| dc.contributor.author | Weymann A | |
| dc.contributor.author | Patil NP | |
| dc.contributor.author | Sabashnikov A | |
| dc.contributor.author | Jungebluth P | |
| dc.contributor.author | Korkmaz S | |
| dc.contributor.author | Veres, Gábor | |
| dc.contributor.author | Soós, Pál | |
| dc.contributor.author | Ishtok R | |
| dc.contributor.author | Chaimow N | |
| dc.contributor.author | Patzold I | |
| dc.contributor.author | Czerny Nx | |
| dc.contributor.author | Czerny N | |
| dc.contributor.author | Schies C | |
| dc.contributor.author | Schmack B | |
| dc.contributor.author | Popov AF | |
| dc.contributor.author | Simon AR | |
| dc.contributor.author | Karck M | |
| dc.contributor.author | Szabó, Gábor Balázs | |
| dc.date.accessioned | 2018-09-29T09:11:11Z | |
| dc.date.available | 2018-09-29T09:11:11Z | |
| dc.date.issued | 2014 | |
| dc.identifier | 84909953317 | |
| dc.identifier.citation | pagination=e111591, pages: 8; journalVolume=9; journalIssueNumber=11; journalTitle=PLOS ONE; | |
| dc.identifier.uri | http://repo.lib.semmelweis.hu//handle/123456789/5819 | |
| dc.identifier.uri | doi:10.1371/journal.pone.0111591 | |
| dc.description.abstract | BACKGROUND: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS: We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. RESULTS: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6+/-3.2 ng DNA/mg tissue vs. 473.2+/-13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. CONCLUSIONS: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure. | |
| dc.relation.ispartof | urn:issn:1932-6203 | |
| dc.title | Bioartificial heart: a human-sized porcine model - the way ahead | |
| dc.type | Journal Article | |
| dc.date.updated | 2018-07-15T13:59:38Z | |
| dc.language.rfc3066 | en | |
| dc.identifier.mtmt | 2781795 | |
| dc.identifier.wos | 000345558100084 | |
| dc.identifier.pubmed | 25365554 | |
| dc.contributor.department | SE/AOK/I/II. Sz. Patológiai Intézet | |
| dc.contributor.department | SE/AOK/K/VAROSMAJOR_SZÍVÉRGYÓGY/Kardiológia Központ - Kardiológiai Tanszék [2017.10.31] | |
| dc.contributor.institution | Semmelweis Egyetem |