Egyszerű nézet

dc.contributor.author Weymann A
dc.contributor.author Patil NP
dc.contributor.author Sabashnikov A
dc.contributor.author Jungebluth P
dc.contributor.author Korkmaz S
dc.contributor.author Veres, Gábor
dc.contributor.author Soós, Pál
dc.contributor.author Ishtok R
dc.contributor.author Chaimow N
dc.contributor.author Patzold I
dc.contributor.author Czerny Nx
dc.contributor.author Czerny N
dc.contributor.author Schies C
dc.contributor.author Schmack B
dc.contributor.author Popov AF
dc.contributor.author Simon AR
dc.contributor.author Karck M
dc.contributor.author Szabó, Gábor Balázs
dc.date.accessioned 2018-09-29T09:11:11Z
dc.date.available 2018-09-29T09:11:11Z
dc.date.issued 2014
dc.identifier 84909953317
dc.identifier.citation pagination=e111591, pages: 8; journalVolume=9; journalIssueNumber=11; journalTitle=PLOS ONE;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/5819
dc.identifier.uri doi:10.1371/journal.pone.0111591
dc.description.abstract BACKGROUND: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS: We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. RESULTS: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6+/-3.2 ng DNA/mg tissue vs. 473.2+/-13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. CONCLUSIONS: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.
dc.relation.ispartof urn:issn:1932-6203
dc.title Bioartificial heart: a human-sized porcine model - the way ahead
dc.type Journal Article
dc.date.updated 2018-07-15T13:59:38Z
dc.language.rfc3066 en
dc.identifier.mtmt 2781795
dc.identifier.wos 000345558100084
dc.identifier.pubmed 25365554
dc.contributor.department SE/AOK/I/II. Sz. Patológiai Intézet
dc.contributor.department SE/AOK/K/VAROSMAJOR_SZÍVÉRGYÓGY/Kardiológia Központ - Kardiológiai Tanszék [2017.10.31]
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet