Egyszerű nézet

dc.contributor.author Udvardyné Galamb, Orsolya
dc.contributor.author Győrffy, Balázs
dc.contributor.author Sipos, Ferenc
dc.contributor.author Spisák, Sándor
dc.contributor.author Németh, Anna Mária
dc.contributor.author Miheller, Pál
dc.contributor.author Tulassay, Zsolt
dc.contributor.author Dinya, Elek
dc.contributor.author Molnár, Béla
dc.date.accessioned 2018-10-02T11:12:12Z
dc.date.available 2018-10-02T11:12:12Z
dc.date.issued 2008
dc.identifier 50249185512
dc.identifier.citation pagination=1-16; journalVolume=25; journalIssueNumber=1; journalTitle=DISEASE MARKERS;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/6287
dc.description.abstract Gene expression analysis of colon biopsies using high-density oligonucleotide microarrays can contribute to the understanding of local pathophysiological alterations and to functional classification of adenoma (15 samples), colorectal carcinomas (CRC) (15) and inflammatory bowel diseases (IBD) (14). Total RNA was extracted, amplified and biotinylated from frozen colonic biopsies. Genome-wide gene expression profile was evaluated by HGU133plus2 microarrays and verified by RT-PCR. We applied two independent methods for data normalization and used PAM for feature selection. Leave one-out stepwise discriminant analysis was performed. Top validated genes included collagenIV alpha 1, lipocalin-2, calumenin, aquaporin-8 genes in CRC; CD44, met proto-oncogene, chemokine ligand-12, ADAM-like decysin-1 and ATP-binding casette-A8 genes in adenoma; and lipocalin-2, ubiquitin D and IFITM2 genes in IBD. Best differentiating markers between Ulcerative colitis and Crohn's disease were cyclin-G2; tripartite motif-containing-31; TNFR shedding aminopeptidase regulator-1 and AMICA. The discriminant analysis was able to classify the samples in overall 96.2% using 7 discriminatory genes (indoleamine-pyrrole-2,3-dioxygenase, ectodermal-neural cortex, TIMP3, fucosyltransferase-8, collectin sub-family member 12, carboxypeptidase D, and transglutaminase- 2). Using routine biopsy samples we successfully performed whole genomic microarray analysis to identify discriminative signatures. Our results provide further insight into the pathophysiological background of colonic diseases. The results set up data warehouse which can be mined further.
dc.relation.ispartof urn:issn:0278-0240
dc.title Inflammation, adenoma and cancer: Objective classification of colon biopsy specimens with gene expression signature
dc.type Journal Article
dc.date.updated 2018-08-31T06:21:00Z
dc.language.rfc3066 en
dc.identifier.mtmt 154973
dc.identifier.wos 000259600200001
dc.identifier.pubmed 18776587
dc.contributor.department SE/AOK/K/ISZGYK/MTA-SE Gyermekgyógyászati és Nephrológiai Kutatócsoport
dc.contributor.department SE/AOK/K/IISZBK/MTA-SE Molekuláris Medicina Kutatócsoport (2006-ig: MTA-SE Gastroenterológiai és Endocrinológiai Kutatócsoport)
dc.contributor.department SE/AOK/K/II. Sz. Belgyógyászati Klinika
dc.contributor.department SE/AOK/K/I. Sz. Gyermekgyógyászati Klinika
dc.contributor.institution Semmelweis Egyetem
dc.mtmt.swordnote Galamb O and Győrffy B contributed equally to this work.


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet