wall stress in the low pressure range. The arterioles of exercised rats exhibited a more powerful myogenic response and less endogenous vasoconstrictor prostanoid modulation at higher pressures, while vasodilator nitric oxide modulation of diameter was augmented at low pressures (< 60 mm Hg). CONCLUSIONS: A short-term daily exercise program induces remodeling of rat intramural coronary arterioles, likely resulting in a greater range of coronary autoregulatory function (constrictor and dilator reserves) and more effective protection against great changes in intraluminal pressure, contributing thereby to the optimization of coronary blood flow during exercise. |
|
dc.relation.ispartof |
urn:issn:1018-1172 |
|
dc.title |
Remodeling of Wall Mechanics and the Myogenic Mechanism of Rat Intramural Coronary Arterioles in Response to a Short-Term Daily Exercise Program: Role of Endothelial Factors. |
|
dc.type |
Journal Article |
|
dc.date.updated |
2018-03-20T13:22:08Z |
|
dc.language.rfc3066 |
en |
|
dc.identifier.mtmt |
3335745 |
|
dc.identifier.pubmed |
29444520 |
|
dc.contributor.department |
SE/ETK2007/AEI/Morfológiai és Fiziológiai Tanszék |
|
dc.contributor.department |
SE/AOK/I/Élettani Intézet |
|
dc.contributor.department |
SE/AOK/I/Kórélettani Intézet |
|
dc.contributor.institution |
Semmelweis Egyetem |
|