Egyszerű nézet

dc.contributor.author Palmisano MG
dc.contributor.author Bremner SN
dc.contributor.author Hornberger TA
dc.contributor.author Meyer GA
dc.contributor.author Domenighetti AA
dc.contributor.author Shah SB
dc.contributor.author Kiss, Balázs
dc.contributor.author Kellermayer, Miklós
dc.contributor.author Ryan AF
dc.contributor.author Lieber RL
dc.date.accessioned 2018-06-15T08:26:51Z
dc.date.available 2018-06-15T08:26:51Z
dc.date.issued 2015
dc.identifier 84921396315
dc.identifier.citation pagination=219-224; journalVolume=128; journalIssueNumber=2; journalTitle=JOURNAL OF CELL SCIENCE;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/5417
dc.identifier.uri doi:10.1242/jcs.142463
dc.description.abstract A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function since the major muscle specific IF, desmin, is expressed in high abundance and is highly organized. Here we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role.
dc.relation.ispartof urn:issn:0021-9533
dc.title Skeletal muscle intermediate filaments form a stress-transmitting and stress- signaling network
dc.type Journal Article
dc.date.updated 2018-05-10T12:39:07Z
dc.language.rfc3066 en
dc.identifier.mtmt 2779736
dc.identifier.wos 000347973900004
dc.identifier.pubmed 25413344
dc.contributor.department SE/AOK/I/Biofizikai és Sugárbiológiai Intézet
dc.contributor.department SE/AOK/I/BSI/MTA-SE Molekuláris Biofizikai Kutatócsoport
dc.contributor.institution Semmelweis Egyetem
dc.mtmt.swordnote FELTÖLTŐ: Haluszka Dóra - haluszka.dora@med.semmelweis-univ.hu


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet