dc.contributor.author |
Weymann A |
|
dc.contributor.author |
Patil NP |
|
dc.contributor.author |
Sabashnikov A |
|
dc.contributor.author |
Jungebluth P |
|
dc.contributor.author |
Korkmaz S |
|
dc.contributor.author |
Veres, Gábor |
|
dc.contributor.author |
Soós, Pál |
|
dc.contributor.author |
Ishtok R |
|
dc.contributor.author |
Chaimow N |
|
dc.contributor.author |
Patzold I |
|
dc.contributor.author |
Czerny Nx |
|
dc.contributor.author |
Czerny N |
|
dc.contributor.author |
Schies C |
|
dc.contributor.author |
Schmack B |
|
dc.contributor.author |
Popov AF |
|
dc.contributor.author |
Simon AR |
|
dc.contributor.author |
Karck M |
|
dc.contributor.author |
Szabó, Gábor Balázs |
|
dc.date.accessioned |
2018-09-29T09:11:11Z |
|
dc.date.available |
2018-09-29T09:11:11Z |
|
dc.date.issued |
2014 |
|
dc.identifier |
84909953317 |
|
dc.identifier.citation |
pagination=e111591, pages: 8;
journalVolume=9;
journalIssueNumber=11;
journalTitle=PLOS ONE; |
|
dc.identifier.uri |
http://repo.lib.semmelweis.hu//handle/123456789/5819 |
|
dc.identifier.uri |
doi:10.1371/journal.pone.0111591 |
|
dc.description.abstract |
BACKGROUND: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS: We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. RESULTS: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6+/-3.2 ng DNA/mg tissue vs. 473.2+/-13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. CONCLUSIONS: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure. |
|
dc.relation.ispartof |
urn:issn:1932-6203 |
|
dc.title |
Bioartificial heart: a human-sized porcine model - the way ahead |
|
dc.type |
Journal Article |
|
dc.date.updated |
2018-07-15T13:59:38Z |
|
dc.language.rfc3066 |
en |
|
dc.identifier.mtmt |
2781795 |
|
dc.identifier.wos |
000345558100084 |
|
dc.identifier.pubmed |
25365554 |
|
dc.contributor.department |
SE/AOK/I/II. Sz. Patológiai Intézet |
|
dc.contributor.department |
SE/AOK/K/VAROSMAJOR_SZÍVÉRGYÓGY/Kardiológia Központ - Kardiológiai Tanszék [2017.10.31] |
|
dc.contributor.institution |
Semmelweis Egyetem |
|