Egyszerű nézet

dc.contributor.author Sun, Duanchen
dc.contributor.author Xianwen, Ren
dc.contributor.author Ari, Eszter
dc.contributor.author Korcsmáros, Tamás
dc.contributor.author Csermely, Péter
dc.contributor.author Ling-Yun, Wu
dc.date.accessioned 2022-08-23T09:49:47Z
dc.date.available 2022-08-23T09:49:47Z
dc.date.issued 2019
dc.identifier.citation journalVolume=20;journalIssueNumber=1;journalTitle=BRIEFINGS IN BIOINFORMATICS;pagerange=89-101;journalAbbreviatedTitle=BRIEF BIOINFORM;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/6807
dc.identifier.uri doi:10.1093/bib/bbx090
dc.description.abstract Biomarkers with high reproducibility and accurate prediction performance can contribute to comprehending the underlying pathogenesis of related complex diseases and further facilitate disease diagnosis and therapy. Techniques integrating gene expression profiles and biological networks for the identification of network-based disease biomarkers are receiving increasing interest. The biomarkers for heterogeneous diseases often exhibit strong cooperative effects, which implies that a set of genes may achieve more accurate outcome prediction than any single gene. In this study, we evaluated various biomarker identification methods that consider gene cooperative effects implicitly or explicitly, and proposed the gene cooperation network to explicitly model the cooperative effects of gene combinations. The gene cooperation network- enhanced method, named as MarkRank, achieves superior performance compared with traditional biomarker identification methods in both simulation studies and real data sets. The biomarkers identified by MarkRank not only have a better prediction accuracy but also have stronger topological relationships in the biological network and exhibit high specificity associated with the related diseases. Furthermore, the top genes identified by MarkRank involve crucial biological processes of related diseases and give a good prioritization for known disease genes. In conclusion, MarkRank suggests that explicit modeling of gene cooperative effects can greatly improve biomarker identification for complex diseases, especially for diseases with high heterogeneity.
dc.format.extent 89-101
dc.relation.ispartof urn:issn:1467-5463; 1477-4054
dc.title Discovering cooperative biomarkers for heterogeneous complex disease diagnoses
dc.type Journal Article
dc.date.updated 2019-02-28T08:55:07Z
dc.language.rfc3066 en
dc.rights.holder NULL
dc.identifier.mtmt 3280772
dc.identifier.wos 000456736200009
dc.identifier.pubmed 28968712
dc.contributor.department SE/AOK/I/Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet